2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
71 u16 heads
, u16 sectors
);
72 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
73 static void ata_dev_xfermask(struct ata_device
*dev
);
75 unsigned int ata_print_id
= 1;
76 static struct workqueue_struct
*ata_wq
;
78 struct workqueue_struct
*ata_aux_wq
;
80 int atapi_enabled
= 1;
81 module_param(atapi_enabled
, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 module_param(atapi_dmadir
, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 module_param_named(fua
, libata_fua
, int, 0444);
90 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
92 static int ata_ignore_hpa
= 0;
93 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
97 module_param(ata_probe_timeout
, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
100 int libata_noacpi
= 1;
101 module_param_named(noacpi
, libata_noacpi
, int, 0444);
102 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in suspend/resume when set");
104 int ata_spindown_compat
= 1;
105 module_param_named(spindown_compat
, ata_spindown_compat
, int, 0644);
106 MODULE_PARM_DESC(spindown_compat
, "Enable backward compatible spindown "
107 "behavior. Will be removed. More info can be found in "
108 "Documentation/feature-removal-schedule.txt\n");
110 MODULE_AUTHOR("Jeff Garzik");
111 MODULE_DESCRIPTION("Library module for ATA devices");
112 MODULE_LICENSE("GPL");
113 MODULE_VERSION(DRV_VERSION
);
117 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
118 * @tf: Taskfile to convert
119 * @fis: Buffer into which data will output
120 * @pmp: Port multiplier port
122 * Converts a standard ATA taskfile to a Serial ATA
123 * FIS structure (Register - Host to Device).
126 * Inherited from caller.
129 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
131 fis
[0] = 0x27; /* Register - Host to Device FIS */
132 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
133 bit 7 indicates Command FIS */
134 fis
[2] = tf
->command
;
135 fis
[3] = tf
->feature
;
142 fis
[8] = tf
->hob_lbal
;
143 fis
[9] = tf
->hob_lbam
;
144 fis
[10] = tf
->hob_lbah
;
145 fis
[11] = tf
->hob_feature
;
148 fis
[13] = tf
->hob_nsect
;
159 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
160 * @fis: Buffer from which data will be input
161 * @tf: Taskfile to output
163 * Converts a serial ATA FIS structure to a standard ATA taskfile.
166 * Inherited from caller.
169 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
171 tf
->command
= fis
[2]; /* status */
172 tf
->feature
= fis
[3]; /* error */
179 tf
->hob_lbal
= fis
[8];
180 tf
->hob_lbam
= fis
[9];
181 tf
->hob_lbah
= fis
[10];
184 tf
->hob_nsect
= fis
[13];
187 static const u8 ata_rw_cmds
[] = {
191 ATA_CMD_READ_MULTI_EXT
,
192 ATA_CMD_WRITE_MULTI_EXT
,
196 ATA_CMD_WRITE_MULTI_FUA_EXT
,
200 ATA_CMD_PIO_READ_EXT
,
201 ATA_CMD_PIO_WRITE_EXT
,
214 ATA_CMD_WRITE_FUA_EXT
218 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
219 * @tf: command to examine and configure
220 * @dev: device tf belongs to
222 * Examine the device configuration and tf->flags to calculate
223 * the proper read/write commands and protocol to use.
228 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
232 int index
, fua
, lba48
, write
;
234 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
235 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
236 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
238 if (dev
->flags
& ATA_DFLAG_PIO
) {
239 tf
->protocol
= ATA_PROT_PIO
;
240 index
= dev
->multi_count
? 0 : 8;
241 } else if (lba48
&& (dev
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
242 /* Unable to use DMA due to host limitation */
243 tf
->protocol
= ATA_PROT_PIO
;
244 index
= dev
->multi_count
? 0 : 8;
246 tf
->protocol
= ATA_PROT_DMA
;
250 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
259 * ata_tf_read_block - Read block address from ATA taskfile
260 * @tf: ATA taskfile of interest
261 * @dev: ATA device @tf belongs to
266 * Read block address from @tf. This function can handle all
267 * three address formats - LBA, LBA48 and CHS. tf->protocol and
268 * flags select the address format to use.
271 * Block address read from @tf.
273 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
277 if (tf
->flags
& ATA_TFLAG_LBA
) {
278 if (tf
->flags
& ATA_TFLAG_LBA48
) {
279 block
|= (u64
)tf
->hob_lbah
<< 40;
280 block
|= (u64
)tf
->hob_lbam
<< 32;
281 block
|= tf
->hob_lbal
<< 24;
283 block
|= (tf
->device
& 0xf) << 24;
285 block
|= tf
->lbah
<< 16;
286 block
|= tf
->lbam
<< 8;
291 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
292 head
= tf
->device
& 0xf;
295 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
302 * ata_build_rw_tf - Build ATA taskfile for given read/write request
303 * @tf: Target ATA taskfile
304 * @dev: ATA device @tf belongs to
305 * @block: Block address
306 * @n_block: Number of blocks
307 * @tf_flags: RW/FUA etc...
313 * Build ATA taskfile @tf for read/write request described by
314 * @block, @n_block, @tf_flags and @tag on @dev.
318 * 0 on success, -ERANGE if the request is too large for @dev,
319 * -EINVAL if the request is invalid.
321 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
322 u64 block
, u32 n_block
, unsigned int tf_flags
,
325 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
326 tf
->flags
|= tf_flags
;
328 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
330 if (!lba_48_ok(block
, n_block
))
333 tf
->protocol
= ATA_PROT_NCQ
;
334 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
336 if (tf
->flags
& ATA_TFLAG_WRITE
)
337 tf
->command
= ATA_CMD_FPDMA_WRITE
;
339 tf
->command
= ATA_CMD_FPDMA_READ
;
341 tf
->nsect
= tag
<< 3;
342 tf
->hob_feature
= (n_block
>> 8) & 0xff;
343 tf
->feature
= n_block
& 0xff;
345 tf
->hob_lbah
= (block
>> 40) & 0xff;
346 tf
->hob_lbam
= (block
>> 32) & 0xff;
347 tf
->hob_lbal
= (block
>> 24) & 0xff;
348 tf
->lbah
= (block
>> 16) & 0xff;
349 tf
->lbam
= (block
>> 8) & 0xff;
350 tf
->lbal
= block
& 0xff;
353 if (tf
->flags
& ATA_TFLAG_FUA
)
354 tf
->device
|= 1 << 7;
355 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
356 tf
->flags
|= ATA_TFLAG_LBA
;
358 if (lba_28_ok(block
, n_block
)) {
360 tf
->device
|= (block
>> 24) & 0xf;
361 } else if (lba_48_ok(block
, n_block
)) {
362 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
366 tf
->flags
|= ATA_TFLAG_LBA48
;
368 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
370 tf
->hob_lbah
= (block
>> 40) & 0xff;
371 tf
->hob_lbam
= (block
>> 32) & 0xff;
372 tf
->hob_lbal
= (block
>> 24) & 0xff;
374 /* request too large even for LBA48 */
377 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
380 tf
->nsect
= n_block
& 0xff;
382 tf
->lbah
= (block
>> 16) & 0xff;
383 tf
->lbam
= (block
>> 8) & 0xff;
384 tf
->lbal
= block
& 0xff;
386 tf
->device
|= ATA_LBA
;
389 u32 sect
, head
, cyl
, track
;
391 /* The request -may- be too large for CHS addressing. */
392 if (!lba_28_ok(block
, n_block
))
395 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
398 /* Convert LBA to CHS */
399 track
= (u32
)block
/ dev
->sectors
;
400 cyl
= track
/ dev
->heads
;
401 head
= track
% dev
->heads
;
402 sect
= (u32
)block
% dev
->sectors
+ 1;
404 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
405 (u32
)block
, track
, cyl
, head
, sect
);
407 /* Check whether the converted CHS can fit.
411 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
414 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
425 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
426 * @pio_mask: pio_mask
427 * @mwdma_mask: mwdma_mask
428 * @udma_mask: udma_mask
430 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
431 * unsigned int xfer_mask.
439 static unsigned int ata_pack_xfermask(unsigned int pio_mask
,
440 unsigned int mwdma_mask
,
441 unsigned int udma_mask
)
443 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
444 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
445 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
449 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
450 * @xfer_mask: xfer_mask to unpack
451 * @pio_mask: resulting pio_mask
452 * @mwdma_mask: resulting mwdma_mask
453 * @udma_mask: resulting udma_mask
455 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
456 * Any NULL distination masks will be ignored.
458 static void ata_unpack_xfermask(unsigned int xfer_mask
,
459 unsigned int *pio_mask
,
460 unsigned int *mwdma_mask
,
461 unsigned int *udma_mask
)
464 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
466 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
468 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
471 static const struct ata_xfer_ent
{
475 { ATA_SHIFT_PIO
, ATA_BITS_PIO
, XFER_PIO_0
},
476 { ATA_SHIFT_MWDMA
, ATA_BITS_MWDMA
, XFER_MW_DMA_0
},
477 { ATA_SHIFT_UDMA
, ATA_BITS_UDMA
, XFER_UDMA_0
},
482 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
483 * @xfer_mask: xfer_mask of interest
485 * Return matching XFER_* value for @xfer_mask. Only the highest
486 * bit of @xfer_mask is considered.
492 * Matching XFER_* value, 0 if no match found.
494 static u8
ata_xfer_mask2mode(unsigned int xfer_mask
)
496 int highbit
= fls(xfer_mask
) - 1;
497 const struct ata_xfer_ent
*ent
;
499 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
500 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
501 return ent
->base
+ highbit
- ent
->shift
;
506 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
507 * @xfer_mode: XFER_* of interest
509 * Return matching xfer_mask for @xfer_mode.
515 * Matching xfer_mask, 0 if no match found.
517 static unsigned int ata_xfer_mode2mask(u8 xfer_mode
)
519 const struct ata_xfer_ent
*ent
;
521 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
522 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
523 return 1 << (ent
->shift
+ xfer_mode
- ent
->base
);
528 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
529 * @xfer_mode: XFER_* of interest
531 * Return matching xfer_shift for @xfer_mode.
537 * Matching xfer_shift, -1 if no match found.
539 static int ata_xfer_mode2shift(unsigned int xfer_mode
)
541 const struct ata_xfer_ent
*ent
;
543 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
544 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
550 * ata_mode_string - convert xfer_mask to string
551 * @xfer_mask: mask of bits supported; only highest bit counts.
553 * Determine string which represents the highest speed
554 * (highest bit in @modemask).
560 * Constant C string representing highest speed listed in
561 * @mode_mask, or the constant C string "<n/a>".
563 static const char *ata_mode_string(unsigned int xfer_mask
)
565 static const char * const xfer_mode_str
[] = {
589 highbit
= fls(xfer_mask
) - 1;
590 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
591 return xfer_mode_str
[highbit
];
595 static const char *sata_spd_string(unsigned int spd
)
597 static const char * const spd_str
[] = {
602 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
604 return spd_str
[spd
- 1];
607 void ata_dev_disable(struct ata_device
*dev
)
609 if (ata_dev_enabled(dev
) && ata_msg_drv(dev
->ap
)) {
610 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
611 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
618 * ata_devchk - PATA device presence detection
619 * @ap: ATA channel to examine
620 * @device: Device to examine (starting at zero)
622 * This technique was originally described in
623 * Hale Landis's ATADRVR (www.ata-atapi.com), and
624 * later found its way into the ATA/ATAPI spec.
626 * Write a pattern to the ATA shadow registers,
627 * and if a device is present, it will respond by
628 * correctly storing and echoing back the
629 * ATA shadow register contents.
635 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
637 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
640 ap
->ops
->dev_select(ap
, device
);
642 iowrite8(0x55, ioaddr
->nsect_addr
);
643 iowrite8(0xaa, ioaddr
->lbal_addr
);
645 iowrite8(0xaa, ioaddr
->nsect_addr
);
646 iowrite8(0x55, ioaddr
->lbal_addr
);
648 iowrite8(0x55, ioaddr
->nsect_addr
);
649 iowrite8(0xaa, ioaddr
->lbal_addr
);
651 nsect
= ioread8(ioaddr
->nsect_addr
);
652 lbal
= ioread8(ioaddr
->lbal_addr
);
654 if ((nsect
== 0x55) && (lbal
== 0xaa))
655 return 1; /* we found a device */
657 return 0; /* nothing found */
661 * ata_dev_classify - determine device type based on ATA-spec signature
662 * @tf: ATA taskfile register set for device to be identified
664 * Determine from taskfile register contents whether a device is
665 * ATA or ATAPI, as per "Signature and persistence" section
666 * of ATA/PI spec (volume 1, sect 5.14).
672 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
673 * the event of failure.
676 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
678 /* Apple's open source Darwin code hints that some devices only
679 * put a proper signature into the LBA mid/high registers,
680 * So, we only check those. It's sufficient for uniqueness.
683 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
684 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
685 DPRINTK("found ATA device by sig\n");
689 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
690 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
691 DPRINTK("found ATAPI device by sig\n");
692 return ATA_DEV_ATAPI
;
695 DPRINTK("unknown device\n");
696 return ATA_DEV_UNKNOWN
;
700 * ata_dev_try_classify - Parse returned ATA device signature
701 * @ap: ATA channel to examine
702 * @device: Device to examine (starting at zero)
703 * @r_err: Value of error register on completion
705 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
706 * an ATA/ATAPI-defined set of values is placed in the ATA
707 * shadow registers, indicating the results of device detection
710 * Select the ATA device, and read the values from the ATA shadow
711 * registers. Then parse according to the Error register value,
712 * and the spec-defined values examined by ata_dev_classify().
718 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
722 ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
, u8
*r_err
)
724 struct ata_taskfile tf
;
728 ap
->ops
->dev_select(ap
, device
);
730 memset(&tf
, 0, sizeof(tf
));
732 ap
->ops
->tf_read(ap
, &tf
);
737 /* see if device passed diags: if master then continue and warn later */
738 if (err
== 0 && device
== 0)
739 /* diagnostic fail : do nothing _YET_ */
740 ap
->device
[device
].horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
743 else if ((device
== 0) && (err
== 0x81))
748 /* determine if device is ATA or ATAPI */
749 class = ata_dev_classify(&tf
);
751 if (class == ATA_DEV_UNKNOWN
)
753 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
759 * ata_id_string - Convert IDENTIFY DEVICE page into string
760 * @id: IDENTIFY DEVICE results we will examine
761 * @s: string into which data is output
762 * @ofs: offset into identify device page
763 * @len: length of string to return. must be an even number.
765 * The strings in the IDENTIFY DEVICE page are broken up into
766 * 16-bit chunks. Run through the string, and output each
767 * 8-bit chunk linearly, regardless of platform.
773 void ata_id_string(const u16
*id
, unsigned char *s
,
774 unsigned int ofs
, unsigned int len
)
793 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
794 * @id: IDENTIFY DEVICE results we will examine
795 * @s: string into which data is output
796 * @ofs: offset into identify device page
797 * @len: length of string to return. must be an odd number.
799 * This function is identical to ata_id_string except that it
800 * trims trailing spaces and terminates the resulting string with
801 * null. @len must be actual maximum length (even number) + 1.
806 void ata_id_c_string(const u16
*id
, unsigned char *s
,
807 unsigned int ofs
, unsigned int len
)
813 ata_id_string(id
, s
, ofs
, len
- 1);
815 p
= s
+ strnlen(s
, len
- 1);
816 while (p
> s
&& p
[-1] == ' ')
821 static u64
ata_tf_to_lba48(struct ata_taskfile
*tf
)
825 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
826 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
827 sectors
|= (tf
->hob_lbal
& 0xff) << 24;
828 sectors
|= (tf
->lbah
& 0xff) << 16;
829 sectors
|= (tf
->lbam
& 0xff) << 8;
830 sectors
|= (tf
->lbal
& 0xff);
835 static u64
ata_tf_to_lba(struct ata_taskfile
*tf
)
839 sectors
|= (tf
->device
& 0x0f) << 24;
840 sectors
|= (tf
->lbah
& 0xff) << 16;
841 sectors
|= (tf
->lbam
& 0xff) << 8;
842 sectors
|= (tf
->lbal
& 0xff);
848 * ata_read_native_max_address_ext - LBA48 native max query
849 * @dev: Device to query
851 * Perform an LBA48 size query upon the device in question. Return the
852 * actual LBA48 size or zero if the command fails.
855 static u64
ata_read_native_max_address_ext(struct ata_device
*dev
)
858 struct ata_taskfile tf
;
860 ata_tf_init(dev
, &tf
);
862 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
863 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_LBA48
| ATA_TFLAG_ISADDR
;
864 tf
.protocol
|= ATA_PROT_NODATA
;
867 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
871 return ata_tf_to_lba48(&tf
);
875 * ata_read_native_max_address - LBA28 native max query
876 * @dev: Device to query
878 * Performa an LBA28 size query upon the device in question. Return the
879 * actual LBA28 size or zero if the command fails.
882 static u64
ata_read_native_max_address(struct ata_device
*dev
)
885 struct ata_taskfile tf
;
887 ata_tf_init(dev
, &tf
);
889 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
890 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
891 tf
.protocol
|= ATA_PROT_NODATA
;
894 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
898 return ata_tf_to_lba(&tf
);
902 * ata_set_native_max_address_ext - LBA48 native max set
903 * @dev: Device to query
904 * @new_sectors: new max sectors value to set for the device
906 * Perform an LBA48 size set max upon the device in question. Return the
907 * actual LBA48 size or zero if the command fails.
910 static u64
ata_set_native_max_address_ext(struct ata_device
*dev
, u64 new_sectors
)
913 struct ata_taskfile tf
;
917 ata_tf_init(dev
, &tf
);
919 tf
.command
= ATA_CMD_SET_MAX_EXT
;
920 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_LBA48
| ATA_TFLAG_ISADDR
;
921 tf
.protocol
|= ATA_PROT_NODATA
;
924 tf
.lbal
= (new_sectors
>> 0) & 0xff;
925 tf
.lbam
= (new_sectors
>> 8) & 0xff;
926 tf
.lbah
= (new_sectors
>> 16) & 0xff;
928 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
929 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
930 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
932 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
936 return ata_tf_to_lba48(&tf
);
940 * ata_set_native_max_address - LBA28 native max set
941 * @dev: Device to query
942 * @new_sectors: new max sectors value to set for the device
944 * Perform an LBA28 size set max upon the device in question. Return the
945 * actual LBA28 size or zero if the command fails.
948 static u64
ata_set_native_max_address(struct ata_device
*dev
, u64 new_sectors
)
951 struct ata_taskfile tf
;
955 ata_tf_init(dev
, &tf
);
957 tf
.command
= ATA_CMD_SET_MAX
;
958 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
959 tf
.protocol
|= ATA_PROT_NODATA
;
961 tf
.lbal
= (new_sectors
>> 0) & 0xff;
962 tf
.lbam
= (new_sectors
>> 8) & 0xff;
963 tf
.lbah
= (new_sectors
>> 16) & 0xff;
964 tf
.device
|= ((new_sectors
>> 24) & 0x0f) | 0x40;
966 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
970 return ata_tf_to_lba(&tf
);
974 * ata_hpa_resize - Resize a device with an HPA set
975 * @dev: Device to resize
977 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
978 * it if required to the full size of the media. The caller must check
979 * the drive has the HPA feature set enabled.
982 static u64
ata_hpa_resize(struct ata_device
*dev
)
984 u64 sectors
= dev
->n_sectors
;
987 if (ata_id_has_lba48(dev
->id
))
988 hpa_sectors
= ata_read_native_max_address_ext(dev
);
990 hpa_sectors
= ata_read_native_max_address(dev
);
992 /* if no hpa, both should be equal */
993 ata_dev_printk(dev
, KERN_INFO
, "%s 1: sectors = %lld, "
994 "hpa_sectors = %lld\n",
995 __FUNCTION__
, (long long)sectors
, (long long)hpa_sectors
);
997 if (hpa_sectors
> sectors
) {
998 ata_dev_printk(dev
, KERN_INFO
,
999 "Host Protected Area detected:\n"
1000 "\tcurrent size: %lld sectors\n"
1001 "\tnative size: %lld sectors\n",
1002 (long long)sectors
, (long long)hpa_sectors
);
1004 if (ata_ignore_hpa
) {
1005 if (ata_id_has_lba48(dev
->id
))
1006 hpa_sectors
= ata_set_native_max_address_ext(dev
, hpa_sectors
);
1008 hpa_sectors
= ata_set_native_max_address(dev
,
1012 ata_dev_printk(dev
, KERN_INFO
, "native size "
1013 "increased to %lld sectors\n",
1014 (long long)hpa_sectors
);
1022 static u64
ata_id_n_sectors(const u16
*id
)
1024 if (ata_id_has_lba(id
)) {
1025 if (ata_id_has_lba48(id
))
1026 return ata_id_u64(id
, 100);
1028 return ata_id_u32(id
, 60);
1030 if (ata_id_current_chs_valid(id
))
1031 return ata_id_u32(id
, 57);
1033 return id
[1] * id
[3] * id
[6];
1038 * ata_id_to_dma_mode - Identify DMA mode from id block
1039 * @dev: device to identify
1040 * @unknown: mode to assume if we cannot tell
1042 * Set up the timing values for the device based upon the identify
1043 * reported values for the DMA mode. This function is used by drivers
1044 * which rely upon firmware configured modes, but wish to report the
1045 * mode correctly when possible.
1047 * In addition we emit similarly formatted messages to the default
1048 * ata_dev_set_mode handler, in order to provide consistency of
1052 void ata_id_to_dma_mode(struct ata_device
*dev
, u8 unknown
)
1057 /* Pack the DMA modes */
1058 mask
= ((dev
->id
[63] >> 8) << ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
;
1059 if (dev
->id
[53] & 0x04)
1060 mask
|= ((dev
->id
[88] >> 8) << ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
;
1062 /* Select the mode in use */
1063 mode
= ata_xfer_mask2mode(mask
);
1066 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
1067 ata_mode_string(mask
));
1069 /* SWDMA perhaps ? */
1071 ata_dev_printk(dev
, KERN_INFO
, "configured for DMA\n");
1074 /* Configure the device reporting */
1075 dev
->xfer_mode
= mode
;
1076 dev
->xfer_shift
= ata_xfer_mode2shift(mode
);
1080 * ata_noop_dev_select - Select device 0/1 on ATA bus
1081 * @ap: ATA channel to manipulate
1082 * @device: ATA device (numbered from zero) to select
1084 * This function performs no actual function.
1086 * May be used as the dev_select() entry in ata_port_operations.
1091 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
1097 * ata_std_dev_select - Select device 0/1 on ATA bus
1098 * @ap: ATA channel to manipulate
1099 * @device: ATA device (numbered from zero) to select
1101 * Use the method defined in the ATA specification to
1102 * make either device 0, or device 1, active on the
1103 * ATA channel. Works with both PIO and MMIO.
1105 * May be used as the dev_select() entry in ata_port_operations.
1111 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
1116 tmp
= ATA_DEVICE_OBS
;
1118 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
1120 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
1121 ata_pause(ap
); /* needed; also flushes, for mmio */
1125 * ata_dev_select - Select device 0/1 on ATA bus
1126 * @ap: ATA channel to manipulate
1127 * @device: ATA device (numbered from zero) to select
1128 * @wait: non-zero to wait for Status register BSY bit to clear
1129 * @can_sleep: non-zero if context allows sleeping
1131 * Use the method defined in the ATA specification to
1132 * make either device 0, or device 1, active on the
1135 * This is a high-level version of ata_std_dev_select(),
1136 * which additionally provides the services of inserting
1137 * the proper pauses and status polling, where needed.
1143 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
1144 unsigned int wait
, unsigned int can_sleep
)
1146 if (ata_msg_probe(ap
))
1147 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
1148 "device %u, wait %u\n", device
, wait
);
1153 ap
->ops
->dev_select(ap
, device
);
1156 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
1163 * ata_dump_id - IDENTIFY DEVICE info debugging output
1164 * @id: IDENTIFY DEVICE page to dump
1166 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1173 static inline void ata_dump_id(const u16
*id
)
1175 DPRINTK("49==0x%04x "
1185 DPRINTK("80==0x%04x "
1195 DPRINTK("88==0x%04x "
1202 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1203 * @id: IDENTIFY data to compute xfer mask from
1205 * Compute the xfermask for this device. This is not as trivial
1206 * as it seems if we must consider early devices correctly.
1208 * FIXME: pre IDE drive timing (do we care ?).
1216 static unsigned int ata_id_xfermask(const u16
*id
)
1218 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
1220 /* Usual case. Word 53 indicates word 64 is valid */
1221 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1222 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1226 /* If word 64 isn't valid then Word 51 high byte holds
1227 * the PIO timing number for the maximum. Turn it into
1230 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1231 if (mode
< 5) /* Valid PIO range */
1232 pio_mask
= (2 << mode
) - 1;
1236 /* But wait.. there's more. Design your standards by
1237 * committee and you too can get a free iordy field to
1238 * process. However its the speeds not the modes that
1239 * are supported... Note drivers using the timing API
1240 * will get this right anyway
1244 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1246 if (ata_id_is_cfa(id
)) {
1248 * Process compact flash extended modes
1250 int pio
= id
[163] & 0x7;
1251 int dma
= (id
[163] >> 3) & 7;
1254 pio_mask
|= (1 << 5);
1256 pio_mask
|= (1 << 6);
1258 mwdma_mask
|= (1 << 3);
1260 mwdma_mask
|= (1 << 4);
1264 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1265 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1267 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1271 * ata_port_queue_task - Queue port_task
1272 * @ap: The ata_port to queue port_task for
1273 * @fn: workqueue function to be scheduled
1274 * @data: data for @fn to use
1275 * @delay: delay time for workqueue function
1277 * Schedule @fn(@data) for execution after @delay jiffies using
1278 * port_task. There is one port_task per port and it's the
1279 * user(low level driver)'s responsibility to make sure that only
1280 * one task is active at any given time.
1282 * libata core layer takes care of synchronization between
1283 * port_task and EH. ata_port_queue_task() may be ignored for EH
1287 * Inherited from caller.
1289 void ata_port_queue_task(struct ata_port
*ap
, work_func_t fn
, void *data
,
1290 unsigned long delay
)
1294 if (ap
->pflags
& ATA_PFLAG_FLUSH_PORT_TASK
)
1297 PREPARE_DELAYED_WORK(&ap
->port_task
, fn
);
1298 ap
->port_task_data
= data
;
1300 rc
= queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1302 /* rc == 0 means that another user is using port task */
1307 * ata_port_flush_task - Flush port_task
1308 * @ap: The ata_port to flush port_task for
1310 * After this function completes, port_task is guranteed not to
1311 * be running or scheduled.
1314 * Kernel thread context (may sleep)
1316 void ata_port_flush_task(struct ata_port
*ap
)
1318 unsigned long flags
;
1322 spin_lock_irqsave(ap
->lock
, flags
);
1323 ap
->pflags
|= ATA_PFLAG_FLUSH_PORT_TASK
;
1324 spin_unlock_irqrestore(ap
->lock
, flags
);
1326 DPRINTK("flush #1\n");
1327 cancel_work_sync(&ap
->port_task
.work
); /* akpm: seems unneeded */
1330 * At this point, if a task is running, it's guaranteed to see
1331 * the FLUSH flag; thus, it will never queue pio tasks again.
1334 if (!cancel_delayed_work(&ap
->port_task
)) {
1335 if (ata_msg_ctl(ap
))
1336 ata_port_printk(ap
, KERN_DEBUG
, "%s: flush #2\n",
1338 cancel_work_sync(&ap
->port_task
.work
);
1341 spin_lock_irqsave(ap
->lock
, flags
);
1342 ap
->pflags
&= ~ATA_PFLAG_FLUSH_PORT_TASK
;
1343 spin_unlock_irqrestore(ap
->lock
, flags
);
1345 if (ata_msg_ctl(ap
))
1346 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __FUNCTION__
);
1349 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1351 struct completion
*waiting
= qc
->private_data
;
1357 * ata_exec_internal_sg - execute libata internal command
1358 * @dev: Device to which the command is sent
1359 * @tf: Taskfile registers for the command and the result
1360 * @cdb: CDB for packet command
1361 * @dma_dir: Data tranfer direction of the command
1362 * @sg: sg list for the data buffer of the command
1363 * @n_elem: Number of sg entries
1365 * Executes libata internal command with timeout. @tf contains
1366 * command on entry and result on return. Timeout and error
1367 * conditions are reported via return value. No recovery action
1368 * is taken after a command times out. It's caller's duty to
1369 * clean up after timeout.
1372 * None. Should be called with kernel context, might sleep.
1375 * Zero on success, AC_ERR_* mask on failure
1377 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1378 struct ata_taskfile
*tf
, const u8
*cdb
,
1379 int dma_dir
, struct scatterlist
*sg
,
1380 unsigned int n_elem
)
1382 struct ata_port
*ap
= dev
->ap
;
1383 u8 command
= tf
->command
;
1384 struct ata_queued_cmd
*qc
;
1385 unsigned int tag
, preempted_tag
;
1386 u32 preempted_sactive
, preempted_qc_active
;
1387 DECLARE_COMPLETION_ONSTACK(wait
);
1388 unsigned long flags
;
1389 unsigned int err_mask
;
1392 spin_lock_irqsave(ap
->lock
, flags
);
1394 /* no internal command while frozen */
1395 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1396 spin_unlock_irqrestore(ap
->lock
, flags
);
1397 return AC_ERR_SYSTEM
;
1400 /* initialize internal qc */
1402 /* XXX: Tag 0 is used for drivers with legacy EH as some
1403 * drivers choke if any other tag is given. This breaks
1404 * ata_tag_internal() test for those drivers. Don't use new
1405 * EH stuff without converting to it.
1407 if (ap
->ops
->error_handler
)
1408 tag
= ATA_TAG_INTERNAL
;
1412 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1414 qc
= __ata_qc_from_tag(ap
, tag
);
1422 preempted_tag
= ap
->active_tag
;
1423 preempted_sactive
= ap
->sactive
;
1424 preempted_qc_active
= ap
->qc_active
;
1425 ap
->active_tag
= ATA_TAG_POISON
;
1429 /* prepare & issue qc */
1432 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1433 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1434 qc
->dma_dir
= dma_dir
;
1435 if (dma_dir
!= DMA_NONE
) {
1436 unsigned int i
, buflen
= 0;
1438 for (i
= 0; i
< n_elem
; i
++)
1439 buflen
+= sg
[i
].length
;
1441 ata_sg_init(qc
, sg
, n_elem
);
1442 qc
->nbytes
= buflen
;
1445 qc
->private_data
= &wait
;
1446 qc
->complete_fn
= ata_qc_complete_internal
;
1450 spin_unlock_irqrestore(ap
->lock
, flags
);
1452 rc
= wait_for_completion_timeout(&wait
, ata_probe_timeout
);
1454 ata_port_flush_task(ap
);
1457 spin_lock_irqsave(ap
->lock
, flags
);
1459 /* We're racing with irq here. If we lose, the
1460 * following test prevents us from completing the qc
1461 * twice. If we win, the port is frozen and will be
1462 * cleaned up by ->post_internal_cmd().
1464 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1465 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1467 if (ap
->ops
->error_handler
)
1468 ata_port_freeze(ap
);
1470 ata_qc_complete(qc
);
1472 if (ata_msg_warn(ap
))
1473 ata_dev_printk(dev
, KERN_WARNING
,
1474 "qc timeout (cmd 0x%x)\n", command
);
1477 spin_unlock_irqrestore(ap
->lock
, flags
);
1480 /* do post_internal_cmd */
1481 if (ap
->ops
->post_internal_cmd
)
1482 ap
->ops
->post_internal_cmd(qc
);
1484 /* perform minimal error analysis */
1485 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1486 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1487 qc
->err_mask
|= AC_ERR_DEV
;
1490 qc
->err_mask
|= AC_ERR_OTHER
;
1492 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1493 qc
->err_mask
&= ~AC_ERR_OTHER
;
1497 spin_lock_irqsave(ap
->lock
, flags
);
1499 *tf
= qc
->result_tf
;
1500 err_mask
= qc
->err_mask
;
1503 ap
->active_tag
= preempted_tag
;
1504 ap
->sactive
= preempted_sactive
;
1505 ap
->qc_active
= preempted_qc_active
;
1507 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1508 * Until those drivers are fixed, we detect the condition
1509 * here, fail the command with AC_ERR_SYSTEM and reenable the
1512 * Note that this doesn't change any behavior as internal
1513 * command failure results in disabling the device in the
1514 * higher layer for LLDDs without new reset/EH callbacks.
1516 * Kill the following code as soon as those drivers are fixed.
1518 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1519 err_mask
|= AC_ERR_SYSTEM
;
1523 spin_unlock_irqrestore(ap
->lock
, flags
);
1529 * ata_exec_internal - execute libata internal command
1530 * @dev: Device to which the command is sent
1531 * @tf: Taskfile registers for the command and the result
1532 * @cdb: CDB for packet command
1533 * @dma_dir: Data tranfer direction of the command
1534 * @buf: Data buffer of the command
1535 * @buflen: Length of data buffer
1537 * Wrapper around ata_exec_internal_sg() which takes simple
1538 * buffer instead of sg list.
1541 * None. Should be called with kernel context, might sleep.
1544 * Zero on success, AC_ERR_* mask on failure
1546 unsigned ata_exec_internal(struct ata_device
*dev
,
1547 struct ata_taskfile
*tf
, const u8
*cdb
,
1548 int dma_dir
, void *buf
, unsigned int buflen
)
1550 struct scatterlist
*psg
= NULL
, sg
;
1551 unsigned int n_elem
= 0;
1553 if (dma_dir
!= DMA_NONE
) {
1555 sg_init_one(&sg
, buf
, buflen
);
1560 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
);
1564 * ata_do_simple_cmd - execute simple internal command
1565 * @dev: Device to which the command is sent
1566 * @cmd: Opcode to execute
1568 * Execute a 'simple' command, that only consists of the opcode
1569 * 'cmd' itself, without filling any other registers
1572 * Kernel thread context (may sleep).
1575 * Zero on success, AC_ERR_* mask on failure
1577 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1579 struct ata_taskfile tf
;
1581 ata_tf_init(dev
, &tf
);
1584 tf
.flags
|= ATA_TFLAG_DEVICE
;
1585 tf
.protocol
= ATA_PROT_NODATA
;
1587 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1591 * ata_pio_need_iordy - check if iordy needed
1594 * Check if the current speed of the device requires IORDY. Used
1595 * by various controllers for chip configuration.
1598 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1600 /* Controller doesn't support IORDY. Probably a pointless check
1601 as the caller should know this */
1602 if (adev
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1604 /* PIO3 and higher it is mandatory */
1605 if (adev
->pio_mode
> XFER_PIO_2
)
1607 /* We turn it on when possible */
1608 if (ata_id_has_iordy(adev
->id
))
1614 * ata_pio_mask_no_iordy - Return the non IORDY mask
1617 * Compute the highest mode possible if we are not using iordy. Return
1618 * -1 if no iordy mode is available.
1621 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1623 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1624 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1625 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1626 /* Is the speed faster than the drive allows non IORDY ? */
1628 /* This is cycle times not frequency - watch the logic! */
1629 if (pio
> 240) /* PIO2 is 240nS per cycle */
1630 return 3 << ATA_SHIFT_PIO
;
1631 return 7 << ATA_SHIFT_PIO
;
1634 return 3 << ATA_SHIFT_PIO
;
1638 * ata_dev_read_id - Read ID data from the specified device
1639 * @dev: target device
1640 * @p_class: pointer to class of the target device (may be changed)
1641 * @flags: ATA_READID_* flags
1642 * @id: buffer to read IDENTIFY data into
1644 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1645 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1646 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1647 * for pre-ATA4 drives.
1650 * Kernel thread context (may sleep)
1653 * 0 on success, -errno otherwise.
1655 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1656 unsigned int flags
, u16
*id
)
1658 struct ata_port
*ap
= dev
->ap
;
1659 unsigned int class = *p_class
;
1660 struct ata_taskfile tf
;
1661 unsigned int err_mask
= 0;
1663 int may_fallback
= 1, tried_spinup
= 0;
1666 if (ata_msg_ctl(ap
))
1667 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1669 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1671 ata_tf_init(dev
, &tf
);
1675 tf
.command
= ATA_CMD_ID_ATA
;
1678 tf
.command
= ATA_CMD_ID_ATAPI
;
1682 reason
= "unsupported class";
1686 tf
.protocol
= ATA_PROT_PIO
;
1688 /* Some devices choke if TF registers contain garbage. Make
1689 * sure those are properly initialized.
1691 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1693 /* Device presence detection is unreliable on some
1694 * controllers. Always poll IDENTIFY if available.
1696 tf
.flags
|= ATA_TFLAG_POLLING
;
1698 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1699 id
, sizeof(id
[0]) * ATA_ID_WORDS
);
1701 if (err_mask
& AC_ERR_NODEV_HINT
) {
1702 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1703 ap
->print_id
, dev
->devno
);
1707 /* Device or controller might have reported the wrong
1708 * device class. Give a shot at the other IDENTIFY if
1709 * the current one is aborted by the device.
1712 (err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
1715 if (class == ATA_DEV_ATA
)
1716 class = ATA_DEV_ATAPI
;
1718 class = ATA_DEV_ATA
;
1723 reason
= "I/O error";
1727 /* Falling back doesn't make sense if ID data was read
1728 * successfully at least once.
1732 swap_buf_le16(id
, ATA_ID_WORDS
);
1736 reason
= "device reports illegal type";
1738 if (class == ATA_DEV_ATA
) {
1739 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1742 if (ata_id_is_ata(id
))
1746 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
1749 * Drive powered-up in standby mode, and requires a specific
1750 * SET_FEATURES spin-up subcommand before it will accept
1751 * anything other than the original IDENTIFY command.
1753 ata_tf_init(dev
, &tf
);
1754 tf
.command
= ATA_CMD_SET_FEATURES
;
1755 tf
.feature
= SETFEATURES_SPINUP
;
1756 tf
.protocol
= ATA_PROT_NODATA
;
1757 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1758 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1761 reason
= "SPINUP failed";
1765 * If the drive initially returned incomplete IDENTIFY info,
1766 * we now must reissue the IDENTIFY command.
1768 if (id
[2] == 0x37c8)
1772 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
1774 * The exact sequence expected by certain pre-ATA4 drives is:
1777 * INITIALIZE DEVICE PARAMETERS
1779 * Some drives were very specific about that exact sequence.
1781 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1782 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
1785 reason
= "INIT_DEV_PARAMS failed";
1789 /* current CHS translation info (id[53-58]) might be
1790 * changed. reread the identify device info.
1792 flags
&= ~ATA_READID_POSTRESET
;
1802 if (ata_msg_warn(ap
))
1803 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
1804 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
1808 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
1810 return ((dev
->ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
1813 static void ata_dev_config_ncq(struct ata_device
*dev
,
1814 char *desc
, size_t desc_sz
)
1816 struct ata_port
*ap
= dev
->ap
;
1817 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
1819 if (!ata_id_has_ncq(dev
->id
)) {
1823 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_NONCQ
) {
1824 snprintf(desc
, desc_sz
, "NCQ (not used)");
1827 if (ap
->flags
& ATA_FLAG_NCQ
) {
1828 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
1829 dev
->flags
|= ATA_DFLAG_NCQ
;
1832 if (hdepth
>= ddepth
)
1833 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
1835 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
1839 * ata_dev_configure - Configure the specified ATA/ATAPI device
1840 * @dev: Target device to configure
1842 * Configure @dev according to @dev->id. Generic and low-level
1843 * driver specific fixups are also applied.
1846 * Kernel thread context (may sleep)
1849 * 0 on success, -errno otherwise
1851 int ata_dev_configure(struct ata_device
*dev
)
1853 struct ata_port
*ap
= dev
->ap
;
1854 int print_info
= ap
->eh_context
.i
.flags
& ATA_EHI_PRINTINFO
;
1855 const u16
*id
= dev
->id
;
1856 unsigned int xfer_mask
;
1857 char revbuf
[7]; /* XYZ-99\0 */
1858 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
1859 char modelbuf
[ATA_ID_PROD_LEN
+1];
1862 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
1863 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
1868 if (ata_msg_probe(ap
))
1869 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1872 rc
= ata_acpi_push_id(dev
);
1874 ata_dev_printk(dev
, KERN_WARNING
, "failed to set _SDD(%d)\n",
1878 /* retrieve and execute the ATA task file of _GTF */
1879 ata_acpi_exec_tfs(ap
);
1881 /* print device capabilities */
1882 if (ata_msg_probe(ap
))
1883 ata_dev_printk(dev
, KERN_DEBUG
,
1884 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1885 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1887 id
[49], id
[82], id
[83], id
[84],
1888 id
[85], id
[86], id
[87], id
[88]);
1890 /* initialize to-be-configured parameters */
1891 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
1892 dev
->max_sectors
= 0;
1900 * common ATA, ATAPI feature tests
1903 /* find max transfer mode; for printk only */
1904 xfer_mask
= ata_id_xfermask(id
);
1906 if (ata_msg_probe(ap
))
1909 /* ATA-specific feature tests */
1910 if (dev
->class == ATA_DEV_ATA
) {
1911 if (ata_id_is_cfa(id
)) {
1912 if (id
[162] & 1) /* CPRM may make this media unusable */
1913 ata_dev_printk(dev
, KERN_WARNING
,
1914 "supports DRM functions and may "
1915 "not be fully accessable.\n");
1916 snprintf(revbuf
, 7, "CFA");
1919 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
1921 dev
->n_sectors
= ata_id_n_sectors(id
);
1923 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1924 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
1927 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
1930 if (dev
->id
[59] & 0x100)
1931 dev
->multi_count
= dev
->id
[59] & 0xff;
1933 if (ata_id_has_lba(id
)) {
1934 const char *lba_desc
;
1938 dev
->flags
|= ATA_DFLAG_LBA
;
1939 if (ata_id_has_lba48(id
)) {
1940 dev
->flags
|= ATA_DFLAG_LBA48
;
1943 if (dev
->n_sectors
>= (1UL << 28) &&
1944 ata_id_has_flush_ext(id
))
1945 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
1948 if (ata_id_hpa_enabled(dev
->id
))
1949 dev
->n_sectors
= ata_hpa_resize(dev
);
1952 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
1954 /* print device info to dmesg */
1955 if (ata_msg_drv(ap
) && print_info
) {
1956 ata_dev_printk(dev
, KERN_INFO
,
1957 "%s: %s, %s, max %s\n",
1958 revbuf
, modelbuf
, fwrevbuf
,
1959 ata_mode_string(xfer_mask
));
1960 ata_dev_printk(dev
, KERN_INFO
,
1961 "%Lu sectors, multi %u: %s %s\n",
1962 (unsigned long long)dev
->n_sectors
,
1963 dev
->multi_count
, lba_desc
, ncq_desc
);
1968 /* Default translation */
1969 dev
->cylinders
= id
[1];
1971 dev
->sectors
= id
[6];
1973 if (ata_id_current_chs_valid(id
)) {
1974 /* Current CHS translation is valid. */
1975 dev
->cylinders
= id
[54];
1976 dev
->heads
= id
[55];
1977 dev
->sectors
= id
[56];
1980 /* print device info to dmesg */
1981 if (ata_msg_drv(ap
) && print_info
) {
1982 ata_dev_printk(dev
, KERN_INFO
,
1983 "%s: %s, %s, max %s\n",
1984 revbuf
, modelbuf
, fwrevbuf
,
1985 ata_mode_string(xfer_mask
));
1986 ata_dev_printk(dev
, KERN_INFO
,
1987 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1988 (unsigned long long)dev
->n_sectors
,
1989 dev
->multi_count
, dev
->cylinders
,
1990 dev
->heads
, dev
->sectors
);
1997 /* ATAPI-specific feature tests */
1998 else if (dev
->class == ATA_DEV_ATAPI
) {
1999 char *cdb_intr_string
= "";
2001 rc
= atapi_cdb_len(id
);
2002 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2003 if (ata_msg_warn(ap
))
2004 ata_dev_printk(dev
, KERN_WARNING
,
2005 "unsupported CDB len\n");
2009 dev
->cdb_len
= (unsigned int) rc
;
2011 if (ata_id_cdb_intr(dev
->id
)) {
2012 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2013 cdb_intr_string
= ", CDB intr";
2016 /* print device info to dmesg */
2017 if (ata_msg_drv(ap
) && print_info
)
2018 ata_dev_printk(dev
, KERN_INFO
, "ATAPI, max %s%s\n",
2019 ata_mode_string(xfer_mask
),
2023 /* determine max_sectors */
2024 dev
->max_sectors
= ATA_MAX_SECTORS
;
2025 if (dev
->flags
& ATA_DFLAG_LBA48
)
2026 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2028 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2029 /* Let the user know. We don't want to disallow opens for
2030 rescue purposes, or in case the vendor is just a blithering
2033 ata_dev_printk(dev
, KERN_WARNING
,
2034 "Drive reports diagnostics failure. This may indicate a drive\n");
2035 ata_dev_printk(dev
, KERN_WARNING
,
2036 "fault or invalid emulation. Contact drive vendor for information.\n");
2040 /* limit bridge transfers to udma5, 200 sectors */
2041 if (ata_dev_knobble(dev
)) {
2042 if (ata_msg_drv(ap
) && print_info
)
2043 ata_dev_printk(dev
, KERN_INFO
,
2044 "applying bridge limits\n");
2045 dev
->udma_mask
&= ATA_UDMA5
;
2046 dev
->max_sectors
= ATA_MAX_SECTORS
;
2049 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_MAX_SEC_128
)
2050 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2053 /* limit ATAPI DMA to R/W commands only */
2054 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_DMA_RW_ONLY
)
2055 dev
->horkage
|= ATA_HORKAGE_DMA_RW_ONLY
;
2057 if (ap
->ops
->dev_config
)
2058 ap
->ops
->dev_config(dev
);
2060 if (ata_msg_probe(ap
))
2061 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
2062 __FUNCTION__
, ata_chk_status(ap
));
2066 if (ata_msg_probe(ap
))
2067 ata_dev_printk(dev
, KERN_DEBUG
,
2068 "%s: EXIT, err\n", __FUNCTION__
);
2073 * ata_cable_40wire - return 40 wire cable type
2076 * Helper method for drivers which want to hardwire 40 wire cable
2080 int ata_cable_40wire(struct ata_port
*ap
)
2082 return ATA_CBL_PATA40
;
2086 * ata_cable_80wire - return 80 wire cable type
2089 * Helper method for drivers which want to hardwire 80 wire cable
2093 int ata_cable_80wire(struct ata_port
*ap
)
2095 return ATA_CBL_PATA80
;
2099 * ata_cable_unknown - return unknown PATA cable.
2102 * Helper method for drivers which have no PATA cable detection.
2105 int ata_cable_unknown(struct ata_port
*ap
)
2107 return ATA_CBL_PATA_UNK
;
2111 * ata_cable_sata - return SATA cable type
2114 * Helper method for drivers which have SATA cables
2117 int ata_cable_sata(struct ata_port
*ap
)
2119 return ATA_CBL_SATA
;
2123 * ata_bus_probe - Reset and probe ATA bus
2126 * Master ATA bus probing function. Initiates a hardware-dependent
2127 * bus reset, then attempts to identify any devices found on
2131 * PCI/etc. bus probe sem.
2134 * Zero on success, negative errno otherwise.
2137 int ata_bus_probe(struct ata_port
*ap
)
2139 unsigned int classes
[ATA_MAX_DEVICES
];
2140 int tries
[ATA_MAX_DEVICES
];
2142 struct ata_device
*dev
;
2146 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2147 tries
[i
] = ATA_PROBE_MAX_TRIES
;
2150 /* reset and determine device classes */
2151 ap
->ops
->phy_reset(ap
);
2153 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2154 dev
= &ap
->device
[i
];
2156 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2157 dev
->class != ATA_DEV_UNKNOWN
)
2158 classes
[dev
->devno
] = dev
->class;
2160 classes
[dev
->devno
] = ATA_DEV_NONE
;
2162 dev
->class = ATA_DEV_UNKNOWN
;
2167 /* after the reset the device state is PIO 0 and the controller
2168 state is undefined. Record the mode */
2170 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2171 ap
->device
[i
].pio_mode
= XFER_PIO_0
;
2173 /* read IDENTIFY page and configure devices. We have to do the identify
2174 specific sequence bass-ackwards so that PDIAG- is released by
2177 for (i
= ATA_MAX_DEVICES
- 1; i
>= 0; i
--) {
2178 dev
= &ap
->device
[i
];
2181 dev
->class = classes
[i
];
2183 if (!ata_dev_enabled(dev
))
2186 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2192 /* Now ask for the cable type as PDIAG- should have been released */
2193 if (ap
->ops
->cable_detect
)
2194 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2196 /* After the identify sequence we can now set up the devices. We do
2197 this in the normal order so that the user doesn't get confused */
2199 for(i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2200 dev
= &ap
->device
[i
];
2201 if (!ata_dev_enabled(dev
))
2204 ap
->eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2205 rc
= ata_dev_configure(dev
);
2206 ap
->eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2211 /* configure transfer mode */
2212 rc
= ata_set_mode(ap
, &dev
);
2216 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2217 if (ata_dev_enabled(&ap
->device
[i
]))
2220 /* no device present, disable port */
2221 ata_port_disable(ap
);
2222 ap
->ops
->port_disable(ap
);
2226 tries
[dev
->devno
]--;
2230 /* eeek, something went very wrong, give up */
2231 tries
[dev
->devno
] = 0;
2235 /* give it just one more chance */
2236 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2238 if (tries
[dev
->devno
] == 1) {
2239 /* This is the last chance, better to slow
2240 * down than lose it.
2242 sata_down_spd_limit(ap
);
2243 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2247 if (!tries
[dev
->devno
])
2248 ata_dev_disable(dev
);
2254 * ata_port_probe - Mark port as enabled
2255 * @ap: Port for which we indicate enablement
2257 * Modify @ap data structure such that the system
2258 * thinks that the entire port is enabled.
2260 * LOCKING: host lock, or some other form of
2264 void ata_port_probe(struct ata_port
*ap
)
2266 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2270 * sata_print_link_status - Print SATA link status
2271 * @ap: SATA port to printk link status about
2273 * This function prints link speed and status of a SATA link.
2278 void sata_print_link_status(struct ata_port
*ap
)
2280 u32 sstatus
, scontrol
, tmp
;
2282 if (sata_scr_read(ap
, SCR_STATUS
, &sstatus
))
2284 sata_scr_read(ap
, SCR_CONTROL
, &scontrol
);
2286 if (ata_port_online(ap
)) {
2287 tmp
= (sstatus
>> 4) & 0xf;
2288 ata_port_printk(ap
, KERN_INFO
,
2289 "SATA link up %s (SStatus %X SControl %X)\n",
2290 sata_spd_string(tmp
), sstatus
, scontrol
);
2292 ata_port_printk(ap
, KERN_INFO
,
2293 "SATA link down (SStatus %X SControl %X)\n",
2299 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2300 * @ap: SATA port associated with target SATA PHY.
2302 * This function issues commands to standard SATA Sxxx
2303 * PHY registers, to wake up the phy (and device), and
2304 * clear any reset condition.
2307 * PCI/etc. bus probe sem.
2310 void __sata_phy_reset(struct ata_port
*ap
)
2313 unsigned long timeout
= jiffies
+ (HZ
* 5);
2315 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
2316 /* issue phy wake/reset */
2317 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x301);
2318 /* Couldn't find anything in SATA I/II specs, but
2319 * AHCI-1.1 10.4.2 says at least 1 ms. */
2322 /* phy wake/clear reset */
2323 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x300);
2325 /* wait for phy to become ready, if necessary */
2328 sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2329 if ((sstatus
& 0xf) != 1)
2331 } while (time_before(jiffies
, timeout
));
2333 /* print link status */
2334 sata_print_link_status(ap
);
2336 /* TODO: phy layer with polling, timeouts, etc. */
2337 if (!ata_port_offline(ap
))
2340 ata_port_disable(ap
);
2342 if (ap
->flags
& ATA_FLAG_DISABLED
)
2345 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
2346 ata_port_disable(ap
);
2350 ap
->cbl
= ATA_CBL_SATA
;
2354 * sata_phy_reset - Reset SATA bus.
2355 * @ap: SATA port associated with target SATA PHY.
2357 * This function resets the SATA bus, and then probes
2358 * the bus for devices.
2361 * PCI/etc. bus probe sem.
2364 void sata_phy_reset(struct ata_port
*ap
)
2366 __sata_phy_reset(ap
);
2367 if (ap
->flags
& ATA_FLAG_DISABLED
)
2373 * ata_dev_pair - return other device on cable
2376 * Obtain the other device on the same cable, or if none is
2377 * present NULL is returned
2380 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2382 struct ata_port
*ap
= adev
->ap
;
2383 struct ata_device
*pair
= &ap
->device
[1 - adev
->devno
];
2384 if (!ata_dev_enabled(pair
))
2390 * ata_port_disable - Disable port.
2391 * @ap: Port to be disabled.
2393 * Modify @ap data structure such that the system
2394 * thinks that the entire port is disabled, and should
2395 * never attempt to probe or communicate with devices
2398 * LOCKING: host lock, or some other form of
2402 void ata_port_disable(struct ata_port
*ap
)
2404 ap
->device
[0].class = ATA_DEV_NONE
;
2405 ap
->device
[1].class = ATA_DEV_NONE
;
2406 ap
->flags
|= ATA_FLAG_DISABLED
;
2410 * sata_down_spd_limit - adjust SATA spd limit downward
2411 * @ap: Port to adjust SATA spd limit for
2413 * Adjust SATA spd limit of @ap downward. Note that this
2414 * function only adjusts the limit. The change must be applied
2415 * using sata_set_spd().
2418 * Inherited from caller.
2421 * 0 on success, negative errno on failure
2423 int sata_down_spd_limit(struct ata_port
*ap
)
2425 u32 sstatus
, spd
, mask
;
2428 rc
= sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2432 mask
= ap
->sata_spd_limit
;
2435 highbit
= fls(mask
) - 1;
2436 mask
&= ~(1 << highbit
);
2438 spd
= (sstatus
>> 4) & 0xf;
2442 mask
&= (1 << spd
) - 1;
2446 ap
->sata_spd_limit
= mask
;
2448 ata_port_printk(ap
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2449 sata_spd_string(fls(mask
)));
2454 static int __sata_set_spd_needed(struct ata_port
*ap
, u32
*scontrol
)
2458 if (ap
->sata_spd_limit
== UINT_MAX
)
2461 limit
= fls(ap
->sata_spd_limit
);
2463 spd
= (*scontrol
>> 4) & 0xf;
2464 *scontrol
= (*scontrol
& ~0xf0) | ((limit
& 0xf) << 4);
2466 return spd
!= limit
;
2470 * sata_set_spd_needed - is SATA spd configuration needed
2471 * @ap: Port in question
2473 * Test whether the spd limit in SControl matches
2474 * @ap->sata_spd_limit. This function is used to determine
2475 * whether hardreset is necessary to apply SATA spd
2479 * Inherited from caller.
2482 * 1 if SATA spd configuration is needed, 0 otherwise.
2484 int sata_set_spd_needed(struct ata_port
*ap
)
2488 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
))
2491 return __sata_set_spd_needed(ap
, &scontrol
);
2495 * sata_set_spd - set SATA spd according to spd limit
2496 * @ap: Port to set SATA spd for
2498 * Set SATA spd of @ap according to sata_spd_limit.
2501 * Inherited from caller.
2504 * 0 if spd doesn't need to be changed, 1 if spd has been
2505 * changed. Negative errno if SCR registers are inaccessible.
2507 int sata_set_spd(struct ata_port
*ap
)
2512 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2515 if (!__sata_set_spd_needed(ap
, &scontrol
))
2518 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2525 * This mode timing computation functionality is ported over from
2526 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2529 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2530 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2531 * for UDMA6, which is currently supported only by Maxtor drives.
2533 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2536 static const struct ata_timing ata_timing
[] = {
2538 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
2539 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2540 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2541 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2543 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2544 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2545 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2546 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2547 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2549 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2551 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2552 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2553 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2555 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2556 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2557 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2559 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2560 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2561 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2562 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2564 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2565 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2566 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2568 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2573 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2574 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2576 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2578 q
->setup
= EZ(t
->setup
* 1000, T
);
2579 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2580 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2581 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2582 q
->active
= EZ(t
->active
* 1000, T
);
2583 q
->recover
= EZ(t
->recover
* 1000, T
);
2584 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2585 q
->udma
= EZ(t
->udma
* 1000, UT
);
2588 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2589 struct ata_timing
*m
, unsigned int what
)
2591 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2592 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2593 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2594 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2595 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2596 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2597 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2598 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2601 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
2603 const struct ata_timing
*t
;
2605 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
2606 if (t
->mode
== 0xFF)
2611 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2612 struct ata_timing
*t
, int T
, int UT
)
2614 const struct ata_timing
*s
;
2615 struct ata_timing p
;
2621 if (!(s
= ata_timing_find_mode(speed
)))
2624 memcpy(t
, s
, sizeof(*s
));
2627 * If the drive is an EIDE drive, it can tell us it needs extended
2628 * PIO/MW_DMA cycle timing.
2631 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2632 memset(&p
, 0, sizeof(p
));
2633 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2634 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
2635 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
2636 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
2637 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
2639 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2643 * Convert the timing to bus clock counts.
2646 ata_timing_quantize(t
, t
, T
, UT
);
2649 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2650 * S.M.A.R.T * and some other commands. We have to ensure that the
2651 * DMA cycle timing is slower/equal than the fastest PIO timing.
2654 if (speed
> XFER_PIO_6
) {
2655 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2656 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2660 * Lengthen active & recovery time so that cycle time is correct.
2663 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2664 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2665 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2668 if (t
->active
+ t
->recover
< t
->cycle
) {
2669 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2670 t
->recover
= t
->cycle
- t
->active
;
2673 /* In a few cases quantisation may produce enough errors to
2674 leave t->cycle too low for the sum of active and recovery
2675 if so we must correct this */
2676 if (t
->active
+ t
->recover
> t
->cycle
)
2677 t
->cycle
= t
->active
+ t
->recover
;
2683 * ata_down_xfermask_limit - adjust dev xfer masks downward
2684 * @dev: Device to adjust xfer masks
2685 * @sel: ATA_DNXFER_* selector
2687 * Adjust xfer masks of @dev downward. Note that this function
2688 * does not apply the change. Invoking ata_set_mode() afterwards
2689 * will apply the limit.
2692 * Inherited from caller.
2695 * 0 on success, negative errno on failure
2697 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
2700 unsigned int orig_mask
, xfer_mask
;
2701 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
2704 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
2705 sel
&= ~ATA_DNXFER_QUIET
;
2707 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
2710 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
2713 case ATA_DNXFER_PIO
:
2714 highbit
= fls(pio_mask
) - 1;
2715 pio_mask
&= ~(1 << highbit
);
2718 case ATA_DNXFER_DMA
:
2720 highbit
= fls(udma_mask
) - 1;
2721 udma_mask
&= ~(1 << highbit
);
2724 } else if (mwdma_mask
) {
2725 highbit
= fls(mwdma_mask
) - 1;
2726 mwdma_mask
&= ~(1 << highbit
);
2732 case ATA_DNXFER_40C
:
2733 udma_mask
&= ATA_UDMA_MASK_40C
;
2736 case ATA_DNXFER_FORCE_PIO0
:
2738 case ATA_DNXFER_FORCE_PIO
:
2747 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
2749 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
2753 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
2754 snprintf(buf
, sizeof(buf
), "%s:%s",
2755 ata_mode_string(xfer_mask
),
2756 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
2758 snprintf(buf
, sizeof(buf
), "%s",
2759 ata_mode_string(xfer_mask
));
2761 ata_dev_printk(dev
, KERN_WARNING
,
2762 "limiting speed to %s\n", buf
);
2765 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
2771 static int ata_dev_set_mode(struct ata_device
*dev
)
2773 struct ata_eh_context
*ehc
= &dev
->ap
->eh_context
;
2774 unsigned int err_mask
;
2777 dev
->flags
&= ~ATA_DFLAG_PIO
;
2778 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
2779 dev
->flags
|= ATA_DFLAG_PIO
;
2781 err_mask
= ata_dev_set_xfermode(dev
);
2782 /* Old CFA may refuse this command, which is just fine */
2783 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& ata_id_is_cfa(dev
->id
))
2784 err_mask
&= ~AC_ERR_DEV
;
2787 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
2788 "(err_mask=0x%x)\n", err_mask
);
2792 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
2793 rc
= ata_dev_revalidate(dev
, 0);
2794 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
2798 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2799 dev
->xfer_shift
, (int)dev
->xfer_mode
);
2801 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
2802 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
2807 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2808 * @ap: port on which timings will be programmed
2809 * @r_failed_dev: out paramter for failed device
2811 * Standard implementation of the function used to tune and set
2812 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2813 * ata_dev_set_mode() fails, pointer to the failing device is
2814 * returned in @r_failed_dev.
2817 * PCI/etc. bus probe sem.
2820 * 0 on success, negative errno otherwise
2823 int ata_do_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2825 struct ata_device
*dev
;
2826 int i
, rc
= 0, used_dma
= 0, found
= 0;
2829 /* step 1: calculate xfer_mask */
2830 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2831 unsigned int pio_mask
, dma_mask
;
2833 dev
= &ap
->device
[i
];
2835 if (!ata_dev_enabled(dev
))
2838 ata_dev_xfermask(dev
);
2840 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
2841 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
2842 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
2843 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
2852 /* step 2: always set host PIO timings */
2853 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2854 dev
= &ap
->device
[i
];
2855 if (!ata_dev_enabled(dev
))
2858 if (!dev
->pio_mode
) {
2859 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
2864 dev
->xfer_mode
= dev
->pio_mode
;
2865 dev
->xfer_shift
= ATA_SHIFT_PIO
;
2866 if (ap
->ops
->set_piomode
)
2867 ap
->ops
->set_piomode(ap
, dev
);
2870 /* step 3: set host DMA timings */
2871 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2872 dev
= &ap
->device
[i
];
2874 if (!ata_dev_enabled(dev
) || !dev
->dma_mode
)
2877 dev
->xfer_mode
= dev
->dma_mode
;
2878 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
2879 if (ap
->ops
->set_dmamode
)
2880 ap
->ops
->set_dmamode(ap
, dev
);
2883 /* step 4: update devices' xfer mode */
2884 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2885 dev
= &ap
->device
[i
];
2887 /* don't update suspended devices' xfer mode */
2888 if (!ata_dev_enabled(dev
))
2891 rc
= ata_dev_set_mode(dev
);
2896 /* Record simplex status. If we selected DMA then the other
2897 * host channels are not permitted to do so.
2899 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
2900 ap
->host
->simplex_claimed
= ap
;
2902 /* step5: chip specific finalisation */
2903 if (ap
->ops
->post_set_mode
)
2904 ap
->ops
->post_set_mode(ap
);
2907 *r_failed_dev
= dev
;
2912 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2913 * @ap: port on which timings will be programmed
2914 * @r_failed_dev: out paramter for failed device
2916 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2917 * ata_set_mode() fails, pointer to the failing device is
2918 * returned in @r_failed_dev.
2921 * PCI/etc. bus probe sem.
2924 * 0 on success, negative errno otherwise
2926 int ata_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2928 /* has private set_mode? */
2929 if (ap
->ops
->set_mode
)
2930 return ap
->ops
->set_mode(ap
, r_failed_dev
);
2931 return ata_do_set_mode(ap
, r_failed_dev
);
2935 * ata_tf_to_host - issue ATA taskfile to host controller
2936 * @ap: port to which command is being issued
2937 * @tf: ATA taskfile register set
2939 * Issues ATA taskfile register set to ATA host controller,
2940 * with proper synchronization with interrupt handler and
2944 * spin_lock_irqsave(host lock)
2947 static inline void ata_tf_to_host(struct ata_port
*ap
,
2948 const struct ata_taskfile
*tf
)
2950 ap
->ops
->tf_load(ap
, tf
);
2951 ap
->ops
->exec_command(ap
, tf
);
2955 * ata_busy_sleep - sleep until BSY clears, or timeout
2956 * @ap: port containing status register to be polled
2957 * @tmout_pat: impatience timeout
2958 * @tmout: overall timeout
2960 * Sleep until ATA Status register bit BSY clears,
2961 * or a timeout occurs.
2964 * Kernel thread context (may sleep).
2967 * 0 on success, -errno otherwise.
2969 int ata_busy_sleep(struct ata_port
*ap
,
2970 unsigned long tmout_pat
, unsigned long tmout
)
2972 unsigned long timer_start
, timeout
;
2975 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
2976 timer_start
= jiffies
;
2977 timeout
= timer_start
+ tmout_pat
;
2978 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2979 time_before(jiffies
, timeout
)) {
2981 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
2984 if (status
!= 0xff && (status
& ATA_BUSY
))
2985 ata_port_printk(ap
, KERN_WARNING
,
2986 "port is slow to respond, please be patient "
2987 "(Status 0x%x)\n", status
);
2989 timeout
= timer_start
+ tmout
;
2990 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2991 time_before(jiffies
, timeout
)) {
2993 status
= ata_chk_status(ap
);
2999 if (status
& ATA_BUSY
) {
3000 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
3001 "(%lu secs, Status 0x%x)\n",
3002 tmout
/ HZ
, status
);
3010 * ata_wait_ready - sleep until BSY clears, or timeout
3011 * @ap: port containing status register to be polled
3012 * @deadline: deadline jiffies for the operation
3014 * Sleep until ATA Status register bit BSY clears, or timeout
3018 * Kernel thread context (may sleep).
3021 * 0 on success, -errno otherwise.
3023 int ata_wait_ready(struct ata_port
*ap
, unsigned long deadline
)
3025 unsigned long start
= jiffies
;
3029 u8 status
= ata_chk_status(ap
);
3030 unsigned long now
= jiffies
;
3032 if (!(status
& ATA_BUSY
))
3036 if (time_after(now
, deadline
))
3039 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3040 (deadline
- now
> 3 * HZ
)) {
3041 ata_port_printk(ap
, KERN_WARNING
,
3042 "port is slow to respond, please be patient "
3043 "(Status 0x%x)\n", status
);
3051 static int ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
,
3052 unsigned long deadline
)
3054 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3055 unsigned int dev0
= devmask
& (1 << 0);
3056 unsigned int dev1
= devmask
& (1 << 1);
3059 /* if device 0 was found in ata_devchk, wait for its
3063 rc
= ata_wait_ready(ap
, deadline
);
3071 /* if device 1 was found in ata_devchk, wait for
3072 * register access, then wait for BSY to clear
3077 ap
->ops
->dev_select(ap
, 1);
3078 nsect
= ioread8(ioaddr
->nsect_addr
);
3079 lbal
= ioread8(ioaddr
->lbal_addr
);
3080 if ((nsect
== 1) && (lbal
== 1))
3082 if (time_after(jiffies
, deadline
))
3084 msleep(50); /* give drive a breather */
3087 rc
= ata_wait_ready(ap
, deadline
);
3095 /* is all this really necessary? */
3096 ap
->ops
->dev_select(ap
, 0);
3098 ap
->ops
->dev_select(ap
, 1);
3100 ap
->ops
->dev_select(ap
, 0);
3105 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
3106 unsigned long deadline
)
3108 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3110 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
3112 /* software reset. causes dev0 to be selected */
3113 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3114 udelay(20); /* FIXME: flush */
3115 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
3116 udelay(20); /* FIXME: flush */
3117 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3119 /* spec mandates ">= 2ms" before checking status.
3120 * We wait 150ms, because that was the magic delay used for
3121 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3122 * between when the ATA command register is written, and then
3123 * status is checked. Because waiting for "a while" before
3124 * checking status is fine, post SRST, we perform this magic
3125 * delay here as well.
3127 * Old drivers/ide uses the 2mS rule and then waits for ready
3131 /* Before we perform post reset processing we want to see if
3132 * the bus shows 0xFF because the odd clown forgets the D7
3133 * pulldown resistor.
3135 if (ata_check_status(ap
) == 0xFF)
3138 return ata_bus_post_reset(ap
, devmask
, deadline
);
3142 * ata_bus_reset - reset host port and associated ATA channel
3143 * @ap: port to reset
3145 * This is typically the first time we actually start issuing
3146 * commands to the ATA channel. We wait for BSY to clear, then
3147 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3148 * result. Determine what devices, if any, are on the channel
3149 * by looking at the device 0/1 error register. Look at the signature
3150 * stored in each device's taskfile registers, to determine if
3151 * the device is ATA or ATAPI.
3154 * PCI/etc. bus probe sem.
3155 * Obtains host lock.
3158 * Sets ATA_FLAG_DISABLED if bus reset fails.
3161 void ata_bus_reset(struct ata_port
*ap
)
3163 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3164 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3166 unsigned int dev0
, dev1
= 0, devmask
= 0;
3169 DPRINTK("ENTER, host %u, port %u\n", ap
->print_id
, ap
->port_no
);
3171 /* determine if device 0/1 are present */
3172 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
3175 dev0
= ata_devchk(ap
, 0);
3177 dev1
= ata_devchk(ap
, 1);
3181 devmask
|= (1 << 0);
3183 devmask
|= (1 << 1);
3185 /* select device 0 again */
3186 ap
->ops
->dev_select(ap
, 0);
3188 /* issue bus reset */
3189 if (ap
->flags
& ATA_FLAG_SRST
) {
3190 rc
= ata_bus_softreset(ap
, devmask
, jiffies
+ 40 * HZ
);
3191 if (rc
&& rc
!= -ENODEV
)
3196 * determine by signature whether we have ATA or ATAPI devices
3198 ap
->device
[0].class = ata_dev_try_classify(ap
, 0, &err
);
3199 if ((slave_possible
) && (err
!= 0x81))
3200 ap
->device
[1].class = ata_dev_try_classify(ap
, 1, &err
);
3202 /* re-enable interrupts */
3203 ap
->ops
->irq_on(ap
);
3205 /* is double-select really necessary? */
3206 if (ap
->device
[1].class != ATA_DEV_NONE
)
3207 ap
->ops
->dev_select(ap
, 1);
3208 if (ap
->device
[0].class != ATA_DEV_NONE
)
3209 ap
->ops
->dev_select(ap
, 0);
3211 /* if no devices were detected, disable this port */
3212 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
3213 (ap
->device
[1].class == ATA_DEV_NONE
))
3216 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
3217 /* set up device control for ATA_FLAG_SATA_RESET */
3218 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3225 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
3226 ap
->ops
->port_disable(ap
);
3232 * sata_phy_debounce - debounce SATA phy status
3233 * @ap: ATA port to debounce SATA phy status for
3234 * @params: timing parameters { interval, duratinon, timeout } in msec
3235 * @deadline: deadline jiffies for the operation
3237 * Make sure SStatus of @ap reaches stable state, determined by
3238 * holding the same value where DET is not 1 for @duration polled
3239 * every @interval, before @timeout. Timeout constraints the
3240 * beginning of the stable state. Because DET gets stuck at 1 on
3241 * some controllers after hot unplugging, this functions waits
3242 * until timeout then returns 0 if DET is stable at 1.
3244 * @timeout is further limited by @deadline. The sooner of the
3248 * Kernel thread context (may sleep)
3251 * 0 on success, -errno on failure.
3253 int sata_phy_debounce(struct ata_port
*ap
, const unsigned long *params
,
3254 unsigned long deadline
)
3256 unsigned long interval_msec
= params
[0];
3257 unsigned long duration
= msecs_to_jiffies(params
[1]);
3258 unsigned long last_jiffies
, t
;
3262 t
= jiffies
+ msecs_to_jiffies(params
[2]);
3263 if (time_before(t
, deadline
))
3266 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
3271 last_jiffies
= jiffies
;
3274 msleep(interval_msec
);
3275 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
3281 if (cur
== 1 && time_before(jiffies
, deadline
))
3283 if (time_after(jiffies
, last_jiffies
+ duration
))
3288 /* unstable, start over */
3290 last_jiffies
= jiffies
;
3292 /* check deadline */
3293 if (time_after(jiffies
, deadline
))
3299 * sata_phy_resume - resume SATA phy
3300 * @ap: ATA port to resume SATA phy for
3301 * @params: timing parameters { interval, duratinon, timeout } in msec
3302 * @deadline: deadline jiffies for the operation
3304 * Resume SATA phy of @ap and debounce it.
3307 * Kernel thread context (may sleep)
3310 * 0 on success, -errno on failure.
3312 int sata_phy_resume(struct ata_port
*ap
, const unsigned long *params
,
3313 unsigned long deadline
)
3318 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3321 scontrol
= (scontrol
& 0x0f0) | 0x300;
3323 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
3326 /* Some PHYs react badly if SStatus is pounded immediately
3327 * after resuming. Delay 200ms before debouncing.
3331 return sata_phy_debounce(ap
, params
, deadline
);
3335 * ata_std_prereset - prepare for reset
3336 * @ap: ATA port to be reset
3337 * @deadline: deadline jiffies for the operation
3339 * @ap is about to be reset. Initialize it. Failure from
3340 * prereset makes libata abort whole reset sequence and give up
3341 * that port, so prereset should be best-effort. It does its
3342 * best to prepare for reset sequence but if things go wrong, it
3343 * should just whine, not fail.
3346 * Kernel thread context (may sleep)
3349 * 0 on success, -errno otherwise.
3351 int ata_std_prereset(struct ata_port
*ap
, unsigned long deadline
)
3353 struct ata_eh_context
*ehc
= &ap
->eh_context
;
3354 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3357 /* handle link resume */
3358 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
3359 (ap
->flags
& ATA_FLAG_HRST_TO_RESUME
))
3360 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3362 /* if we're about to do hardreset, nothing more to do */
3363 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3366 /* if SATA, resume phy */
3367 if (ap
->cbl
== ATA_CBL_SATA
) {
3368 rc
= sata_phy_resume(ap
, timing
, deadline
);
3369 /* whine about phy resume failure but proceed */
3370 if (rc
&& rc
!= -EOPNOTSUPP
)
3371 ata_port_printk(ap
, KERN_WARNING
, "failed to resume "
3372 "link for reset (errno=%d)\n", rc
);
3375 /* Wait for !BSY if the controller can wait for the first D2H
3376 * Reg FIS and we don't know that no device is attached.
3378 if (!(ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
) && !ata_port_offline(ap
)) {
3379 rc
= ata_wait_ready(ap
, deadline
);
3381 ata_port_printk(ap
, KERN_WARNING
, "device not ready "
3382 "(errno=%d), forcing hardreset\n", rc
);
3383 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3391 * ata_std_softreset - reset host port via ATA SRST
3392 * @ap: port to reset
3393 * @classes: resulting classes of attached devices
3394 * @deadline: deadline jiffies for the operation
3396 * Reset host port using ATA SRST.
3399 * Kernel thread context (may sleep)
3402 * 0 on success, -errno otherwise.
3404 int ata_std_softreset(struct ata_port
*ap
, unsigned int *classes
,
3405 unsigned long deadline
)
3407 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3408 unsigned int devmask
= 0;
3414 if (ata_port_offline(ap
)) {
3415 classes
[0] = ATA_DEV_NONE
;
3419 /* determine if device 0/1 are present */
3420 if (ata_devchk(ap
, 0))
3421 devmask
|= (1 << 0);
3422 if (slave_possible
&& ata_devchk(ap
, 1))
3423 devmask
|= (1 << 1);
3425 /* select device 0 again */
3426 ap
->ops
->dev_select(ap
, 0);
3428 /* issue bus reset */
3429 DPRINTK("about to softreset, devmask=%x\n", devmask
);
3430 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
3431 /* if link is occupied, -ENODEV too is an error */
3432 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(ap
))) {
3433 ata_port_printk(ap
, KERN_ERR
, "SRST failed (errno=%d)\n", rc
);
3437 /* determine by signature whether we have ATA or ATAPI devices */
3438 classes
[0] = ata_dev_try_classify(ap
, 0, &err
);
3439 if (slave_possible
&& err
!= 0x81)
3440 classes
[1] = ata_dev_try_classify(ap
, 1, &err
);
3443 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
3448 * sata_port_hardreset - reset port via SATA phy reset
3449 * @ap: port to reset
3450 * @timing: timing parameters { interval, duratinon, timeout } in msec
3451 * @deadline: deadline jiffies for the operation
3453 * SATA phy-reset host port using DET bits of SControl register.
3456 * Kernel thread context (may sleep)
3459 * 0 on success, -errno otherwise.
3461 int sata_port_hardreset(struct ata_port
*ap
, const unsigned long *timing
,
3462 unsigned long deadline
)
3469 if (sata_set_spd_needed(ap
)) {
3470 /* SATA spec says nothing about how to reconfigure
3471 * spd. To be on the safe side, turn off phy during
3472 * reconfiguration. This works for at least ICH7 AHCI
3475 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3478 scontrol
= (scontrol
& 0x0f0) | 0x304;
3480 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
3486 /* issue phy wake/reset */
3487 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3490 scontrol
= (scontrol
& 0x0f0) | 0x301;
3492 if ((rc
= sata_scr_write_flush(ap
, SCR_CONTROL
, scontrol
)))
3495 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3496 * 10.4.2 says at least 1 ms.
3500 /* bring phy back */
3501 rc
= sata_phy_resume(ap
, timing
, deadline
);
3503 DPRINTK("EXIT, rc=%d\n", rc
);
3508 * sata_std_hardreset - reset host port via SATA phy reset
3509 * @ap: port to reset
3510 * @class: resulting class of attached device
3511 * @deadline: deadline jiffies for the operation
3513 * SATA phy-reset host port using DET bits of SControl register,
3514 * wait for !BSY and classify the attached device.
3517 * Kernel thread context (may sleep)
3520 * 0 on success, -errno otherwise.
3522 int sata_std_hardreset(struct ata_port
*ap
, unsigned int *class,
3523 unsigned long deadline
)
3525 const unsigned long *timing
= sata_ehc_deb_timing(&ap
->eh_context
);
3531 rc
= sata_port_hardreset(ap
, timing
, deadline
);
3533 ata_port_printk(ap
, KERN_ERR
,
3534 "COMRESET failed (errno=%d)\n", rc
);
3538 /* TODO: phy layer with polling, timeouts, etc. */
3539 if (ata_port_offline(ap
)) {
3540 *class = ATA_DEV_NONE
;
3541 DPRINTK("EXIT, link offline\n");
3545 /* wait a while before checking status, see SRST for more info */
3548 rc
= ata_wait_ready(ap
, deadline
);
3549 /* link occupied, -ENODEV too is an error */
3551 ata_port_printk(ap
, KERN_ERR
,
3552 "COMRESET failed (errno=%d)\n", rc
);
3556 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
3558 *class = ata_dev_try_classify(ap
, 0, NULL
);
3560 DPRINTK("EXIT, class=%u\n", *class);
3565 * ata_std_postreset - standard postreset callback
3566 * @ap: the target ata_port
3567 * @classes: classes of attached devices
3569 * This function is invoked after a successful reset. Note that
3570 * the device might have been reset more than once using
3571 * different reset methods before postreset is invoked.
3574 * Kernel thread context (may sleep)
3576 void ata_std_postreset(struct ata_port
*ap
, unsigned int *classes
)
3582 /* print link status */
3583 sata_print_link_status(ap
);
3586 if (sata_scr_read(ap
, SCR_ERROR
, &serror
) == 0)
3587 sata_scr_write(ap
, SCR_ERROR
, serror
);
3589 /* re-enable interrupts */
3590 if (!ap
->ops
->error_handler
)
3591 ap
->ops
->irq_on(ap
);
3593 /* is double-select really necessary? */
3594 if (classes
[0] != ATA_DEV_NONE
)
3595 ap
->ops
->dev_select(ap
, 1);
3596 if (classes
[1] != ATA_DEV_NONE
)
3597 ap
->ops
->dev_select(ap
, 0);
3599 /* bail out if no device is present */
3600 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
3601 DPRINTK("EXIT, no device\n");
3605 /* set up device control */
3606 if (ap
->ioaddr
.ctl_addr
)
3607 iowrite8(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
3613 * ata_dev_same_device - Determine whether new ID matches configured device
3614 * @dev: device to compare against
3615 * @new_class: class of the new device
3616 * @new_id: IDENTIFY page of the new device
3618 * Compare @new_class and @new_id against @dev and determine
3619 * whether @dev is the device indicated by @new_class and
3626 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3628 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3631 const u16
*old_id
= dev
->id
;
3632 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3633 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3635 if (dev
->class != new_class
) {
3636 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3637 dev
->class, new_class
);
3641 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3642 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3643 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3644 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3646 if (strcmp(model
[0], model
[1])) {
3647 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3648 "'%s' != '%s'\n", model
[0], model
[1]);
3652 if (strcmp(serial
[0], serial
[1])) {
3653 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3654 "'%s' != '%s'\n", serial
[0], serial
[1]);
3662 * ata_dev_reread_id - Re-read IDENTIFY data
3663 * @adev: target ATA device
3664 * @readid_flags: read ID flags
3666 * Re-read IDENTIFY page and make sure @dev is still attached to
3670 * Kernel thread context (may sleep)
3673 * 0 on success, negative errno otherwise
3675 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
3677 unsigned int class = dev
->class;
3678 u16
*id
= (void *)dev
->ap
->sector_buf
;
3682 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3686 /* is the device still there? */
3687 if (!ata_dev_same_device(dev
, class, id
))
3690 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3695 * ata_dev_revalidate - Revalidate ATA device
3696 * @dev: device to revalidate
3697 * @readid_flags: read ID flags
3699 * Re-read IDENTIFY page, make sure @dev is still attached to the
3700 * port and reconfigure it according to the new IDENTIFY page.
3703 * Kernel thread context (may sleep)
3706 * 0 on success, negative errno otherwise
3708 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int readid_flags
)
3710 u64 n_sectors
= dev
->n_sectors
;
3713 if (!ata_dev_enabled(dev
))
3717 rc
= ata_dev_reread_id(dev
, readid_flags
);
3721 /* configure device according to the new ID */
3722 rc
= ata_dev_configure(dev
);
3726 /* verify n_sectors hasn't changed */
3727 if (dev
->class == ATA_DEV_ATA
&& dev
->n_sectors
!= n_sectors
) {
3728 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
3730 (unsigned long long)n_sectors
,
3731 (unsigned long long)dev
->n_sectors
);
3739 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
3743 struct ata_blacklist_entry
{
3744 const char *model_num
;
3745 const char *model_rev
;
3746 unsigned long horkage
;
3749 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
3750 /* Devices with DMA related problems under Linux */
3751 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
3752 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
3753 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
3754 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
3755 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
3756 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
3757 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
3758 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
3759 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
3760 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
3761 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
3762 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
3763 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
3764 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
3765 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
3766 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
3767 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
3768 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
3769 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
3770 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
3771 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
3772 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
3773 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
3774 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
3775 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
3776 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
3777 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
3778 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
3779 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA
},
3781 /* Weird ATAPI devices */
3782 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
|
3783 ATA_HORKAGE_DMA_RW_ONLY
},
3785 /* Devices we expect to fail diagnostics */
3787 /* Devices where NCQ should be avoided */
3789 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
3790 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3791 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
3793 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ
},
3794 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3795 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ
},
3796 /* Blacklist entries taken from Silicon Image 3124/3132
3797 Windows driver .inf file - also several Linux problem reports */
3798 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
3799 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
3800 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
3802 /* Devices with NCQ limits */
3808 unsigned long ata_device_blacklisted(const struct ata_device
*dev
)
3810 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
3811 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
3812 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
3814 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
3815 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
3817 while (ad
->model_num
) {
3818 if (!strcmp(ad
->model_num
, model_num
)) {
3819 if (ad
->model_rev
== NULL
)
3821 if (!strcmp(ad
->model_rev
, model_rev
))
3829 static int ata_dma_blacklisted(const struct ata_device
*dev
)
3831 /* We don't support polling DMA.
3832 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3833 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3835 if ((dev
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
3836 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
3838 return (ata_device_blacklisted(dev
) & ATA_HORKAGE_NODMA
) ? 1 : 0;
3842 * ata_dev_xfermask - Compute supported xfermask of the given device
3843 * @dev: Device to compute xfermask for
3845 * Compute supported xfermask of @dev and store it in
3846 * dev->*_mask. This function is responsible for applying all
3847 * known limits including host controller limits, device
3853 static void ata_dev_xfermask(struct ata_device
*dev
)
3855 struct ata_port
*ap
= dev
->ap
;
3856 struct ata_host
*host
= ap
->host
;
3857 unsigned long xfer_mask
;
3859 /* controller modes available */
3860 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
3861 ap
->mwdma_mask
, ap
->udma_mask
);
3863 /* drive modes available */
3864 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
3865 dev
->mwdma_mask
, dev
->udma_mask
);
3866 xfer_mask
&= ata_id_xfermask(dev
->id
);
3869 * CFA Advanced TrueIDE timings are not allowed on a shared
3872 if (ata_dev_pair(dev
)) {
3873 /* No PIO5 or PIO6 */
3874 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
3875 /* No MWDMA3 or MWDMA 4 */
3876 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
3879 if (ata_dma_blacklisted(dev
)) {
3880 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3881 ata_dev_printk(dev
, KERN_WARNING
,
3882 "device is on DMA blacklist, disabling DMA\n");
3885 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
3886 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
3887 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3888 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
3889 "other device, disabling DMA\n");
3892 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
3893 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
3895 if (ap
->ops
->mode_filter
)
3896 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
3898 /* Apply cable rule here. Don't apply it early because when
3899 * we handle hot plug the cable type can itself change.
3900 * Check this last so that we know if the transfer rate was
3901 * solely limited by the cable.
3902 * Unknown or 80 wire cables reported host side are checked
3903 * drive side as well. Cases where we know a 40wire cable
3904 * is used safely for 80 are not checked here.
3906 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
3907 /* UDMA/44 or higher would be available */
3908 if((ap
->cbl
== ATA_CBL_PATA40
) ||
3909 (ata_drive_40wire(dev
->id
) &&
3910 (ap
->cbl
== ATA_CBL_PATA_UNK
||
3911 ap
->cbl
== ATA_CBL_PATA80
))) {
3912 ata_dev_printk(dev
, KERN_WARNING
,
3913 "limited to UDMA/33 due to 40-wire cable\n");
3914 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3917 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
3918 &dev
->mwdma_mask
, &dev
->udma_mask
);
3922 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3923 * @dev: Device to which command will be sent
3925 * Issue SET FEATURES - XFER MODE command to device @dev
3929 * PCI/etc. bus probe sem.
3932 * 0 on success, AC_ERR_* mask otherwise.
3935 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
3937 struct ata_taskfile tf
;
3938 unsigned int err_mask
;
3940 /* set up set-features taskfile */
3941 DPRINTK("set features - xfer mode\n");
3943 ata_tf_init(dev
, &tf
);
3944 tf
.command
= ATA_CMD_SET_FEATURES
;
3945 tf
.feature
= SETFEATURES_XFER
;
3946 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3947 tf
.protocol
= ATA_PROT_NODATA
;
3948 tf
.nsect
= dev
->xfer_mode
;
3950 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3952 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3957 * ata_dev_init_params - Issue INIT DEV PARAMS command
3958 * @dev: Device to which command will be sent
3959 * @heads: Number of heads (taskfile parameter)
3960 * @sectors: Number of sectors (taskfile parameter)
3963 * Kernel thread context (may sleep)
3966 * 0 on success, AC_ERR_* mask otherwise.
3968 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
3969 u16 heads
, u16 sectors
)
3971 struct ata_taskfile tf
;
3972 unsigned int err_mask
;
3974 /* Number of sectors per track 1-255. Number of heads 1-16 */
3975 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
3976 return AC_ERR_INVALID
;
3978 /* set up init dev params taskfile */
3979 DPRINTK("init dev params \n");
3981 ata_tf_init(dev
, &tf
);
3982 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
3983 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3984 tf
.protocol
= ATA_PROT_NODATA
;
3986 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
3988 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3990 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3995 * ata_sg_clean - Unmap DMA memory associated with command
3996 * @qc: Command containing DMA memory to be released
3998 * Unmap all mapped DMA memory associated with this command.
4001 * spin_lock_irqsave(host lock)
4003 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4005 struct ata_port
*ap
= qc
->ap
;
4006 struct scatterlist
*sg
= qc
->__sg
;
4007 int dir
= qc
->dma_dir
;
4008 void *pad_buf
= NULL
;
4010 WARN_ON(!(qc
->flags
& ATA_QCFLAG_DMAMAP
));
4011 WARN_ON(sg
== NULL
);
4013 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
4014 WARN_ON(qc
->n_elem
> 1);
4016 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4018 /* if we padded the buffer out to 32-bit bound, and data
4019 * xfer direction is from-device, we must copy from the
4020 * pad buffer back into the supplied buffer
4022 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4023 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4025 if (qc
->flags
& ATA_QCFLAG_SG
) {
4027 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
4028 /* restore last sg */
4029 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
4031 struct scatterlist
*psg
= &qc
->pad_sgent
;
4032 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
4033 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
4034 kunmap_atomic(addr
, KM_IRQ0
);
4038 dma_unmap_single(ap
->dev
,
4039 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
4042 sg
->length
+= qc
->pad_len
;
4044 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
4045 pad_buf
, qc
->pad_len
);
4048 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4053 * ata_fill_sg - Fill PCI IDE PRD table
4054 * @qc: Metadata associated with taskfile to be transferred
4056 * Fill PCI IDE PRD (scatter-gather) table with segments
4057 * associated with the current disk command.
4060 * spin_lock_irqsave(host lock)
4063 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
4065 struct ata_port
*ap
= qc
->ap
;
4066 struct scatterlist
*sg
;
4069 WARN_ON(qc
->__sg
== NULL
);
4070 WARN_ON(qc
->n_elem
== 0 && qc
->pad_len
== 0);
4073 ata_for_each_sg(sg
, qc
) {
4077 /* determine if physical DMA addr spans 64K boundary.
4078 * Note h/w doesn't support 64-bit, so we unconditionally
4079 * truncate dma_addr_t to u32.
4081 addr
= (u32
) sg_dma_address(sg
);
4082 sg_len
= sg_dma_len(sg
);
4085 offset
= addr
& 0xffff;
4087 if ((offset
+ sg_len
) > 0x10000)
4088 len
= 0x10000 - offset
;
4090 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
4091 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
4092 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
4101 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4104 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4105 * @qc: Metadata associated with taskfile to check
4107 * Allow low-level driver to filter ATA PACKET commands, returning
4108 * a status indicating whether or not it is OK to use DMA for the
4109 * supplied PACKET command.
4112 * spin_lock_irqsave(host lock)
4114 * RETURNS: 0 when ATAPI DMA can be used
4117 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
4119 struct ata_port
*ap
= qc
->ap
;
4120 int rc
= 0; /* Assume ATAPI DMA is OK by default */
4122 /* some drives can only do ATAPI DMA on read/write */
4123 if (unlikely(qc
->dev
->horkage
& ATA_HORKAGE_DMA_RW_ONLY
)) {
4124 struct scsi_cmnd
*cmd
= qc
->scsicmd
;
4125 u8
*scsicmd
= cmd
->cmnd
;
4127 switch (scsicmd
[0]) {
4134 /* atapi dma maybe ok */
4137 /* turn off atapi dma */
4142 if (ap
->ops
->check_atapi_dma
)
4143 rc
= ap
->ops
->check_atapi_dma(qc
);
4148 * ata_qc_prep - Prepare taskfile for submission
4149 * @qc: Metadata associated with taskfile to be prepared
4151 * Prepare ATA taskfile for submission.
4154 * spin_lock_irqsave(host lock)
4156 void ata_qc_prep(struct ata_queued_cmd
*qc
)
4158 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4164 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4167 * ata_sg_init_one - Associate command with memory buffer
4168 * @qc: Command to be associated
4169 * @buf: Memory buffer
4170 * @buflen: Length of memory buffer, in bytes.
4172 * Initialize the data-related elements of queued_cmd @qc
4173 * to point to a single memory buffer, @buf of byte length @buflen.
4176 * spin_lock_irqsave(host lock)
4179 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
4181 qc
->flags
|= ATA_QCFLAG_SINGLE
;
4183 qc
->__sg
= &qc
->sgent
;
4185 qc
->orig_n_elem
= 1;
4187 qc
->nbytes
= buflen
;
4189 sg_init_one(&qc
->sgent
, buf
, buflen
);
4193 * ata_sg_init - Associate command with scatter-gather table.
4194 * @qc: Command to be associated
4195 * @sg: Scatter-gather table.
4196 * @n_elem: Number of elements in s/g table.
4198 * Initialize the data-related elements of queued_cmd @qc
4199 * to point to a scatter-gather table @sg, containing @n_elem
4203 * spin_lock_irqsave(host lock)
4206 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4207 unsigned int n_elem
)
4209 qc
->flags
|= ATA_QCFLAG_SG
;
4211 qc
->n_elem
= n_elem
;
4212 qc
->orig_n_elem
= n_elem
;
4216 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4217 * @qc: Command with memory buffer to be mapped.
4219 * DMA-map the memory buffer associated with queued_cmd @qc.
4222 * spin_lock_irqsave(host lock)
4225 * Zero on success, negative on error.
4228 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
4230 struct ata_port
*ap
= qc
->ap
;
4231 int dir
= qc
->dma_dir
;
4232 struct scatterlist
*sg
= qc
->__sg
;
4233 dma_addr_t dma_address
;
4236 /* we must lengthen transfers to end on a 32-bit boundary */
4237 qc
->pad_len
= sg
->length
& 3;
4239 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4240 struct scatterlist
*psg
= &qc
->pad_sgent
;
4242 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
4244 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
4246 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
4247 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
4250 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4251 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
4253 sg
->length
-= qc
->pad_len
;
4254 if (sg
->length
== 0)
4257 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4258 sg
->length
, qc
->pad_len
);
4266 dma_address
= dma_map_single(ap
->dev
, qc
->buf_virt
,
4268 if (dma_mapping_error(dma_address
)) {
4270 sg
->length
+= qc
->pad_len
;
4274 sg_dma_address(sg
) = dma_address
;
4275 sg_dma_len(sg
) = sg
->length
;
4278 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
4279 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4285 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4286 * @qc: Command with scatter-gather table to be mapped.
4288 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4291 * spin_lock_irqsave(host lock)
4294 * Zero on success, negative on error.
4298 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4300 struct ata_port
*ap
= qc
->ap
;
4301 struct scatterlist
*sg
= qc
->__sg
;
4302 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
4303 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
4305 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4306 WARN_ON(!(qc
->flags
& ATA_QCFLAG_SG
));
4308 /* we must lengthen transfers to end on a 32-bit boundary */
4309 qc
->pad_len
= lsg
->length
& 3;
4311 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4312 struct scatterlist
*psg
= &qc
->pad_sgent
;
4313 unsigned int offset
;
4315 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
4317 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
4320 * psg->page/offset are used to copy to-be-written
4321 * data in this function or read data in ata_sg_clean.
4323 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
4324 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
4325 psg
->offset
= offset_in_page(offset
);
4327 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
4328 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
4329 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
4330 kunmap_atomic(addr
, KM_IRQ0
);
4333 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4334 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
4336 lsg
->length
-= qc
->pad_len
;
4337 if (lsg
->length
== 0)
4340 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4341 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
4344 pre_n_elem
= qc
->n_elem
;
4345 if (trim_sg
&& pre_n_elem
)
4354 n_elem
= dma_map_sg(ap
->dev
, sg
, pre_n_elem
, dir
);
4356 /* restore last sg */
4357 lsg
->length
+= qc
->pad_len
;
4361 DPRINTK("%d sg elements mapped\n", n_elem
);
4364 qc
->n_elem
= n_elem
;
4370 * swap_buf_le16 - swap halves of 16-bit words in place
4371 * @buf: Buffer to swap
4372 * @buf_words: Number of 16-bit words in buffer.
4374 * Swap halves of 16-bit words if needed to convert from
4375 * little-endian byte order to native cpu byte order, or
4379 * Inherited from caller.
4381 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4386 for (i
= 0; i
< buf_words
; i
++)
4387 buf
[i
] = le16_to_cpu(buf
[i
]);
4388 #endif /* __BIG_ENDIAN */
4392 * ata_data_xfer - Transfer data by PIO
4393 * @adev: device to target
4395 * @buflen: buffer length
4396 * @write_data: read/write
4398 * Transfer data from/to the device data register by PIO.
4401 * Inherited from caller.
4403 void ata_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
4404 unsigned int buflen
, int write_data
)
4406 struct ata_port
*ap
= adev
->ap
;
4407 unsigned int words
= buflen
>> 1;
4409 /* Transfer multiple of 2 bytes */
4411 iowrite16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
4413 ioread16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
4415 /* Transfer trailing 1 byte, if any. */
4416 if (unlikely(buflen
& 0x01)) {
4417 u16 align_buf
[1] = { 0 };
4418 unsigned char *trailing_buf
= buf
+ buflen
- 1;
4421 memcpy(align_buf
, trailing_buf
, 1);
4422 iowrite16(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
4424 align_buf
[0] = cpu_to_le16(ioread16(ap
->ioaddr
.data_addr
));
4425 memcpy(trailing_buf
, align_buf
, 1);
4431 * ata_data_xfer_noirq - Transfer data by PIO
4432 * @adev: device to target
4434 * @buflen: buffer length
4435 * @write_data: read/write
4437 * Transfer data from/to the device data register by PIO. Do the
4438 * transfer with interrupts disabled.
4441 * Inherited from caller.
4443 void ata_data_xfer_noirq(struct ata_device
*adev
, unsigned char *buf
,
4444 unsigned int buflen
, int write_data
)
4446 unsigned long flags
;
4447 local_irq_save(flags
);
4448 ata_data_xfer(adev
, buf
, buflen
, write_data
);
4449 local_irq_restore(flags
);
4454 * ata_pio_sector - Transfer a sector of data.
4455 * @qc: Command on going
4457 * Transfer qc->sect_size bytes of data from/to the ATA device.
4460 * Inherited from caller.
4463 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
4465 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4466 struct scatterlist
*sg
= qc
->__sg
;
4467 struct ata_port
*ap
= qc
->ap
;
4469 unsigned int offset
;
4472 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
4473 ap
->hsm_task_state
= HSM_ST_LAST
;
4475 page
= sg
[qc
->cursg
].page
;
4476 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
;
4478 /* get the current page and offset */
4479 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4480 offset
%= PAGE_SIZE
;
4482 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4484 if (PageHighMem(page
)) {
4485 unsigned long flags
;
4487 /* FIXME: use a bounce buffer */
4488 local_irq_save(flags
);
4489 buf
= kmap_atomic(page
, KM_IRQ0
);
4491 /* do the actual data transfer */
4492 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
4494 kunmap_atomic(buf
, KM_IRQ0
);
4495 local_irq_restore(flags
);
4497 buf
= page_address(page
);
4498 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
4501 qc
->curbytes
+= qc
->sect_size
;
4502 qc
->cursg_ofs
+= qc
->sect_size
;
4504 if (qc
->cursg_ofs
== (&sg
[qc
->cursg
])->length
) {
4511 * ata_pio_sectors - Transfer one or many sectors.
4512 * @qc: Command on going
4514 * Transfer one or many sectors of data from/to the
4515 * ATA device for the DRQ request.
4518 * Inherited from caller.
4521 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
4523 if (is_multi_taskfile(&qc
->tf
)) {
4524 /* READ/WRITE MULTIPLE */
4527 WARN_ON(qc
->dev
->multi_count
== 0);
4529 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
4530 qc
->dev
->multi_count
);
4538 * atapi_send_cdb - Write CDB bytes to hardware
4539 * @ap: Port to which ATAPI device is attached.
4540 * @qc: Taskfile currently active
4542 * When device has indicated its readiness to accept
4543 * a CDB, this function is called. Send the CDB.
4549 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4552 DPRINTK("send cdb\n");
4553 WARN_ON(qc
->dev
->cdb_len
< 12);
4555 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
4556 ata_altstatus(ap
); /* flush */
4558 switch (qc
->tf
.protocol
) {
4559 case ATA_PROT_ATAPI
:
4560 ap
->hsm_task_state
= HSM_ST
;
4562 case ATA_PROT_ATAPI_NODATA
:
4563 ap
->hsm_task_state
= HSM_ST_LAST
;
4565 case ATA_PROT_ATAPI_DMA
:
4566 ap
->hsm_task_state
= HSM_ST_LAST
;
4567 /* initiate bmdma */
4568 ap
->ops
->bmdma_start(qc
);
4574 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4575 * @qc: Command on going
4576 * @bytes: number of bytes
4578 * Transfer Transfer data from/to the ATAPI device.
4581 * Inherited from caller.
4585 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
4587 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4588 struct scatterlist
*sg
= qc
->__sg
;
4589 struct ata_port
*ap
= qc
->ap
;
4592 unsigned int offset
, count
;
4594 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
4595 ap
->hsm_task_state
= HSM_ST_LAST
;
4598 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
4600 * The end of qc->sg is reached and the device expects
4601 * more data to transfer. In order not to overrun qc->sg
4602 * and fulfill length specified in the byte count register,
4603 * - for read case, discard trailing data from the device
4604 * - for write case, padding zero data to the device
4606 u16 pad_buf
[1] = { 0 };
4607 unsigned int words
= bytes
>> 1;
4610 if (words
) /* warning if bytes > 1 */
4611 ata_dev_printk(qc
->dev
, KERN_WARNING
,
4612 "%u bytes trailing data\n", bytes
);
4614 for (i
= 0; i
< words
; i
++)
4615 ap
->ops
->data_xfer(qc
->dev
, (unsigned char*)pad_buf
, 2, do_write
);
4617 ap
->hsm_task_state
= HSM_ST_LAST
;
4621 sg
= &qc
->__sg
[qc
->cursg
];
4624 offset
= sg
->offset
+ qc
->cursg_ofs
;
4626 /* get the current page and offset */
4627 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4628 offset
%= PAGE_SIZE
;
4630 /* don't overrun current sg */
4631 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
4633 /* don't cross page boundaries */
4634 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
4636 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4638 if (PageHighMem(page
)) {
4639 unsigned long flags
;
4641 /* FIXME: use bounce buffer */
4642 local_irq_save(flags
);
4643 buf
= kmap_atomic(page
, KM_IRQ0
);
4645 /* do the actual data transfer */
4646 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4648 kunmap_atomic(buf
, KM_IRQ0
);
4649 local_irq_restore(flags
);
4651 buf
= page_address(page
);
4652 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4656 qc
->curbytes
+= count
;
4657 qc
->cursg_ofs
+= count
;
4659 if (qc
->cursg_ofs
== sg
->length
) {
4669 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4670 * @qc: Command on going
4672 * Transfer Transfer data from/to the ATAPI device.
4675 * Inherited from caller.
4678 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
4680 struct ata_port
*ap
= qc
->ap
;
4681 struct ata_device
*dev
= qc
->dev
;
4682 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
4683 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
4685 /* Abuse qc->result_tf for temp storage of intermediate TF
4686 * here to save some kernel stack usage.
4687 * For normal completion, qc->result_tf is not relevant. For
4688 * error, qc->result_tf is later overwritten by ata_qc_complete().
4689 * So, the correctness of qc->result_tf is not affected.
4691 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4692 ireason
= qc
->result_tf
.nsect
;
4693 bc_lo
= qc
->result_tf
.lbam
;
4694 bc_hi
= qc
->result_tf
.lbah
;
4695 bytes
= (bc_hi
<< 8) | bc_lo
;
4697 /* shall be cleared to zero, indicating xfer of data */
4698 if (ireason
& (1 << 0))
4701 /* make sure transfer direction matches expected */
4702 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
4703 if (do_write
!= i_write
)
4706 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
4708 __atapi_pio_bytes(qc
, bytes
);
4713 ata_dev_printk(dev
, KERN_INFO
, "ATAPI check failed\n");
4714 qc
->err_mask
|= AC_ERR_HSM
;
4715 ap
->hsm_task_state
= HSM_ST_ERR
;
4719 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4720 * @ap: the target ata_port
4724 * 1 if ok in workqueue, 0 otherwise.
4727 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4729 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4732 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
4733 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
4734 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4737 if (is_atapi_taskfile(&qc
->tf
) &&
4738 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4746 * ata_hsm_qc_complete - finish a qc running on standard HSM
4747 * @qc: Command to complete
4748 * @in_wq: 1 if called from workqueue, 0 otherwise
4750 * Finish @qc which is running on standard HSM.
4753 * If @in_wq is zero, spin_lock_irqsave(host lock).
4754 * Otherwise, none on entry and grabs host lock.
4756 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
4758 struct ata_port
*ap
= qc
->ap
;
4759 unsigned long flags
;
4761 if (ap
->ops
->error_handler
) {
4763 spin_lock_irqsave(ap
->lock
, flags
);
4765 /* EH might have kicked in while host lock is
4768 qc
= ata_qc_from_tag(ap
, qc
->tag
);
4770 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
4771 ap
->ops
->irq_on(ap
);
4772 ata_qc_complete(qc
);
4774 ata_port_freeze(ap
);
4777 spin_unlock_irqrestore(ap
->lock
, flags
);
4779 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
4780 ata_qc_complete(qc
);
4782 ata_port_freeze(ap
);
4786 spin_lock_irqsave(ap
->lock
, flags
);
4787 ap
->ops
->irq_on(ap
);
4788 ata_qc_complete(qc
);
4789 spin_unlock_irqrestore(ap
->lock
, flags
);
4791 ata_qc_complete(qc
);
4794 ata_altstatus(ap
); /* flush */
4798 * ata_hsm_move - move the HSM to the next state.
4799 * @ap: the target ata_port
4801 * @status: current device status
4802 * @in_wq: 1 if called from workqueue, 0 otherwise
4805 * 1 when poll next status needed, 0 otherwise.
4807 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
4808 u8 status
, int in_wq
)
4810 unsigned long flags
= 0;
4813 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
4815 /* Make sure ata_qc_issue_prot() does not throw things
4816 * like DMA polling into the workqueue. Notice that
4817 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4819 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
4822 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4823 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
4825 switch (ap
->hsm_task_state
) {
4827 /* Send first data block or PACKET CDB */
4829 /* If polling, we will stay in the work queue after
4830 * sending the data. Otherwise, interrupt handler
4831 * takes over after sending the data.
4833 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4835 /* check device status */
4836 if (unlikely((status
& ATA_DRQ
) == 0)) {
4837 /* handle BSY=0, DRQ=0 as error */
4838 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4839 /* device stops HSM for abort/error */
4840 qc
->err_mask
|= AC_ERR_DEV
;
4842 /* HSM violation. Let EH handle this */
4843 qc
->err_mask
|= AC_ERR_HSM
;
4845 ap
->hsm_task_state
= HSM_ST_ERR
;
4849 /* Device should not ask for data transfer (DRQ=1)
4850 * when it finds something wrong.
4851 * We ignore DRQ here and stop the HSM by
4852 * changing hsm_task_state to HSM_ST_ERR and
4853 * let the EH abort the command or reset the device.
4855 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4856 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with device "
4857 "error, dev_stat 0x%X\n", status
);
4858 qc
->err_mask
|= AC_ERR_HSM
;
4859 ap
->hsm_task_state
= HSM_ST_ERR
;
4863 /* Send the CDB (atapi) or the first data block (ata pio out).
4864 * During the state transition, interrupt handler shouldn't
4865 * be invoked before the data transfer is complete and
4866 * hsm_task_state is changed. Hence, the following locking.
4869 spin_lock_irqsave(ap
->lock
, flags
);
4871 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
4872 /* PIO data out protocol.
4873 * send first data block.
4876 /* ata_pio_sectors() might change the state
4877 * to HSM_ST_LAST. so, the state is changed here
4878 * before ata_pio_sectors().
4880 ap
->hsm_task_state
= HSM_ST
;
4881 ata_pio_sectors(qc
);
4882 ata_altstatus(ap
); /* flush */
4885 atapi_send_cdb(ap
, qc
);
4888 spin_unlock_irqrestore(ap
->lock
, flags
);
4890 /* if polling, ata_pio_task() handles the rest.
4891 * otherwise, interrupt handler takes over from here.
4896 /* complete command or read/write the data register */
4897 if (qc
->tf
.protocol
== ATA_PROT_ATAPI
) {
4898 /* ATAPI PIO protocol */
4899 if ((status
& ATA_DRQ
) == 0) {
4900 /* No more data to transfer or device error.
4901 * Device error will be tagged in HSM_ST_LAST.
4903 ap
->hsm_task_state
= HSM_ST_LAST
;
4907 /* Device should not ask for data transfer (DRQ=1)
4908 * when it finds something wrong.
4909 * We ignore DRQ here and stop the HSM by
4910 * changing hsm_task_state to HSM_ST_ERR and
4911 * let the EH abort the command or reset the device.
4913 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4914 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with "
4915 "device error, dev_stat 0x%X\n",
4917 qc
->err_mask
|= AC_ERR_HSM
;
4918 ap
->hsm_task_state
= HSM_ST_ERR
;
4922 atapi_pio_bytes(qc
);
4924 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
4925 /* bad ireason reported by device */
4929 /* ATA PIO protocol */
4930 if (unlikely((status
& ATA_DRQ
) == 0)) {
4931 /* handle BSY=0, DRQ=0 as error */
4932 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4933 /* device stops HSM for abort/error */
4934 qc
->err_mask
|= AC_ERR_DEV
;
4936 /* HSM violation. Let EH handle this.
4937 * Phantom devices also trigger this
4938 * condition. Mark hint.
4940 qc
->err_mask
|= AC_ERR_HSM
|
4943 ap
->hsm_task_state
= HSM_ST_ERR
;
4947 /* For PIO reads, some devices may ask for
4948 * data transfer (DRQ=1) alone with ERR=1.
4949 * We respect DRQ here and transfer one
4950 * block of junk data before changing the
4951 * hsm_task_state to HSM_ST_ERR.
4953 * For PIO writes, ERR=1 DRQ=1 doesn't make
4954 * sense since the data block has been
4955 * transferred to the device.
4957 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4958 /* data might be corrputed */
4959 qc
->err_mask
|= AC_ERR_DEV
;
4961 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
4962 ata_pio_sectors(qc
);
4964 status
= ata_wait_idle(ap
);
4967 if (status
& (ATA_BUSY
| ATA_DRQ
))
4968 qc
->err_mask
|= AC_ERR_HSM
;
4970 /* ata_pio_sectors() might change the
4971 * state to HSM_ST_LAST. so, the state
4972 * is changed after ata_pio_sectors().
4974 ap
->hsm_task_state
= HSM_ST_ERR
;
4978 ata_pio_sectors(qc
);
4980 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
4981 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
4984 status
= ata_wait_idle(ap
);
4989 ata_altstatus(ap
); /* flush */
4994 if (unlikely(!ata_ok(status
))) {
4995 qc
->err_mask
|= __ac_err_mask(status
);
4996 ap
->hsm_task_state
= HSM_ST_ERR
;
5000 /* no more data to transfer */
5001 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5002 ap
->print_id
, qc
->dev
->devno
, status
);
5004 WARN_ON(qc
->err_mask
);
5006 ap
->hsm_task_state
= HSM_ST_IDLE
;
5008 /* complete taskfile transaction */
5009 ata_hsm_qc_complete(qc
, in_wq
);
5015 /* make sure qc->err_mask is available to
5016 * know what's wrong and recover
5018 WARN_ON(qc
->err_mask
== 0);
5020 ap
->hsm_task_state
= HSM_ST_IDLE
;
5022 /* complete taskfile transaction */
5023 ata_hsm_qc_complete(qc
, in_wq
);
5035 static void ata_pio_task(struct work_struct
*work
)
5037 struct ata_port
*ap
=
5038 container_of(work
, struct ata_port
, port_task
.work
);
5039 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
5044 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
5047 * This is purely heuristic. This is a fast path.
5048 * Sometimes when we enter, BSY will be cleared in
5049 * a chk-status or two. If not, the drive is probably seeking
5050 * or something. Snooze for a couple msecs, then
5051 * chk-status again. If still busy, queue delayed work.
5053 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
5054 if (status
& ATA_BUSY
) {
5056 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
5057 if (status
& ATA_BUSY
) {
5058 ata_port_queue_task(ap
, ata_pio_task
, qc
, ATA_SHORT_PAUSE
);
5064 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
5066 /* another command or interrupt handler
5067 * may be running at this point.
5074 * ata_qc_new - Request an available ATA command, for queueing
5075 * @ap: Port associated with device @dev
5076 * @dev: Device from whom we request an available command structure
5082 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
5084 struct ata_queued_cmd
*qc
= NULL
;
5087 /* no command while frozen */
5088 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
5091 /* the last tag is reserved for internal command. */
5092 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
5093 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
5094 qc
= __ata_qc_from_tag(ap
, i
);
5105 * ata_qc_new_init - Request an available ATA command, and initialize it
5106 * @dev: Device from whom we request an available command structure
5112 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
5114 struct ata_port
*ap
= dev
->ap
;
5115 struct ata_queued_cmd
*qc
;
5117 qc
= ata_qc_new(ap
);
5130 * ata_qc_free - free unused ata_queued_cmd
5131 * @qc: Command to complete
5133 * Designed to free unused ata_queued_cmd object
5134 * in case something prevents using it.
5137 * spin_lock_irqsave(host lock)
5139 void ata_qc_free(struct ata_queued_cmd
*qc
)
5141 struct ata_port
*ap
= qc
->ap
;
5144 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5148 if (likely(ata_tag_valid(tag
))) {
5149 qc
->tag
= ATA_TAG_POISON
;
5150 clear_bit(tag
, &ap
->qc_allocated
);
5154 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
5156 struct ata_port
*ap
= qc
->ap
;
5158 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5159 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
5161 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5164 /* command should be marked inactive atomically with qc completion */
5165 if (qc
->tf
.protocol
== ATA_PROT_NCQ
)
5166 ap
->sactive
&= ~(1 << qc
->tag
);
5168 ap
->active_tag
= ATA_TAG_POISON
;
5170 /* atapi: mark qc as inactive to prevent the interrupt handler
5171 * from completing the command twice later, before the error handler
5172 * is called. (when rc != 0 and atapi request sense is needed)
5174 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
5175 ap
->qc_active
&= ~(1 << qc
->tag
);
5177 /* call completion callback */
5178 qc
->complete_fn(qc
);
5181 static void fill_result_tf(struct ata_queued_cmd
*qc
)
5183 struct ata_port
*ap
= qc
->ap
;
5185 qc
->result_tf
.flags
= qc
->tf
.flags
;
5186 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5190 * ata_qc_complete - Complete an active ATA command
5191 * @qc: Command to complete
5192 * @err_mask: ATA Status register contents
5194 * Indicate to the mid and upper layers that an ATA
5195 * command has completed, with either an ok or not-ok status.
5198 * spin_lock_irqsave(host lock)
5200 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5202 struct ata_port
*ap
= qc
->ap
;
5204 /* XXX: New EH and old EH use different mechanisms to
5205 * synchronize EH with regular execution path.
5207 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5208 * Normal execution path is responsible for not accessing a
5209 * failed qc. libata core enforces the rule by returning NULL
5210 * from ata_qc_from_tag() for failed qcs.
5212 * Old EH depends on ata_qc_complete() nullifying completion
5213 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5214 * not synchronize with interrupt handler. Only PIO task is
5217 if (ap
->ops
->error_handler
) {
5218 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
5220 if (unlikely(qc
->err_mask
))
5221 qc
->flags
|= ATA_QCFLAG_FAILED
;
5223 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5224 if (!ata_tag_internal(qc
->tag
)) {
5225 /* always fill result TF for failed qc */
5227 ata_qc_schedule_eh(qc
);
5232 /* read result TF if requested */
5233 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5236 __ata_qc_complete(qc
);
5238 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5241 /* read result TF if failed or requested */
5242 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5245 __ata_qc_complete(qc
);
5250 * ata_qc_complete_multiple - Complete multiple qcs successfully
5251 * @ap: port in question
5252 * @qc_active: new qc_active mask
5253 * @finish_qc: LLDD callback invoked before completing a qc
5255 * Complete in-flight commands. This functions is meant to be
5256 * called from low-level driver's interrupt routine to complete
5257 * requests normally. ap->qc_active and @qc_active is compared
5258 * and commands are completed accordingly.
5261 * spin_lock_irqsave(host lock)
5264 * Number of completed commands on success, -errno otherwise.
5266 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
5267 void (*finish_qc
)(struct ata_queued_cmd
*))
5273 done_mask
= ap
->qc_active
^ qc_active
;
5275 if (unlikely(done_mask
& qc_active
)) {
5276 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5277 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5281 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
5282 struct ata_queued_cmd
*qc
;
5284 if (!(done_mask
& (1 << i
)))
5287 if ((qc
= ata_qc_from_tag(ap
, i
))) {
5290 ata_qc_complete(qc
);
5298 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
5300 struct ata_port
*ap
= qc
->ap
;
5302 switch (qc
->tf
.protocol
) {
5305 case ATA_PROT_ATAPI_DMA
:
5308 case ATA_PROT_ATAPI
:
5310 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
5323 * ata_qc_issue - issue taskfile to device
5324 * @qc: command to issue to device
5326 * Prepare an ATA command to submission to device.
5327 * This includes mapping the data into a DMA-able
5328 * area, filling in the S/G table, and finally
5329 * writing the taskfile to hardware, starting the command.
5332 * spin_lock_irqsave(host lock)
5334 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5336 struct ata_port
*ap
= qc
->ap
;
5338 /* Make sure only one non-NCQ command is outstanding. The
5339 * check is skipped for old EH because it reuses active qc to
5340 * request ATAPI sense.
5342 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(ap
->active_tag
));
5344 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
5345 WARN_ON(ap
->sactive
& (1 << qc
->tag
));
5346 ap
->sactive
|= 1 << qc
->tag
;
5348 WARN_ON(ap
->sactive
);
5349 ap
->active_tag
= qc
->tag
;
5352 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5353 ap
->qc_active
|= 1 << qc
->tag
;
5355 if (ata_should_dma_map(qc
)) {
5356 if (qc
->flags
& ATA_QCFLAG_SG
) {
5357 if (ata_sg_setup(qc
))
5359 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
5360 if (ata_sg_setup_one(qc
))
5364 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
5367 ap
->ops
->qc_prep(qc
);
5369 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5370 if (unlikely(qc
->err_mask
))
5375 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
5376 qc
->err_mask
|= AC_ERR_SYSTEM
;
5378 ata_qc_complete(qc
);
5382 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5383 * @qc: command to issue to device
5385 * Using various libata functions and hooks, this function
5386 * starts an ATA command. ATA commands are grouped into
5387 * classes called "protocols", and issuing each type of protocol
5388 * is slightly different.
5390 * May be used as the qc_issue() entry in ata_port_operations.
5393 * spin_lock_irqsave(host lock)
5396 * Zero on success, AC_ERR_* mask on failure
5399 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
5401 struct ata_port
*ap
= qc
->ap
;
5403 /* Use polling pio if the LLD doesn't handle
5404 * interrupt driven pio and atapi CDB interrupt.
5406 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
5407 switch (qc
->tf
.protocol
) {
5409 case ATA_PROT_NODATA
:
5410 case ATA_PROT_ATAPI
:
5411 case ATA_PROT_ATAPI_NODATA
:
5412 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
5414 case ATA_PROT_ATAPI_DMA
:
5415 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
5416 /* see ata_dma_blacklisted() */
5424 /* Some controllers show flaky interrupt behavior after
5425 * setting xfer mode. Use polling instead.
5427 if (unlikely(qc
->tf
.command
== ATA_CMD_SET_FEATURES
&&
5428 qc
->tf
.feature
== SETFEATURES_XFER
) &&
5429 (ap
->flags
& ATA_FLAG_SETXFER_POLLING
))
5430 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
5432 /* select the device */
5433 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
5435 /* start the command */
5436 switch (qc
->tf
.protocol
) {
5437 case ATA_PROT_NODATA
:
5438 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5439 ata_qc_set_polling(qc
);
5441 ata_tf_to_host(ap
, &qc
->tf
);
5442 ap
->hsm_task_state
= HSM_ST_LAST
;
5444 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5445 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5450 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5452 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5453 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5454 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
5455 ap
->hsm_task_state
= HSM_ST_LAST
;
5459 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5460 ata_qc_set_polling(qc
);
5462 ata_tf_to_host(ap
, &qc
->tf
);
5464 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
5465 /* PIO data out protocol */
5466 ap
->hsm_task_state
= HSM_ST_FIRST
;
5467 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5469 /* always send first data block using
5470 * the ata_pio_task() codepath.
5473 /* PIO data in protocol */
5474 ap
->hsm_task_state
= HSM_ST
;
5476 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5477 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5479 /* if polling, ata_pio_task() handles the rest.
5480 * otherwise, interrupt handler takes over from here.
5486 case ATA_PROT_ATAPI
:
5487 case ATA_PROT_ATAPI_NODATA
:
5488 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5489 ata_qc_set_polling(qc
);
5491 ata_tf_to_host(ap
, &qc
->tf
);
5493 ap
->hsm_task_state
= HSM_ST_FIRST
;
5495 /* send cdb by polling if no cdb interrupt */
5496 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
5497 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
5498 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5501 case ATA_PROT_ATAPI_DMA
:
5502 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5504 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5505 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5506 ap
->hsm_task_state
= HSM_ST_FIRST
;
5508 /* send cdb by polling if no cdb interrupt */
5509 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5510 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5515 return AC_ERR_SYSTEM
;
5522 * ata_host_intr - Handle host interrupt for given (port, task)
5523 * @ap: Port on which interrupt arrived (possibly...)
5524 * @qc: Taskfile currently active in engine
5526 * Handle host interrupt for given queued command. Currently,
5527 * only DMA interrupts are handled. All other commands are
5528 * handled via polling with interrupts disabled (nIEN bit).
5531 * spin_lock_irqsave(host lock)
5534 * One if interrupt was handled, zero if not (shared irq).
5537 inline unsigned int ata_host_intr (struct ata_port
*ap
,
5538 struct ata_queued_cmd
*qc
)
5540 struct ata_eh_info
*ehi
= &ap
->eh_info
;
5541 u8 status
, host_stat
= 0;
5543 VPRINTK("ata%u: protocol %d task_state %d\n",
5544 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
5546 /* Check whether we are expecting interrupt in this state */
5547 switch (ap
->hsm_task_state
) {
5549 /* Some pre-ATAPI-4 devices assert INTRQ
5550 * at this state when ready to receive CDB.
5553 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5554 * The flag was turned on only for atapi devices.
5555 * No need to check is_atapi_taskfile(&qc->tf) again.
5557 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5561 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
5562 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
) {
5563 /* check status of DMA engine */
5564 host_stat
= ap
->ops
->bmdma_status(ap
);
5565 VPRINTK("ata%u: host_stat 0x%X\n",
5566 ap
->print_id
, host_stat
);
5568 /* if it's not our irq... */
5569 if (!(host_stat
& ATA_DMA_INTR
))
5572 /* before we do anything else, clear DMA-Start bit */
5573 ap
->ops
->bmdma_stop(qc
);
5575 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
5576 /* error when transfering data to/from memory */
5577 qc
->err_mask
|= AC_ERR_HOST_BUS
;
5578 ap
->hsm_task_state
= HSM_ST_ERR
;
5588 /* check altstatus */
5589 status
= ata_altstatus(ap
);
5590 if (status
& ATA_BUSY
)
5593 /* check main status, clearing INTRQ */
5594 status
= ata_chk_status(ap
);
5595 if (unlikely(status
& ATA_BUSY
))
5598 /* ack bmdma irq events */
5599 ap
->ops
->irq_clear(ap
);
5601 ata_hsm_move(ap
, qc
, status
, 0);
5603 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
5604 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
))
5605 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
5607 return 1; /* irq handled */
5610 ap
->stats
.idle_irq
++;
5613 if ((ap
->stats
.idle_irq
% 1000) == 0) {
5614 ap
->ops
->irq_ack(ap
, 0); /* debug trap */
5615 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
5619 return 0; /* irq not handled */
5623 * ata_interrupt - Default ATA host interrupt handler
5624 * @irq: irq line (unused)
5625 * @dev_instance: pointer to our ata_host information structure
5627 * Default interrupt handler for PCI IDE devices. Calls
5628 * ata_host_intr() for each port that is not disabled.
5631 * Obtains host lock during operation.
5634 * IRQ_NONE or IRQ_HANDLED.
5637 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
)
5639 struct ata_host
*host
= dev_instance
;
5641 unsigned int handled
= 0;
5642 unsigned long flags
;
5644 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5645 spin_lock_irqsave(&host
->lock
, flags
);
5647 for (i
= 0; i
< host
->n_ports
; i
++) {
5648 struct ata_port
*ap
;
5650 ap
= host
->ports
[i
];
5652 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
5653 struct ata_queued_cmd
*qc
;
5655 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
5656 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
5657 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
5658 handled
|= ata_host_intr(ap
, qc
);
5662 spin_unlock_irqrestore(&host
->lock
, flags
);
5664 return IRQ_RETVAL(handled
);
5668 * sata_scr_valid - test whether SCRs are accessible
5669 * @ap: ATA port to test SCR accessibility for
5671 * Test whether SCRs are accessible for @ap.
5677 * 1 if SCRs are accessible, 0 otherwise.
5679 int sata_scr_valid(struct ata_port
*ap
)
5681 return ap
->cbl
== ATA_CBL_SATA
&& ap
->ops
->scr_read
;
5685 * sata_scr_read - read SCR register of the specified port
5686 * @ap: ATA port to read SCR for
5688 * @val: Place to store read value
5690 * Read SCR register @reg of @ap into *@val. This function is
5691 * guaranteed to succeed if the cable type of the port is SATA
5692 * and the port implements ->scr_read.
5698 * 0 on success, negative errno on failure.
5700 int sata_scr_read(struct ata_port
*ap
, int reg
, u32
*val
)
5702 if (sata_scr_valid(ap
)) {
5703 *val
= ap
->ops
->scr_read(ap
, reg
);
5710 * sata_scr_write - write SCR register of the specified port
5711 * @ap: ATA port to write SCR for
5712 * @reg: SCR to write
5713 * @val: value to write
5715 * Write @val to SCR register @reg of @ap. This function is
5716 * guaranteed to succeed if the cable type of the port is SATA
5717 * and the port implements ->scr_read.
5723 * 0 on success, negative errno on failure.
5725 int sata_scr_write(struct ata_port
*ap
, int reg
, u32 val
)
5727 if (sata_scr_valid(ap
)) {
5728 ap
->ops
->scr_write(ap
, reg
, val
);
5735 * sata_scr_write_flush - write SCR register of the specified port and flush
5736 * @ap: ATA port to write SCR for
5737 * @reg: SCR to write
5738 * @val: value to write
5740 * This function is identical to sata_scr_write() except that this
5741 * function performs flush after writing to the register.
5747 * 0 on success, negative errno on failure.
5749 int sata_scr_write_flush(struct ata_port
*ap
, int reg
, u32 val
)
5751 if (sata_scr_valid(ap
)) {
5752 ap
->ops
->scr_write(ap
, reg
, val
);
5753 ap
->ops
->scr_read(ap
, reg
);
5760 * ata_port_online - test whether the given port is online
5761 * @ap: ATA port to test
5763 * Test whether @ap is online. Note that this function returns 0
5764 * if online status of @ap cannot be obtained, so
5765 * ata_port_online(ap) != !ata_port_offline(ap).
5771 * 1 if the port online status is available and online.
5773 int ata_port_online(struct ata_port
*ap
)
5777 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) == 0x3)
5783 * ata_port_offline - test whether the given port is offline
5784 * @ap: ATA port to test
5786 * Test whether @ap is offline. Note that this function returns
5787 * 0 if offline status of @ap cannot be obtained, so
5788 * ata_port_online(ap) != !ata_port_offline(ap).
5794 * 1 if the port offline status is available and offline.
5796 int ata_port_offline(struct ata_port
*ap
)
5800 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) != 0x3)
5805 int ata_flush_cache(struct ata_device
*dev
)
5807 unsigned int err_mask
;
5810 if (!ata_try_flush_cache(dev
))
5813 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
5814 cmd
= ATA_CMD_FLUSH_EXT
;
5816 cmd
= ATA_CMD_FLUSH
;
5818 err_mask
= ata_do_simple_cmd(dev
, cmd
);
5820 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
5828 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5829 unsigned int action
, unsigned int ehi_flags
,
5832 unsigned long flags
;
5835 for (i
= 0; i
< host
->n_ports
; i
++) {
5836 struct ata_port
*ap
= host
->ports
[i
];
5838 /* Previous resume operation might still be in
5839 * progress. Wait for PM_PENDING to clear.
5841 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5842 ata_port_wait_eh(ap
);
5843 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5846 /* request PM ops to EH */
5847 spin_lock_irqsave(ap
->lock
, flags
);
5852 ap
->pm_result
= &rc
;
5855 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5856 ap
->eh_info
.action
|= action
;
5857 ap
->eh_info
.flags
|= ehi_flags
;
5859 ata_port_schedule_eh(ap
);
5861 spin_unlock_irqrestore(ap
->lock
, flags
);
5863 /* wait and check result */
5865 ata_port_wait_eh(ap
);
5866 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5876 * ata_host_suspend - suspend host
5877 * @host: host to suspend
5880 * Suspend @host. Actual operation is performed by EH. This
5881 * function requests EH to perform PM operations and waits for EH
5885 * Kernel thread context (may sleep).
5888 * 0 on success, -errno on failure.
5890 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5894 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5896 host
->dev
->power
.power_state
= mesg
;
5901 * ata_host_resume - resume host
5902 * @host: host to resume
5904 * Resume @host. Actual operation is performed by EH. This
5905 * function requests EH to perform PM operations and returns.
5906 * Note that all resume operations are performed parallely.
5909 * Kernel thread context (may sleep).
5911 void ata_host_resume(struct ata_host
*host
)
5913 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
5914 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5915 host
->dev
->power
.power_state
= PMSG_ON
;
5920 * ata_port_start - Set port up for dma.
5921 * @ap: Port to initialize
5923 * Called just after data structures for each port are
5924 * initialized. Allocates space for PRD table.
5926 * May be used as the port_start() entry in ata_port_operations.
5929 * Inherited from caller.
5931 int ata_port_start(struct ata_port
*ap
)
5933 struct device
*dev
= ap
->dev
;
5936 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5941 rc
= ata_pad_alloc(ap
, dev
);
5945 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
,
5946 (unsigned long long)ap
->prd_dma
);
5951 * ata_dev_init - Initialize an ata_device structure
5952 * @dev: Device structure to initialize
5954 * Initialize @dev in preparation for probing.
5957 * Inherited from caller.
5959 void ata_dev_init(struct ata_device
*dev
)
5961 struct ata_port
*ap
= dev
->ap
;
5962 unsigned long flags
;
5964 /* SATA spd limit is bound to the first device */
5965 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5967 /* High bits of dev->flags are used to record warm plug
5968 * requests which occur asynchronously. Synchronize using
5971 spin_lock_irqsave(ap
->lock
, flags
);
5972 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5973 spin_unlock_irqrestore(ap
->lock
, flags
);
5975 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5976 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5977 dev
->pio_mask
= UINT_MAX
;
5978 dev
->mwdma_mask
= UINT_MAX
;
5979 dev
->udma_mask
= UINT_MAX
;
5983 * ata_port_alloc - allocate and initialize basic ATA port resources
5984 * @host: ATA host this allocated port belongs to
5986 * Allocate and initialize basic ATA port resources.
5989 * Allocate ATA port on success, NULL on failure.
5992 * Inherited from calling layer (may sleep).
5994 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5996 struct ata_port
*ap
;
6001 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
6005 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
6006 ap
->lock
= &host
->lock
;
6007 ap
->flags
= ATA_FLAG_DISABLED
;
6009 ap
->ctl
= ATA_DEVCTL_OBS
;
6011 ap
->dev
= host
->dev
;
6013 ap
->hw_sata_spd_limit
= UINT_MAX
;
6014 ap
->active_tag
= ATA_TAG_POISON
;
6015 ap
->last_ctl
= 0xFF;
6017 #if defined(ATA_VERBOSE_DEBUG)
6018 /* turn on all debugging levels */
6019 ap
->msg_enable
= 0x00FF;
6020 #elif defined(ATA_DEBUG)
6021 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
6023 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
6026 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
6027 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
6028 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
6029 INIT_LIST_HEAD(&ap
->eh_done_q
);
6030 init_waitqueue_head(&ap
->eh_wait_q
);
6032 ap
->cbl
= ATA_CBL_NONE
;
6034 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
6035 struct ata_device
*dev
= &ap
->device
[i
];
6042 ap
->stats
.unhandled_irq
= 1;
6043 ap
->stats
.idle_irq
= 1;
6048 static void ata_host_release(struct device
*gendev
, void *res
)
6050 struct ata_host
*host
= dev_get_drvdata(gendev
);
6053 for (i
= 0; i
< host
->n_ports
; i
++) {
6054 struct ata_port
*ap
= host
->ports
[i
];
6059 if ((host
->flags
& ATA_HOST_STARTED
) && ap
->ops
->port_stop
)
6060 ap
->ops
->port_stop(ap
);
6063 if ((host
->flags
& ATA_HOST_STARTED
) && host
->ops
->host_stop
)
6064 host
->ops
->host_stop(host
);
6066 for (i
= 0; i
< host
->n_ports
; i
++) {
6067 struct ata_port
*ap
= host
->ports
[i
];
6073 scsi_host_put(ap
->scsi_host
);
6076 host
->ports
[i
] = NULL
;
6079 dev_set_drvdata(gendev
, NULL
);
6083 * ata_host_alloc - allocate and init basic ATA host resources
6084 * @dev: generic device this host is associated with
6085 * @max_ports: maximum number of ATA ports associated with this host
6087 * Allocate and initialize basic ATA host resources. LLD calls
6088 * this function to allocate a host, initializes it fully and
6089 * attaches it using ata_host_register().
6091 * @max_ports ports are allocated and host->n_ports is
6092 * initialized to @max_ports. The caller is allowed to decrease
6093 * host->n_ports before calling ata_host_register(). The unused
6094 * ports will be automatically freed on registration.
6097 * Allocate ATA host on success, NULL on failure.
6100 * Inherited from calling layer (may sleep).
6102 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
6104 struct ata_host
*host
;
6110 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
6113 /* alloc a container for our list of ATA ports (buses) */
6114 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
6115 /* alloc a container for our list of ATA ports (buses) */
6116 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
6120 devres_add(dev
, host
);
6121 dev_set_drvdata(dev
, host
);
6123 spin_lock_init(&host
->lock
);
6125 host
->n_ports
= max_ports
;
6127 /* allocate ports bound to this host */
6128 for (i
= 0; i
< max_ports
; i
++) {
6129 struct ata_port
*ap
;
6131 ap
= ata_port_alloc(host
);
6136 host
->ports
[i
] = ap
;
6139 devres_remove_group(dev
, NULL
);
6143 devres_release_group(dev
, NULL
);
6148 * ata_host_alloc_pinfo - alloc host and init with port_info array
6149 * @dev: generic device this host is associated with
6150 * @ppi: array of ATA port_info to initialize host with
6151 * @n_ports: number of ATA ports attached to this host
6153 * Allocate ATA host and initialize with info from @ppi. If NULL
6154 * terminated, @ppi may contain fewer entries than @n_ports. The
6155 * last entry will be used for the remaining ports.
6158 * Allocate ATA host on success, NULL on failure.
6161 * Inherited from calling layer (may sleep).
6163 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
6164 const struct ata_port_info
* const * ppi
,
6167 const struct ata_port_info
*pi
;
6168 struct ata_host
*host
;
6171 host
= ata_host_alloc(dev
, n_ports
);
6175 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
6176 struct ata_port
*ap
= host
->ports
[i
];
6181 ap
->pio_mask
= pi
->pio_mask
;
6182 ap
->mwdma_mask
= pi
->mwdma_mask
;
6183 ap
->udma_mask
= pi
->udma_mask
;
6184 ap
->flags
|= pi
->flags
;
6185 ap
->ops
= pi
->port_ops
;
6187 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
6188 host
->ops
= pi
->port_ops
;
6189 if (!host
->private_data
&& pi
->private_data
)
6190 host
->private_data
= pi
->private_data
;
6197 * ata_host_start - start and freeze ports of an ATA host
6198 * @host: ATA host to start ports for
6200 * Start and then freeze ports of @host. Started status is
6201 * recorded in host->flags, so this function can be called
6202 * multiple times. Ports are guaranteed to get started only
6203 * once. If host->ops isn't initialized yet, its set to the
6204 * first non-dummy port ops.
6207 * Inherited from calling layer (may sleep).
6210 * 0 if all ports are started successfully, -errno otherwise.
6212 int ata_host_start(struct ata_host
*host
)
6216 if (host
->flags
& ATA_HOST_STARTED
)
6219 for (i
= 0; i
< host
->n_ports
; i
++) {
6220 struct ata_port
*ap
= host
->ports
[i
];
6222 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6223 host
->ops
= ap
->ops
;
6225 if (ap
->ops
->port_start
) {
6226 rc
= ap
->ops
->port_start(ap
);
6228 ata_port_printk(ap
, KERN_ERR
, "failed to "
6229 "start port (errno=%d)\n", rc
);
6234 ata_eh_freeze_port(ap
);
6237 host
->flags
|= ATA_HOST_STARTED
;
6242 struct ata_port
*ap
= host
->ports
[i
];
6244 if (ap
->ops
->port_stop
)
6245 ap
->ops
->port_stop(ap
);
6251 * ata_sas_host_init - Initialize a host struct
6252 * @host: host to initialize
6253 * @dev: device host is attached to
6254 * @flags: host flags
6258 * PCI/etc. bus probe sem.
6261 /* KILLME - the only user left is ipr */
6262 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6263 unsigned long flags
, const struct ata_port_operations
*ops
)
6265 spin_lock_init(&host
->lock
);
6267 host
->flags
= flags
;
6272 * ata_host_register - register initialized ATA host
6273 * @host: ATA host to register
6274 * @sht: template for SCSI host
6276 * Register initialized ATA host. @host is allocated using
6277 * ata_host_alloc() and fully initialized by LLD. This function
6278 * starts ports, registers @host with ATA and SCSI layers and
6279 * probe registered devices.
6282 * Inherited from calling layer (may sleep).
6285 * 0 on success, -errno otherwise.
6287 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6291 /* host must have been started */
6292 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6293 dev_printk(KERN_ERR
, host
->dev
,
6294 "BUG: trying to register unstarted host\n");
6299 /* Blow away unused ports. This happens when LLD can't
6300 * determine the exact number of ports to allocate at
6303 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6304 kfree(host
->ports
[i
]);
6306 /* give ports names and add SCSI hosts */
6307 for (i
= 0; i
< host
->n_ports
; i
++)
6308 host
->ports
[i
]->print_id
= ata_print_id
++;
6310 rc
= ata_scsi_add_hosts(host
, sht
);
6314 /* set cable, sata_spd_limit and report */
6315 for (i
= 0; i
< host
->n_ports
; i
++) {
6316 struct ata_port
*ap
= host
->ports
[i
];
6319 unsigned long xfer_mask
;
6321 /* set SATA cable type if still unset */
6322 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6323 ap
->cbl
= ATA_CBL_SATA
;
6325 /* init sata_spd_limit to the current value */
6326 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
) == 0) {
6327 int spd
= (scontrol
>> 4) & 0xf;
6328 ap
->hw_sata_spd_limit
&= (1 << spd
) - 1;
6330 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
6332 /* report the secondary IRQ for second channel legacy */
6333 irq_line
= host
->irq
;
6334 if (i
== 1 && host
->irq2
)
6335 irq_line
= host
->irq2
;
6337 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6340 /* print per-port info to dmesg */
6341 if (!ata_port_is_dummy(ap
))
6342 ata_port_printk(ap
, KERN_INFO
, "%cATA max %s cmd 0x%p "
6343 "ctl 0x%p bmdma 0x%p irq %d\n",
6344 ap
->cbl
== ATA_CBL_SATA
? 'S' : 'P',
6345 ata_mode_string(xfer_mask
),
6346 ap
->ioaddr
.cmd_addr
,
6347 ap
->ioaddr
.ctl_addr
,
6348 ap
->ioaddr
.bmdma_addr
,
6351 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6354 /* perform each probe synchronously */
6355 DPRINTK("probe begin\n");
6356 for (i
= 0; i
< host
->n_ports
; i
++) {
6357 struct ata_port
*ap
= host
->ports
[i
];
6361 if (ap
->ops
->error_handler
) {
6362 struct ata_eh_info
*ehi
= &ap
->eh_info
;
6363 unsigned long flags
;
6367 /* kick EH for boot probing */
6368 spin_lock_irqsave(ap
->lock
, flags
);
6370 ehi
->probe_mask
= (1 << ATA_MAX_DEVICES
) - 1;
6371 ehi
->action
|= ATA_EH_SOFTRESET
;
6372 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6374 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6375 ap
->pflags
|= ATA_PFLAG_LOADING
;
6376 ata_port_schedule_eh(ap
);
6378 spin_unlock_irqrestore(ap
->lock
, flags
);
6380 /* wait for EH to finish */
6381 ata_port_wait_eh(ap
);
6383 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6384 rc
= ata_bus_probe(ap
);
6385 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6388 /* FIXME: do something useful here?
6389 * Current libata behavior will
6390 * tear down everything when
6391 * the module is removed
6392 * or the h/w is unplugged.
6398 /* probes are done, now scan each port's disk(s) */
6399 DPRINTK("host probe begin\n");
6400 for (i
= 0; i
< host
->n_ports
; i
++) {
6401 struct ata_port
*ap
= host
->ports
[i
];
6403 ata_scsi_scan_host(ap
);
6410 * ata_host_activate - start host, request IRQ and register it
6411 * @host: target ATA host
6412 * @irq: IRQ to request
6413 * @irq_handler: irq_handler used when requesting IRQ
6414 * @irq_flags: irq_flags used when requesting IRQ
6415 * @sht: scsi_host_template to use when registering the host
6417 * After allocating an ATA host and initializing it, most libata
6418 * LLDs perform three steps to activate the host - start host,
6419 * request IRQ and register it. This helper takes necessasry
6420 * arguments and performs the three steps in one go.
6423 * Inherited from calling layer (may sleep).
6426 * 0 on success, -errno otherwise.
6428 int ata_host_activate(struct ata_host
*host
, int irq
,
6429 irq_handler_t irq_handler
, unsigned long irq_flags
,
6430 struct scsi_host_template
*sht
)
6434 rc
= ata_host_start(host
);
6438 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6439 dev_driver_string(host
->dev
), host
);
6443 rc
= ata_host_register(host
, sht
);
6444 /* if failed, just free the IRQ and leave ports alone */
6446 devm_free_irq(host
->dev
, irq
, host
);
6452 * ata_port_detach - Detach ATA port in prepration of device removal
6453 * @ap: ATA port to be detached
6455 * Detach all ATA devices and the associated SCSI devices of @ap;
6456 * then, remove the associated SCSI host. @ap is guaranteed to
6457 * be quiescent on return from this function.
6460 * Kernel thread context (may sleep).
6462 void ata_port_detach(struct ata_port
*ap
)
6464 unsigned long flags
;
6467 if (!ap
->ops
->error_handler
)
6470 /* tell EH we're leaving & flush EH */
6471 spin_lock_irqsave(ap
->lock
, flags
);
6472 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6473 spin_unlock_irqrestore(ap
->lock
, flags
);
6475 ata_port_wait_eh(ap
);
6477 /* EH is now guaranteed to see UNLOADING, so no new device
6478 * will be attached. Disable all existing devices.
6480 spin_lock_irqsave(ap
->lock
, flags
);
6482 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
6483 ata_dev_disable(&ap
->device
[i
]);
6485 spin_unlock_irqrestore(ap
->lock
, flags
);
6487 /* Final freeze & EH. All in-flight commands are aborted. EH
6488 * will be skipped and retrials will be terminated with bad
6491 spin_lock_irqsave(ap
->lock
, flags
);
6492 ata_port_freeze(ap
); /* won't be thawed */
6493 spin_unlock_irqrestore(ap
->lock
, flags
);
6495 ata_port_wait_eh(ap
);
6497 /* Flush hotplug task. The sequence is similar to
6498 * ata_port_flush_task().
6500 cancel_work_sync(&ap
->hotplug_task
.work
); /* akpm: why? */
6501 cancel_delayed_work(&ap
->hotplug_task
);
6502 cancel_work_sync(&ap
->hotplug_task
.work
);
6505 /* remove the associated SCSI host */
6506 scsi_remove_host(ap
->scsi_host
);
6510 * ata_host_detach - Detach all ports of an ATA host
6511 * @host: Host to detach
6513 * Detach all ports of @host.
6516 * Kernel thread context (may sleep).
6518 void ata_host_detach(struct ata_host
*host
)
6522 for (i
= 0; i
< host
->n_ports
; i
++)
6523 ata_port_detach(host
->ports
[i
]);
6527 * ata_std_ports - initialize ioaddr with standard port offsets.
6528 * @ioaddr: IO address structure to be initialized
6530 * Utility function which initializes data_addr, error_addr,
6531 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6532 * device_addr, status_addr, and command_addr to standard offsets
6533 * relative to cmd_addr.
6535 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6538 void ata_std_ports(struct ata_ioports
*ioaddr
)
6540 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
6541 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
6542 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
6543 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
6544 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
6545 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
6546 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
6547 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
6548 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
6549 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
6556 * ata_pci_remove_one - PCI layer callback for device removal
6557 * @pdev: PCI device that was removed
6559 * PCI layer indicates to libata via this hook that hot-unplug or
6560 * module unload event has occurred. Detach all ports. Resource
6561 * release is handled via devres.
6564 * Inherited from PCI layer (may sleep).
6566 void ata_pci_remove_one(struct pci_dev
*pdev
)
6568 struct device
*dev
= pci_dev_to_dev(pdev
);
6569 struct ata_host
*host
= dev_get_drvdata(dev
);
6571 ata_host_detach(host
);
6574 /* move to PCI subsystem */
6575 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6577 unsigned long tmp
= 0;
6579 switch (bits
->width
) {
6582 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6588 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6594 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6605 return (tmp
== bits
->val
) ? 1 : 0;
6609 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6611 pci_save_state(pdev
);
6612 pci_disable_device(pdev
);
6614 if (mesg
.event
== PM_EVENT_SUSPEND
)
6615 pci_set_power_state(pdev
, PCI_D3hot
);
6618 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6622 pci_set_power_state(pdev
, PCI_D0
);
6623 pci_restore_state(pdev
);
6625 rc
= pcim_enable_device(pdev
);
6627 dev_printk(KERN_ERR
, &pdev
->dev
,
6628 "failed to enable device after resume (%d)\n", rc
);
6632 pci_set_master(pdev
);
6636 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6638 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6641 rc
= ata_host_suspend(host
, mesg
);
6645 ata_pci_device_do_suspend(pdev
, mesg
);
6650 int ata_pci_device_resume(struct pci_dev
*pdev
)
6652 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6655 rc
= ata_pci_device_do_resume(pdev
);
6657 ata_host_resume(host
);
6660 #endif /* CONFIG_PM */
6662 #endif /* CONFIG_PCI */
6665 static int __init
ata_init(void)
6667 ata_probe_timeout
*= HZ
;
6668 ata_wq
= create_workqueue("ata");
6672 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6674 destroy_workqueue(ata_wq
);
6678 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6682 static void __exit
ata_exit(void)
6684 destroy_workqueue(ata_wq
);
6685 destroy_workqueue(ata_aux_wq
);
6688 subsys_initcall(ata_init
);
6689 module_exit(ata_exit
);
6691 static unsigned long ratelimit_time
;
6692 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6694 int ata_ratelimit(void)
6697 unsigned long flags
;
6699 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6701 if (time_after(jiffies
, ratelimit_time
)) {
6703 ratelimit_time
= jiffies
+ (HZ
/5);
6707 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6713 * ata_wait_register - wait until register value changes
6714 * @reg: IO-mapped register
6715 * @mask: Mask to apply to read register value
6716 * @val: Wait condition
6717 * @interval_msec: polling interval in milliseconds
6718 * @timeout_msec: timeout in milliseconds
6720 * Waiting for some bits of register to change is a common
6721 * operation for ATA controllers. This function reads 32bit LE
6722 * IO-mapped register @reg and tests for the following condition.
6724 * (*@reg & mask) != val
6726 * If the condition is met, it returns; otherwise, the process is
6727 * repeated after @interval_msec until timeout.
6730 * Kernel thread context (may sleep)
6733 * The final register value.
6735 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6736 unsigned long interval_msec
,
6737 unsigned long timeout_msec
)
6739 unsigned long timeout
;
6742 tmp
= ioread32(reg
);
6744 /* Calculate timeout _after_ the first read to make sure
6745 * preceding writes reach the controller before starting to
6746 * eat away the timeout.
6748 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
6750 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
6751 msleep(interval_msec
);
6752 tmp
= ioread32(reg
);
6761 static void ata_dummy_noret(struct ata_port
*ap
) { }
6762 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
6763 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
6765 static u8
ata_dummy_check_status(struct ata_port
*ap
)
6770 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6772 return AC_ERR_SYSTEM
;
6775 const struct ata_port_operations ata_dummy_port_ops
= {
6776 .port_disable
= ata_port_disable
,
6777 .check_status
= ata_dummy_check_status
,
6778 .check_altstatus
= ata_dummy_check_status
,
6779 .dev_select
= ata_noop_dev_select
,
6780 .qc_prep
= ata_noop_qc_prep
,
6781 .qc_issue
= ata_dummy_qc_issue
,
6782 .freeze
= ata_dummy_noret
,
6783 .thaw
= ata_dummy_noret
,
6784 .error_handler
= ata_dummy_noret
,
6785 .post_internal_cmd
= ata_dummy_qc_noret
,
6786 .irq_clear
= ata_dummy_noret
,
6787 .port_start
= ata_dummy_ret0
,
6788 .port_stop
= ata_dummy_noret
,
6791 const struct ata_port_info ata_dummy_port_info
= {
6792 .port_ops
= &ata_dummy_port_ops
,
6796 * libata is essentially a library of internal helper functions for
6797 * low-level ATA host controller drivers. As such, the API/ABI is
6798 * likely to change as new drivers are added and updated.
6799 * Do not depend on ABI/API stability.
6802 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6803 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6804 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6805 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6806 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6807 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6808 EXPORT_SYMBOL_GPL(ata_std_ports
);
6809 EXPORT_SYMBOL_GPL(ata_host_init
);
6810 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6811 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6812 EXPORT_SYMBOL_GPL(ata_host_start
);
6813 EXPORT_SYMBOL_GPL(ata_host_register
);
6814 EXPORT_SYMBOL_GPL(ata_host_activate
);
6815 EXPORT_SYMBOL_GPL(ata_host_detach
);
6816 EXPORT_SYMBOL_GPL(ata_sg_init
);
6817 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
6818 EXPORT_SYMBOL_GPL(ata_hsm_move
);
6819 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6820 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6821 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
6822 EXPORT_SYMBOL_GPL(ata_tf_load
);
6823 EXPORT_SYMBOL_GPL(ata_tf_read
);
6824 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
6825 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
6826 EXPORT_SYMBOL_GPL(sata_print_link_status
);
6827 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6828 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6829 EXPORT_SYMBOL_GPL(ata_check_status
);
6830 EXPORT_SYMBOL_GPL(ata_altstatus
);
6831 EXPORT_SYMBOL_GPL(ata_exec_command
);
6832 EXPORT_SYMBOL_GPL(ata_port_start
);
6833 EXPORT_SYMBOL_GPL(ata_interrupt
);
6834 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6835 EXPORT_SYMBOL_GPL(ata_data_xfer
);
6836 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq
);
6837 EXPORT_SYMBOL_GPL(ata_qc_prep
);
6838 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6839 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
6840 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
6841 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
6842 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
6843 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
6844 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
6845 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
6846 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
6847 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
6848 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
6849 EXPORT_SYMBOL_GPL(ata_port_probe
);
6850 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6851 EXPORT_SYMBOL_GPL(sata_set_spd
);
6852 EXPORT_SYMBOL_GPL(sata_phy_debounce
);
6853 EXPORT_SYMBOL_GPL(sata_phy_resume
);
6854 EXPORT_SYMBOL_GPL(sata_phy_reset
);
6855 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
6856 EXPORT_SYMBOL_GPL(ata_bus_reset
);
6857 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6858 EXPORT_SYMBOL_GPL(ata_std_softreset
);
6859 EXPORT_SYMBOL_GPL(sata_port_hardreset
);
6860 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6861 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6862 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6863 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6864 EXPORT_SYMBOL_GPL(ata_port_disable
);
6865 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6866 EXPORT_SYMBOL_GPL(ata_wait_register
);
6867 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
6868 EXPORT_SYMBOL_GPL(ata_wait_ready
);
6869 EXPORT_SYMBOL_GPL(ata_port_queue_task
);
6870 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6871 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6872 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6873 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6874 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6875 EXPORT_SYMBOL_GPL(ata_host_intr
);
6876 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6877 EXPORT_SYMBOL_GPL(sata_scr_read
);
6878 EXPORT_SYMBOL_GPL(sata_scr_write
);
6879 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6880 EXPORT_SYMBOL_GPL(ata_port_online
);
6881 EXPORT_SYMBOL_GPL(ata_port_offline
);
6883 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6884 EXPORT_SYMBOL_GPL(ata_host_resume
);
6885 #endif /* CONFIG_PM */
6886 EXPORT_SYMBOL_GPL(ata_id_string
);
6887 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6888 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode
);
6889 EXPORT_SYMBOL_GPL(ata_device_blacklisted
);
6890 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6892 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6893 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6894 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6897 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6898 EXPORT_SYMBOL_GPL(ata_pci_init_native_host
);
6899 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma
);
6900 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host
);
6901 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
6902 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6904 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6905 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6906 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6907 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6908 #endif /* CONFIG_PM */
6909 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
6910 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
6911 #endif /* CONFIG_PCI */
6913 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
6914 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6915 EXPORT_SYMBOL_GPL(ata_port_abort
);
6916 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6917 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6918 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6919 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6920 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6921 EXPORT_SYMBOL_GPL(ata_do_eh
);
6922 EXPORT_SYMBOL_GPL(ata_irq_on
);
6923 EXPORT_SYMBOL_GPL(ata_dummy_irq_on
);
6924 EXPORT_SYMBOL_GPL(ata_irq_ack
);
6925 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack
);
6926 EXPORT_SYMBOL_GPL(ata_dev_try_classify
);
6928 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6929 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6930 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6931 EXPORT_SYMBOL_GPL(ata_cable_sata
);