2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
41 #include <asm/processor.h>
44 #include <asm/machdep.h>
46 #include <asm/syscalls.h>
48 #include <asm/firmware.h>
51 extern unsigned long _get_SP(void);
54 struct task_struct
*last_task_used_math
= NULL
;
55 struct task_struct
*last_task_used_altivec
= NULL
;
56 struct task_struct
*last_task_used_spe
= NULL
;
60 * Make sure the floating-point register state in the
61 * the thread_struct is up to date for task tsk.
63 void flush_fp_to_thread(struct task_struct
*tsk
)
65 if (tsk
->thread
.regs
) {
67 * We need to disable preemption here because if we didn't,
68 * another process could get scheduled after the regs->msr
69 * test but before we have finished saving the FP registers
70 * to the thread_struct. That process could take over the
71 * FPU, and then when we get scheduled again we would store
72 * bogus values for the remaining FP registers.
75 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
78 * This should only ever be called for current or
79 * for a stopped child process. Since we save away
80 * the FP register state on context switch on SMP,
81 * there is something wrong if a stopped child appears
82 * to still have its FP state in the CPU registers.
84 BUG_ON(tsk
!= current
);
92 void enable_kernel_fp(void)
94 WARN_ON(preemptible());
97 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
))
100 giveup_fpu(NULL
); /* just enables FP for kernel */
102 giveup_fpu(last_task_used_math
);
103 #endif /* CONFIG_SMP */
105 EXPORT_SYMBOL(enable_kernel_fp
);
107 int dump_task_fpu(struct task_struct
*tsk
, elf_fpregset_t
*fpregs
)
109 if (!tsk
->thread
.regs
)
111 flush_fp_to_thread(current
);
113 memcpy(fpregs
, &tsk
->thread
.fpr
[0], sizeof(*fpregs
));
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
121 WARN_ON(preemptible());
124 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
))
125 giveup_altivec(current
);
127 giveup_altivec(NULL
); /* just enable AltiVec for kernel - force */
129 giveup_altivec(last_task_used_altivec
);
130 #endif /* CONFIG_SMP */
132 EXPORT_SYMBOL(enable_kernel_altivec
);
135 * Make sure the VMX/Altivec register state in the
136 * the thread_struct is up to date for task tsk.
138 void flush_altivec_to_thread(struct task_struct
*tsk
)
140 if (tsk
->thread
.regs
) {
142 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
144 BUG_ON(tsk
!= current
);
146 giveup_altivec(current
);
152 int dump_task_altivec(struct pt_regs
*regs
, elf_vrregset_t
*vrregs
)
154 flush_altivec_to_thread(current
);
155 memcpy(vrregs
, ¤t
->thread
.vr
[0], sizeof(*vrregs
));
158 #endif /* CONFIG_ALTIVEC */
162 void enable_kernel_spe(void)
164 WARN_ON(preemptible());
167 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
))
170 giveup_spe(NULL
); /* just enable SPE for kernel - force */
172 giveup_spe(last_task_used_spe
);
173 #endif /* __SMP __ */
175 EXPORT_SYMBOL(enable_kernel_spe
);
177 void flush_spe_to_thread(struct task_struct
*tsk
)
179 if (tsk
->thread
.regs
) {
181 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
183 BUG_ON(tsk
!= current
);
191 int dump_spe(struct pt_regs
*regs
, elf_vrregset_t
*evrregs
)
193 flush_spe_to_thread(current
);
194 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
195 memcpy(evrregs
, ¤t
->thread
.evr
[0], sizeof(u32
) * 35);
198 #endif /* CONFIG_SPE */
202 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
203 * and the current task has some state, discard it.
205 void discard_lazy_cpu_state(void)
208 if (last_task_used_math
== current
)
209 last_task_used_math
= NULL
;
210 #ifdef CONFIG_ALTIVEC
211 if (last_task_used_altivec
== current
)
212 last_task_used_altivec
= NULL
;
213 #endif /* CONFIG_ALTIVEC */
215 if (last_task_used_spe
== current
)
216 last_task_used_spe
= NULL
;
220 #endif /* CONFIG_SMP */
222 #ifdef CONFIG_PPC_MERGE /* XXX for now */
223 int set_dabr(unsigned long dabr
)
226 return ppc_md
.set_dabr(dabr
);
228 mtspr(SPRN_DABR
, dabr
);
234 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
235 static DEFINE_PER_CPU(unsigned long, current_dabr
);
238 struct task_struct
*__switch_to(struct task_struct
*prev
,
239 struct task_struct
*new)
241 struct thread_struct
*new_thread
, *old_thread
;
243 struct task_struct
*last
;
246 /* avoid complexity of lazy save/restore of fpu
247 * by just saving it every time we switch out if
248 * this task used the fpu during the last quantum.
250 * If it tries to use the fpu again, it'll trap and
251 * reload its fp regs. So we don't have to do a restore
252 * every switch, just a save.
255 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_FP
))
257 #ifdef CONFIG_ALTIVEC
259 * If the previous thread used altivec in the last quantum
260 * (thus changing altivec regs) then save them.
261 * We used to check the VRSAVE register but not all apps
262 * set it, so we don't rely on it now (and in fact we need
263 * to save & restore VSCR even if VRSAVE == 0). -- paulus
265 * On SMP we always save/restore altivec regs just to avoid the
266 * complexity of changing processors.
269 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VEC
))
270 giveup_altivec(prev
);
271 #endif /* CONFIG_ALTIVEC */
274 * If the previous thread used spe in the last quantum
275 * (thus changing spe regs) then save them.
277 * On SMP we always save/restore spe regs just to avoid the
278 * complexity of changing processors.
280 if ((prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_SPE
)))
282 #endif /* CONFIG_SPE */
284 #else /* CONFIG_SMP */
285 #ifdef CONFIG_ALTIVEC
286 /* Avoid the trap. On smp this this never happens since
287 * we don't set last_task_used_altivec -- Cort
289 if (new->thread
.regs
&& last_task_used_altivec
== new)
290 new->thread
.regs
->msr
|= MSR_VEC
;
291 #endif /* CONFIG_ALTIVEC */
293 /* Avoid the trap. On smp this this never happens since
294 * we don't set last_task_used_spe
296 if (new->thread
.regs
&& last_task_used_spe
== new)
297 new->thread
.regs
->msr
|= MSR_SPE
;
298 #endif /* CONFIG_SPE */
300 #endif /* CONFIG_SMP */
302 #ifdef CONFIG_PPC64 /* for now */
303 if (unlikely(__get_cpu_var(current_dabr
) != new->thread
.dabr
)) {
304 set_dabr(new->thread
.dabr
);
305 __get_cpu_var(current_dabr
) = new->thread
.dabr
;
307 #endif /* CONFIG_PPC64 */
309 new_thread
= &new->thread
;
310 old_thread
= ¤t
->thread
;
314 * Collect processor utilization data per process
316 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
317 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
318 long unsigned start_tb
, current_tb
;
319 start_tb
= old_thread
->start_tb
;
320 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
321 old_thread
->accum_tb
+= (current_tb
- start_tb
);
322 new_thread
->start_tb
= current_tb
;
326 local_irq_save(flags
);
328 account_system_vtime(current
);
329 account_process_vtime(current
);
330 calculate_steal_time();
332 last
= _switch(old_thread
, new_thread
);
334 local_irq_restore(flags
);
339 static int instructions_to_print
= 16;
341 static void show_instructions(struct pt_regs
*regs
)
344 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
347 printk("Instruction dump:");
349 for (i
= 0; i
< instructions_to_print
; i
++) {
355 /* We use __get_user here *only* to avoid an OOPS on a
356 * bad address because the pc *should* only be a
359 if (!__kernel_text_address(pc
) ||
360 __get_user(instr
, (unsigned int __user
*)pc
)) {
364 printk("<%08x> ", instr
);
366 printk("%08x ", instr
);
375 static struct regbit
{
388 static void printbits(unsigned long val
, struct regbit
*bits
)
390 const char *sep
= "";
393 for (; bits
->bit
; ++bits
)
394 if (val
& bits
->bit
) {
395 printk("%s%s", sep
, bits
->name
);
403 #define REGS_PER_LINE 4
404 #define LAST_VOLATILE 13
407 #define REGS_PER_LINE 8
408 #define LAST_VOLATILE 12
411 void show_regs(struct pt_regs
* regs
)
415 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
416 regs
->nip
, regs
->link
, regs
->ctr
);
417 printk("REGS: %p TRAP: %04lx %s (%s)\n",
418 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
419 printk("MSR: "REG
" ", regs
->msr
);
420 printbits(regs
->msr
, msr_bits
);
421 printk(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
423 if (trap
== 0x300 || trap
== 0x600)
424 printk("DAR: "REG
", DSISR: "REG
"\n", regs
->dar
, regs
->dsisr
);
425 printk("TASK = %p[%d] '%s' THREAD: %p",
426 current
, current
->pid
, current
->comm
, task_thread_info(current
));
429 printk(" CPU: %d", smp_processor_id());
430 #endif /* CONFIG_SMP */
432 for (i
= 0; i
< 32; i
++) {
433 if ((i
% REGS_PER_LINE
) == 0)
434 printk("\n" KERN_INFO
"GPR%02d: ", i
);
435 printk(REG
" ", regs
->gpr
[i
]);
436 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
440 #ifdef CONFIG_KALLSYMS
442 * Lookup NIP late so we have the best change of getting the
443 * above info out without failing
445 printk("NIP ["REG
"] ", regs
->nip
);
446 print_symbol("%s\n", regs
->nip
);
447 printk("LR ["REG
"] ", regs
->link
);
448 print_symbol("%s\n", regs
->link
);
450 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
451 if (!user_mode(regs
))
452 show_instructions(regs
);
455 void exit_thread(void)
457 discard_lazy_cpu_state();
460 void flush_thread(void)
463 struct thread_info
*t
= current_thread_info();
465 if (test_ti_thread_flag(t
, TIF_ABI_PENDING
)) {
466 clear_ti_thread_flag(t
, TIF_ABI_PENDING
);
467 if (test_ti_thread_flag(t
, TIF_32BIT
))
468 clear_ti_thread_flag(t
, TIF_32BIT
);
470 set_ti_thread_flag(t
, TIF_32BIT
);
474 discard_lazy_cpu_state();
476 #ifdef CONFIG_PPC64 /* for now */
477 if (current
->thread
.dabr
) {
478 current
->thread
.dabr
= 0;
485 release_thread(struct task_struct
*t
)
490 * This gets called before we allocate a new thread and copy
491 * the current task into it.
493 void prepare_to_copy(struct task_struct
*tsk
)
495 flush_fp_to_thread(current
);
496 flush_altivec_to_thread(current
);
497 flush_spe_to_thread(current
);
503 int copy_thread(int nr
, unsigned long clone_flags
, unsigned long usp
,
504 unsigned long unused
, struct task_struct
*p
,
505 struct pt_regs
*regs
)
507 struct pt_regs
*childregs
, *kregs
;
508 extern void ret_from_fork(void);
509 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
511 CHECK_FULL_REGS(regs
);
513 sp
-= sizeof(struct pt_regs
);
514 childregs
= (struct pt_regs
*) sp
;
516 if ((childregs
->msr
& MSR_PR
) == 0) {
517 /* for kernel thread, set `current' and stackptr in new task */
518 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
520 childregs
->gpr
[2] = (unsigned long) p
;
522 clear_tsk_thread_flag(p
, TIF_32BIT
);
524 p
->thread
.regs
= NULL
; /* no user register state */
526 childregs
->gpr
[1] = usp
;
527 p
->thread
.regs
= childregs
;
528 if (clone_flags
& CLONE_SETTLS
) {
530 if (!test_thread_flag(TIF_32BIT
))
531 childregs
->gpr
[13] = childregs
->gpr
[6];
534 childregs
->gpr
[2] = childregs
->gpr
[6];
537 childregs
->gpr
[3] = 0; /* Result from fork() */
538 sp
-= STACK_FRAME_OVERHEAD
;
541 * The way this works is that at some point in the future
542 * some task will call _switch to switch to the new task.
543 * That will pop off the stack frame created below and start
544 * the new task running at ret_from_fork. The new task will
545 * do some house keeping and then return from the fork or clone
546 * system call, using the stack frame created above.
548 sp
-= sizeof(struct pt_regs
);
549 kregs
= (struct pt_regs
*) sp
;
550 sp
-= STACK_FRAME_OVERHEAD
;
554 if (cpu_has_feature(CPU_FTR_SLB
)) {
555 unsigned long sp_vsid
= get_kernel_vsid(sp
);
556 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
558 sp_vsid
<<= SLB_VSID_SHIFT
;
559 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
560 p
->thread
.ksp_vsid
= sp_vsid
;
564 * The PPC64 ABI makes use of a TOC to contain function
565 * pointers. The function (ret_from_except) is actually a pointer
566 * to the TOC entry. The first entry is a pointer to the actual
569 kregs
->nip
= *((unsigned long *)ret_from_fork
);
571 kregs
->nip
= (unsigned long)ret_from_fork
;
578 * Set up a thread for executing a new program
580 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
583 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
589 * If we exec out of a kernel thread then thread.regs will not be
592 if (!current
->thread
.regs
) {
593 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
594 current
->thread
.regs
= regs
- 1;
597 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
607 regs
->msr
= MSR_USER
;
609 if (!test_thread_flag(TIF_32BIT
)) {
610 unsigned long entry
, toc
;
612 /* start is a relocated pointer to the function descriptor for
613 * the elf _start routine. The first entry in the function
614 * descriptor is the entry address of _start and the second
615 * entry is the TOC value we need to use.
617 __get_user(entry
, (unsigned long __user
*)start
);
618 __get_user(toc
, (unsigned long __user
*)start
+1);
620 /* Check whether the e_entry function descriptor entries
621 * need to be relocated before we can use them.
623 if (load_addr
!= 0) {
629 regs
->msr
= MSR_USER64
;
633 regs
->msr
= MSR_USER32
;
637 discard_lazy_cpu_state();
638 memset(current
->thread
.fpr
, 0, sizeof(current
->thread
.fpr
));
639 current
->thread
.fpscr
.val
= 0;
640 #ifdef CONFIG_ALTIVEC
641 memset(current
->thread
.vr
, 0, sizeof(current
->thread
.vr
));
642 memset(¤t
->thread
.vscr
, 0, sizeof(current
->thread
.vscr
));
643 current
->thread
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
644 current
->thread
.vrsave
= 0;
645 current
->thread
.used_vr
= 0;
646 #endif /* CONFIG_ALTIVEC */
648 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
649 current
->thread
.acc
= 0;
650 current
->thread
.spefscr
= 0;
651 current
->thread
.used_spe
= 0;
652 #endif /* CONFIG_SPE */
655 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
656 | PR_FP_EXC_RES | PR_FP_EXC_INV)
658 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
660 struct pt_regs
*regs
= tsk
->thread
.regs
;
662 /* This is a bit hairy. If we are an SPE enabled processor
663 * (have embedded fp) we store the IEEE exception enable flags in
664 * fpexc_mode. fpexc_mode is also used for setting FP exception
665 * mode (asyn, precise, disabled) for 'Classic' FP. */
666 if (val
& PR_FP_EXC_SW_ENABLE
) {
668 tsk
->thread
.fpexc_mode
= val
&
669 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
676 /* on a CONFIG_SPE this does not hurt us. The bits that
677 * __pack_fe01 use do not overlap with bits used for
678 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
679 * on CONFIG_SPE implementations are reserved so writing to
680 * them does not change anything */
681 if (val
> PR_FP_EXC_PRECISE
)
683 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
684 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
685 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
686 | tsk
->thread
.fpexc_mode
;
690 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
694 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
696 val
= tsk
->thread
.fpexc_mode
;
701 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
702 return put_user(val
, (unsigned int __user
*) adr
);
705 int set_endian(struct task_struct
*tsk
, unsigned int val
)
707 struct pt_regs
*regs
= tsk
->thread
.regs
;
709 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
710 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
716 if (val
== PR_ENDIAN_BIG
)
717 regs
->msr
&= ~MSR_LE
;
718 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
726 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
728 struct pt_regs
*regs
= tsk
->thread
.regs
;
731 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
732 !cpu_has_feature(CPU_FTR_REAL_LE
))
738 if (regs
->msr
& MSR_LE
) {
739 if (cpu_has_feature(CPU_FTR_REAL_LE
))
740 val
= PR_ENDIAN_LITTLE
;
742 val
= PR_ENDIAN_PPC_LITTLE
;
746 return put_user(val
, (unsigned int __user
*)adr
);
749 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
751 tsk
->thread
.align_ctl
= val
;
755 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
757 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
760 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
762 int sys_clone(unsigned long clone_flags
, unsigned long usp
,
763 int __user
*parent_tidp
, void __user
*child_threadptr
,
764 int __user
*child_tidp
, int p6
,
765 struct pt_regs
*regs
)
767 CHECK_FULL_REGS(regs
);
769 usp
= regs
->gpr
[1]; /* stack pointer for child */
771 if (test_thread_flag(TIF_32BIT
)) {
772 parent_tidp
= TRUNC_PTR(parent_tidp
);
773 child_tidp
= TRUNC_PTR(child_tidp
);
776 return do_fork(clone_flags
, usp
, regs
, 0, parent_tidp
, child_tidp
);
779 int sys_fork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
780 unsigned long p4
, unsigned long p5
, unsigned long p6
,
781 struct pt_regs
*regs
)
783 CHECK_FULL_REGS(regs
);
784 return do_fork(SIGCHLD
, regs
->gpr
[1], regs
, 0, NULL
, NULL
);
787 int sys_vfork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
788 unsigned long p4
, unsigned long p5
, unsigned long p6
,
789 struct pt_regs
*regs
)
791 CHECK_FULL_REGS(regs
);
792 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, regs
->gpr
[1],
793 regs
, 0, NULL
, NULL
);
796 int sys_execve(unsigned long a0
, unsigned long a1
, unsigned long a2
,
797 unsigned long a3
, unsigned long a4
, unsigned long a5
,
798 struct pt_regs
*regs
)
803 filename
= getname((char __user
*) a0
);
804 error
= PTR_ERR(filename
);
805 if (IS_ERR(filename
))
807 flush_fp_to_thread(current
);
808 flush_altivec_to_thread(current
);
809 flush_spe_to_thread(current
);
810 error
= do_execve(filename
, (char __user
* __user
*) a1
,
811 (char __user
* __user
*) a2
, regs
);
814 current
->ptrace
&= ~PT_DTRACE
;
815 task_unlock(current
);
822 #ifdef CONFIG_IRQSTACKS
823 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
824 unsigned long nbytes
)
826 unsigned long stack_page
;
827 unsigned long cpu
= task_cpu(p
);
830 * Avoid crashing if the stack has overflowed and corrupted
831 * task_cpu(p), which is in the thread_info struct.
833 if (cpu
< NR_CPUS
&& cpu_possible(cpu
)) {
834 stack_page
= (unsigned long) hardirq_ctx
[cpu
];
835 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
836 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
839 stack_page
= (unsigned long) softirq_ctx
[cpu
];
840 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
841 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
848 #define valid_irq_stack(sp, p, nb) 0
849 #endif /* CONFIG_IRQSTACKS */
851 int validate_sp(unsigned long sp
, struct task_struct
*p
,
852 unsigned long nbytes
)
854 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
856 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
857 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
860 return valid_irq_stack(sp
, p
, nbytes
);
864 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
865 #define FRAME_LR_SAVE 2
866 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
867 #define REGS_MARKER 0x7265677368657265ul
868 #define FRAME_MARKER 12
870 #define MIN_STACK_FRAME 16
871 #define FRAME_LR_SAVE 1
872 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
873 #define REGS_MARKER 0x72656773ul
874 #define FRAME_MARKER 2
877 EXPORT_SYMBOL(validate_sp
);
879 unsigned long get_wchan(struct task_struct
*p
)
881 unsigned long ip
, sp
;
884 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
888 if (!validate_sp(sp
, p
, MIN_STACK_FRAME
))
892 sp
= *(unsigned long *)sp
;
893 if (!validate_sp(sp
, p
, MIN_STACK_FRAME
))
896 ip
= ((unsigned long *)sp
)[FRAME_LR_SAVE
];
897 if (!in_sched_functions(ip
))
900 } while (count
++ < 16);
904 static int kstack_depth_to_print
= 64;
906 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
908 unsigned long sp
, ip
, lr
, newsp
;
912 sp
= (unsigned long) stack
;
917 asm("mr %0,1" : "=r" (sp
));
919 sp
= tsk
->thread
.ksp
;
923 printk("Call Trace:\n");
925 if (!validate_sp(sp
, tsk
, MIN_STACK_FRAME
))
928 stack
= (unsigned long *) sp
;
930 ip
= stack
[FRAME_LR_SAVE
];
931 if (!firstframe
|| ip
!= lr
) {
932 printk("["REG
"] ["REG
"] ", sp
, ip
);
933 print_symbol("%s", ip
);
935 printk(" (unreliable)");
941 * See if this is an exception frame.
942 * We look for the "regshere" marker in the current frame.
944 if (validate_sp(sp
, tsk
, INT_FRAME_SIZE
)
945 && stack
[FRAME_MARKER
] == REGS_MARKER
) {
946 struct pt_regs
*regs
= (struct pt_regs
*)
947 (sp
+ STACK_FRAME_OVERHEAD
);
948 printk("--- Exception: %lx", regs
->trap
);
949 print_symbol(" at %s\n", regs
->nip
);
951 print_symbol(" LR = %s\n", lr
);
956 } while (count
++ < kstack_depth_to_print
);
959 void dump_stack(void)
961 show_stack(current
, NULL
);
963 EXPORT_SYMBOL(dump_stack
);
966 void ppc64_runlatch_on(void)
970 if (cpu_has_feature(CPU_FTR_CTRL
) && !test_thread_flag(TIF_RUNLATCH
)) {
973 ctrl
= mfspr(SPRN_CTRLF
);
974 ctrl
|= CTRL_RUNLATCH
;
975 mtspr(SPRN_CTRLT
, ctrl
);
977 set_thread_flag(TIF_RUNLATCH
);
981 void ppc64_runlatch_off(void)
985 if (cpu_has_feature(CPU_FTR_CTRL
) && test_thread_flag(TIF_RUNLATCH
)) {
988 clear_thread_flag(TIF_RUNLATCH
);
990 ctrl
= mfspr(SPRN_CTRLF
);
991 ctrl
&= ~CTRL_RUNLATCH
;
992 mtspr(SPRN_CTRLT
, ctrl
);