[TCP]: TCP_CONG_YEAH requires TCP_CONG_VEGAS
[linux-2.6/verdex.git] / drivers / block / pktcdvd.c
blobf1b9dd7d47d62c00868acdba0927d68a0c8777e0
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
66 #include <asm/uaccess.h>
68 #define DRIVER_NAME "pktcdvd"
70 #if PACKET_DEBUG
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72 #else
73 #define DPRINTK(fmt, args...)
74 #endif
76 #if PACKET_DEBUG > 1
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
78 #else
79 #define VPRINTK(fmt, args...)
80 #endif
82 #define MAX_SPEED 0xffff
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
87 static struct proc_dir_entry *pkt_proc;
88 static int pktdev_major;
89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
92 static mempool_t *psd_pool;
94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
95 static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
99 static int pkt_remove_dev(dev_t pkt_dev);
100 static int pkt_seq_show(struct seq_file *m, void *p);
105 * create and register a pktcdvd kernel object.
107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
108 const char* name,
109 struct kobject* parent,
110 struct kobj_type* ktype)
112 struct pktcdvd_kobj *p;
113 p = kzalloc(sizeof(*p), GFP_KERNEL);
114 if (!p)
115 return NULL;
116 kobject_set_name(&p->kobj, "%s", name);
117 p->kobj.parent = parent;
118 p->kobj.ktype = ktype;
119 p->pd = pd;
120 if (kobject_register(&p->kobj) != 0)
121 return NULL;
122 return p;
125 * remove a pktcdvd kernel object.
127 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
129 if (p)
130 kobject_unregister(&p->kobj);
133 * default release function for pktcdvd kernel objects.
135 static void pkt_kobj_release(struct kobject *kobj)
137 kfree(to_pktcdvdkobj(kobj));
141 /**********************************************************
143 * sysfs interface for pktcdvd
144 * by (C) 2006 Thomas Maier <balagi@justmail.de>
146 **********************************************************/
148 #define DEF_ATTR(_obj,_name,_mode) \
149 static struct attribute _obj = { \
150 .name = _name, .owner = THIS_MODULE, .mode = _mode }
152 /**********************************************************
153 /sys/class/pktcdvd/pktcdvd[0-7]/
154 stat/reset
155 stat/packets_started
156 stat/packets_finished
157 stat/kb_written
158 stat/kb_read
159 stat/kb_read_gather
160 write_queue/size
161 write_queue/congestion_off
162 write_queue/congestion_on
163 **********************************************************/
165 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
166 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
167 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
168 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
169 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
170 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
172 static struct attribute *kobj_pkt_attrs_stat[] = {
173 &kobj_pkt_attr_st1,
174 &kobj_pkt_attr_st2,
175 &kobj_pkt_attr_st3,
176 &kobj_pkt_attr_st4,
177 &kobj_pkt_attr_st5,
178 &kobj_pkt_attr_st6,
179 NULL
182 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
183 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
184 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
186 static struct attribute *kobj_pkt_attrs_wqueue[] = {
187 &kobj_pkt_attr_wq1,
188 &kobj_pkt_attr_wq2,
189 &kobj_pkt_attr_wq3,
190 NULL
193 static ssize_t kobj_pkt_show(struct kobject *kobj,
194 struct attribute *attr, char *data)
196 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
197 int n = 0;
198 int v;
199 if (strcmp(attr->name, "packets_started") == 0) {
200 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
202 } else if (strcmp(attr->name, "packets_finished") == 0) {
203 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
205 } else if (strcmp(attr->name, "kb_written") == 0) {
206 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
208 } else if (strcmp(attr->name, "kb_read") == 0) {
209 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
211 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
212 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
214 } else if (strcmp(attr->name, "size") == 0) {
215 spin_lock(&pd->lock);
216 v = pd->bio_queue_size;
217 spin_unlock(&pd->lock);
218 n = sprintf(data, "%d\n", v);
220 } else if (strcmp(attr->name, "congestion_off") == 0) {
221 spin_lock(&pd->lock);
222 v = pd->write_congestion_off;
223 spin_unlock(&pd->lock);
224 n = sprintf(data, "%d\n", v);
226 } else if (strcmp(attr->name, "congestion_on") == 0) {
227 spin_lock(&pd->lock);
228 v = pd->write_congestion_on;
229 spin_unlock(&pd->lock);
230 n = sprintf(data, "%d\n", v);
232 return n;
235 static void init_write_congestion_marks(int* lo, int* hi)
237 if (*hi > 0) {
238 *hi = max(*hi, 500);
239 *hi = min(*hi, 1000000);
240 if (*lo <= 0)
241 *lo = *hi - 100;
242 else {
243 *lo = min(*lo, *hi - 100);
244 *lo = max(*lo, 100);
246 } else {
247 *hi = -1;
248 *lo = -1;
252 static ssize_t kobj_pkt_store(struct kobject *kobj,
253 struct attribute *attr,
254 const char *data, size_t len)
256 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
257 int val;
259 if (strcmp(attr->name, "reset") == 0 && len > 0) {
260 pd->stats.pkt_started = 0;
261 pd->stats.pkt_ended = 0;
262 pd->stats.secs_w = 0;
263 pd->stats.secs_rg = 0;
264 pd->stats.secs_r = 0;
266 } else if (strcmp(attr->name, "congestion_off") == 0
267 && sscanf(data, "%d", &val) == 1) {
268 spin_lock(&pd->lock);
269 pd->write_congestion_off = val;
270 init_write_congestion_marks(&pd->write_congestion_off,
271 &pd->write_congestion_on);
272 spin_unlock(&pd->lock);
274 } else if (strcmp(attr->name, "congestion_on") == 0
275 && sscanf(data, "%d", &val) == 1) {
276 spin_lock(&pd->lock);
277 pd->write_congestion_on = val;
278 init_write_congestion_marks(&pd->write_congestion_off,
279 &pd->write_congestion_on);
280 spin_unlock(&pd->lock);
282 return len;
285 static struct sysfs_ops kobj_pkt_ops = {
286 .show = kobj_pkt_show,
287 .store = kobj_pkt_store
289 static struct kobj_type kobj_pkt_type_stat = {
290 .release = pkt_kobj_release,
291 .sysfs_ops = &kobj_pkt_ops,
292 .default_attrs = kobj_pkt_attrs_stat
294 static struct kobj_type kobj_pkt_type_wqueue = {
295 .release = pkt_kobj_release,
296 .sysfs_ops = &kobj_pkt_ops,
297 .default_attrs = kobj_pkt_attrs_wqueue
300 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
302 if (class_pktcdvd) {
303 pd->clsdev = class_device_create(class_pktcdvd,
304 NULL, pd->pkt_dev,
305 NULL, "%s", pd->name);
306 if (IS_ERR(pd->clsdev))
307 pd->clsdev = NULL;
309 if (pd->clsdev) {
310 pd->kobj_stat = pkt_kobj_create(pd, "stat",
311 &pd->clsdev->kobj,
312 &kobj_pkt_type_stat);
313 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
314 &pd->clsdev->kobj,
315 &kobj_pkt_type_wqueue);
319 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
321 pkt_kobj_remove(pd->kobj_stat);
322 pkt_kobj_remove(pd->kobj_wqueue);
323 if (class_pktcdvd)
324 class_device_destroy(class_pktcdvd, pd->pkt_dev);
328 /********************************************************************
329 /sys/class/pktcdvd/
330 add map block device
331 remove unmap packet dev
332 device_map show mappings
333 *******************************************************************/
335 static void class_pktcdvd_release(struct class *cls)
337 kfree(cls);
339 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
341 int n = 0;
342 int idx;
343 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
344 for (idx = 0; idx < MAX_WRITERS; idx++) {
345 struct pktcdvd_device *pd = pkt_devs[idx];
346 if (!pd)
347 continue;
348 n += sprintf(data+n, "%s %u:%u %u:%u\n",
349 pd->name,
350 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
351 MAJOR(pd->bdev->bd_dev),
352 MINOR(pd->bdev->bd_dev));
354 mutex_unlock(&ctl_mutex);
355 return n;
358 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
359 size_t count)
361 unsigned int major, minor;
362 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
363 pkt_setup_dev(MKDEV(major, minor), NULL);
364 return count;
366 return -EINVAL;
369 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
370 size_t count)
372 unsigned int major, minor;
373 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
374 pkt_remove_dev(MKDEV(major, minor));
375 return count;
377 return -EINVAL;
380 static struct class_attribute class_pktcdvd_attrs[] = {
381 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
382 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
383 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
384 __ATTR_NULL
388 static int pkt_sysfs_init(void)
390 int ret = 0;
393 * create control files in sysfs
394 * /sys/class/pktcdvd/...
396 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
397 if (!class_pktcdvd)
398 return -ENOMEM;
399 class_pktcdvd->name = DRIVER_NAME;
400 class_pktcdvd->owner = THIS_MODULE;
401 class_pktcdvd->class_release = class_pktcdvd_release;
402 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
403 ret = class_register(class_pktcdvd);
404 if (ret) {
405 kfree(class_pktcdvd);
406 class_pktcdvd = NULL;
407 printk(DRIVER_NAME": failed to create class pktcdvd\n");
408 return ret;
410 return 0;
413 static void pkt_sysfs_cleanup(void)
415 if (class_pktcdvd)
416 class_destroy(class_pktcdvd);
417 class_pktcdvd = NULL;
420 /********************************************************************
421 entries in debugfs
423 /debugfs/pktcdvd[0-7]/
424 info
426 *******************************************************************/
428 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
430 return pkt_seq_show(m, p);
433 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
435 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
438 static const struct file_operations debug_fops = {
439 .open = pkt_debugfs_fops_open,
440 .read = seq_read,
441 .llseek = seq_lseek,
442 .release = single_release,
443 .owner = THIS_MODULE,
446 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
448 if (!pkt_debugfs_root)
449 return;
450 pd->dfs_f_info = NULL;
451 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
452 if (IS_ERR(pd->dfs_d_root)) {
453 pd->dfs_d_root = NULL;
454 return;
456 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
457 pd->dfs_d_root, pd, &debug_fops);
458 if (IS_ERR(pd->dfs_f_info)) {
459 pd->dfs_f_info = NULL;
460 return;
464 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
466 if (!pkt_debugfs_root)
467 return;
468 if (pd->dfs_f_info)
469 debugfs_remove(pd->dfs_f_info);
470 pd->dfs_f_info = NULL;
471 if (pd->dfs_d_root)
472 debugfs_remove(pd->dfs_d_root);
473 pd->dfs_d_root = NULL;
476 static void pkt_debugfs_init(void)
478 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
479 if (IS_ERR(pkt_debugfs_root)) {
480 pkt_debugfs_root = NULL;
481 return;
485 static void pkt_debugfs_cleanup(void)
487 if (!pkt_debugfs_root)
488 return;
489 debugfs_remove(pkt_debugfs_root);
490 pkt_debugfs_root = NULL;
493 /* ----------------------------------------------------------*/
496 static void pkt_bio_finished(struct pktcdvd_device *pd)
498 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
499 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
500 VPRINTK(DRIVER_NAME": queue empty\n");
501 atomic_set(&pd->iosched.attention, 1);
502 wake_up(&pd->wqueue);
506 static void pkt_bio_destructor(struct bio *bio)
508 kfree(bio->bi_io_vec);
509 kfree(bio);
512 static struct bio *pkt_bio_alloc(int nr_iovecs)
514 struct bio_vec *bvl = NULL;
515 struct bio *bio;
517 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
518 if (!bio)
519 goto no_bio;
520 bio_init(bio);
522 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
523 if (!bvl)
524 goto no_bvl;
526 bio->bi_max_vecs = nr_iovecs;
527 bio->bi_io_vec = bvl;
528 bio->bi_destructor = pkt_bio_destructor;
530 return bio;
532 no_bvl:
533 kfree(bio);
534 no_bio:
535 return NULL;
539 * Allocate a packet_data struct
541 static struct packet_data *pkt_alloc_packet_data(int frames)
543 int i;
544 struct packet_data *pkt;
546 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
547 if (!pkt)
548 goto no_pkt;
550 pkt->frames = frames;
551 pkt->w_bio = pkt_bio_alloc(frames);
552 if (!pkt->w_bio)
553 goto no_bio;
555 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
556 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
557 if (!pkt->pages[i])
558 goto no_page;
561 spin_lock_init(&pkt->lock);
563 for (i = 0; i < frames; i++) {
564 struct bio *bio = pkt_bio_alloc(1);
565 if (!bio)
566 goto no_rd_bio;
567 pkt->r_bios[i] = bio;
570 return pkt;
572 no_rd_bio:
573 for (i = 0; i < frames; i++) {
574 struct bio *bio = pkt->r_bios[i];
575 if (bio)
576 bio_put(bio);
579 no_page:
580 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
581 if (pkt->pages[i])
582 __free_page(pkt->pages[i]);
583 bio_put(pkt->w_bio);
584 no_bio:
585 kfree(pkt);
586 no_pkt:
587 return NULL;
591 * Free a packet_data struct
593 static void pkt_free_packet_data(struct packet_data *pkt)
595 int i;
597 for (i = 0; i < pkt->frames; i++) {
598 struct bio *bio = pkt->r_bios[i];
599 if (bio)
600 bio_put(bio);
602 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
603 __free_page(pkt->pages[i]);
604 bio_put(pkt->w_bio);
605 kfree(pkt);
608 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
610 struct packet_data *pkt, *next;
612 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
614 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
615 pkt_free_packet_data(pkt);
617 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
620 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
622 struct packet_data *pkt;
624 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
626 while (nr_packets > 0) {
627 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
628 if (!pkt) {
629 pkt_shrink_pktlist(pd);
630 return 0;
632 pkt->id = nr_packets;
633 pkt->pd = pd;
634 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
635 nr_packets--;
637 return 1;
640 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
642 struct rb_node *n = rb_next(&node->rb_node);
643 if (!n)
644 return NULL;
645 return rb_entry(n, struct pkt_rb_node, rb_node);
648 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
650 rb_erase(&node->rb_node, &pd->bio_queue);
651 mempool_free(node, pd->rb_pool);
652 pd->bio_queue_size--;
653 BUG_ON(pd->bio_queue_size < 0);
657 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
659 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
661 struct rb_node *n = pd->bio_queue.rb_node;
662 struct rb_node *next;
663 struct pkt_rb_node *tmp;
665 if (!n) {
666 BUG_ON(pd->bio_queue_size > 0);
667 return NULL;
670 for (;;) {
671 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
672 if (s <= tmp->bio->bi_sector)
673 next = n->rb_left;
674 else
675 next = n->rb_right;
676 if (!next)
677 break;
678 n = next;
681 if (s > tmp->bio->bi_sector) {
682 tmp = pkt_rbtree_next(tmp);
683 if (!tmp)
684 return NULL;
686 BUG_ON(s > tmp->bio->bi_sector);
687 return tmp;
691 * Insert a node into the pd->bio_queue rb tree.
693 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
695 struct rb_node **p = &pd->bio_queue.rb_node;
696 struct rb_node *parent = NULL;
697 sector_t s = node->bio->bi_sector;
698 struct pkt_rb_node *tmp;
700 while (*p) {
701 parent = *p;
702 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
703 if (s < tmp->bio->bi_sector)
704 p = &(*p)->rb_left;
705 else
706 p = &(*p)->rb_right;
708 rb_link_node(&node->rb_node, parent, p);
709 rb_insert_color(&node->rb_node, &pd->bio_queue);
710 pd->bio_queue_size++;
714 * Add a bio to a single linked list defined by its head and tail pointers.
716 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
718 bio->bi_next = NULL;
719 if (*list_tail) {
720 BUG_ON((*list_head) == NULL);
721 (*list_tail)->bi_next = bio;
722 (*list_tail) = bio;
723 } else {
724 BUG_ON((*list_head) != NULL);
725 (*list_head) = bio;
726 (*list_tail) = bio;
731 * Remove and return the first bio from a single linked list defined by its
732 * head and tail pointers.
734 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
736 struct bio *bio;
738 if (*list_head == NULL)
739 return NULL;
741 bio = *list_head;
742 *list_head = bio->bi_next;
743 if (*list_head == NULL)
744 *list_tail = NULL;
746 bio->bi_next = NULL;
747 return bio;
751 * Send a packet_command to the underlying block device and
752 * wait for completion.
754 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
756 request_queue_t *q = bdev_get_queue(pd->bdev);
757 struct request *rq;
758 int ret = 0;
760 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
761 WRITE : READ, __GFP_WAIT);
763 if (cgc->buflen) {
764 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
765 goto out;
768 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
769 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
770 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
771 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
773 rq->timeout = 60*HZ;
774 rq->cmd_type = REQ_TYPE_BLOCK_PC;
775 rq->cmd_flags |= REQ_HARDBARRIER;
776 if (cgc->quiet)
777 rq->cmd_flags |= REQ_QUIET;
779 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
780 if (rq->errors)
781 ret = -EIO;
782 out:
783 blk_put_request(rq);
784 return ret;
788 * A generic sense dump / resolve mechanism should be implemented across
789 * all ATAPI + SCSI devices.
791 static void pkt_dump_sense(struct packet_command *cgc)
793 static char *info[9] = { "No sense", "Recovered error", "Not ready",
794 "Medium error", "Hardware error", "Illegal request",
795 "Unit attention", "Data protect", "Blank check" };
796 int i;
797 struct request_sense *sense = cgc->sense;
799 printk(DRIVER_NAME":");
800 for (i = 0; i < CDROM_PACKET_SIZE; i++)
801 printk(" %02x", cgc->cmd[i]);
802 printk(" - ");
804 if (sense == NULL) {
805 printk("no sense\n");
806 return;
809 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
811 if (sense->sense_key > 8) {
812 printk(" (INVALID)\n");
813 return;
816 printk(" (%s)\n", info[sense->sense_key]);
820 * flush the drive cache to media
822 static int pkt_flush_cache(struct pktcdvd_device *pd)
824 struct packet_command cgc;
826 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
827 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
828 cgc.quiet = 1;
831 * the IMMED bit -- we default to not setting it, although that
832 * would allow a much faster close, this is safer
834 #if 0
835 cgc.cmd[1] = 1 << 1;
836 #endif
837 return pkt_generic_packet(pd, &cgc);
841 * speed is given as the normal factor, e.g. 4 for 4x
843 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
845 struct packet_command cgc;
846 struct request_sense sense;
847 int ret;
849 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
850 cgc.sense = &sense;
851 cgc.cmd[0] = GPCMD_SET_SPEED;
852 cgc.cmd[2] = (read_speed >> 8) & 0xff;
853 cgc.cmd[3] = read_speed & 0xff;
854 cgc.cmd[4] = (write_speed >> 8) & 0xff;
855 cgc.cmd[5] = write_speed & 0xff;
857 if ((ret = pkt_generic_packet(pd, &cgc)))
858 pkt_dump_sense(&cgc);
860 return ret;
864 * Queue a bio for processing by the low-level CD device. Must be called
865 * from process context.
867 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
869 spin_lock(&pd->iosched.lock);
870 if (bio_data_dir(bio) == READ) {
871 pkt_add_list_last(bio, &pd->iosched.read_queue,
872 &pd->iosched.read_queue_tail);
873 } else {
874 pkt_add_list_last(bio, &pd->iosched.write_queue,
875 &pd->iosched.write_queue_tail);
877 spin_unlock(&pd->iosched.lock);
879 atomic_set(&pd->iosched.attention, 1);
880 wake_up(&pd->wqueue);
884 * Process the queued read/write requests. This function handles special
885 * requirements for CDRW drives:
886 * - A cache flush command must be inserted before a read request if the
887 * previous request was a write.
888 * - Switching between reading and writing is slow, so don't do it more often
889 * than necessary.
890 * - Optimize for throughput at the expense of latency. This means that streaming
891 * writes will never be interrupted by a read, but if the drive has to seek
892 * before the next write, switch to reading instead if there are any pending
893 * read requests.
894 * - Set the read speed according to current usage pattern. When only reading
895 * from the device, it's best to use the highest possible read speed, but
896 * when switching often between reading and writing, it's better to have the
897 * same read and write speeds.
899 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
902 if (atomic_read(&pd->iosched.attention) == 0)
903 return;
904 atomic_set(&pd->iosched.attention, 0);
906 for (;;) {
907 struct bio *bio;
908 int reads_queued, writes_queued;
910 spin_lock(&pd->iosched.lock);
911 reads_queued = (pd->iosched.read_queue != NULL);
912 writes_queued = (pd->iosched.write_queue != NULL);
913 spin_unlock(&pd->iosched.lock);
915 if (!reads_queued && !writes_queued)
916 break;
918 if (pd->iosched.writing) {
919 int need_write_seek = 1;
920 spin_lock(&pd->iosched.lock);
921 bio = pd->iosched.write_queue;
922 spin_unlock(&pd->iosched.lock);
923 if (bio && (bio->bi_sector == pd->iosched.last_write))
924 need_write_seek = 0;
925 if (need_write_seek && reads_queued) {
926 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
927 VPRINTK(DRIVER_NAME": write, waiting\n");
928 break;
930 pkt_flush_cache(pd);
931 pd->iosched.writing = 0;
933 } else {
934 if (!reads_queued && writes_queued) {
935 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
936 VPRINTK(DRIVER_NAME": read, waiting\n");
937 break;
939 pd->iosched.writing = 1;
943 spin_lock(&pd->iosched.lock);
944 if (pd->iosched.writing) {
945 bio = pkt_get_list_first(&pd->iosched.write_queue,
946 &pd->iosched.write_queue_tail);
947 } else {
948 bio = pkt_get_list_first(&pd->iosched.read_queue,
949 &pd->iosched.read_queue_tail);
951 spin_unlock(&pd->iosched.lock);
953 if (!bio)
954 continue;
956 if (bio_data_dir(bio) == READ)
957 pd->iosched.successive_reads += bio->bi_size >> 10;
958 else {
959 pd->iosched.successive_reads = 0;
960 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
962 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
963 if (pd->read_speed == pd->write_speed) {
964 pd->read_speed = MAX_SPEED;
965 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
967 } else {
968 if (pd->read_speed != pd->write_speed) {
969 pd->read_speed = pd->write_speed;
970 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
974 atomic_inc(&pd->cdrw.pending_bios);
975 generic_make_request(bio);
980 * Special care is needed if the underlying block device has a small
981 * max_phys_segments value.
983 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
985 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
987 * The cdrom device can handle one segment/frame
989 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
990 return 0;
991 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
993 * We can handle this case at the expense of some extra memory
994 * copies during write operations
996 set_bit(PACKET_MERGE_SEGS, &pd->flags);
997 return 0;
998 } else {
999 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
1000 return -EIO;
1005 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1007 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1009 unsigned int copy_size = CD_FRAMESIZE;
1011 while (copy_size > 0) {
1012 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1013 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1014 src_bvl->bv_offset + offs;
1015 void *vto = page_address(dst_page) + dst_offs;
1016 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1018 BUG_ON(len < 0);
1019 memcpy(vto, vfrom, len);
1020 kunmap_atomic(vfrom, KM_USER0);
1022 seg++;
1023 offs = 0;
1024 dst_offs += len;
1025 copy_size -= len;
1030 * Copy all data for this packet to pkt->pages[], so that
1031 * a) The number of required segments for the write bio is minimized, which
1032 * is necessary for some scsi controllers.
1033 * b) The data can be used as cache to avoid read requests if we receive a
1034 * new write request for the same zone.
1036 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1038 int f, p, offs;
1040 /* Copy all data to pkt->pages[] */
1041 p = 0;
1042 offs = 0;
1043 for (f = 0; f < pkt->frames; f++) {
1044 if (bvec[f].bv_page != pkt->pages[p]) {
1045 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1046 void *vto = page_address(pkt->pages[p]) + offs;
1047 memcpy(vto, vfrom, CD_FRAMESIZE);
1048 kunmap_atomic(vfrom, KM_USER0);
1049 bvec[f].bv_page = pkt->pages[p];
1050 bvec[f].bv_offset = offs;
1051 } else {
1052 BUG_ON(bvec[f].bv_offset != offs);
1054 offs += CD_FRAMESIZE;
1055 if (offs >= PAGE_SIZE) {
1056 offs = 0;
1057 p++;
1062 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
1064 struct packet_data *pkt = bio->bi_private;
1065 struct pktcdvd_device *pd = pkt->pd;
1066 BUG_ON(!pd);
1068 if (bio->bi_size)
1069 return 1;
1071 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1072 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1074 if (err)
1075 atomic_inc(&pkt->io_errors);
1076 if (atomic_dec_and_test(&pkt->io_wait)) {
1077 atomic_inc(&pkt->run_sm);
1078 wake_up(&pd->wqueue);
1080 pkt_bio_finished(pd);
1082 return 0;
1085 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
1087 struct packet_data *pkt = bio->bi_private;
1088 struct pktcdvd_device *pd = pkt->pd;
1089 BUG_ON(!pd);
1091 if (bio->bi_size)
1092 return 1;
1094 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1096 pd->stats.pkt_ended++;
1098 pkt_bio_finished(pd);
1099 atomic_dec(&pkt->io_wait);
1100 atomic_inc(&pkt->run_sm);
1101 wake_up(&pd->wqueue);
1102 return 0;
1106 * Schedule reads for the holes in a packet
1108 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1110 int frames_read = 0;
1111 struct bio *bio;
1112 int f;
1113 char written[PACKET_MAX_SIZE];
1115 BUG_ON(!pkt->orig_bios);
1117 atomic_set(&pkt->io_wait, 0);
1118 atomic_set(&pkt->io_errors, 0);
1121 * Figure out which frames we need to read before we can write.
1123 memset(written, 0, sizeof(written));
1124 spin_lock(&pkt->lock);
1125 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1126 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1127 int num_frames = bio->bi_size / CD_FRAMESIZE;
1128 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1129 BUG_ON(first_frame < 0);
1130 BUG_ON(first_frame + num_frames > pkt->frames);
1131 for (f = first_frame; f < first_frame + num_frames; f++)
1132 written[f] = 1;
1134 spin_unlock(&pkt->lock);
1136 if (pkt->cache_valid) {
1137 VPRINTK("pkt_gather_data: zone %llx cached\n",
1138 (unsigned long long)pkt->sector);
1139 goto out_account;
1143 * Schedule reads for missing parts of the packet.
1145 for (f = 0; f < pkt->frames; f++) {
1146 int p, offset;
1147 if (written[f])
1148 continue;
1149 bio = pkt->r_bios[f];
1150 bio_init(bio);
1151 bio->bi_max_vecs = 1;
1152 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1153 bio->bi_bdev = pd->bdev;
1154 bio->bi_end_io = pkt_end_io_read;
1155 bio->bi_private = pkt;
1157 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1158 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1159 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1160 f, pkt->pages[p], offset);
1161 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1162 BUG();
1164 atomic_inc(&pkt->io_wait);
1165 bio->bi_rw = READ;
1166 pkt_queue_bio(pd, bio);
1167 frames_read++;
1170 out_account:
1171 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1172 frames_read, (unsigned long long)pkt->sector);
1173 pd->stats.pkt_started++;
1174 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1178 * Find a packet matching zone, or the least recently used packet if
1179 * there is no match.
1181 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1183 struct packet_data *pkt;
1185 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1186 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1187 list_del_init(&pkt->list);
1188 if (pkt->sector != zone)
1189 pkt->cache_valid = 0;
1190 return pkt;
1193 BUG();
1194 return NULL;
1197 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1199 if (pkt->cache_valid) {
1200 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1201 } else {
1202 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1207 * recover a failed write, query for relocation if possible
1209 * returns 1 if recovery is possible, or 0 if not
1212 static int pkt_start_recovery(struct packet_data *pkt)
1215 * FIXME. We need help from the file system to implement
1216 * recovery handling.
1218 return 0;
1219 #if 0
1220 struct request *rq = pkt->rq;
1221 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1222 struct block_device *pkt_bdev;
1223 struct super_block *sb = NULL;
1224 unsigned long old_block, new_block;
1225 sector_t new_sector;
1227 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1228 if (pkt_bdev) {
1229 sb = get_super(pkt_bdev);
1230 bdput(pkt_bdev);
1233 if (!sb)
1234 return 0;
1236 if (!sb->s_op || !sb->s_op->relocate_blocks)
1237 goto out;
1239 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1240 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1241 goto out;
1243 new_sector = new_block * (CD_FRAMESIZE >> 9);
1244 pkt->sector = new_sector;
1246 pkt->bio->bi_sector = new_sector;
1247 pkt->bio->bi_next = NULL;
1248 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1249 pkt->bio->bi_idx = 0;
1251 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1252 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1253 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1254 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1255 BUG_ON(pkt->bio->bi_private != pkt);
1257 drop_super(sb);
1258 return 1;
1260 out:
1261 drop_super(sb);
1262 return 0;
1263 #endif
1266 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1268 #if PACKET_DEBUG > 1
1269 static const char *state_name[] = {
1270 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1272 enum packet_data_state old_state = pkt->state;
1273 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1274 state_name[old_state], state_name[state]);
1275 #endif
1276 pkt->state = state;
1280 * Scan the work queue to see if we can start a new packet.
1281 * returns non-zero if any work was done.
1283 static int pkt_handle_queue(struct pktcdvd_device *pd)
1285 struct packet_data *pkt, *p;
1286 struct bio *bio = NULL;
1287 sector_t zone = 0; /* Suppress gcc warning */
1288 struct pkt_rb_node *node, *first_node;
1289 struct rb_node *n;
1290 int wakeup;
1292 VPRINTK("handle_queue\n");
1294 atomic_set(&pd->scan_queue, 0);
1296 if (list_empty(&pd->cdrw.pkt_free_list)) {
1297 VPRINTK("handle_queue: no pkt\n");
1298 return 0;
1302 * Try to find a zone we are not already working on.
1304 spin_lock(&pd->lock);
1305 first_node = pkt_rbtree_find(pd, pd->current_sector);
1306 if (!first_node) {
1307 n = rb_first(&pd->bio_queue);
1308 if (n)
1309 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1311 node = first_node;
1312 while (node) {
1313 bio = node->bio;
1314 zone = ZONE(bio->bi_sector, pd);
1315 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1316 if (p->sector == zone) {
1317 bio = NULL;
1318 goto try_next_bio;
1321 break;
1322 try_next_bio:
1323 node = pkt_rbtree_next(node);
1324 if (!node) {
1325 n = rb_first(&pd->bio_queue);
1326 if (n)
1327 node = rb_entry(n, struct pkt_rb_node, rb_node);
1329 if (node == first_node)
1330 node = NULL;
1332 spin_unlock(&pd->lock);
1333 if (!bio) {
1334 VPRINTK("handle_queue: no bio\n");
1335 return 0;
1338 pkt = pkt_get_packet_data(pd, zone);
1340 pd->current_sector = zone + pd->settings.size;
1341 pkt->sector = zone;
1342 BUG_ON(pkt->frames != pd->settings.size >> 2);
1343 pkt->write_size = 0;
1346 * Scan work queue for bios in the same zone and link them
1347 * to this packet.
1349 spin_lock(&pd->lock);
1350 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1351 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1352 bio = node->bio;
1353 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1354 (unsigned long long)ZONE(bio->bi_sector, pd));
1355 if (ZONE(bio->bi_sector, pd) != zone)
1356 break;
1357 pkt_rbtree_erase(pd, node);
1358 spin_lock(&pkt->lock);
1359 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1360 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1361 spin_unlock(&pkt->lock);
1363 /* check write congestion marks, and if bio_queue_size is
1364 below, wake up any waiters */
1365 wakeup = (pd->write_congestion_on > 0
1366 && pd->bio_queue_size <= pd->write_congestion_off);
1367 spin_unlock(&pd->lock);
1368 if (wakeup)
1369 clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE);
1371 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1372 pkt_set_state(pkt, PACKET_WAITING_STATE);
1373 atomic_set(&pkt->run_sm, 1);
1375 spin_lock(&pd->cdrw.active_list_lock);
1376 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1377 spin_unlock(&pd->cdrw.active_list_lock);
1379 return 1;
1383 * Assemble a bio to write one packet and queue the bio for processing
1384 * by the underlying block device.
1386 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1388 struct bio *bio;
1389 int f;
1390 int frames_write;
1391 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1393 for (f = 0; f < pkt->frames; f++) {
1394 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1395 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1399 * Fill-in bvec with data from orig_bios.
1401 frames_write = 0;
1402 spin_lock(&pkt->lock);
1403 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1404 int segment = bio->bi_idx;
1405 int src_offs = 0;
1406 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1407 int num_frames = bio->bi_size / CD_FRAMESIZE;
1408 BUG_ON(first_frame < 0);
1409 BUG_ON(first_frame + num_frames > pkt->frames);
1410 for (f = first_frame; f < first_frame + num_frames; f++) {
1411 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1413 while (src_offs >= src_bvl->bv_len) {
1414 src_offs -= src_bvl->bv_len;
1415 segment++;
1416 BUG_ON(segment >= bio->bi_vcnt);
1417 src_bvl = bio_iovec_idx(bio, segment);
1420 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1421 bvec[f].bv_page = src_bvl->bv_page;
1422 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1423 } else {
1424 pkt_copy_bio_data(bio, segment, src_offs,
1425 bvec[f].bv_page, bvec[f].bv_offset);
1427 src_offs += CD_FRAMESIZE;
1428 frames_write++;
1431 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1432 spin_unlock(&pkt->lock);
1434 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1435 frames_write, (unsigned long long)pkt->sector);
1436 BUG_ON(frames_write != pkt->write_size);
1438 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1439 pkt_make_local_copy(pkt, bvec);
1440 pkt->cache_valid = 1;
1441 } else {
1442 pkt->cache_valid = 0;
1445 /* Start the write request */
1446 bio_init(pkt->w_bio);
1447 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1448 pkt->w_bio->bi_sector = pkt->sector;
1449 pkt->w_bio->bi_bdev = pd->bdev;
1450 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1451 pkt->w_bio->bi_private = pkt;
1452 for (f = 0; f < pkt->frames; f++)
1453 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1454 BUG();
1455 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1457 atomic_set(&pkt->io_wait, 1);
1458 pkt->w_bio->bi_rw = WRITE;
1459 pkt_queue_bio(pd, pkt->w_bio);
1462 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1464 struct bio *bio, *next;
1466 if (!uptodate)
1467 pkt->cache_valid = 0;
1469 /* Finish all bios corresponding to this packet */
1470 bio = pkt->orig_bios;
1471 while (bio) {
1472 next = bio->bi_next;
1473 bio->bi_next = NULL;
1474 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1475 bio = next;
1477 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1480 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1482 int uptodate;
1484 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1486 for (;;) {
1487 switch (pkt->state) {
1488 case PACKET_WAITING_STATE:
1489 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1490 return;
1492 pkt->sleep_time = 0;
1493 pkt_gather_data(pd, pkt);
1494 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1495 break;
1497 case PACKET_READ_WAIT_STATE:
1498 if (atomic_read(&pkt->io_wait) > 0)
1499 return;
1501 if (atomic_read(&pkt->io_errors) > 0) {
1502 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1503 } else {
1504 pkt_start_write(pd, pkt);
1506 break;
1508 case PACKET_WRITE_WAIT_STATE:
1509 if (atomic_read(&pkt->io_wait) > 0)
1510 return;
1512 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1513 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1514 } else {
1515 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1517 break;
1519 case PACKET_RECOVERY_STATE:
1520 if (pkt_start_recovery(pkt)) {
1521 pkt_start_write(pd, pkt);
1522 } else {
1523 VPRINTK("No recovery possible\n");
1524 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1526 break;
1528 case PACKET_FINISHED_STATE:
1529 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1530 pkt_finish_packet(pkt, uptodate);
1531 return;
1533 default:
1534 BUG();
1535 break;
1540 static void pkt_handle_packets(struct pktcdvd_device *pd)
1542 struct packet_data *pkt, *next;
1544 VPRINTK("pkt_handle_packets\n");
1547 * Run state machine for active packets
1549 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1550 if (atomic_read(&pkt->run_sm) > 0) {
1551 atomic_set(&pkt->run_sm, 0);
1552 pkt_run_state_machine(pd, pkt);
1557 * Move no longer active packets to the free list
1559 spin_lock(&pd->cdrw.active_list_lock);
1560 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1561 if (pkt->state == PACKET_FINISHED_STATE) {
1562 list_del(&pkt->list);
1563 pkt_put_packet_data(pd, pkt);
1564 pkt_set_state(pkt, PACKET_IDLE_STATE);
1565 atomic_set(&pd->scan_queue, 1);
1568 spin_unlock(&pd->cdrw.active_list_lock);
1571 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1573 struct packet_data *pkt;
1574 int i;
1576 for (i = 0; i < PACKET_NUM_STATES; i++)
1577 states[i] = 0;
1579 spin_lock(&pd->cdrw.active_list_lock);
1580 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1581 states[pkt->state]++;
1583 spin_unlock(&pd->cdrw.active_list_lock);
1587 * kcdrwd is woken up when writes have been queued for one of our
1588 * registered devices
1590 static int kcdrwd(void *foobar)
1592 struct pktcdvd_device *pd = foobar;
1593 struct packet_data *pkt;
1594 long min_sleep_time, residue;
1596 set_user_nice(current, -20);
1598 for (;;) {
1599 DECLARE_WAITQUEUE(wait, current);
1602 * Wait until there is something to do
1604 add_wait_queue(&pd->wqueue, &wait);
1605 for (;;) {
1606 set_current_state(TASK_INTERRUPTIBLE);
1608 /* Check if we need to run pkt_handle_queue */
1609 if (atomic_read(&pd->scan_queue) > 0)
1610 goto work_to_do;
1612 /* Check if we need to run the state machine for some packet */
1613 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1614 if (atomic_read(&pkt->run_sm) > 0)
1615 goto work_to_do;
1618 /* Check if we need to process the iosched queues */
1619 if (atomic_read(&pd->iosched.attention) != 0)
1620 goto work_to_do;
1622 /* Otherwise, go to sleep */
1623 if (PACKET_DEBUG > 1) {
1624 int states[PACKET_NUM_STATES];
1625 pkt_count_states(pd, states);
1626 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1627 states[0], states[1], states[2], states[3],
1628 states[4], states[5]);
1631 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1632 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1633 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1634 min_sleep_time = pkt->sleep_time;
1637 generic_unplug_device(bdev_get_queue(pd->bdev));
1639 VPRINTK("kcdrwd: sleeping\n");
1640 residue = schedule_timeout(min_sleep_time);
1641 VPRINTK("kcdrwd: wake up\n");
1643 /* make swsusp happy with our thread */
1644 try_to_freeze();
1646 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1647 if (!pkt->sleep_time)
1648 continue;
1649 pkt->sleep_time -= min_sleep_time - residue;
1650 if (pkt->sleep_time <= 0) {
1651 pkt->sleep_time = 0;
1652 atomic_inc(&pkt->run_sm);
1656 if (signal_pending(current)) {
1657 flush_signals(current);
1659 if (kthread_should_stop())
1660 break;
1662 work_to_do:
1663 set_current_state(TASK_RUNNING);
1664 remove_wait_queue(&pd->wqueue, &wait);
1666 if (kthread_should_stop())
1667 break;
1670 * if pkt_handle_queue returns true, we can queue
1671 * another request.
1673 while (pkt_handle_queue(pd))
1677 * Handle packet state machine
1679 pkt_handle_packets(pd);
1682 * Handle iosched queues
1684 pkt_iosched_process_queue(pd);
1687 return 0;
1690 static void pkt_print_settings(struct pktcdvd_device *pd)
1692 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1693 printk("%u blocks, ", pd->settings.size >> 2);
1694 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1697 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1699 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1701 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1702 cgc->cmd[2] = page_code | (page_control << 6);
1703 cgc->cmd[7] = cgc->buflen >> 8;
1704 cgc->cmd[8] = cgc->buflen & 0xff;
1705 cgc->data_direction = CGC_DATA_READ;
1706 return pkt_generic_packet(pd, cgc);
1709 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1711 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1712 memset(cgc->buffer, 0, 2);
1713 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1714 cgc->cmd[1] = 0x10; /* PF */
1715 cgc->cmd[7] = cgc->buflen >> 8;
1716 cgc->cmd[8] = cgc->buflen & 0xff;
1717 cgc->data_direction = CGC_DATA_WRITE;
1718 return pkt_generic_packet(pd, cgc);
1721 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1723 struct packet_command cgc;
1724 int ret;
1726 /* set up command and get the disc info */
1727 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1728 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1729 cgc.cmd[8] = cgc.buflen = 2;
1730 cgc.quiet = 1;
1732 if ((ret = pkt_generic_packet(pd, &cgc)))
1733 return ret;
1735 /* not all drives have the same disc_info length, so requeue
1736 * packet with the length the drive tells us it can supply
1738 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1739 sizeof(di->disc_information_length);
1741 if (cgc.buflen > sizeof(disc_information))
1742 cgc.buflen = sizeof(disc_information);
1744 cgc.cmd[8] = cgc.buflen;
1745 return pkt_generic_packet(pd, &cgc);
1748 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1750 struct packet_command cgc;
1751 int ret;
1753 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1754 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1755 cgc.cmd[1] = type & 3;
1756 cgc.cmd[4] = (track & 0xff00) >> 8;
1757 cgc.cmd[5] = track & 0xff;
1758 cgc.cmd[8] = 8;
1759 cgc.quiet = 1;
1761 if ((ret = pkt_generic_packet(pd, &cgc)))
1762 return ret;
1764 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1765 sizeof(ti->track_information_length);
1767 if (cgc.buflen > sizeof(track_information))
1768 cgc.buflen = sizeof(track_information);
1770 cgc.cmd[8] = cgc.buflen;
1771 return pkt_generic_packet(pd, &cgc);
1774 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1776 disc_information di;
1777 track_information ti;
1778 __u32 last_track;
1779 int ret = -1;
1781 if ((ret = pkt_get_disc_info(pd, &di)))
1782 return ret;
1784 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1785 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1786 return ret;
1788 /* if this track is blank, try the previous. */
1789 if (ti.blank) {
1790 last_track--;
1791 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1792 return ret;
1795 /* if last recorded field is valid, return it. */
1796 if (ti.lra_v) {
1797 *last_written = be32_to_cpu(ti.last_rec_address);
1798 } else {
1799 /* make it up instead */
1800 *last_written = be32_to_cpu(ti.track_start) +
1801 be32_to_cpu(ti.track_size);
1802 if (ti.free_blocks)
1803 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1805 return 0;
1809 * write mode select package based on pd->settings
1811 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1813 struct packet_command cgc;
1814 struct request_sense sense;
1815 write_param_page *wp;
1816 char buffer[128];
1817 int ret, size;
1819 /* doesn't apply to DVD+RW or DVD-RAM */
1820 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1821 return 0;
1823 memset(buffer, 0, sizeof(buffer));
1824 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1825 cgc.sense = &sense;
1826 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1827 pkt_dump_sense(&cgc);
1828 return ret;
1831 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1832 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1833 if (size > sizeof(buffer))
1834 size = sizeof(buffer);
1837 * now get it all
1839 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1840 cgc.sense = &sense;
1841 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1842 pkt_dump_sense(&cgc);
1843 return ret;
1847 * write page is offset header + block descriptor length
1849 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1851 wp->fp = pd->settings.fp;
1852 wp->track_mode = pd->settings.track_mode;
1853 wp->write_type = pd->settings.write_type;
1854 wp->data_block_type = pd->settings.block_mode;
1856 wp->multi_session = 0;
1858 #ifdef PACKET_USE_LS
1859 wp->link_size = 7;
1860 wp->ls_v = 1;
1861 #endif
1863 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1864 wp->session_format = 0;
1865 wp->subhdr2 = 0x20;
1866 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1867 wp->session_format = 0x20;
1868 wp->subhdr2 = 8;
1869 #if 0
1870 wp->mcn[0] = 0x80;
1871 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1872 #endif
1873 } else {
1875 * paranoia
1877 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1878 return 1;
1880 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1882 cgc.buflen = cgc.cmd[8] = size;
1883 if ((ret = pkt_mode_select(pd, &cgc))) {
1884 pkt_dump_sense(&cgc);
1885 return ret;
1888 pkt_print_settings(pd);
1889 return 0;
1893 * 1 -- we can write to this track, 0 -- we can't
1895 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1897 switch (pd->mmc3_profile) {
1898 case 0x1a: /* DVD+RW */
1899 case 0x12: /* DVD-RAM */
1900 /* The track is always writable on DVD+RW/DVD-RAM */
1901 return 1;
1902 default:
1903 break;
1906 if (!ti->packet || !ti->fp)
1907 return 0;
1910 * "good" settings as per Mt Fuji.
1912 if (ti->rt == 0 && ti->blank == 0)
1913 return 1;
1915 if (ti->rt == 0 && ti->blank == 1)
1916 return 1;
1918 if (ti->rt == 1 && ti->blank == 0)
1919 return 1;
1921 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1922 return 0;
1926 * 1 -- we can write to this disc, 0 -- we can't
1928 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1930 switch (pd->mmc3_profile) {
1931 case 0x0a: /* CD-RW */
1932 case 0xffff: /* MMC3 not supported */
1933 break;
1934 case 0x1a: /* DVD+RW */
1935 case 0x13: /* DVD-RW */
1936 case 0x12: /* DVD-RAM */
1937 return 1;
1938 default:
1939 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1940 return 0;
1944 * for disc type 0xff we should probably reserve a new track.
1945 * but i'm not sure, should we leave this to user apps? probably.
1947 if (di->disc_type == 0xff) {
1948 printk(DRIVER_NAME": Unknown disc. No track?\n");
1949 return 0;
1952 if (di->disc_type != 0x20 && di->disc_type != 0) {
1953 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1954 return 0;
1957 if (di->erasable == 0) {
1958 printk(DRIVER_NAME": Disc not erasable\n");
1959 return 0;
1962 if (di->border_status == PACKET_SESSION_RESERVED) {
1963 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1964 return 0;
1967 return 1;
1970 static int pkt_probe_settings(struct pktcdvd_device *pd)
1972 struct packet_command cgc;
1973 unsigned char buf[12];
1974 disc_information di;
1975 track_information ti;
1976 int ret, track;
1978 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1979 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1980 cgc.cmd[8] = 8;
1981 ret = pkt_generic_packet(pd, &cgc);
1982 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1984 memset(&di, 0, sizeof(disc_information));
1985 memset(&ti, 0, sizeof(track_information));
1987 if ((ret = pkt_get_disc_info(pd, &di))) {
1988 printk("failed get_disc\n");
1989 return ret;
1992 if (!pkt_writable_disc(pd, &di))
1993 return -EROFS;
1995 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1997 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1998 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1999 printk(DRIVER_NAME": failed get_track\n");
2000 return ret;
2003 if (!pkt_writable_track(pd, &ti)) {
2004 printk(DRIVER_NAME": can't write to this track\n");
2005 return -EROFS;
2009 * we keep packet size in 512 byte units, makes it easier to
2010 * deal with request calculations.
2012 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2013 if (pd->settings.size == 0) {
2014 printk(DRIVER_NAME": detected zero packet size!\n");
2015 return -ENXIO;
2017 if (pd->settings.size > PACKET_MAX_SECTORS) {
2018 printk(DRIVER_NAME": packet size is too big\n");
2019 return -EROFS;
2021 pd->settings.fp = ti.fp;
2022 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2024 if (ti.nwa_v) {
2025 pd->nwa = be32_to_cpu(ti.next_writable);
2026 set_bit(PACKET_NWA_VALID, &pd->flags);
2030 * in theory we could use lra on -RW media as well and just zero
2031 * blocks that haven't been written yet, but in practice that
2032 * is just a no-go. we'll use that for -R, naturally.
2034 if (ti.lra_v) {
2035 pd->lra = be32_to_cpu(ti.last_rec_address);
2036 set_bit(PACKET_LRA_VALID, &pd->flags);
2037 } else {
2038 pd->lra = 0xffffffff;
2039 set_bit(PACKET_LRA_VALID, &pd->flags);
2043 * fine for now
2045 pd->settings.link_loss = 7;
2046 pd->settings.write_type = 0; /* packet */
2047 pd->settings.track_mode = ti.track_mode;
2050 * mode1 or mode2 disc
2052 switch (ti.data_mode) {
2053 case PACKET_MODE1:
2054 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2055 break;
2056 case PACKET_MODE2:
2057 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2058 break;
2059 default:
2060 printk(DRIVER_NAME": unknown data mode\n");
2061 return -EROFS;
2063 return 0;
2067 * enable/disable write caching on drive
2069 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
2071 struct packet_command cgc;
2072 struct request_sense sense;
2073 unsigned char buf[64];
2074 int ret;
2076 memset(buf, 0, sizeof(buf));
2077 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2078 cgc.sense = &sense;
2079 cgc.buflen = pd->mode_offset + 12;
2082 * caching mode page might not be there, so quiet this command
2084 cgc.quiet = 1;
2086 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2087 return ret;
2089 buf[pd->mode_offset + 10] |= (!!set << 2);
2091 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2092 ret = pkt_mode_select(pd, &cgc);
2093 if (ret) {
2094 printk(DRIVER_NAME": write caching control failed\n");
2095 pkt_dump_sense(&cgc);
2096 } else if (!ret && set)
2097 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2098 return ret;
2101 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2103 struct packet_command cgc;
2105 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2106 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2107 cgc.cmd[4] = lockflag ? 1 : 0;
2108 return pkt_generic_packet(pd, &cgc);
2112 * Returns drive maximum write speed
2114 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
2116 struct packet_command cgc;
2117 struct request_sense sense;
2118 unsigned char buf[256+18];
2119 unsigned char *cap_buf;
2120 int ret, offset;
2122 memset(buf, 0, sizeof(buf));
2123 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2124 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2125 cgc.sense = &sense;
2127 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2128 if (ret) {
2129 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2130 sizeof(struct mode_page_header);
2131 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2132 if (ret) {
2133 pkt_dump_sense(&cgc);
2134 return ret;
2138 offset = 20; /* Obsoleted field, used by older drives */
2139 if (cap_buf[1] >= 28)
2140 offset = 28; /* Current write speed selected */
2141 if (cap_buf[1] >= 30) {
2142 /* If the drive reports at least one "Logical Unit Write
2143 * Speed Performance Descriptor Block", use the information
2144 * in the first block. (contains the highest speed)
2146 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2147 if (num_spdb > 0)
2148 offset = 34;
2151 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2152 return 0;
2155 /* These tables from cdrecord - I don't have orange book */
2156 /* standard speed CD-RW (1-4x) */
2157 static char clv_to_speed[16] = {
2158 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2159 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2161 /* high speed CD-RW (-10x) */
2162 static char hs_clv_to_speed[16] = {
2163 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2164 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2166 /* ultra high speed CD-RW */
2167 static char us_clv_to_speed[16] = {
2168 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2169 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2173 * reads the maximum media speed from ATIP
2175 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
2177 struct packet_command cgc;
2178 struct request_sense sense;
2179 unsigned char buf[64];
2180 unsigned int size, st, sp;
2181 int ret;
2183 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2184 cgc.sense = &sense;
2185 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2186 cgc.cmd[1] = 2;
2187 cgc.cmd[2] = 4; /* READ ATIP */
2188 cgc.cmd[8] = 2;
2189 ret = pkt_generic_packet(pd, &cgc);
2190 if (ret) {
2191 pkt_dump_sense(&cgc);
2192 return ret;
2194 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2195 if (size > sizeof(buf))
2196 size = sizeof(buf);
2198 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2199 cgc.sense = &sense;
2200 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2201 cgc.cmd[1] = 2;
2202 cgc.cmd[2] = 4;
2203 cgc.cmd[8] = size;
2204 ret = pkt_generic_packet(pd, &cgc);
2205 if (ret) {
2206 pkt_dump_sense(&cgc);
2207 return ret;
2210 if (!buf[6] & 0x40) {
2211 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2212 return 1;
2214 if (!buf[6] & 0x4) {
2215 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2216 return 1;
2219 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2221 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2223 /* Info from cdrecord */
2224 switch (st) {
2225 case 0: /* standard speed */
2226 *speed = clv_to_speed[sp];
2227 break;
2228 case 1: /* high speed */
2229 *speed = hs_clv_to_speed[sp];
2230 break;
2231 case 2: /* ultra high speed */
2232 *speed = us_clv_to_speed[sp];
2233 break;
2234 default:
2235 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2236 return 1;
2238 if (*speed) {
2239 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2240 return 0;
2241 } else {
2242 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2243 return 1;
2247 static int pkt_perform_opc(struct pktcdvd_device *pd)
2249 struct packet_command cgc;
2250 struct request_sense sense;
2251 int ret;
2253 VPRINTK(DRIVER_NAME": Performing OPC\n");
2255 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2256 cgc.sense = &sense;
2257 cgc.timeout = 60*HZ;
2258 cgc.cmd[0] = GPCMD_SEND_OPC;
2259 cgc.cmd[1] = 1;
2260 if ((ret = pkt_generic_packet(pd, &cgc)))
2261 pkt_dump_sense(&cgc);
2262 return ret;
2265 static int pkt_open_write(struct pktcdvd_device *pd)
2267 int ret;
2268 unsigned int write_speed, media_write_speed, read_speed;
2270 if ((ret = pkt_probe_settings(pd))) {
2271 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2272 return ret;
2275 if ((ret = pkt_set_write_settings(pd))) {
2276 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2277 return -EIO;
2280 pkt_write_caching(pd, USE_WCACHING);
2282 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2283 write_speed = 16 * 177;
2284 switch (pd->mmc3_profile) {
2285 case 0x13: /* DVD-RW */
2286 case 0x1a: /* DVD+RW */
2287 case 0x12: /* DVD-RAM */
2288 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2289 break;
2290 default:
2291 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2292 media_write_speed = 16;
2293 write_speed = min(write_speed, media_write_speed * 177);
2294 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2295 break;
2297 read_speed = write_speed;
2299 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2300 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2301 return -EIO;
2303 pd->write_speed = write_speed;
2304 pd->read_speed = read_speed;
2306 if ((ret = pkt_perform_opc(pd))) {
2307 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2310 return 0;
2314 * called at open time.
2316 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
2318 int ret;
2319 long lba;
2320 request_queue_t *q;
2323 * We need to re-open the cdrom device without O_NONBLOCK to be able
2324 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2325 * so bdget() can't fail.
2327 bdget(pd->bdev->bd_dev);
2328 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
2329 goto out;
2331 if ((ret = bd_claim(pd->bdev, pd)))
2332 goto out_putdev;
2334 if ((ret = pkt_get_last_written(pd, &lba))) {
2335 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2336 goto out_unclaim;
2339 set_capacity(pd->disk, lba << 2);
2340 set_capacity(pd->bdev->bd_disk, lba << 2);
2341 bd_set_size(pd->bdev, (loff_t)lba << 11);
2343 q = bdev_get_queue(pd->bdev);
2344 if (write) {
2345 if ((ret = pkt_open_write(pd)))
2346 goto out_unclaim;
2348 * Some CDRW drives can not handle writes larger than one packet,
2349 * even if the size is a multiple of the packet size.
2351 spin_lock_irq(q->queue_lock);
2352 blk_queue_max_sectors(q, pd->settings.size);
2353 spin_unlock_irq(q->queue_lock);
2354 set_bit(PACKET_WRITABLE, &pd->flags);
2355 } else {
2356 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2357 clear_bit(PACKET_WRITABLE, &pd->flags);
2360 if ((ret = pkt_set_segment_merging(pd, q)))
2361 goto out_unclaim;
2363 if (write) {
2364 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2365 printk(DRIVER_NAME": not enough memory for buffers\n");
2366 ret = -ENOMEM;
2367 goto out_unclaim;
2369 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2372 return 0;
2374 out_unclaim:
2375 bd_release(pd->bdev);
2376 out_putdev:
2377 blkdev_put(pd->bdev);
2378 out:
2379 return ret;
2383 * called when the device is closed. makes sure that the device flushes
2384 * the internal cache before we close.
2386 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2388 if (flush && pkt_flush_cache(pd))
2389 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2391 pkt_lock_door(pd, 0);
2393 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2394 bd_release(pd->bdev);
2395 blkdev_put(pd->bdev);
2397 pkt_shrink_pktlist(pd);
2400 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2402 if (dev_minor >= MAX_WRITERS)
2403 return NULL;
2404 return pkt_devs[dev_minor];
2407 static int pkt_open(struct inode *inode, struct file *file)
2409 struct pktcdvd_device *pd = NULL;
2410 int ret;
2412 VPRINTK(DRIVER_NAME": entering open\n");
2414 mutex_lock(&ctl_mutex);
2415 pd = pkt_find_dev_from_minor(iminor(inode));
2416 if (!pd) {
2417 ret = -ENODEV;
2418 goto out;
2420 BUG_ON(pd->refcnt < 0);
2422 pd->refcnt++;
2423 if (pd->refcnt > 1) {
2424 if ((file->f_mode & FMODE_WRITE) &&
2425 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2426 ret = -EBUSY;
2427 goto out_dec;
2429 } else {
2430 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2431 if (ret)
2432 goto out_dec;
2434 * needed here as well, since ext2 (among others) may change
2435 * the blocksize at mount time
2437 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2440 mutex_unlock(&ctl_mutex);
2441 return 0;
2443 out_dec:
2444 pd->refcnt--;
2445 out:
2446 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2447 mutex_unlock(&ctl_mutex);
2448 return ret;
2451 static int pkt_close(struct inode *inode, struct file *file)
2453 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2454 int ret = 0;
2456 mutex_lock(&ctl_mutex);
2457 pd->refcnt--;
2458 BUG_ON(pd->refcnt < 0);
2459 if (pd->refcnt == 0) {
2460 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2461 pkt_release_dev(pd, flush);
2463 mutex_unlock(&ctl_mutex);
2464 return ret;
2468 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2470 struct packet_stacked_data *psd = bio->bi_private;
2471 struct pktcdvd_device *pd = psd->pd;
2473 if (bio->bi_size)
2474 return 1;
2476 bio_put(bio);
2477 bio_endio(psd->bio, psd->bio->bi_size, err);
2478 mempool_free(psd, psd_pool);
2479 pkt_bio_finished(pd);
2480 return 0;
2483 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2485 struct pktcdvd_device *pd;
2486 char b[BDEVNAME_SIZE];
2487 sector_t zone;
2488 struct packet_data *pkt;
2489 int was_empty, blocked_bio;
2490 struct pkt_rb_node *node;
2492 pd = q->queuedata;
2493 if (!pd) {
2494 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2495 goto end_io;
2499 * Clone READ bios so we can have our own bi_end_io callback.
2501 if (bio_data_dir(bio) == READ) {
2502 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2503 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2505 psd->pd = pd;
2506 psd->bio = bio;
2507 cloned_bio->bi_bdev = pd->bdev;
2508 cloned_bio->bi_private = psd;
2509 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2510 pd->stats.secs_r += bio->bi_size >> 9;
2511 pkt_queue_bio(pd, cloned_bio);
2512 return 0;
2515 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2516 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2517 pd->name, (unsigned long long)bio->bi_sector);
2518 goto end_io;
2521 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2522 printk(DRIVER_NAME": wrong bio size\n");
2523 goto end_io;
2526 blk_queue_bounce(q, &bio);
2528 zone = ZONE(bio->bi_sector, pd);
2529 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2530 (unsigned long long)bio->bi_sector,
2531 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2533 /* Check if we have to split the bio */
2535 struct bio_pair *bp;
2536 sector_t last_zone;
2537 int first_sectors;
2539 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2540 if (last_zone != zone) {
2541 BUG_ON(last_zone != zone + pd->settings.size);
2542 first_sectors = last_zone - bio->bi_sector;
2543 bp = bio_split(bio, bio_split_pool, first_sectors);
2544 BUG_ON(!bp);
2545 pkt_make_request(q, &bp->bio1);
2546 pkt_make_request(q, &bp->bio2);
2547 bio_pair_release(bp);
2548 return 0;
2553 * If we find a matching packet in state WAITING or READ_WAIT, we can
2554 * just append this bio to that packet.
2556 spin_lock(&pd->cdrw.active_list_lock);
2557 blocked_bio = 0;
2558 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2559 if (pkt->sector == zone) {
2560 spin_lock(&pkt->lock);
2561 if ((pkt->state == PACKET_WAITING_STATE) ||
2562 (pkt->state == PACKET_READ_WAIT_STATE)) {
2563 pkt_add_list_last(bio, &pkt->orig_bios,
2564 &pkt->orig_bios_tail);
2565 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2566 if ((pkt->write_size >= pkt->frames) &&
2567 (pkt->state == PACKET_WAITING_STATE)) {
2568 atomic_inc(&pkt->run_sm);
2569 wake_up(&pd->wqueue);
2571 spin_unlock(&pkt->lock);
2572 spin_unlock(&pd->cdrw.active_list_lock);
2573 return 0;
2574 } else {
2575 blocked_bio = 1;
2577 spin_unlock(&pkt->lock);
2580 spin_unlock(&pd->cdrw.active_list_lock);
2583 * Test if there is enough room left in the bio work queue
2584 * (queue size >= congestion on mark).
2585 * If not, wait till the work queue size is below the congestion off mark.
2587 spin_lock(&pd->lock);
2588 if (pd->write_congestion_on > 0
2589 && pd->bio_queue_size >= pd->write_congestion_on) {
2590 set_bdi_congested(&q->backing_dev_info, WRITE);
2591 do {
2592 spin_unlock(&pd->lock);
2593 congestion_wait(WRITE, HZ);
2594 spin_lock(&pd->lock);
2595 } while(pd->bio_queue_size > pd->write_congestion_off);
2597 spin_unlock(&pd->lock);
2600 * No matching packet found. Store the bio in the work queue.
2602 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2603 node->bio = bio;
2604 spin_lock(&pd->lock);
2605 BUG_ON(pd->bio_queue_size < 0);
2606 was_empty = (pd->bio_queue_size == 0);
2607 pkt_rbtree_insert(pd, node);
2608 spin_unlock(&pd->lock);
2611 * Wake up the worker thread.
2613 atomic_set(&pd->scan_queue, 1);
2614 if (was_empty) {
2615 /* This wake_up is required for correct operation */
2616 wake_up(&pd->wqueue);
2617 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2619 * This wake up is not required for correct operation,
2620 * but improves performance in some cases.
2622 wake_up(&pd->wqueue);
2624 return 0;
2625 end_io:
2626 bio_io_error(bio, bio->bi_size);
2627 return 0;
2632 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2634 struct pktcdvd_device *pd = q->queuedata;
2635 sector_t zone = ZONE(bio->bi_sector, pd);
2636 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2637 int remaining = (pd->settings.size << 9) - used;
2638 int remaining2;
2641 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2642 * boundary, pkt_make_request() will split the bio.
2644 remaining2 = PAGE_SIZE - bio->bi_size;
2645 remaining = max(remaining, remaining2);
2647 BUG_ON(remaining < 0);
2648 return remaining;
2651 static void pkt_init_queue(struct pktcdvd_device *pd)
2653 request_queue_t *q = pd->disk->queue;
2655 blk_queue_make_request(q, pkt_make_request);
2656 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2657 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2658 blk_queue_merge_bvec(q, pkt_merge_bvec);
2659 q->queuedata = pd;
2662 static int pkt_seq_show(struct seq_file *m, void *p)
2664 struct pktcdvd_device *pd = m->private;
2665 char *msg;
2666 char bdev_buf[BDEVNAME_SIZE];
2667 int states[PACKET_NUM_STATES];
2669 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2670 bdevname(pd->bdev, bdev_buf));
2672 seq_printf(m, "\nSettings:\n");
2673 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2675 if (pd->settings.write_type == 0)
2676 msg = "Packet";
2677 else
2678 msg = "Unknown";
2679 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2681 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2682 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2684 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2686 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2687 msg = "Mode 1";
2688 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2689 msg = "Mode 2";
2690 else
2691 msg = "Unknown";
2692 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2694 seq_printf(m, "\nStatistics:\n");
2695 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2696 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2697 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2698 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2699 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2701 seq_printf(m, "\nMisc:\n");
2702 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2703 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2704 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2705 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2706 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2707 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2709 seq_printf(m, "\nQueue state:\n");
2710 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2711 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2712 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2714 pkt_count_states(pd, states);
2715 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2716 states[0], states[1], states[2], states[3], states[4], states[5]);
2718 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2719 pd->write_congestion_off,
2720 pd->write_congestion_on);
2721 return 0;
2724 static int pkt_seq_open(struct inode *inode, struct file *file)
2726 return single_open(file, pkt_seq_show, PDE(inode)->data);
2729 static const struct file_operations pkt_proc_fops = {
2730 .open = pkt_seq_open,
2731 .read = seq_read,
2732 .llseek = seq_lseek,
2733 .release = single_release
2736 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2738 int i;
2739 int ret = 0;
2740 char b[BDEVNAME_SIZE];
2741 struct proc_dir_entry *proc;
2742 struct block_device *bdev;
2744 if (pd->pkt_dev == dev) {
2745 printk(DRIVER_NAME": Recursive setup not allowed\n");
2746 return -EBUSY;
2748 for (i = 0; i < MAX_WRITERS; i++) {
2749 struct pktcdvd_device *pd2 = pkt_devs[i];
2750 if (!pd2)
2751 continue;
2752 if (pd2->bdev->bd_dev == dev) {
2753 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2754 return -EBUSY;
2756 if (pd2->pkt_dev == dev) {
2757 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2758 return -EBUSY;
2762 bdev = bdget(dev);
2763 if (!bdev)
2764 return -ENOMEM;
2765 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2766 if (ret)
2767 return ret;
2769 /* This is safe, since we have a reference from open(). */
2770 __module_get(THIS_MODULE);
2772 pd->bdev = bdev;
2773 set_blocksize(bdev, CD_FRAMESIZE);
2775 pkt_init_queue(pd);
2777 atomic_set(&pd->cdrw.pending_bios, 0);
2778 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2779 if (IS_ERR(pd->cdrw.thread)) {
2780 printk(DRIVER_NAME": can't start kernel thread\n");
2781 ret = -ENOMEM;
2782 goto out_mem;
2785 proc = create_proc_entry(pd->name, 0, pkt_proc);
2786 if (proc) {
2787 proc->data = pd;
2788 proc->proc_fops = &pkt_proc_fops;
2790 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2791 return 0;
2793 out_mem:
2794 blkdev_put(bdev);
2795 /* This is safe: open() is still holding a reference. */
2796 module_put(THIS_MODULE);
2797 return ret;
2800 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2802 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2804 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2806 switch (cmd) {
2808 * forward selected CDROM ioctls to CD-ROM, for UDF
2810 case CDROMMULTISESSION:
2811 case CDROMREADTOCENTRY:
2812 case CDROM_LAST_WRITTEN:
2813 case CDROM_SEND_PACKET:
2814 case SCSI_IOCTL_SEND_COMMAND:
2815 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2817 case CDROMEJECT:
2819 * The door gets locked when the device is opened, so we
2820 * have to unlock it or else the eject command fails.
2822 if (pd->refcnt == 1)
2823 pkt_lock_door(pd, 0);
2824 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2826 default:
2827 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2828 return -ENOTTY;
2831 return 0;
2834 static int pkt_media_changed(struct gendisk *disk)
2836 struct pktcdvd_device *pd = disk->private_data;
2837 struct gendisk *attached_disk;
2839 if (!pd)
2840 return 0;
2841 if (!pd->bdev)
2842 return 0;
2843 attached_disk = pd->bdev->bd_disk;
2844 if (!attached_disk)
2845 return 0;
2846 return attached_disk->fops->media_changed(attached_disk);
2849 static struct block_device_operations pktcdvd_ops = {
2850 .owner = THIS_MODULE,
2851 .open = pkt_open,
2852 .release = pkt_close,
2853 .ioctl = pkt_ioctl,
2854 .media_changed = pkt_media_changed,
2858 * Set up mapping from pktcdvd device to CD-ROM device.
2860 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2862 int idx;
2863 int ret = -ENOMEM;
2864 struct pktcdvd_device *pd;
2865 struct gendisk *disk;
2867 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2869 for (idx = 0; idx < MAX_WRITERS; idx++)
2870 if (!pkt_devs[idx])
2871 break;
2872 if (idx == MAX_WRITERS) {
2873 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2874 ret = -EBUSY;
2875 goto out_mutex;
2878 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2879 if (!pd)
2880 goto out_mutex;
2882 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2883 sizeof(struct pkt_rb_node));
2884 if (!pd->rb_pool)
2885 goto out_mem;
2887 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2888 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2889 spin_lock_init(&pd->cdrw.active_list_lock);
2891 spin_lock_init(&pd->lock);
2892 spin_lock_init(&pd->iosched.lock);
2893 sprintf(pd->name, DRIVER_NAME"%d", idx);
2894 init_waitqueue_head(&pd->wqueue);
2895 pd->bio_queue = RB_ROOT;
2897 pd->write_congestion_on = write_congestion_on;
2898 pd->write_congestion_off = write_congestion_off;
2900 disk = alloc_disk(1);
2901 if (!disk)
2902 goto out_mem;
2903 pd->disk = disk;
2904 disk->major = pktdev_major;
2905 disk->first_minor = idx;
2906 disk->fops = &pktcdvd_ops;
2907 disk->flags = GENHD_FL_REMOVABLE;
2908 strcpy(disk->disk_name, pd->name);
2909 disk->private_data = pd;
2910 disk->queue = blk_alloc_queue(GFP_KERNEL);
2911 if (!disk->queue)
2912 goto out_mem2;
2914 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2915 ret = pkt_new_dev(pd, dev);
2916 if (ret)
2917 goto out_new_dev;
2919 add_disk(disk);
2921 pkt_sysfs_dev_new(pd);
2922 pkt_debugfs_dev_new(pd);
2924 pkt_devs[idx] = pd;
2925 if (pkt_dev)
2926 *pkt_dev = pd->pkt_dev;
2928 mutex_unlock(&ctl_mutex);
2929 return 0;
2931 out_new_dev:
2932 blk_cleanup_queue(disk->queue);
2933 out_mem2:
2934 put_disk(disk);
2935 out_mem:
2936 if (pd->rb_pool)
2937 mempool_destroy(pd->rb_pool);
2938 kfree(pd);
2939 out_mutex:
2940 mutex_unlock(&ctl_mutex);
2941 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2942 return ret;
2946 * Tear down mapping from pktcdvd device to CD-ROM device.
2948 static int pkt_remove_dev(dev_t pkt_dev)
2950 struct pktcdvd_device *pd;
2951 int idx;
2952 int ret = 0;
2954 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2956 for (idx = 0; idx < MAX_WRITERS; idx++) {
2957 pd = pkt_devs[idx];
2958 if (pd && (pd->pkt_dev == pkt_dev))
2959 break;
2961 if (idx == MAX_WRITERS) {
2962 DPRINTK(DRIVER_NAME": dev not setup\n");
2963 ret = -ENXIO;
2964 goto out;
2967 if (pd->refcnt > 0) {
2968 ret = -EBUSY;
2969 goto out;
2971 if (!IS_ERR(pd->cdrw.thread))
2972 kthread_stop(pd->cdrw.thread);
2974 pkt_devs[idx] = NULL;
2976 pkt_debugfs_dev_remove(pd);
2977 pkt_sysfs_dev_remove(pd);
2979 blkdev_put(pd->bdev);
2981 remove_proc_entry(pd->name, pkt_proc);
2982 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2984 del_gendisk(pd->disk);
2985 blk_cleanup_queue(pd->disk->queue);
2986 put_disk(pd->disk);
2988 mempool_destroy(pd->rb_pool);
2989 kfree(pd);
2991 /* This is safe: open() is still holding a reference. */
2992 module_put(THIS_MODULE);
2994 out:
2995 mutex_unlock(&ctl_mutex);
2996 return ret;
2999 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
3001 struct pktcdvd_device *pd;
3003 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3005 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3006 if (pd) {
3007 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3008 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3009 } else {
3010 ctrl_cmd->dev = 0;
3011 ctrl_cmd->pkt_dev = 0;
3013 ctrl_cmd->num_devices = MAX_WRITERS;
3015 mutex_unlock(&ctl_mutex);
3018 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3020 void __user *argp = (void __user *)arg;
3021 struct pkt_ctrl_command ctrl_cmd;
3022 int ret = 0;
3023 dev_t pkt_dev = 0;
3025 if (cmd != PACKET_CTRL_CMD)
3026 return -ENOTTY;
3028 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3029 return -EFAULT;
3031 switch (ctrl_cmd.command) {
3032 case PKT_CTRL_CMD_SETUP:
3033 if (!capable(CAP_SYS_ADMIN))
3034 return -EPERM;
3035 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3036 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3037 break;
3038 case PKT_CTRL_CMD_TEARDOWN:
3039 if (!capable(CAP_SYS_ADMIN))
3040 return -EPERM;
3041 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3042 break;
3043 case PKT_CTRL_CMD_STATUS:
3044 pkt_get_status(&ctrl_cmd);
3045 break;
3046 default:
3047 return -ENOTTY;
3050 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3051 return -EFAULT;
3052 return ret;
3056 static const struct file_operations pkt_ctl_fops = {
3057 .ioctl = pkt_ctl_ioctl,
3058 .owner = THIS_MODULE,
3061 static struct miscdevice pkt_misc = {
3062 .minor = MISC_DYNAMIC_MINOR,
3063 .name = DRIVER_NAME,
3064 .fops = &pkt_ctl_fops
3067 static int __init pkt_init(void)
3069 int ret;
3071 mutex_init(&ctl_mutex);
3073 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3074 sizeof(struct packet_stacked_data));
3075 if (!psd_pool)
3076 return -ENOMEM;
3078 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3079 if (ret < 0) {
3080 printk(DRIVER_NAME": Unable to register block device\n");
3081 goto out2;
3083 if (!pktdev_major)
3084 pktdev_major = ret;
3086 ret = pkt_sysfs_init();
3087 if (ret)
3088 goto out;
3090 pkt_debugfs_init();
3092 ret = misc_register(&pkt_misc);
3093 if (ret) {
3094 printk(DRIVER_NAME": Unable to register misc device\n");
3095 goto out_misc;
3098 pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver);
3100 return 0;
3102 out_misc:
3103 pkt_debugfs_cleanup();
3104 pkt_sysfs_cleanup();
3105 out:
3106 unregister_blkdev(pktdev_major, DRIVER_NAME);
3107 out2:
3108 mempool_destroy(psd_pool);
3109 return ret;
3112 static void __exit pkt_exit(void)
3114 remove_proc_entry(DRIVER_NAME, proc_root_driver);
3115 misc_deregister(&pkt_misc);
3117 pkt_debugfs_cleanup();
3118 pkt_sysfs_cleanup();
3120 unregister_blkdev(pktdev_major, DRIVER_NAME);
3121 mempool_destroy(psd_pool);
3124 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3125 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3126 MODULE_LICENSE("GPL");
3128 module_init(pkt_init);
3129 module_exit(pkt_exit);