2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
11 * This driver is released to the public under the terms of the
12 * GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
20 * - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
22 * - incorporate into main kernel
23 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
24 * - use spin_lock_bh instead of _irq
25 * - Never block on make_request. queue
27 * - unregister umem from devfs at mod unload
28 * - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown - convert to bio for 2.5
32 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
33 * - a sequence of writes that cover the card, and
34 * - set initialised bit then.
37 //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
42 #include <linux/mman.h>
43 #include <linux/ioctl.h>
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/interrupt.h>
47 #include <linux/timer.h>
48 #include <linux/pci.h>
49 #include <linux/slab.h>
50 #include <linux/dma-mapping.h>
52 #include <linux/fcntl.h> /* O_ACCMODE */
53 #include <linux/hdreg.h> /* HDIO_GETGEO */
55 #include <linux/umem.h>
57 #include <asm/uaccess.h>
61 #define MM_RAHEAD 2 /* two sectors */
62 #define MM_BLKSIZE 1024 /* 1k blocks */
63 #define MM_HARDSECT 512 /* 512-byte hardware sectors */
64 #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
70 #define DRIVER_VERSION "v2.3"
71 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
72 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
75 /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
78 #define DEBUG_LED_ON_TRANSFER 0x01
79 #define DEBUG_BATTERY_POLLING 0x02
81 module_param(debug
, int, 0644);
82 MODULE_PARM_DESC(debug
, "Debug bitmask");
84 static int pci_read_cmd
= 0x0C; /* Read Multiple */
85 module_param(pci_read_cmd
, int, 0);
86 MODULE_PARM_DESC(pci_read_cmd
, "PCI read command");
88 static int pci_write_cmd
= 0x0F; /* Write and Invalidate */
89 module_param(pci_write_cmd
, int, 0);
90 MODULE_PARM_DESC(pci_write_cmd
, "PCI write command");
96 #include <linux/blkdev.h>
97 #include <linux/blkpg.h>
105 unsigned long csr_base
;
106 unsigned char __iomem
*csr_remap
;
107 unsigned long csr_len
;
108 #ifdef CONFIG_MM_MAP_MEMORY
109 unsigned long mem_base
;
110 unsigned char __iomem
*mem_remap
;
111 unsigned long mem_len
;
114 unsigned int win_size
; /* PCI window size */
115 unsigned int mm_size
; /* size in kbytes */
117 unsigned int init_size
; /* initial segment, in sectors,
121 struct bio
*bio
, *currentbio
, **biotail
;
123 request_queue_t
*queue
;
127 struct mm_dma_desc
*desc
;
129 struct bio
*bio
, **biotail
;
131 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
135 struct tasklet_struct tasklet
;
136 unsigned int dma_status
;
141 unsigned long last_change
;
150 static struct cardinfo cards
[MM_MAXCARDS
];
151 static struct block_device_operations mm_fops
;
152 static struct timer_list battery_timer
;
154 static int num_cards
= 0;
156 static struct gendisk
*mm_gendisk
[MM_MAXCARDS
];
158 static void check_batteries(struct cardinfo
*card
);
161 -----------------------------------------------------------------------------------
163 -----------------------------------------------------------------------------------
165 static int get_userbit(struct cardinfo
*card
, int bit
)
169 led
= readb(card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
173 -----------------------------------------------------------------------------------
175 -----------------------------------------------------------------------------------
177 static int set_userbit(struct cardinfo
*card
, int bit
, unsigned char state
)
181 led
= readb(card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
186 writeb(led
, card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
191 -----------------------------------------------------------------------------------
193 -----------------------------------------------------------------------------------
196 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
198 static void set_led(struct cardinfo
*card
, int shift
, unsigned char state
)
202 led
= readb(card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
203 if (state
== LED_FLIP
)
206 led
&= ~(0x03 << shift
);
207 led
|= (state
<< shift
);
209 writeb(led
, card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
215 -----------------------------------------------------------------------------------
217 -----------------------------------------------------------------------------------
219 static void dump_regs(struct cardinfo
*card
)
225 for (i
= 0; i
< 8; i
++) {
226 printk(KERN_DEBUG
"%p ", p
);
228 for (i1
= 0; i1
< 16; i1
++)
229 printk("%02x ", *p
++);
236 -----------------------------------------------------------------------------------
238 -----------------------------------------------------------------------------------
240 static void dump_dmastat(struct cardinfo
*card
, unsigned int dmastat
)
242 printk(KERN_DEBUG
"MM%d*: DMAstat - ", card
->card_number
);
243 if (dmastat
& DMASCR_ANY_ERR
)
245 if (dmastat
& DMASCR_MBE_ERR
)
247 if (dmastat
& DMASCR_PARITY_ERR_REP
)
248 printk("PARITY_ERR_REP ");
249 if (dmastat
& DMASCR_PARITY_ERR_DET
)
250 printk("PARITY_ERR_DET ");
251 if (dmastat
& DMASCR_SYSTEM_ERR_SIG
)
252 printk("SYSTEM_ERR_SIG ");
253 if (dmastat
& DMASCR_TARGET_ABT
)
254 printk("TARGET_ABT ");
255 if (dmastat
& DMASCR_MASTER_ABT
)
256 printk("MASTER_ABT ");
257 if (dmastat
& DMASCR_CHAIN_COMPLETE
)
258 printk("CHAIN_COMPLETE ");
259 if (dmastat
& DMASCR_DMA_COMPLETE
)
260 printk("DMA_COMPLETE ");
265 * Theory of request handling
267 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
268 * We have two pages of mm_dma_desc, holding about 64 descriptors
269 * each. These are allocated at init time.
270 * One page is "Ready" and is either full, or can have request added.
271 * The other page might be "Active", which DMA is happening on it.
273 * Whenever IO on the active page completes, the Ready page is activated
274 * and the ex-Active page is clean out and made Ready.
275 * Otherwise the Ready page is only activated when it becomes full, or
276 * when mm_unplug_device is called via the unplug_io_fn.
278 * If a request arrives while both pages a full, it is queued, and b_rdev is
279 * overloaded to record whether it was a read or a write.
281 * The interrupt handler only polls the device to clear the interrupt.
282 * The processing of the result is done in a tasklet.
285 static void mm_start_io(struct cardinfo
*card
)
287 /* we have the lock, we know there is
288 * no IO active, and we know that card->Active
291 struct mm_dma_desc
*desc
;
292 struct mm_page
*page
;
295 /* make the last descriptor end the chain */
296 page
= &card
->mm_pages
[card
->Active
];
297 pr_debug("start_io: %d %d->%d\n", card
->Active
, page
->headcnt
, page
->cnt
-1);
298 desc
= &page
->desc
[page
->cnt
-1];
300 desc
->control_bits
|= cpu_to_le32(DMASCR_CHAIN_COMP_EN
);
301 desc
->control_bits
&= ~cpu_to_le32(DMASCR_CHAIN_EN
);
302 desc
->sem_control_bits
= desc
->control_bits
;
305 if (debug
& DEBUG_LED_ON_TRANSFER
)
306 set_led(card
, LED_REMOVE
, LED_ON
);
308 desc
= &page
->desc
[page
->headcnt
];
309 writel(0, card
->csr_remap
+ DMA_PCI_ADDR
);
310 writel(0, card
->csr_remap
+ DMA_PCI_ADDR
+ 4);
312 writel(0, card
->csr_remap
+ DMA_LOCAL_ADDR
);
313 writel(0, card
->csr_remap
+ DMA_LOCAL_ADDR
+ 4);
315 writel(0, card
->csr_remap
+ DMA_TRANSFER_SIZE
);
316 writel(0, card
->csr_remap
+ DMA_TRANSFER_SIZE
+ 4);
318 writel(0, card
->csr_remap
+ DMA_SEMAPHORE_ADDR
);
319 writel(0, card
->csr_remap
+ DMA_SEMAPHORE_ADDR
+ 4);
321 offset
= ((char*)desc
) - ((char*)page
->desc
);
322 writel(cpu_to_le32((page
->page_dma
+offset
)&0xffffffff),
323 card
->csr_remap
+ DMA_DESCRIPTOR_ADDR
);
324 /* Force the value to u64 before shifting otherwise >> 32 is undefined C
325 * and on some ports will do nothing ! */
326 writel(cpu_to_le32(((u64
)page
->page_dma
)>>32),
327 card
->csr_remap
+ DMA_DESCRIPTOR_ADDR
+ 4);
330 writel(cpu_to_le32(DMASCR_GO
| DMASCR_CHAIN_EN
| pci_cmds
),
331 card
->csr_remap
+ DMA_STATUS_CTRL
);
334 static int add_bio(struct cardinfo
*card
);
336 static void activate(struct cardinfo
*card
)
338 /* if No page is Active, and Ready is
339 * not empty, then switch Ready page
340 * to active and start IO.
341 * Then add any bh's that are available to Ready
345 while (add_bio(card
))
348 if (card
->Active
== -1 &&
349 card
->mm_pages
[card
->Ready
].cnt
> 0) {
350 card
->Active
= card
->Ready
;
351 card
->Ready
= 1-card
->Ready
;
355 } while (card
->Active
== -1 && add_bio(card
));
358 static inline void reset_page(struct mm_page
*page
)
363 page
->biotail
= & page
->bio
;
366 static void mm_unplug_device(request_queue_t
*q
)
368 struct cardinfo
*card
= q
->queuedata
;
371 spin_lock_irqsave(&card
->lock
, flags
);
372 if (blk_remove_plug(q
))
374 spin_unlock_irqrestore(&card
->lock
, flags
);
378 * If there is room on Ready page, take
379 * one bh off list and add it.
380 * return 1 if there was room, else 0.
382 static int add_bio(struct cardinfo
*card
)
385 struct mm_dma_desc
*desc
;
386 dma_addr_t dma_handle
;
392 bio
= card
->currentbio
;
393 if (!bio
&& card
->bio
) {
394 card
->currentbio
= card
->bio
;
395 card
->bio
= card
->bio
->bi_next
;
396 if (card
->bio
== NULL
)
397 card
->biotail
= &card
->bio
;
398 card
->currentbio
->bi_next
= NULL
;
405 if (card
->mm_pages
[card
->Ready
].cnt
>= DESC_PER_PAGE
)
408 len
= bio_iovec(bio
)->bv_len
;
409 dma_handle
= pci_map_page(card
->dev
,
414 PCI_DMA_FROMDEVICE
: PCI_DMA_TODEVICE
);
416 p
= &card
->mm_pages
[card
->Ready
];
417 desc
= &p
->desc
[p
->cnt
];
419 if ((p
->biotail
) != &bio
->bi_next
) {
421 p
->biotail
= &(bio
->bi_next
);
425 desc
->data_dma_handle
= dma_handle
;
427 desc
->pci_addr
= cpu_to_le64((u64
)desc
->data_dma_handle
);
428 desc
->local_addr
= cpu_to_le64(bio
->bi_sector
<< 9);
429 desc
->transfer_size
= cpu_to_le32(len
);
430 offset
= ( ((char*)&desc
->sem_control_bits
) - ((char*)p
->desc
));
431 desc
->sem_addr
= cpu_to_le64((u64
)(p
->page_dma
+offset
));
432 desc
->zero1
= desc
->zero2
= 0;
433 offset
= ( ((char*)(desc
+1)) - ((char*)p
->desc
));
434 desc
->next_desc_addr
= cpu_to_le64(p
->page_dma
+offset
);
435 desc
->control_bits
= cpu_to_le32(DMASCR_GO
|DMASCR_ERR_INT_EN
|
436 DMASCR_PARITY_INT_EN
|
441 desc
->control_bits
|= cpu_to_le32(DMASCR_TRANSFER_READ
);
442 desc
->sem_control_bits
= desc
->control_bits
;
444 bio
->bi_sector
+= (len
>>9);
447 if (bio
->bi_idx
>= bio
->bi_vcnt
)
448 card
->currentbio
= NULL
;
453 static void process_page(unsigned long data
)
455 /* check if any of the requests in the page are DMA_COMPLETE,
456 * and deal with them appropriately.
457 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
458 * dma must have hit an error on that descriptor, so use dma_status instead
459 * and assume that all following descriptors must be re-tried.
461 struct mm_page
*page
;
462 struct bio
*return_bio
=NULL
;
463 struct cardinfo
*card
= (struct cardinfo
*)data
;
464 unsigned int dma_status
= card
->dma_status
;
466 spin_lock_bh(&card
->lock
);
467 if (card
->Active
< 0)
469 page
= &card
->mm_pages
[card
->Active
];
471 while (page
->headcnt
< page
->cnt
) {
472 struct bio
*bio
= page
->bio
;
473 struct mm_dma_desc
*desc
= &page
->desc
[page
->headcnt
];
474 int control
= le32_to_cpu(desc
->sem_control_bits
);
478 if (!(control
& DMASCR_DMA_COMPLETE
)) {
479 control
= dma_status
;
483 idx
= bio
->bi_phys_segments
;
484 bio
->bi_phys_segments
++;
485 if (bio
->bi_phys_segments
>= bio
->bi_vcnt
)
486 page
->bio
= bio
->bi_next
;
488 pci_unmap_page(card
->dev
, desc
->data_dma_handle
,
489 bio_iovec_idx(bio
,idx
)->bv_len
,
490 (control
& DMASCR_TRANSFER_READ
) ?
491 PCI_DMA_TODEVICE
: PCI_DMA_FROMDEVICE
);
492 if (control
& DMASCR_HARD_ERROR
) {
494 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
495 printk(KERN_WARNING
"MM%d: I/O error on sector %d/%d\n",
497 le32_to_cpu(desc
->local_addr
)>>9,
498 le32_to_cpu(desc
->transfer_size
));
499 dump_dmastat(card
, control
);
500 } else if (test_bit(BIO_RW
, &bio
->bi_rw
) &&
501 le32_to_cpu(desc
->local_addr
)>>9 == card
->init_size
) {
502 card
->init_size
+= le32_to_cpu(desc
->transfer_size
)>>9;
503 if (card
->init_size
>>1 >= card
->mm_size
) {
504 printk(KERN_INFO
"MM%d: memory now initialised\n",
506 set_userbit(card
, MEMORY_INITIALIZED
, 1);
509 if (bio
!= page
->bio
) {
510 bio
->bi_next
= return_bio
;
517 if (debug
& DEBUG_LED_ON_TRANSFER
)
518 set_led(card
, LED_REMOVE
, LED_OFF
);
520 if (card
->check_batteries
) {
521 card
->check_batteries
= 0;
522 check_batteries(card
);
524 if (page
->headcnt
>= page
->cnt
) {
529 /* haven't finished with this one yet */
530 pr_debug("do some more\n");
534 spin_unlock_bh(&card
->lock
);
537 struct bio
*bio
= return_bio
;
539 return_bio
= bio
->bi_next
;
541 bio_endio(bio
, bio
->bi_size
, 0);
546 -----------------------------------------------------------------------------------
548 -----------------------------------------------------------------------------------
550 static int mm_make_request(request_queue_t
*q
, struct bio
*bio
)
552 struct cardinfo
*card
= q
->queuedata
;
553 pr_debug("mm_make_request %llu %u\n",
554 (unsigned long long)bio
->bi_sector
, bio
->bi_size
);
556 bio
->bi_phys_segments
= bio
->bi_idx
; /* count of completed segments*/
557 spin_lock_irq(&card
->lock
);
558 *card
->biotail
= bio
;
560 card
->biotail
= &bio
->bi_next
;
562 spin_unlock_irq(&card
->lock
);
568 -----------------------------------------------------------------------------------
570 -----------------------------------------------------------------------------------
572 static irqreturn_t
mm_interrupt(int irq
, void *__card
)
574 struct cardinfo
*card
= (struct cardinfo
*) __card
;
575 unsigned int dma_status
;
576 unsigned short cfg_status
;
580 dma_status
= le32_to_cpu(readl(card
->csr_remap
+ DMA_STATUS_CTRL
));
582 if (!(dma_status
& (DMASCR_ERROR_MASK
| DMASCR_CHAIN_COMPLETE
))) {
583 /* interrupt wasn't for me ... */
587 /* clear COMPLETION interrupts */
588 if (card
->flags
& UM_FLAG_NO_BYTE_STATUS
)
589 writel(cpu_to_le32(DMASCR_DMA_COMPLETE
|DMASCR_CHAIN_COMPLETE
),
590 card
->csr_remap
+ DMA_STATUS_CTRL
);
592 writeb((DMASCR_DMA_COMPLETE
|DMASCR_CHAIN_COMPLETE
) >> 16,
593 card
->csr_remap
+ DMA_STATUS_CTRL
+ 2);
595 /* log errors and clear interrupt status */
596 if (dma_status
& DMASCR_ANY_ERR
) {
597 unsigned int data_log1
, data_log2
;
598 unsigned int addr_log1
, addr_log2
;
599 unsigned char stat
, count
, syndrome
, check
;
601 stat
= readb(card
->csr_remap
+ MEMCTRLCMD_ERRSTATUS
);
603 data_log1
= le32_to_cpu(readl(card
->csr_remap
+ ERROR_DATA_LOG
));
604 data_log2
= le32_to_cpu(readl(card
->csr_remap
+ ERROR_DATA_LOG
+ 4));
605 addr_log1
= le32_to_cpu(readl(card
->csr_remap
+ ERROR_ADDR_LOG
));
606 addr_log2
= readb(card
->csr_remap
+ ERROR_ADDR_LOG
+ 4);
608 count
= readb(card
->csr_remap
+ ERROR_COUNT
);
609 syndrome
= readb(card
->csr_remap
+ ERROR_SYNDROME
);
610 check
= readb(card
->csr_remap
+ ERROR_CHECK
);
612 dump_dmastat(card
, dma_status
);
615 printk(KERN_ERR
"MM%d*: Memory access error detected (err count %d)\n",
616 card
->card_number
, count
);
618 printk(KERN_ERR
"MM%d*: Multi-bit EDC error\n",
621 printk(KERN_ERR
"MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
622 card
->card_number
, addr_log2
, addr_log1
, data_log2
, data_log1
);
623 printk(KERN_ERR
"MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
624 card
->card_number
, check
, syndrome
);
626 writeb(0, card
->csr_remap
+ ERROR_COUNT
);
629 if (dma_status
& DMASCR_PARITY_ERR_REP
) {
630 printk(KERN_ERR
"MM%d*: PARITY ERROR REPORTED\n", card
->card_number
);
631 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
632 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
635 if (dma_status
& DMASCR_PARITY_ERR_DET
) {
636 printk(KERN_ERR
"MM%d*: PARITY ERROR DETECTED\n", card
->card_number
);
637 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
638 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
641 if (dma_status
& DMASCR_SYSTEM_ERR_SIG
) {
642 printk(KERN_ERR
"MM%d*: SYSTEM ERROR\n", card
->card_number
);
643 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
644 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
647 if (dma_status
& DMASCR_TARGET_ABT
) {
648 printk(KERN_ERR
"MM%d*: TARGET ABORT\n", card
->card_number
);
649 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
650 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
653 if (dma_status
& DMASCR_MASTER_ABT
) {
654 printk(KERN_ERR
"MM%d*: MASTER ABORT\n", card
->card_number
);
655 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
656 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
659 /* and process the DMA descriptors */
660 card
->dma_status
= dma_status
;
661 tasklet_schedule(&card
->tasklet
);
668 -----------------------------------------------------------------------------------
669 -- set_fault_to_battery_status
670 -----------------------------------------------------------------------------------
673 * If both batteries are good, no LED
674 * If either battery has been warned, solid LED
675 * If both batteries are bad, flash the LED quickly
676 * If either battery is bad, flash the LED semi quickly
678 static void set_fault_to_battery_status(struct cardinfo
*card
)
680 if (card
->battery
[0].good
&& card
->battery
[1].good
)
681 set_led(card
, LED_FAULT
, LED_OFF
);
682 else if (card
->battery
[0].warned
|| card
->battery
[1].warned
)
683 set_led(card
, LED_FAULT
, LED_ON
);
684 else if (!card
->battery
[0].good
&& !card
->battery
[1].good
)
685 set_led(card
, LED_FAULT
, LED_FLASH_7_0
);
687 set_led(card
, LED_FAULT
, LED_FLASH_3_5
);
690 static void init_battery_timer(void);
694 -----------------------------------------------------------------------------------
696 -----------------------------------------------------------------------------------
698 static int check_battery(struct cardinfo
*card
, int battery
, int status
)
700 if (status
!= card
->battery
[battery
].good
) {
701 card
->battery
[battery
].good
= !card
->battery
[battery
].good
;
702 card
->battery
[battery
].last_change
= jiffies
;
704 if (card
->battery
[battery
].good
) {
705 printk(KERN_ERR
"MM%d: Battery %d now good\n",
706 card
->card_number
, battery
+ 1);
707 card
->battery
[battery
].warned
= 0;
709 printk(KERN_ERR
"MM%d: Battery %d now FAILED\n",
710 card
->card_number
, battery
+ 1);
713 } else if (!card
->battery
[battery
].good
&&
714 !card
->battery
[battery
].warned
&&
715 time_after_eq(jiffies
, card
->battery
[battery
].last_change
+
716 (HZ
* 60 * 60 * 5))) {
717 printk(KERN_ERR
"MM%d: Battery %d still FAILED after 5 hours\n",
718 card
->card_number
, battery
+ 1);
719 card
->battery
[battery
].warned
= 1;
727 -----------------------------------------------------------------------------------
729 -----------------------------------------------------------------------------------
731 static void check_batteries(struct cardinfo
*card
)
733 /* NOTE: this must *never* be called while the card
734 * is doing (bus-to-card) DMA, or you will need the
737 unsigned char status
;
740 status
= readb(card
->csr_remap
+ MEMCTRLSTATUS_BATTERY
);
741 if (debug
& DEBUG_BATTERY_POLLING
)
742 printk(KERN_DEBUG
"MM%d: checking battery status, 1 = %s, 2 = %s\n",
744 (status
& BATTERY_1_FAILURE
) ? "FAILURE" : "OK",
745 (status
& BATTERY_2_FAILURE
) ? "FAILURE" : "OK");
747 ret1
= check_battery(card
, 0, !(status
& BATTERY_1_FAILURE
));
748 ret2
= check_battery(card
, 1, !(status
& BATTERY_2_FAILURE
));
751 set_fault_to_battery_status(card
);
754 static void check_all_batteries(unsigned long ptr
)
758 for (i
= 0; i
< num_cards
; i
++)
759 if (!(cards
[i
].flags
& UM_FLAG_NO_BATT
)) {
760 struct cardinfo
*card
= &cards
[i
];
761 spin_lock_bh(&card
->lock
);
762 if (card
->Active
>= 0)
763 card
->check_batteries
= 1;
765 check_batteries(card
);
766 spin_unlock_bh(&card
->lock
);
769 init_battery_timer();
772 -----------------------------------------------------------------------------------
773 -- init_battery_timer
774 -----------------------------------------------------------------------------------
776 static void init_battery_timer(void)
778 init_timer(&battery_timer
);
779 battery_timer
.function
= check_all_batteries
;
780 battery_timer
.expires
= jiffies
+ (HZ
* 60);
781 add_timer(&battery_timer
);
784 -----------------------------------------------------------------------------------
786 -----------------------------------------------------------------------------------
788 static void del_battery_timer(void)
790 del_timer(&battery_timer
);
793 -----------------------------------------------------------------------------------
795 -----------------------------------------------------------------------------------
798 * Note no locks taken out here. In a worst case scenario, we could drop
799 * a chunk of system memory. But that should never happen, since validation
800 * happens at open or mount time, when locks are held.
802 * That's crap, since doing that while some partitions are opened
803 * or mounted will give you really nasty results.
805 static int mm_revalidate(struct gendisk
*disk
)
807 struct cardinfo
*card
= disk
->private_data
;
808 set_capacity(disk
, card
->mm_size
<< 1);
812 static int mm_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
814 struct cardinfo
*card
= bdev
->bd_disk
->private_data
;
815 int size
= card
->mm_size
* (1024 / MM_HARDSECT
);
818 * get geometry: we have to fake one... trim the size to a
819 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
820 * whatever cylinders.
824 geo
->cylinders
= size
/ (geo
->heads
* geo
->sectors
);
829 -----------------------------------------------------------------------------------
831 -----------------------------------------------------------------------------------
832 Future support for removable devices
834 static int mm_check_change(struct gendisk
*disk
)
836 /* struct cardinfo *dev = disk->private_data; */
840 -----------------------------------------------------------------------------------
842 -----------------------------------------------------------------------------------
844 static struct block_device_operations mm_fops
= {
845 .owner
= THIS_MODULE
,
847 .revalidate_disk
= mm_revalidate
,
848 .media_changed
= mm_check_change
,
851 -----------------------------------------------------------------------------------
853 -----------------------------------------------------------------------------------
855 static int __devinit
mm_pci_probe(struct pci_dev
*dev
, const struct pci_device_id
*id
)
858 struct cardinfo
*card
= &cards
[num_cards
];
859 unsigned char mem_present
;
860 unsigned char batt_status
;
861 unsigned int saved_bar
, data
;
864 if (pci_enable_device(dev
) < 0)
867 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, 0xF8);
871 card
->card_number
= num_cards
;
873 card
->csr_base
= pci_resource_start(dev
, 0);
874 card
->csr_len
= pci_resource_len(dev
, 0);
875 #ifdef CONFIG_MM_MAP_MEMORY
876 card
->mem_base
= pci_resource_start(dev
, 1);
877 card
->mem_len
= pci_resource_len(dev
, 1);
880 printk(KERN_INFO
"Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
881 card
->card_number
, dev
->bus
->number
, dev
->devfn
);
883 if (pci_set_dma_mask(dev
, DMA_64BIT_MASK
) &&
884 pci_set_dma_mask(dev
, DMA_32BIT_MASK
)) {
885 printk(KERN_WARNING
"MM%d: NO suitable DMA found\n",num_cards
);
888 if (!request_mem_region(card
->csr_base
, card
->csr_len
, "Micro Memory")) {
889 printk(KERN_ERR
"MM%d: Unable to request memory region\n", card
->card_number
);
895 card
->csr_remap
= ioremap_nocache(card
->csr_base
, card
->csr_len
);
896 if (!card
->csr_remap
) {
897 printk(KERN_ERR
"MM%d: Unable to remap memory region\n", card
->card_number
);
900 goto failed_remap_csr
;
903 printk(KERN_INFO
"MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card
->card_number
,
904 card
->csr_base
, card
->csr_remap
, card
->csr_len
);
906 #ifdef CONFIG_MM_MAP_MEMORY
907 if (!request_mem_region(card
->mem_base
, card
->mem_len
, "Micro Memory")) {
908 printk(KERN_ERR
"MM%d: Unable to request memory region\n", card
->card_number
);
914 if (!(card
->mem_remap
= ioremap(card
->mem_base
, cards
->mem_len
))) {
915 printk(KERN_ERR
"MM%d: Unable to remap memory region\n", card
->card_number
);
918 goto failed_remap_mem
;
921 printk(KERN_INFO
"MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card
->card_number
,
922 card
->mem_base
, card
->mem_remap
, card
->mem_len
);
924 printk(KERN_INFO
"MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
927 switch(card
->dev
->device
) {
929 card
->flags
|= UM_FLAG_NO_BYTE_STATUS
| UM_FLAG_NO_BATTREG
;
934 card
->flags
|= UM_FLAG_NO_BYTE_STATUS
;
939 card
->flags
|= UM_FLAG_NO_BYTE_STATUS
| UM_FLAG_NO_BATTREG
| UM_FLAG_NO_BATT
;
944 magic_number
= 0x100;
948 if (readb(card
->csr_remap
+ MEMCTRLSTATUS_MAGIC
) != magic_number
) {
949 printk(KERN_ERR
"MM%d: Magic number invalid\n", card
->card_number
);
954 card
->mm_pages
[0].desc
= pci_alloc_consistent(card
->dev
,
956 &card
->mm_pages
[0].page_dma
);
957 card
->mm_pages
[1].desc
= pci_alloc_consistent(card
->dev
,
959 &card
->mm_pages
[1].page_dma
);
960 if (card
->mm_pages
[0].desc
== NULL
||
961 card
->mm_pages
[1].desc
== NULL
) {
962 printk(KERN_ERR
"MM%d: alloc failed\n", card
->card_number
);
965 reset_page(&card
->mm_pages
[0]);
966 reset_page(&card
->mm_pages
[1]);
967 card
->Ready
= 0; /* page 0 is ready */
968 card
->Active
= -1; /* no page is active */
970 card
->biotail
= &card
->bio
;
972 card
->queue
= blk_alloc_queue(GFP_KERNEL
);
976 blk_queue_make_request(card
->queue
, mm_make_request
);
977 card
->queue
->queuedata
= card
;
978 card
->queue
->unplug_fn
= mm_unplug_device
;
980 tasklet_init(&card
->tasklet
, process_page
, (unsigned long)card
);
982 card
->check_batteries
= 0;
984 mem_present
= readb(card
->csr_remap
+ MEMCTRLSTATUS_MEMORY
);
985 switch (mem_present
) {
987 card
->mm_size
= 1024 * 128;
990 card
->mm_size
= 1024 * 256;
993 card
->mm_size
= 1024 * 512;
996 card
->mm_size
= 1024 * 1024;
999 card
->mm_size
= 1024 * 2048;
1006 /* Clear the LED's we control */
1007 set_led(card
, LED_REMOVE
, LED_OFF
);
1008 set_led(card
, LED_FAULT
, LED_OFF
);
1010 batt_status
= readb(card
->csr_remap
+ MEMCTRLSTATUS_BATTERY
);
1012 card
->battery
[0].good
= !(batt_status
& BATTERY_1_FAILURE
);
1013 card
->battery
[1].good
= !(batt_status
& BATTERY_2_FAILURE
);
1014 card
->battery
[0].last_change
= card
->battery
[1].last_change
= jiffies
;
1016 if (card
->flags
& UM_FLAG_NO_BATT
)
1017 printk(KERN_INFO
"MM%d: Size %d KB\n",
1018 card
->card_number
, card
->mm_size
);
1020 printk(KERN_INFO
"MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
1021 card
->card_number
, card
->mm_size
,
1022 (batt_status
& BATTERY_1_DISABLED
? "Disabled" : "Enabled"),
1023 card
->battery
[0].good
? "OK" : "FAILURE",
1024 (batt_status
& BATTERY_2_DISABLED
? "Disabled" : "Enabled"),
1025 card
->battery
[1].good
? "OK" : "FAILURE");
1027 set_fault_to_battery_status(card
);
1030 pci_read_config_dword(dev
, PCI_BASE_ADDRESS_1
, &saved_bar
);
1032 pci_write_config_dword(dev
, PCI_BASE_ADDRESS_1
, data
);
1033 pci_read_config_dword(dev
, PCI_BASE_ADDRESS_1
, &data
);
1034 pci_write_config_dword(dev
, PCI_BASE_ADDRESS_1
, saved_bar
);
1039 card
->win_size
= data
;
1042 if (request_irq(dev
->irq
, mm_interrupt
, IRQF_SHARED
, "pci-umem", card
)) {
1043 printk(KERN_ERR
"MM%d: Unable to allocate IRQ\n", card
->card_number
);
1046 goto failed_req_irq
;
1049 card
->irq
= dev
->irq
;
1050 printk(KERN_INFO
"MM%d: Window size %d bytes, IRQ %d\n", card
->card_number
,
1051 card
->win_size
, card
->irq
);
1053 spin_lock_init(&card
->lock
);
1055 pci_set_drvdata(dev
, card
);
1057 if (pci_write_cmd
!= 0x0F) /* If not Memory Write & Invalidate */
1058 pci_write_cmd
= 0x07; /* then Memory Write command */
1060 if (pci_write_cmd
& 0x08) { /* use Memory Write and Invalidate */
1061 unsigned short cfg_command
;
1062 pci_read_config_word(dev
, PCI_COMMAND
, &cfg_command
);
1063 cfg_command
|= 0x10; /* Memory Write & Invalidate Enable */
1064 pci_write_config_word(dev
, PCI_COMMAND
, cfg_command
);
1066 pci_cmds
= (pci_read_cmd
<< 28) | (pci_write_cmd
<< 24);
1070 if (!get_userbit(card
, MEMORY_INITIALIZED
)) {
1071 printk(KERN_INFO
"MM%d: memory NOT initialized. Consider over-writing whole device.\n", card
->card_number
);
1072 card
->init_size
= 0;
1074 printk(KERN_INFO
"MM%d: memory already initialized\n", card
->card_number
);
1075 card
->init_size
= card
->mm_size
;
1079 writeb(EDC_STORE_CORRECT
, card
->csr_remap
+ MEMCTRLCMD_ERRCTRL
);
1085 if (card
->mm_pages
[0].desc
)
1086 pci_free_consistent(card
->dev
, PAGE_SIZE
*2,
1087 card
->mm_pages
[0].desc
,
1088 card
->mm_pages
[0].page_dma
);
1089 if (card
->mm_pages
[1].desc
)
1090 pci_free_consistent(card
->dev
, PAGE_SIZE
*2,
1091 card
->mm_pages
[1].desc
,
1092 card
->mm_pages
[1].page_dma
);
1094 #ifdef CONFIG_MM_MAP_MEMORY
1095 iounmap(card
->mem_remap
);
1097 release_mem_region(card
->mem_base
, card
->mem_len
);
1100 iounmap(card
->csr_remap
);
1102 release_mem_region(card
->csr_base
, card
->csr_len
);
1108 -----------------------------------------------------------------------------------
1110 -----------------------------------------------------------------------------------
1112 static void mm_pci_remove(struct pci_dev
*dev
)
1114 struct cardinfo
*card
= pci_get_drvdata(dev
);
1116 tasklet_kill(&card
->tasklet
);
1117 iounmap(card
->csr_remap
);
1118 release_mem_region(card
->csr_base
, card
->csr_len
);
1119 #ifdef CONFIG_MM_MAP_MEMORY
1120 iounmap(card
->mem_remap
);
1121 release_mem_region(card
->mem_base
, card
->mem_len
);
1123 free_irq(card
->irq
, card
);
1125 if (card
->mm_pages
[0].desc
)
1126 pci_free_consistent(card
->dev
, PAGE_SIZE
*2,
1127 card
->mm_pages
[0].desc
,
1128 card
->mm_pages
[0].page_dma
);
1129 if (card
->mm_pages
[1].desc
)
1130 pci_free_consistent(card
->dev
, PAGE_SIZE
*2,
1131 card
->mm_pages
[1].desc
,
1132 card
->mm_pages
[1].page_dma
);
1133 blk_cleanup_queue(card
->queue
);
1136 static const struct pci_device_id mm_pci_ids
[] = { {
1137 .vendor
= PCI_VENDOR_ID_MICRO_MEMORY
,
1138 .device
= PCI_DEVICE_ID_MICRO_MEMORY_5415CN
,
1140 .vendor
= PCI_VENDOR_ID_MICRO_MEMORY
,
1141 .device
= PCI_DEVICE_ID_MICRO_MEMORY_5425CN
,
1143 .vendor
= PCI_VENDOR_ID_MICRO_MEMORY
,
1144 .device
= PCI_DEVICE_ID_MICRO_MEMORY_6155
,
1152 }, { /* end: all zeroes */ }
1155 MODULE_DEVICE_TABLE(pci
, mm_pci_ids
);
1157 static struct pci_driver mm_pci_driver
= {
1159 .id_table
= mm_pci_ids
,
1160 .probe
= mm_pci_probe
,
1161 .remove
= mm_pci_remove
,
1164 -----------------------------------------------------------------------------------
1166 -----------------------------------------------------------------------------------
1169 static int __init
mm_init(void)
1174 printk(KERN_INFO DRIVER_VERSION
" : " DRIVER_DESC
"\n");
1176 retval
= pci_register_driver(&mm_pci_driver
);
1180 err
= major_nr
= register_blkdev(0, "umem");
1182 pci_unregister_driver(&mm_pci_driver
);
1186 for (i
= 0; i
< num_cards
; i
++) {
1187 mm_gendisk
[i
] = alloc_disk(1 << MM_SHIFT
);
1192 for (i
= 0; i
< num_cards
; i
++) {
1193 struct gendisk
*disk
= mm_gendisk
[i
];
1194 sprintf(disk
->disk_name
, "umem%c", 'a'+i
);
1195 spin_lock_init(&cards
[i
].lock
);
1196 disk
->major
= major_nr
;
1197 disk
->first_minor
= i
<< MM_SHIFT
;
1198 disk
->fops
= &mm_fops
;
1199 disk
->private_data
= &cards
[i
];
1200 disk
->queue
= cards
[i
].queue
;
1201 set_capacity(disk
, cards
[i
].mm_size
<< 1);
1205 init_battery_timer();
1206 printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE
);
1207 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1211 pci_unregister_driver(&mm_pci_driver
);
1212 unregister_blkdev(major_nr
, "umem");
1214 put_disk(mm_gendisk
[i
]);
1218 -----------------------------------------------------------------------------------
1220 -----------------------------------------------------------------------------------
1222 static void __exit
mm_cleanup(void)
1226 del_battery_timer();
1228 for (i
=0; i
< num_cards
; i
++) {
1229 del_gendisk(mm_gendisk
[i
]);
1230 put_disk(mm_gendisk
[i
]);
1233 pci_unregister_driver(&mm_pci_driver
);
1235 unregister_blkdev(major_nr
, "umem");
1238 module_init(mm_init
);
1239 module_exit(mm_cleanup
);
1241 MODULE_AUTHOR(DRIVER_AUTHOR
);
1242 MODULE_DESCRIPTION(DRIVER_DESC
);
1243 MODULE_LICENSE("GPL");