2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations prepare_write and/or commit_write are not available on the
45 * Anton Altaparmakov, 16 Feb 2005
48 * - Advisory locking is ignored here.
49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/sched.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/smp_lock.h>
66 #include <linux/swap.h>
67 #include <linux/slab.h>
68 #include <linux/loop.h>
69 #include <linux/compat.h>
70 #include <linux/suspend.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
78 #include <asm/uaccess.h>
80 static LIST_HEAD(loop_devices
);
81 static DEFINE_MUTEX(loop_devices_mutex
);
86 static int transfer_none(struct loop_device
*lo
, int cmd
,
87 struct page
*raw_page
, unsigned raw_off
,
88 struct page
*loop_page
, unsigned loop_off
,
89 int size
, sector_t real_block
)
91 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
92 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
95 memcpy(loop_buf
, raw_buf
, size
);
97 memcpy(raw_buf
, loop_buf
, size
);
99 kunmap_atomic(raw_buf
, KM_USER0
);
100 kunmap_atomic(loop_buf
, KM_USER1
);
105 static int transfer_xor(struct loop_device
*lo
, int cmd
,
106 struct page
*raw_page
, unsigned raw_off
,
107 struct page
*loop_page
, unsigned loop_off
,
108 int size
, sector_t real_block
)
110 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
111 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
112 char *in
, *out
, *key
;
123 key
= lo
->lo_encrypt_key
;
124 keysize
= lo
->lo_encrypt_key_size
;
125 for (i
= 0; i
< size
; i
++)
126 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
128 kunmap_atomic(raw_buf
, KM_USER0
);
129 kunmap_atomic(loop_buf
, KM_USER1
);
134 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
136 if (unlikely(info
->lo_encrypt_key_size
<= 0))
141 static struct loop_func_table none_funcs
= {
142 .number
= LO_CRYPT_NONE
,
143 .transfer
= transfer_none
,
146 static struct loop_func_table xor_funcs
= {
147 .number
= LO_CRYPT_XOR
,
148 .transfer
= transfer_xor
,
152 /* xfer_funcs[0] is special - its release function is never called */
153 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
158 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
160 loff_t size
, offset
, loopsize
;
162 /* Compute loopsize in bytes */
163 size
= i_size_read(file
->f_mapping
->host
);
164 offset
= lo
->lo_offset
;
165 loopsize
= size
- offset
;
166 if (lo
->lo_sizelimit
> 0 && lo
->lo_sizelimit
< loopsize
)
167 loopsize
= lo
->lo_sizelimit
;
170 * Unfortunately, if we want to do I/O on the device,
171 * the number of 512-byte sectors has to fit into a sector_t.
173 return loopsize
>> 9;
177 figure_loop_size(struct loop_device
*lo
)
179 loff_t size
= get_loop_size(lo
, lo
->lo_backing_file
);
180 sector_t x
= (sector_t
)size
;
182 if (unlikely((loff_t
)x
!= size
))
185 set_capacity(lo
->lo_disk
, x
);
190 lo_do_transfer(struct loop_device
*lo
, int cmd
,
191 struct page
*rpage
, unsigned roffs
,
192 struct page
*lpage
, unsigned loffs
,
193 int size
, sector_t rblock
)
195 if (unlikely(!lo
->transfer
))
198 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
202 * do_lo_send_aops - helper for writing data to a loop device
204 * This is the fast version for backing filesystems which implement the address
205 * space operations prepare_write and commit_write.
207 static int do_lo_send_aops(struct loop_device
*lo
, struct bio_vec
*bvec
,
208 int bsize
, loff_t pos
, struct page
*page
)
210 struct file
*file
= lo
->lo_backing_file
; /* kudos to NFsckingS */
211 struct address_space
*mapping
= file
->f_mapping
;
212 const struct address_space_operations
*aops
= mapping
->a_ops
;
214 unsigned offset
, bv_offs
;
217 mutex_lock(&mapping
->host
->i_mutex
);
218 index
= pos
>> PAGE_CACHE_SHIFT
;
219 offset
= pos
& ((pgoff_t
)PAGE_CACHE_SIZE
- 1);
220 bv_offs
= bvec
->bv_offset
;
227 IV
= ((sector_t
)index
<< (PAGE_CACHE_SHIFT
- 9))+(offset
>> 9);
228 size
= PAGE_CACHE_SIZE
- offset
;
231 page
= grab_cache_page(mapping
, index
);
234 ret
= aops
->prepare_write(file
, page
, offset
,
237 if (ret
== AOP_TRUNCATED_PAGE
) {
238 page_cache_release(page
);
243 transfer_result
= lo_do_transfer(lo
, WRITE
, page
, offset
,
244 bvec
->bv_page
, bv_offs
, size
, IV
);
245 if (unlikely(transfer_result
)) {
247 * The transfer failed, but we still write the data to
248 * keep prepare/commit calls balanced.
250 printk(KERN_ERR
"loop: transfer error block %llu\n",
251 (unsigned long long)index
);
252 zero_user_page(page
, offset
, size
, KM_USER0
);
254 flush_dcache_page(page
);
255 ret
= aops
->commit_write(file
, page
, offset
,
258 if (ret
== AOP_TRUNCATED_PAGE
) {
259 page_cache_release(page
);
264 if (unlikely(transfer_result
))
272 page_cache_release(page
);
276 mutex_unlock(&mapping
->host
->i_mutex
);
280 page_cache_release(page
);
287 * __do_lo_send_write - helper for writing data to a loop device
289 * This helper just factors out common code between do_lo_send_direct_write()
290 * and do_lo_send_write().
292 static int __do_lo_send_write(struct file
*file
,
293 u8
*buf
, const int len
, loff_t pos
)
296 mm_segment_t old_fs
= get_fs();
299 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
301 if (likely(bw
== len
))
303 printk(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
304 (unsigned long long)pos
, len
);
311 * do_lo_send_direct_write - helper for writing data to a loop device
313 * This is the fast, non-transforming version for backing filesystems which do
314 * not implement the address space operations prepare_write and commit_write.
315 * It uses the write file operation which should be present on all writeable
318 static int do_lo_send_direct_write(struct loop_device
*lo
,
319 struct bio_vec
*bvec
, int bsize
, loff_t pos
, struct page
*page
)
321 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
322 kmap(bvec
->bv_page
) + bvec
->bv_offset
,
324 kunmap(bvec
->bv_page
);
330 * do_lo_send_write - helper for writing data to a loop device
332 * This is the slow, transforming version for filesystems which do not
333 * implement the address space operations prepare_write and commit_write. It
334 * uses the write file operation which should be present on all writeable
337 * Using fops->write is slower than using aops->{prepare,commit}_write in the
338 * transforming case because we need to double buffer the data as we cannot do
339 * the transformations in place as we do not have direct access to the
340 * destination pages of the backing file.
342 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
343 int bsize
, loff_t pos
, struct page
*page
)
345 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
346 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
348 return __do_lo_send_write(lo
->lo_backing_file
,
349 page_address(page
), bvec
->bv_len
,
351 printk(KERN_ERR
"loop: Transfer error at byte offset %llu, "
352 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
358 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, int bsize
,
361 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, int, loff_t
,
363 struct bio_vec
*bvec
;
364 struct page
*page
= NULL
;
367 do_lo_send
= do_lo_send_aops
;
368 if (!(lo
->lo_flags
& LO_FLAGS_USE_AOPS
)) {
369 do_lo_send
= do_lo_send_direct_write
;
370 if (lo
->transfer
!= transfer_none
) {
371 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
375 do_lo_send
= do_lo_send_write
;
378 bio_for_each_segment(bvec
, bio
, i
) {
379 ret
= do_lo_send(lo
, bvec
, bsize
, pos
, page
);
391 printk(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
396 struct lo_read_data
{
397 struct loop_device
*lo
;
404 lo_read_actor(read_descriptor_t
*desc
, struct page
*page
,
405 unsigned long offset
, unsigned long size
)
407 unsigned long count
= desc
->count
;
408 struct lo_read_data
*p
= desc
->arg
.data
;
409 struct loop_device
*lo
= p
->lo
;
412 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9))+(offset
>> 9);
417 if (lo_do_transfer(lo
, READ
, page
, offset
, p
->page
, p
->offset
, size
, IV
)) {
419 printk(KERN_ERR
"loop: transfer error block %ld\n",
421 desc
->error
= -EINVAL
;
424 flush_dcache_page(p
->page
);
426 desc
->count
= count
- size
;
427 desc
->written
+= size
;
433 do_lo_receive(struct loop_device
*lo
,
434 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
436 struct lo_read_data cookie
;
441 cookie
.page
= bvec
->bv_page
;
442 cookie
.offset
= bvec
->bv_offset
;
443 cookie
.bsize
= bsize
;
444 file
= lo
->lo_backing_file
;
445 retval
= file
->f_op
->sendfile(file
, &pos
, bvec
->bv_len
,
446 lo_read_actor
, &cookie
);
447 return (retval
< 0)? retval
: 0;
451 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
453 struct bio_vec
*bvec
;
456 bio_for_each_segment(bvec
, bio
, i
) {
457 ret
= do_lo_receive(lo
, bvec
, bsize
, pos
);
465 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
470 pos
= ((loff_t
) bio
->bi_sector
<< 9) + lo
->lo_offset
;
471 if (bio_rw(bio
) == WRITE
)
472 ret
= lo_send(lo
, bio
, lo
->lo_blocksize
, pos
);
474 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
479 * Add bio to back of pending list
481 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
483 if (lo
->lo_biotail
) {
484 lo
->lo_biotail
->bi_next
= bio
;
485 lo
->lo_biotail
= bio
;
487 lo
->lo_bio
= lo
->lo_biotail
= bio
;
491 * Grab first pending buffer
493 static struct bio
*loop_get_bio(struct loop_device
*lo
)
497 if ((bio
= lo
->lo_bio
)) {
498 if (bio
== lo
->lo_biotail
)
499 lo
->lo_biotail
= NULL
;
500 lo
->lo_bio
= bio
->bi_next
;
507 static int loop_make_request(request_queue_t
*q
, struct bio
*old_bio
)
509 struct loop_device
*lo
= q
->queuedata
;
510 int rw
= bio_rw(old_bio
);
515 BUG_ON(!lo
|| (rw
!= READ
&& rw
!= WRITE
));
517 spin_lock_irq(&lo
->lo_lock
);
518 if (lo
->lo_state
!= Lo_bound
)
520 if (unlikely(rw
== WRITE
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)))
522 loop_add_bio(lo
, old_bio
);
523 wake_up(&lo
->lo_event
);
524 spin_unlock_irq(&lo
->lo_lock
);
528 spin_unlock_irq(&lo
->lo_lock
);
529 bio_io_error(old_bio
, old_bio
->bi_size
);
534 * kick off io on the underlying address space
536 static void loop_unplug(request_queue_t
*q
)
538 struct loop_device
*lo
= q
->queuedata
;
540 clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
);
541 blk_run_address_space(lo
->lo_backing_file
->f_mapping
);
544 struct switch_request
{
546 struct completion wait
;
549 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
551 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
553 if (unlikely(!bio
->bi_bdev
)) {
554 do_loop_switch(lo
, bio
->bi_private
);
557 int ret
= do_bio_filebacked(lo
, bio
);
558 bio_endio(bio
, bio
->bi_size
, ret
);
563 * worker thread that handles reads/writes to file backed loop devices,
564 * to avoid blocking in our make_request_fn. it also does loop decrypting
565 * on reads for block backed loop, as that is too heavy to do from
566 * b_end_io context where irqs may be disabled.
568 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
569 * calling kthread_stop(). Therefore once kthread_should_stop() is
570 * true, make_request will not place any more requests. Therefore
571 * once kthread_should_stop() is true and lo_bio is NULL, we are
572 * done with the loop.
574 static int loop_thread(void *data
)
576 struct loop_device
*lo
= data
;
580 * loop can be used in an encrypted device,
581 * hence, it mustn't be stopped at all
582 * because it could be indirectly used during suspension
584 current
->flags
|= PF_NOFREEZE
;
586 set_user_nice(current
, -20);
588 while (!kthread_should_stop() || lo
->lo_bio
) {
590 wait_event_interruptible(lo
->lo_event
,
591 lo
->lo_bio
|| kthread_should_stop());
595 spin_lock_irq(&lo
->lo_lock
);
596 bio
= loop_get_bio(lo
);
597 spin_unlock_irq(&lo
->lo_lock
);
600 loop_handle_bio(lo
, bio
);
607 * loop_switch performs the hard work of switching a backing store.
608 * First it needs to flush existing IO, it does this by sending a magic
609 * BIO down the pipe. The completion of this BIO does the actual switch.
611 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
613 struct switch_request w
;
614 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 1);
617 init_completion(&w
.wait
);
619 bio
->bi_private
= &w
;
621 loop_make_request(lo
->lo_queue
, bio
);
622 wait_for_completion(&w
.wait
);
627 * Do the actual switch; called from the BIO completion routine
629 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
631 struct file
*file
= p
->file
;
632 struct file
*old_file
= lo
->lo_backing_file
;
633 struct address_space
*mapping
= file
->f_mapping
;
635 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
636 lo
->lo_backing_file
= file
;
637 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
638 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
639 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
640 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
646 * loop_change_fd switched the backing store of a loopback device to
647 * a new file. This is useful for operating system installers to free up
648 * the original file and in High Availability environments to switch to
649 * an alternative location for the content in case of server meltdown.
650 * This can only work if the loop device is used read-only, and if the
651 * new backing store is the same size and type as the old backing store.
653 static int loop_change_fd(struct loop_device
*lo
, struct file
*lo_file
,
654 struct block_device
*bdev
, unsigned int arg
)
656 struct file
*file
, *old_file
;
661 if (lo
->lo_state
!= Lo_bound
)
664 /* the loop device has to be read-only */
666 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
674 inode
= file
->f_mapping
->host
;
675 old_file
= lo
->lo_backing_file
;
679 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
682 /* new backing store needs to support loop (eg sendfile) */
683 if (!inode
->i_fop
->sendfile
)
686 /* size of the new backing store needs to be the same */
687 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
691 error
= loop_switch(lo
, file
);
704 static inline int is_loop_device(struct file
*file
)
706 struct inode
*i
= file
->f_mapping
->host
;
708 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
711 static int loop_set_fd(struct loop_device
*lo
, struct file
*lo_file
,
712 struct block_device
*bdev
, unsigned int arg
)
714 struct file
*file
, *f
;
716 struct address_space
*mapping
;
717 unsigned lo_blocksize
;
722 /* This is safe, since we have a reference from open(). */
723 __module_get(THIS_MODULE
);
731 if (lo
->lo_state
!= Lo_unbound
)
734 /* Avoid recursion */
736 while (is_loop_device(f
)) {
737 struct loop_device
*l
;
739 if (f
->f_mapping
->host
->i_rdev
== lo_file
->f_mapping
->host
->i_rdev
)
742 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
743 if (l
->lo_state
== Lo_unbound
) {
747 f
= l
->lo_backing_file
;
750 mapping
= file
->f_mapping
;
751 inode
= mapping
->host
;
753 if (!(file
->f_mode
& FMODE_WRITE
))
754 lo_flags
|= LO_FLAGS_READ_ONLY
;
757 if (S_ISREG(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
758 const struct address_space_operations
*aops
= mapping
->a_ops
;
760 * If we can't read - sorry. If we only can't write - well,
761 * it's going to be read-only.
763 if (!file
->f_op
->sendfile
)
765 if (aops
->prepare_write
&& aops
->commit_write
)
766 lo_flags
|= LO_FLAGS_USE_AOPS
;
767 if (!(lo_flags
& LO_FLAGS_USE_AOPS
) && !file
->f_op
->write
)
768 lo_flags
|= LO_FLAGS_READ_ONLY
;
770 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
771 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
778 size
= get_loop_size(lo
, file
);
780 if ((loff_t
)(sector_t
)size
!= size
) {
785 if (!(lo_file
->f_mode
& FMODE_WRITE
))
786 lo_flags
|= LO_FLAGS_READ_ONLY
;
788 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
790 lo
->lo_blocksize
= lo_blocksize
;
791 lo
->lo_device
= bdev
;
792 lo
->lo_flags
= lo_flags
;
793 lo
->lo_backing_file
= file
;
794 lo
->transfer
= transfer_none
;
796 lo
->lo_sizelimit
= 0;
797 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
798 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
800 lo
->lo_bio
= lo
->lo_biotail
= NULL
;
803 * set queue make_request_fn, and add limits based on lower level
806 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
807 lo
->lo_queue
->queuedata
= lo
;
808 lo
->lo_queue
->unplug_fn
= loop_unplug
;
810 set_capacity(lo
->lo_disk
, size
);
811 bd_set_size(bdev
, size
<< 9);
813 set_blocksize(bdev
, lo_blocksize
);
815 lo
->lo_thread
= kthread_create(loop_thread
, lo
, "loop%d",
817 if (IS_ERR(lo
->lo_thread
)) {
818 error
= PTR_ERR(lo
->lo_thread
);
821 lo
->lo_state
= Lo_bound
;
822 wake_up_process(lo
->lo_thread
);
826 lo
->lo_thread
= NULL
;
827 lo
->lo_device
= NULL
;
828 lo
->lo_backing_file
= NULL
;
830 set_capacity(lo
->lo_disk
, 0);
831 invalidate_bdev(bdev
);
832 bd_set_size(bdev
, 0);
833 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
);
834 lo
->lo_state
= Lo_unbound
;
838 /* This is safe: open() is still holding a reference. */
839 module_put(THIS_MODULE
);
844 loop_release_xfer(struct loop_device
*lo
)
847 struct loop_func_table
*xfer
= lo
->lo_encryption
;
851 err
= xfer
->release(lo
);
853 lo
->lo_encryption
= NULL
;
854 module_put(xfer
->owner
);
860 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
861 const struct loop_info64
*i
)
866 struct module
*owner
= xfer
->owner
;
868 if (!try_module_get(owner
))
871 err
= xfer
->init(lo
, i
);
875 lo
->lo_encryption
= xfer
;
880 static int loop_clr_fd(struct loop_device
*lo
, struct block_device
*bdev
)
882 struct file
*filp
= lo
->lo_backing_file
;
883 gfp_t gfp
= lo
->old_gfp_mask
;
885 if (lo
->lo_state
!= Lo_bound
)
888 if (lo
->lo_refcnt
> 1) /* we needed one fd for the ioctl */
894 spin_lock_irq(&lo
->lo_lock
);
895 lo
->lo_state
= Lo_rundown
;
896 spin_unlock_irq(&lo
->lo_lock
);
898 kthread_stop(lo
->lo_thread
);
900 lo
->lo_backing_file
= NULL
;
902 loop_release_xfer(lo
);
905 lo
->lo_device
= NULL
;
906 lo
->lo_encryption
= NULL
;
908 lo
->lo_sizelimit
= 0;
909 lo
->lo_encrypt_key_size
= 0;
911 lo
->lo_thread
= NULL
;
912 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
913 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
914 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
915 invalidate_bdev(bdev
);
916 set_capacity(lo
->lo_disk
, 0);
917 bd_set_size(bdev
, 0);
918 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
919 lo
->lo_state
= Lo_unbound
;
921 /* This is safe: open() is still holding a reference. */
922 module_put(THIS_MODULE
);
927 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
930 struct loop_func_table
*xfer
;
932 if (lo
->lo_encrypt_key_size
&& lo
->lo_key_owner
!= current
->uid
&&
933 !capable(CAP_SYS_ADMIN
))
935 if (lo
->lo_state
!= Lo_bound
)
937 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
940 err
= loop_release_xfer(lo
);
944 if (info
->lo_encrypt_type
) {
945 unsigned int type
= info
->lo_encrypt_type
;
947 if (type
>= MAX_LO_CRYPT
)
949 xfer
= xfer_funcs
[type
];
955 err
= loop_init_xfer(lo
, xfer
, info
);
959 if (lo
->lo_offset
!= info
->lo_offset
||
960 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
961 lo
->lo_offset
= info
->lo_offset
;
962 lo
->lo_sizelimit
= info
->lo_sizelimit
;
963 if (figure_loop_size(lo
))
967 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
968 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
969 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
970 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
974 lo
->transfer
= xfer
->transfer
;
975 lo
->ioctl
= xfer
->ioctl
;
977 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
978 lo
->lo_init
[0] = info
->lo_init
[0];
979 lo
->lo_init
[1] = info
->lo_init
[1];
980 if (info
->lo_encrypt_key_size
) {
981 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
982 info
->lo_encrypt_key_size
);
983 lo
->lo_key_owner
= current
->uid
;
990 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
992 struct file
*file
= lo
->lo_backing_file
;
996 if (lo
->lo_state
!= Lo_bound
)
998 error
= vfs_getattr(file
->f_path
.mnt
, file
->f_path
.dentry
, &stat
);
1001 memset(info
, 0, sizeof(*info
));
1002 info
->lo_number
= lo
->lo_number
;
1003 info
->lo_device
= huge_encode_dev(stat
.dev
);
1004 info
->lo_inode
= stat
.ino
;
1005 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1006 info
->lo_offset
= lo
->lo_offset
;
1007 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1008 info
->lo_flags
= lo
->lo_flags
;
1009 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1010 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1011 info
->lo_encrypt_type
=
1012 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1013 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1014 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1015 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1016 lo
->lo_encrypt_key_size
);
1022 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1024 memset(info64
, 0, sizeof(*info64
));
1025 info64
->lo_number
= info
->lo_number
;
1026 info64
->lo_device
= info
->lo_device
;
1027 info64
->lo_inode
= info
->lo_inode
;
1028 info64
->lo_rdevice
= info
->lo_rdevice
;
1029 info64
->lo_offset
= info
->lo_offset
;
1030 info64
->lo_sizelimit
= 0;
1031 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1032 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1033 info64
->lo_flags
= info
->lo_flags
;
1034 info64
->lo_init
[0] = info
->lo_init
[0];
1035 info64
->lo_init
[1] = info
->lo_init
[1];
1036 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1037 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1039 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1040 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1044 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1046 memset(info
, 0, sizeof(*info
));
1047 info
->lo_number
= info64
->lo_number
;
1048 info
->lo_device
= info64
->lo_device
;
1049 info
->lo_inode
= info64
->lo_inode
;
1050 info
->lo_rdevice
= info64
->lo_rdevice
;
1051 info
->lo_offset
= info64
->lo_offset
;
1052 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1053 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1054 info
->lo_flags
= info64
->lo_flags
;
1055 info
->lo_init
[0] = info64
->lo_init
[0];
1056 info
->lo_init
[1] = info64
->lo_init
[1];
1057 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1058 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1060 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1061 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1063 /* error in case values were truncated */
1064 if (info
->lo_device
!= info64
->lo_device
||
1065 info
->lo_rdevice
!= info64
->lo_rdevice
||
1066 info
->lo_inode
!= info64
->lo_inode
||
1067 info
->lo_offset
!= info64
->lo_offset
)
1074 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1076 struct loop_info info
;
1077 struct loop_info64 info64
;
1079 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1081 loop_info64_from_old(&info
, &info64
);
1082 return loop_set_status(lo
, &info64
);
1086 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1088 struct loop_info64 info64
;
1090 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1092 return loop_set_status(lo
, &info64
);
1096 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1097 struct loop_info info
;
1098 struct loop_info64 info64
;
1104 err
= loop_get_status(lo
, &info64
);
1106 err
= loop_info64_to_old(&info64
, &info
);
1107 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1114 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1115 struct loop_info64 info64
;
1121 err
= loop_get_status(lo
, &info64
);
1122 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1128 static int lo_ioctl(struct inode
* inode
, struct file
* file
,
1129 unsigned int cmd
, unsigned long arg
)
1131 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1134 mutex_lock(&lo
->lo_ctl_mutex
);
1137 err
= loop_set_fd(lo
, file
, inode
->i_bdev
, arg
);
1139 case LOOP_CHANGE_FD
:
1140 err
= loop_change_fd(lo
, file
, inode
->i_bdev
, arg
);
1143 err
= loop_clr_fd(lo
, inode
->i_bdev
);
1145 case LOOP_SET_STATUS
:
1146 err
= loop_set_status_old(lo
, (struct loop_info __user
*) arg
);
1148 case LOOP_GET_STATUS
:
1149 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1151 case LOOP_SET_STATUS64
:
1152 err
= loop_set_status64(lo
, (struct loop_info64 __user
*) arg
);
1154 case LOOP_GET_STATUS64
:
1155 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1158 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1160 mutex_unlock(&lo
->lo_ctl_mutex
);
1164 #ifdef CONFIG_COMPAT
1165 struct compat_loop_info
{
1166 compat_int_t lo_number
; /* ioctl r/o */
1167 compat_dev_t lo_device
; /* ioctl r/o */
1168 compat_ulong_t lo_inode
; /* ioctl r/o */
1169 compat_dev_t lo_rdevice
; /* ioctl r/o */
1170 compat_int_t lo_offset
;
1171 compat_int_t lo_encrypt_type
;
1172 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1173 compat_int_t lo_flags
; /* ioctl r/o */
1174 char lo_name
[LO_NAME_SIZE
];
1175 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1176 compat_ulong_t lo_init
[2];
1181 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1182 * - noinlined to reduce stack space usage in main part of driver
1185 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1186 struct loop_info64
*info64
)
1188 struct compat_loop_info info
;
1190 if (copy_from_user(&info
, arg
, sizeof(info
)))
1193 memset(info64
, 0, sizeof(*info64
));
1194 info64
->lo_number
= info
.lo_number
;
1195 info64
->lo_device
= info
.lo_device
;
1196 info64
->lo_inode
= info
.lo_inode
;
1197 info64
->lo_rdevice
= info
.lo_rdevice
;
1198 info64
->lo_offset
= info
.lo_offset
;
1199 info64
->lo_sizelimit
= 0;
1200 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1201 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1202 info64
->lo_flags
= info
.lo_flags
;
1203 info64
->lo_init
[0] = info
.lo_init
[0];
1204 info64
->lo_init
[1] = info
.lo_init
[1];
1205 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1206 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1208 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1209 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1214 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1215 * - noinlined to reduce stack space usage in main part of driver
1218 loop_info64_to_compat(const struct loop_info64
*info64
,
1219 struct compat_loop_info __user
*arg
)
1221 struct compat_loop_info info
;
1223 memset(&info
, 0, sizeof(info
));
1224 info
.lo_number
= info64
->lo_number
;
1225 info
.lo_device
= info64
->lo_device
;
1226 info
.lo_inode
= info64
->lo_inode
;
1227 info
.lo_rdevice
= info64
->lo_rdevice
;
1228 info
.lo_offset
= info64
->lo_offset
;
1229 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1230 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1231 info
.lo_flags
= info64
->lo_flags
;
1232 info
.lo_init
[0] = info64
->lo_init
[0];
1233 info
.lo_init
[1] = info64
->lo_init
[1];
1234 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1235 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1237 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1238 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1240 /* error in case values were truncated */
1241 if (info
.lo_device
!= info64
->lo_device
||
1242 info
.lo_rdevice
!= info64
->lo_rdevice
||
1243 info
.lo_inode
!= info64
->lo_inode
||
1244 info
.lo_offset
!= info64
->lo_offset
||
1245 info
.lo_init
[0] != info64
->lo_init
[0] ||
1246 info
.lo_init
[1] != info64
->lo_init
[1])
1249 if (copy_to_user(arg
, &info
, sizeof(info
)))
1255 loop_set_status_compat(struct loop_device
*lo
,
1256 const struct compat_loop_info __user
*arg
)
1258 struct loop_info64 info64
;
1261 ret
= loop_info64_from_compat(arg
, &info64
);
1264 return loop_set_status(lo
, &info64
);
1268 loop_get_status_compat(struct loop_device
*lo
,
1269 struct compat_loop_info __user
*arg
)
1271 struct loop_info64 info64
;
1277 err
= loop_get_status(lo
, &info64
);
1279 err
= loop_info64_to_compat(&info64
, arg
);
1283 static long lo_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1285 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1286 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1291 case LOOP_SET_STATUS
:
1292 mutex_lock(&lo
->lo_ctl_mutex
);
1293 err
= loop_set_status_compat(
1294 lo
, (const struct compat_loop_info __user
*) arg
);
1295 mutex_unlock(&lo
->lo_ctl_mutex
);
1297 case LOOP_GET_STATUS
:
1298 mutex_lock(&lo
->lo_ctl_mutex
);
1299 err
= loop_get_status_compat(
1300 lo
, (struct compat_loop_info __user
*) arg
);
1301 mutex_unlock(&lo
->lo_ctl_mutex
);
1304 case LOOP_GET_STATUS64
:
1305 case LOOP_SET_STATUS64
:
1306 arg
= (unsigned long) compat_ptr(arg
);
1308 case LOOP_CHANGE_FD
:
1309 err
= lo_ioctl(inode
, file
, cmd
, arg
);
1320 static int lo_open(struct inode
*inode
, struct file
*file
)
1322 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1324 mutex_lock(&lo
->lo_ctl_mutex
);
1326 mutex_unlock(&lo
->lo_ctl_mutex
);
1331 static int lo_release(struct inode
*inode
, struct file
*file
)
1333 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1335 mutex_lock(&lo
->lo_ctl_mutex
);
1337 mutex_unlock(&lo
->lo_ctl_mutex
);
1342 static struct block_device_operations lo_fops
= {
1343 .owner
= THIS_MODULE
,
1345 .release
= lo_release
,
1347 #ifdef CONFIG_COMPAT
1348 .compat_ioctl
= lo_compat_ioctl
,
1353 * And now the modules code and kernel interface.
1355 static int max_loop
;
1356 module_param(max_loop
, int, 0);
1357 MODULE_PARM_DESC(max_loop
, "obsolete, loop device is created on-demand");
1358 MODULE_LICENSE("GPL");
1359 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1361 int loop_register_transfer(struct loop_func_table
*funcs
)
1363 unsigned int n
= funcs
->number
;
1365 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1367 xfer_funcs
[n
] = funcs
;
1371 int loop_unregister_transfer(int number
)
1373 unsigned int n
= number
;
1374 struct loop_device
*lo
;
1375 struct loop_func_table
*xfer
;
1377 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1380 xfer_funcs
[n
] = NULL
;
1382 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1383 mutex_lock(&lo
->lo_ctl_mutex
);
1385 if (lo
->lo_encryption
== xfer
)
1386 loop_release_xfer(lo
);
1388 mutex_unlock(&lo
->lo_ctl_mutex
);
1394 EXPORT_SYMBOL(loop_register_transfer
);
1395 EXPORT_SYMBOL(loop_unregister_transfer
);
1397 static struct loop_device
*loop_init_one(int i
)
1399 struct loop_device
*lo
;
1400 struct gendisk
*disk
;
1402 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1403 if (lo
->lo_number
== i
)
1407 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1411 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1415 disk
= lo
->lo_disk
= alloc_disk(1);
1417 goto out_free_queue
;
1419 mutex_init(&lo
->lo_ctl_mutex
);
1421 lo
->lo_thread
= NULL
;
1422 init_waitqueue_head(&lo
->lo_event
);
1423 spin_lock_init(&lo
->lo_lock
);
1424 disk
->major
= LOOP_MAJOR
;
1425 disk
->first_minor
= i
;
1426 disk
->fops
= &lo_fops
;
1427 disk
->private_data
= lo
;
1428 disk
->queue
= lo
->lo_queue
;
1429 sprintf(disk
->disk_name
, "loop%d", i
);
1431 list_add_tail(&lo
->lo_list
, &loop_devices
);
1435 blk_cleanup_queue(lo
->lo_queue
);
1442 static void loop_del_one(struct loop_device
*lo
)
1444 del_gendisk(lo
->lo_disk
);
1445 blk_cleanup_queue(lo
->lo_queue
);
1446 put_disk(lo
->lo_disk
);
1447 list_del(&lo
->lo_list
);
1451 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1453 struct loop_device
*lo
;
1454 struct kobject
*kobj
;
1456 mutex_lock(&loop_devices_mutex
);
1457 lo
= loop_init_one(dev
& MINORMASK
);
1458 kobj
= lo
? get_disk(lo
->lo_disk
) : ERR_PTR(-ENOMEM
);
1459 mutex_unlock(&loop_devices_mutex
);
1465 static int __init
loop_init(void)
1467 if (register_blkdev(LOOP_MAJOR
, "loop"))
1469 blk_register_region(MKDEV(LOOP_MAJOR
, 0), 1UL << MINORBITS
,
1470 THIS_MODULE
, loop_probe
, NULL
, NULL
);
1473 printk(KERN_INFO
"loop: the max_loop option is obsolete "
1474 "and will be removed in March 2008\n");
1477 printk(KERN_INFO
"loop: module loaded\n");
1481 static void __exit
loop_exit(void)
1483 struct loop_device
*lo
, *next
;
1485 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1488 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), 1UL << MINORBITS
);
1489 if (unregister_blkdev(LOOP_MAJOR
, "loop"))
1490 printk(KERN_WARNING
"loop: cannot unregister blkdev\n");
1493 module_init(loop_init
);
1494 module_exit(loop_exit
);
1497 static int __init
max_loop_setup(char *str
)
1499 max_loop
= simple_strtol(str
, NULL
, 0);
1503 __setup("max_loop=", max_loop_setup
);