2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <linux/magic.h>
24 #include <asm/processor.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <asm/uaccess.h>
32 #include <linux/reboot.h>
34 #include <linux/debugfs.h>
35 #include <linux/highmem.h>
36 #include <linux/file.h>
38 #include <linux/sysdev.h>
39 #include <linux/cpu.h>
40 #include <linux/file.h>
42 #include <linux/mount.h>
44 #include "x86_emulate.h"
45 #include "segment_descriptor.h"
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static DEFINE_SPINLOCK(kvm_lock
);
51 static LIST_HEAD(vm_list
);
53 struct kvm_arch_ops
*kvm_arch_ops
;
55 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
57 static struct kvm_stats_debugfs_item
{
60 struct dentry
*dentry
;
61 } debugfs_entries
[] = {
62 { "pf_fixed", STAT_OFFSET(pf_fixed
) },
63 { "pf_guest", STAT_OFFSET(pf_guest
) },
64 { "tlb_flush", STAT_OFFSET(tlb_flush
) },
65 { "invlpg", STAT_OFFSET(invlpg
) },
66 { "exits", STAT_OFFSET(exits
) },
67 { "io_exits", STAT_OFFSET(io_exits
) },
68 { "mmio_exits", STAT_OFFSET(mmio_exits
) },
69 { "signal_exits", STAT_OFFSET(signal_exits
) },
70 { "irq_window", STAT_OFFSET(irq_window_exits
) },
71 { "halt_exits", STAT_OFFSET(halt_exits
) },
72 { "request_irq", STAT_OFFSET(request_irq_exits
) },
73 { "irq_exits", STAT_OFFSET(irq_exits
) },
77 static struct dentry
*debugfs_dir
;
79 struct vfsmount
*kvmfs_mnt
;
81 #define MAX_IO_MSRS 256
83 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
84 #define LMSW_GUEST_MASK 0x0eULL
85 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
86 #define CR8_RESEVED_BITS (~0x0fULL)
87 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
90 // LDT or TSS descriptor in the GDT. 16 bytes.
91 struct segment_descriptor_64
{
92 struct segment_descriptor s
;
99 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
102 static struct inode
*kvmfs_inode(struct file_operations
*fops
)
105 struct inode
*inode
= new_inode(kvmfs_mnt
->mnt_sb
);
113 * Mark the inode dirty from the very beginning,
114 * that way it will never be moved to the dirty
115 * list because mark_inode_dirty() will think
116 * that it already _is_ on the dirty list.
118 inode
->i_state
= I_DIRTY
;
119 inode
->i_mode
= S_IRUSR
| S_IWUSR
;
120 inode
->i_uid
= current
->fsuid
;
121 inode
->i_gid
= current
->fsgid
;
122 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
126 return ERR_PTR(error
);
129 static struct file
*kvmfs_file(struct inode
*inode
, void *private_data
)
131 struct file
*file
= get_empty_filp();
134 return ERR_PTR(-ENFILE
);
136 file
->f_path
.mnt
= mntget(kvmfs_mnt
);
137 file
->f_path
.dentry
= d_alloc_anon(inode
);
138 if (!file
->f_path
.dentry
)
139 return ERR_PTR(-ENOMEM
);
140 file
->f_mapping
= inode
->i_mapping
;
143 file
->f_flags
= O_RDWR
;
144 file
->f_op
= inode
->i_fop
;
145 file
->f_mode
= FMODE_READ
| FMODE_WRITE
;
147 file
->private_data
= private_data
;
151 unsigned long segment_base(u16 selector
)
153 struct descriptor_table gdt
;
154 struct segment_descriptor
*d
;
155 unsigned long table_base
;
156 typedef unsigned long ul
;
162 asm ("sgdt %0" : "=m"(gdt
));
163 table_base
= gdt
.base
;
165 if (selector
& 4) { /* from ldt */
168 asm ("sldt %0" : "=g"(ldt_selector
));
169 table_base
= segment_base(ldt_selector
);
171 d
= (struct segment_descriptor
*)(table_base
+ (selector
& ~7));
172 v
= d
->base_low
| ((ul
)d
->base_mid
<< 16) | ((ul
)d
->base_high
<< 24);
175 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
176 v
|= ((ul
)((struct segment_descriptor_64
*)d
)->base_higher
) << 32;
180 EXPORT_SYMBOL_GPL(segment_base
);
182 static inline int valid_vcpu(int n
)
184 return likely(n
>= 0 && n
< KVM_MAX_VCPUS
);
187 int kvm_read_guest(struct kvm_vcpu
*vcpu
, gva_t addr
, unsigned long size
,
190 unsigned char *host_buf
= dest
;
191 unsigned long req_size
= size
;
199 paddr
= gva_to_hpa(vcpu
, addr
);
201 if (is_error_hpa(paddr
))
204 guest_buf
= (hva_t
)kmap_atomic(
205 pfn_to_page(paddr
>> PAGE_SHIFT
),
207 offset
= addr
& ~PAGE_MASK
;
209 now
= min(size
, PAGE_SIZE
- offset
);
210 memcpy(host_buf
, (void*)guest_buf
, now
);
214 kunmap_atomic((void *)(guest_buf
& PAGE_MASK
), KM_USER0
);
216 return req_size
- size
;
218 EXPORT_SYMBOL_GPL(kvm_read_guest
);
220 int kvm_write_guest(struct kvm_vcpu
*vcpu
, gva_t addr
, unsigned long size
,
223 unsigned char *host_buf
= data
;
224 unsigned long req_size
= size
;
233 paddr
= gva_to_hpa(vcpu
, addr
);
235 if (is_error_hpa(paddr
))
238 gfn
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
) >> PAGE_SHIFT
;
239 mark_page_dirty(vcpu
->kvm
, gfn
);
240 guest_buf
= (hva_t
)kmap_atomic(
241 pfn_to_page(paddr
>> PAGE_SHIFT
), KM_USER0
);
242 offset
= addr
& ~PAGE_MASK
;
244 now
= min(size
, PAGE_SIZE
- offset
);
245 memcpy((void*)guest_buf
, host_buf
, now
);
249 kunmap_atomic((void *)(guest_buf
& PAGE_MASK
), KM_USER0
);
251 return req_size
- size
;
253 EXPORT_SYMBOL_GPL(kvm_write_guest
);
256 * Switches to specified vcpu, until a matching vcpu_put()
258 static void vcpu_load(struct kvm_vcpu
*vcpu
)
260 mutex_lock(&vcpu
->mutex
);
261 kvm_arch_ops
->vcpu_load(vcpu
);
265 * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
266 * if the slot is not populated.
268 static struct kvm_vcpu
*vcpu_load_slot(struct kvm
*kvm
, int slot
)
270 struct kvm_vcpu
*vcpu
= &kvm
->vcpus
[slot
];
272 mutex_lock(&vcpu
->mutex
);
274 mutex_unlock(&vcpu
->mutex
);
277 kvm_arch_ops
->vcpu_load(vcpu
);
281 static void vcpu_put(struct kvm_vcpu
*vcpu
)
283 kvm_arch_ops
->vcpu_put(vcpu
);
284 mutex_unlock(&vcpu
->mutex
);
287 static struct kvm
*kvm_create_vm(void)
289 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
293 return ERR_PTR(-ENOMEM
);
295 spin_lock_init(&kvm
->lock
);
296 INIT_LIST_HEAD(&kvm
->active_mmu_pages
);
297 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
298 struct kvm_vcpu
*vcpu
= &kvm
->vcpus
[i
];
300 mutex_init(&vcpu
->mutex
);
303 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
304 INIT_LIST_HEAD(&vcpu
->free_pages
);
305 spin_lock(&kvm_lock
);
306 list_add(&kvm
->vm_list
, &vm_list
);
307 spin_unlock(&kvm_lock
);
312 static int kvm_dev_open(struct inode
*inode
, struct file
*filp
)
318 * Free any memory in @free but not in @dont.
320 static void kvm_free_physmem_slot(struct kvm_memory_slot
*free
,
321 struct kvm_memory_slot
*dont
)
325 if (!dont
|| free
->phys_mem
!= dont
->phys_mem
)
326 if (free
->phys_mem
) {
327 for (i
= 0; i
< free
->npages
; ++i
)
328 if (free
->phys_mem
[i
])
329 __free_page(free
->phys_mem
[i
]);
330 vfree(free
->phys_mem
);
333 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
334 vfree(free
->dirty_bitmap
);
336 free
->phys_mem
= NULL
;
338 free
->dirty_bitmap
= NULL
;
341 static void kvm_free_physmem(struct kvm
*kvm
)
345 for (i
= 0; i
< kvm
->nmemslots
; ++i
)
346 kvm_free_physmem_slot(&kvm
->memslots
[i
], NULL
);
349 static void free_pio_guest_pages(struct kvm_vcpu
*vcpu
)
353 for (i
= 0; i
< 2; ++i
)
354 if (vcpu
->pio
.guest_pages
[i
]) {
355 __free_page(vcpu
->pio
.guest_pages
[i
]);
356 vcpu
->pio
.guest_pages
[i
] = NULL
;
360 static void kvm_free_vcpu(struct kvm_vcpu
*vcpu
)
366 kvm_mmu_destroy(vcpu
);
368 kvm_arch_ops
->vcpu_free(vcpu
);
369 free_page((unsigned long)vcpu
->run
);
371 free_page((unsigned long)vcpu
->pio_data
);
372 vcpu
->pio_data
= NULL
;
373 free_pio_guest_pages(vcpu
);
376 static void kvm_free_vcpus(struct kvm
*kvm
)
380 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
381 kvm_free_vcpu(&kvm
->vcpus
[i
]);
384 static int kvm_dev_release(struct inode
*inode
, struct file
*filp
)
389 static void kvm_destroy_vm(struct kvm
*kvm
)
391 spin_lock(&kvm_lock
);
392 list_del(&kvm
->vm_list
);
393 spin_unlock(&kvm_lock
);
395 kvm_free_physmem(kvm
);
399 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
401 struct kvm
*kvm
= filp
->private_data
;
407 static void inject_gp(struct kvm_vcpu
*vcpu
)
409 kvm_arch_ops
->inject_gp(vcpu
, 0);
413 * Load the pae pdptrs. Return true is they are all valid.
415 static int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
417 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
418 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
425 spin_lock(&vcpu
->kvm
->lock
);
426 page
= gfn_to_page(vcpu
->kvm
, pdpt_gfn
);
427 /* FIXME: !page - emulate? 0xff? */
428 pdpt
= kmap_atomic(page
, KM_USER0
);
431 for (i
= 0; i
< 4; ++i
) {
432 pdpte
= pdpt
[offset
+ i
];
433 if ((pdpte
& 1) && (pdpte
& 0xfffffff0000001e6ull
)) {
439 for (i
= 0; i
< 4; ++i
)
440 vcpu
->pdptrs
[i
] = pdpt
[offset
+ i
];
443 kunmap_atomic(pdpt
, KM_USER0
);
444 spin_unlock(&vcpu
->kvm
->lock
);
449 void set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
451 if (cr0
& CR0_RESEVED_BITS
) {
452 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
458 if ((cr0
& CR0_NW_MASK
) && !(cr0
& CR0_CD_MASK
)) {
459 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
464 if ((cr0
& CR0_PG_MASK
) && !(cr0
& CR0_PE_MASK
)) {
465 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
466 "and a clear PE flag\n");
471 if (!is_paging(vcpu
) && (cr0
& CR0_PG_MASK
)) {
473 if ((vcpu
->shadow_efer
& EFER_LME
)) {
477 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
478 "in long mode while PAE is disabled\n");
482 kvm_arch_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
484 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
485 "in long mode while CS.L == 1\n");
492 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->cr3
)) {
493 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
501 kvm_arch_ops
->set_cr0(vcpu
, cr0
);
504 spin_lock(&vcpu
->kvm
->lock
);
505 kvm_mmu_reset_context(vcpu
);
506 spin_unlock(&vcpu
->kvm
->lock
);
509 EXPORT_SYMBOL_GPL(set_cr0
);
511 void lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
513 set_cr0(vcpu
, (vcpu
->cr0
& ~0x0ful
) | (msw
& 0x0f));
515 EXPORT_SYMBOL_GPL(lmsw
);
517 void set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
519 if (cr4
& CR4_RESEVED_BITS
) {
520 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
525 if (is_long_mode(vcpu
)) {
526 if (!(cr4
& CR4_PAE_MASK
)) {
527 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
532 } else if (is_paging(vcpu
) && !is_pae(vcpu
) && (cr4
& CR4_PAE_MASK
)
533 && !load_pdptrs(vcpu
, vcpu
->cr3
)) {
534 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
538 if (cr4
& CR4_VMXE_MASK
) {
539 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
543 kvm_arch_ops
->set_cr4(vcpu
, cr4
);
544 spin_lock(&vcpu
->kvm
->lock
);
545 kvm_mmu_reset_context(vcpu
);
546 spin_unlock(&vcpu
->kvm
->lock
);
548 EXPORT_SYMBOL_GPL(set_cr4
);
550 void set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
552 if (is_long_mode(vcpu
)) {
553 if (cr3
& CR3_L_MODE_RESEVED_BITS
) {
554 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
559 if (cr3
& CR3_RESEVED_BITS
) {
560 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
564 if (is_paging(vcpu
) && is_pae(vcpu
) &&
565 !load_pdptrs(vcpu
, cr3
)) {
566 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
574 spin_lock(&vcpu
->kvm
->lock
);
576 * Does the new cr3 value map to physical memory? (Note, we
577 * catch an invalid cr3 even in real-mode, because it would
578 * cause trouble later on when we turn on paging anyway.)
580 * A real CPU would silently accept an invalid cr3 and would
581 * attempt to use it - with largely undefined (and often hard
582 * to debug) behavior on the guest side.
584 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
587 vcpu
->mmu
.new_cr3(vcpu
);
588 spin_unlock(&vcpu
->kvm
->lock
);
590 EXPORT_SYMBOL_GPL(set_cr3
);
592 void set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
594 if ( cr8
& CR8_RESEVED_BITS
) {
595 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
601 EXPORT_SYMBOL_GPL(set_cr8
);
603 void fx_init(struct kvm_vcpu
*vcpu
)
605 struct __attribute__ ((__packed__
)) fx_image_s
{
611 u64 operand
;// fpu dp
617 fx_save(vcpu
->host_fx_image
);
619 fx_save(vcpu
->guest_fx_image
);
620 fx_restore(vcpu
->host_fx_image
);
622 fx_image
= (struct fx_image_s
*)vcpu
->guest_fx_image
;
623 fx_image
->mxcsr
= 0x1f80;
624 memset(vcpu
->guest_fx_image
+ sizeof(struct fx_image_s
),
625 0, FX_IMAGE_SIZE
- sizeof(struct fx_image_s
));
627 EXPORT_SYMBOL_GPL(fx_init
);
629 static void do_remove_write_access(struct kvm_vcpu
*vcpu
, int slot
)
631 spin_lock(&vcpu
->kvm
->lock
);
632 kvm_mmu_slot_remove_write_access(vcpu
, slot
);
633 spin_unlock(&vcpu
->kvm
->lock
);
637 * Allocate some memory and give it an address in the guest physical address
640 * Discontiguous memory is allowed, mostly for framebuffers.
642 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
643 struct kvm_memory_region
*mem
)
647 unsigned long npages
;
649 struct kvm_memory_slot
*memslot
;
650 struct kvm_memory_slot old
, new;
651 int memory_config_version
;
654 /* General sanity checks */
655 if (mem
->memory_size
& (PAGE_SIZE
- 1))
657 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
659 if (mem
->slot
>= KVM_MEMORY_SLOTS
)
661 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
664 memslot
= &kvm
->memslots
[mem
->slot
];
665 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
666 npages
= mem
->memory_size
>> PAGE_SHIFT
;
669 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
672 spin_lock(&kvm
->lock
);
674 memory_config_version
= kvm
->memory_config_version
;
675 new = old
= *memslot
;
677 new.base_gfn
= base_gfn
;
679 new.flags
= mem
->flags
;
681 /* Disallow changing a memory slot's size. */
683 if (npages
&& old
.npages
&& npages
!= old
.npages
)
686 /* Check for overlaps */
688 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
689 struct kvm_memory_slot
*s
= &kvm
->memslots
[i
];
693 if (!((base_gfn
+ npages
<= s
->base_gfn
) ||
694 (base_gfn
>= s
->base_gfn
+ s
->npages
)))
698 * Do memory allocations outside lock. memory_config_version will
701 spin_unlock(&kvm
->lock
);
703 /* Deallocate if slot is being removed */
707 /* Free page dirty bitmap if unneeded */
708 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
709 new.dirty_bitmap
= NULL
;
713 /* Allocate if a slot is being created */
714 if (npages
&& !new.phys_mem
) {
715 new.phys_mem
= vmalloc(npages
* sizeof(struct page
*));
720 memset(new.phys_mem
, 0, npages
* sizeof(struct page
*));
721 for (i
= 0; i
< npages
; ++i
) {
722 new.phys_mem
[i
] = alloc_page(GFP_HIGHUSER
724 if (!new.phys_mem
[i
])
726 set_page_private(new.phys_mem
[i
],0);
730 /* Allocate page dirty bitmap if needed */
731 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
732 unsigned dirty_bytes
= ALIGN(npages
, BITS_PER_LONG
) / 8;
734 new.dirty_bitmap
= vmalloc(dirty_bytes
);
735 if (!new.dirty_bitmap
)
737 memset(new.dirty_bitmap
, 0, dirty_bytes
);
740 spin_lock(&kvm
->lock
);
742 if (memory_config_version
!= kvm
->memory_config_version
) {
743 spin_unlock(&kvm
->lock
);
744 kvm_free_physmem_slot(&new, &old
);
752 if (mem
->slot
>= kvm
->nmemslots
)
753 kvm
->nmemslots
= mem
->slot
+ 1;
756 ++kvm
->memory_config_version
;
758 spin_unlock(&kvm
->lock
);
760 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
761 struct kvm_vcpu
*vcpu
;
763 vcpu
= vcpu_load_slot(kvm
, i
);
766 if (new.flags
& KVM_MEM_LOG_DIRTY_PAGES
)
767 do_remove_write_access(vcpu
, mem
->slot
);
768 kvm_mmu_reset_context(vcpu
);
772 kvm_free_physmem_slot(&old
, &new);
776 spin_unlock(&kvm
->lock
);
778 kvm_free_physmem_slot(&new, &old
);
784 * Get (and clear) the dirty memory log for a memory slot.
786 static int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
787 struct kvm_dirty_log
*log
)
789 struct kvm_memory_slot
*memslot
;
793 unsigned long any
= 0;
795 spin_lock(&kvm
->lock
);
798 * Prevent changes to guest memory configuration even while the lock
802 spin_unlock(&kvm
->lock
);
804 if (log
->slot
>= KVM_MEMORY_SLOTS
)
807 memslot
= &kvm
->memslots
[log
->slot
];
809 if (!memslot
->dirty_bitmap
)
812 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
814 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
815 any
= memslot
->dirty_bitmap
[i
];
818 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
823 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
824 struct kvm_vcpu
*vcpu
;
826 vcpu
= vcpu_load_slot(kvm
, i
);
830 do_remove_write_access(vcpu
, log
->slot
);
831 memset(memslot
->dirty_bitmap
, 0, n
);
834 kvm_arch_ops
->tlb_flush(vcpu
);
842 spin_lock(&kvm
->lock
);
844 spin_unlock(&kvm
->lock
);
849 * Set a new alias region. Aliases map a portion of physical memory into
850 * another portion. This is useful for memory windows, for example the PC
853 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
854 struct kvm_memory_alias
*alias
)
857 struct kvm_mem_alias
*p
;
860 /* General sanity checks */
861 if (alias
->memory_size
& (PAGE_SIZE
- 1))
863 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
865 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
867 if (alias
->guest_phys_addr
+ alias
->memory_size
868 < alias
->guest_phys_addr
)
870 if (alias
->target_phys_addr
+ alias
->memory_size
871 < alias
->target_phys_addr
)
874 spin_lock(&kvm
->lock
);
876 p
= &kvm
->aliases
[alias
->slot
];
877 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
878 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
879 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
881 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
882 if (kvm
->aliases
[n
- 1].npages
)
886 spin_unlock(&kvm
->lock
);
888 vcpu_load(&kvm
->vcpus
[0]);
889 spin_lock(&kvm
->lock
);
890 kvm_mmu_zap_all(&kvm
->vcpus
[0]);
891 spin_unlock(&kvm
->lock
);
892 vcpu_put(&kvm
->vcpus
[0]);
900 static gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
903 struct kvm_mem_alias
*alias
;
905 for (i
= 0; i
< kvm
->naliases
; ++i
) {
906 alias
= &kvm
->aliases
[i
];
907 if (gfn
>= alias
->base_gfn
908 && gfn
< alias
->base_gfn
+ alias
->npages
)
909 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
914 static struct kvm_memory_slot
*__gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
918 for (i
= 0; i
< kvm
->nmemslots
; ++i
) {
919 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[i
];
921 if (gfn
>= memslot
->base_gfn
922 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
928 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
930 gfn
= unalias_gfn(kvm
, gfn
);
931 return __gfn_to_memslot(kvm
, gfn
);
934 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
936 struct kvm_memory_slot
*slot
;
938 gfn
= unalias_gfn(kvm
, gfn
);
939 slot
= __gfn_to_memslot(kvm
, gfn
);
942 return slot
->phys_mem
[gfn
- slot
->base_gfn
];
944 EXPORT_SYMBOL_GPL(gfn_to_page
);
946 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
949 struct kvm_memory_slot
*memslot
= NULL
;
950 unsigned long rel_gfn
;
952 for (i
= 0; i
< kvm
->nmemslots
; ++i
) {
953 memslot
= &kvm
->memslots
[i
];
955 if (gfn
>= memslot
->base_gfn
956 && gfn
< memslot
->base_gfn
+ memslot
->npages
) {
958 if (!memslot
|| !memslot
->dirty_bitmap
)
961 rel_gfn
= gfn
- memslot
->base_gfn
;
964 if (!test_bit(rel_gfn
, memslot
->dirty_bitmap
))
965 set_bit(rel_gfn
, memslot
->dirty_bitmap
);
971 static int emulator_read_std(unsigned long addr
,
974 struct x86_emulate_ctxt
*ctxt
)
976 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
980 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
);
981 unsigned offset
= addr
& (PAGE_SIZE
-1);
982 unsigned tocopy
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
987 if (gpa
== UNMAPPED_GVA
)
988 return X86EMUL_PROPAGATE_FAULT
;
989 pfn
= gpa
>> PAGE_SHIFT
;
990 page
= gfn_to_page(vcpu
->kvm
, pfn
);
992 return X86EMUL_UNHANDLEABLE
;
993 page_virt
= kmap_atomic(page
, KM_USER0
);
995 memcpy(data
, page_virt
+ offset
, tocopy
);
997 kunmap_atomic(page_virt
, KM_USER0
);
1004 return X86EMUL_CONTINUE
;
1007 static int emulator_write_std(unsigned long addr
,
1010 struct x86_emulate_ctxt
*ctxt
)
1012 printk(KERN_ERR
"emulator_write_std: addr %lx n %d\n",
1014 return X86EMUL_UNHANDLEABLE
;
1017 static int emulator_read_emulated(unsigned long addr
,
1020 struct x86_emulate_ctxt
*ctxt
)
1022 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
1024 if (vcpu
->mmio_read_completed
) {
1025 memcpy(val
, vcpu
->mmio_data
, bytes
);
1026 vcpu
->mmio_read_completed
= 0;
1027 return X86EMUL_CONTINUE
;
1028 } else if (emulator_read_std(addr
, val
, bytes
, ctxt
)
1029 == X86EMUL_CONTINUE
)
1030 return X86EMUL_CONTINUE
;
1032 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
);
1034 if (gpa
== UNMAPPED_GVA
)
1035 return X86EMUL_PROPAGATE_FAULT
;
1036 vcpu
->mmio_needed
= 1;
1037 vcpu
->mmio_phys_addr
= gpa
;
1038 vcpu
->mmio_size
= bytes
;
1039 vcpu
->mmio_is_write
= 0;
1041 return X86EMUL_UNHANDLEABLE
;
1045 static int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1046 const void *val
, int bytes
)
1051 if (((gpa
+ bytes
- 1) >> PAGE_SHIFT
) != (gpa
>> PAGE_SHIFT
))
1053 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1056 kvm_mmu_pre_write(vcpu
, gpa
, bytes
);
1057 mark_page_dirty(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1058 virt
= kmap_atomic(page
, KM_USER0
);
1059 memcpy(virt
+ offset_in_page(gpa
), val
, bytes
);
1060 kunmap_atomic(virt
, KM_USER0
);
1061 kvm_mmu_post_write(vcpu
, gpa
, bytes
);
1065 static int emulator_write_emulated(unsigned long addr
,
1068 struct x86_emulate_ctxt
*ctxt
)
1070 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
1071 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
);
1073 if (gpa
== UNMAPPED_GVA
) {
1074 kvm_arch_ops
->inject_page_fault(vcpu
, addr
, 2);
1075 return X86EMUL_PROPAGATE_FAULT
;
1078 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
1079 return X86EMUL_CONTINUE
;
1081 vcpu
->mmio_needed
= 1;
1082 vcpu
->mmio_phys_addr
= gpa
;
1083 vcpu
->mmio_size
= bytes
;
1084 vcpu
->mmio_is_write
= 1;
1085 memcpy(vcpu
->mmio_data
, val
, bytes
);
1087 return X86EMUL_CONTINUE
;
1090 static int emulator_cmpxchg_emulated(unsigned long addr
,
1094 struct x86_emulate_ctxt
*ctxt
)
1096 static int reported
;
1100 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
1102 return emulator_write_emulated(addr
, new, bytes
, ctxt
);
1105 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1107 return kvm_arch_ops
->get_segment_base(vcpu
, seg
);
1110 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
1112 return X86EMUL_CONTINUE
;
1115 int emulate_clts(struct kvm_vcpu
*vcpu
)
1119 cr0
= vcpu
->cr0
& ~CR0_TS_MASK
;
1120 kvm_arch_ops
->set_cr0(vcpu
, cr0
);
1121 return X86EMUL_CONTINUE
;
1124 int emulator_get_dr(struct x86_emulate_ctxt
* ctxt
, int dr
, unsigned long *dest
)
1126 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
1130 *dest
= kvm_arch_ops
->get_dr(vcpu
, dr
);
1131 return X86EMUL_CONTINUE
;
1133 printk(KERN_DEBUG
"%s: unexpected dr %u\n",
1135 return X86EMUL_UNHANDLEABLE
;
1139 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
1141 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
1144 kvm_arch_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
1146 /* FIXME: better handling */
1147 return X86EMUL_UNHANDLEABLE
;
1149 return X86EMUL_CONTINUE
;
1152 static void report_emulation_failure(struct x86_emulate_ctxt
*ctxt
)
1154 static int reported
;
1156 unsigned long rip
= ctxt
->vcpu
->rip
;
1157 unsigned long rip_linear
;
1159 rip_linear
= rip
+ get_segment_base(ctxt
->vcpu
, VCPU_SREG_CS
);
1164 emulator_read_std(rip_linear
, (void *)opcodes
, 4, ctxt
);
1166 printk(KERN_ERR
"emulation failed but !mmio_needed?"
1167 " rip %lx %02x %02x %02x %02x\n",
1168 rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
1172 struct x86_emulate_ops emulate_ops
= {
1173 .read_std
= emulator_read_std
,
1174 .write_std
= emulator_write_std
,
1175 .read_emulated
= emulator_read_emulated
,
1176 .write_emulated
= emulator_write_emulated
,
1177 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
1180 int emulate_instruction(struct kvm_vcpu
*vcpu
,
1181 struct kvm_run
*run
,
1185 struct x86_emulate_ctxt emulate_ctxt
;
1189 vcpu
->mmio_fault_cr2
= cr2
;
1190 kvm_arch_ops
->cache_regs(vcpu
);
1192 kvm_arch_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
1194 emulate_ctxt
.vcpu
= vcpu
;
1195 emulate_ctxt
.eflags
= kvm_arch_ops
->get_rflags(vcpu
);
1196 emulate_ctxt
.cr2
= cr2
;
1197 emulate_ctxt
.mode
= (emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
1198 ? X86EMUL_MODE_REAL
: cs_l
1199 ? X86EMUL_MODE_PROT64
: cs_db
1200 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
1202 if (emulate_ctxt
.mode
== X86EMUL_MODE_PROT64
) {
1203 emulate_ctxt
.cs_base
= 0;
1204 emulate_ctxt
.ds_base
= 0;
1205 emulate_ctxt
.es_base
= 0;
1206 emulate_ctxt
.ss_base
= 0;
1208 emulate_ctxt
.cs_base
= get_segment_base(vcpu
, VCPU_SREG_CS
);
1209 emulate_ctxt
.ds_base
= get_segment_base(vcpu
, VCPU_SREG_DS
);
1210 emulate_ctxt
.es_base
= get_segment_base(vcpu
, VCPU_SREG_ES
);
1211 emulate_ctxt
.ss_base
= get_segment_base(vcpu
, VCPU_SREG_SS
);
1214 emulate_ctxt
.gs_base
= get_segment_base(vcpu
, VCPU_SREG_GS
);
1215 emulate_ctxt
.fs_base
= get_segment_base(vcpu
, VCPU_SREG_FS
);
1217 vcpu
->mmio_is_write
= 0;
1218 r
= x86_emulate_memop(&emulate_ctxt
, &emulate_ops
);
1220 if ((r
|| vcpu
->mmio_is_write
) && run
) {
1221 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
1222 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
1223 run
->mmio
.len
= vcpu
->mmio_size
;
1224 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
1228 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
1229 return EMULATE_DONE
;
1230 if (!vcpu
->mmio_needed
) {
1231 report_emulation_failure(&emulate_ctxt
);
1232 return EMULATE_FAIL
;
1234 return EMULATE_DO_MMIO
;
1237 kvm_arch_ops
->decache_regs(vcpu
);
1238 kvm_arch_ops
->set_rflags(vcpu
, emulate_ctxt
.eflags
);
1240 if (vcpu
->mmio_is_write
) {
1241 vcpu
->mmio_needed
= 0;
1242 return EMULATE_DO_MMIO
;
1245 return EMULATE_DONE
;
1247 EXPORT_SYMBOL_GPL(emulate_instruction
);
1249 int kvm_hypercall(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1251 unsigned long nr
, a0
, a1
, a2
, a3
, a4
, a5
, ret
;
1253 kvm_arch_ops
->cache_regs(vcpu
);
1255 #ifdef CONFIG_X86_64
1256 if (is_long_mode(vcpu
)) {
1257 nr
= vcpu
->regs
[VCPU_REGS_RAX
];
1258 a0
= vcpu
->regs
[VCPU_REGS_RDI
];
1259 a1
= vcpu
->regs
[VCPU_REGS_RSI
];
1260 a2
= vcpu
->regs
[VCPU_REGS_RDX
];
1261 a3
= vcpu
->regs
[VCPU_REGS_RCX
];
1262 a4
= vcpu
->regs
[VCPU_REGS_R8
];
1263 a5
= vcpu
->regs
[VCPU_REGS_R9
];
1267 nr
= vcpu
->regs
[VCPU_REGS_RBX
] & -1u;
1268 a0
= vcpu
->regs
[VCPU_REGS_RAX
] & -1u;
1269 a1
= vcpu
->regs
[VCPU_REGS_RCX
] & -1u;
1270 a2
= vcpu
->regs
[VCPU_REGS_RDX
] & -1u;
1271 a3
= vcpu
->regs
[VCPU_REGS_RSI
] & -1u;
1272 a4
= vcpu
->regs
[VCPU_REGS_RDI
] & -1u;
1273 a5
= vcpu
->regs
[VCPU_REGS_RBP
] & -1u;
1277 run
->hypercall
.args
[0] = a0
;
1278 run
->hypercall
.args
[1] = a1
;
1279 run
->hypercall
.args
[2] = a2
;
1280 run
->hypercall
.args
[3] = a3
;
1281 run
->hypercall
.args
[4] = a4
;
1282 run
->hypercall
.args
[5] = a5
;
1283 run
->hypercall
.ret
= ret
;
1284 run
->hypercall
.longmode
= is_long_mode(vcpu
);
1285 kvm_arch_ops
->decache_regs(vcpu
);
1288 vcpu
->regs
[VCPU_REGS_RAX
] = ret
;
1289 kvm_arch_ops
->decache_regs(vcpu
);
1292 EXPORT_SYMBOL_GPL(kvm_hypercall
);
1294 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
1296 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
1299 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
1301 struct descriptor_table dt
= { limit
, base
};
1303 kvm_arch_ops
->set_gdt(vcpu
, &dt
);
1306 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
1308 struct descriptor_table dt
= { limit
, base
};
1310 kvm_arch_ops
->set_idt(vcpu
, &dt
);
1313 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
1314 unsigned long *rflags
)
1317 *rflags
= kvm_arch_ops
->get_rflags(vcpu
);
1320 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
1322 kvm_arch_ops
->decache_cr4_guest_bits(vcpu
);
1333 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __FUNCTION__
, cr
);
1338 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
1339 unsigned long *rflags
)
1343 set_cr0(vcpu
, mk_cr_64(vcpu
->cr0
, val
));
1344 *rflags
= kvm_arch_ops
->get_rflags(vcpu
);
1353 set_cr4(vcpu
, mk_cr_64(vcpu
->cr4
, val
));
1356 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __FUNCTION__
, cr
);
1361 * Register the para guest with the host:
1363 static int vcpu_register_para(struct kvm_vcpu
*vcpu
, gpa_t para_state_gpa
)
1365 struct kvm_vcpu_para_state
*para_state
;
1366 hpa_t para_state_hpa
, hypercall_hpa
;
1367 struct page
*para_state_page
;
1368 unsigned char *hypercall
;
1369 gpa_t hypercall_gpa
;
1371 printk(KERN_DEBUG
"kvm: guest trying to enter paravirtual mode\n");
1372 printk(KERN_DEBUG
".... para_state_gpa: %08Lx\n", para_state_gpa
);
1375 * Needs to be page aligned:
1377 if (para_state_gpa
!= PAGE_ALIGN(para_state_gpa
))
1380 para_state_hpa
= gpa_to_hpa(vcpu
, para_state_gpa
);
1381 printk(KERN_DEBUG
".... para_state_hpa: %08Lx\n", para_state_hpa
);
1382 if (is_error_hpa(para_state_hpa
))
1385 mark_page_dirty(vcpu
->kvm
, para_state_gpa
>> PAGE_SHIFT
);
1386 para_state_page
= pfn_to_page(para_state_hpa
>> PAGE_SHIFT
);
1387 para_state
= kmap_atomic(para_state_page
, KM_USER0
);
1389 printk(KERN_DEBUG
".... guest version: %d\n", para_state
->guest_version
);
1390 printk(KERN_DEBUG
".... size: %d\n", para_state
->size
);
1392 para_state
->host_version
= KVM_PARA_API_VERSION
;
1394 * We cannot support guests that try to register themselves
1395 * with a newer API version than the host supports:
1397 if (para_state
->guest_version
> KVM_PARA_API_VERSION
) {
1398 para_state
->ret
= -KVM_EINVAL
;
1399 goto err_kunmap_skip
;
1402 hypercall_gpa
= para_state
->hypercall_gpa
;
1403 hypercall_hpa
= gpa_to_hpa(vcpu
, hypercall_gpa
);
1404 printk(KERN_DEBUG
".... hypercall_hpa: %08Lx\n", hypercall_hpa
);
1405 if (is_error_hpa(hypercall_hpa
)) {
1406 para_state
->ret
= -KVM_EINVAL
;
1407 goto err_kunmap_skip
;
1410 printk(KERN_DEBUG
"kvm: para guest successfully registered.\n");
1411 vcpu
->para_state_page
= para_state_page
;
1412 vcpu
->para_state_gpa
= para_state_gpa
;
1413 vcpu
->hypercall_gpa
= hypercall_gpa
;
1415 mark_page_dirty(vcpu
->kvm
, hypercall_gpa
>> PAGE_SHIFT
);
1416 hypercall
= kmap_atomic(pfn_to_page(hypercall_hpa
>> PAGE_SHIFT
),
1417 KM_USER1
) + (hypercall_hpa
& ~PAGE_MASK
);
1418 kvm_arch_ops
->patch_hypercall(vcpu
, hypercall
);
1419 kunmap_atomic(hypercall
, KM_USER1
);
1421 para_state
->ret
= 0;
1423 kunmap_atomic(para_state
, KM_USER0
);
1429 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1434 case 0xc0010010: /* SYSCFG */
1435 case 0xc0010015: /* HWCR */
1436 case MSR_IA32_PLATFORM_ID
:
1437 case MSR_IA32_P5_MC_ADDR
:
1438 case MSR_IA32_P5_MC_TYPE
:
1439 case MSR_IA32_MC0_CTL
:
1440 case MSR_IA32_MCG_STATUS
:
1441 case MSR_IA32_MCG_CAP
:
1442 case MSR_IA32_MC0_MISC
:
1443 case MSR_IA32_MC0_MISC
+4:
1444 case MSR_IA32_MC0_MISC
+8:
1445 case MSR_IA32_MC0_MISC
+12:
1446 case MSR_IA32_MC0_MISC
+16:
1447 case MSR_IA32_UCODE_REV
:
1448 case MSR_IA32_PERF_STATUS
:
1449 /* MTRR registers */
1451 case 0x200 ... 0x2ff:
1454 case 0xcd: /* fsb frequency */
1457 case MSR_IA32_APICBASE
:
1458 data
= vcpu
->apic_base
;
1460 case MSR_IA32_MISC_ENABLE
:
1461 data
= vcpu
->ia32_misc_enable_msr
;
1463 #ifdef CONFIG_X86_64
1465 data
= vcpu
->shadow_efer
;
1469 printk(KERN_ERR
"kvm: unhandled rdmsr: 0x%x\n", msr
);
1475 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1478 * Reads an msr value (of 'msr_index') into 'pdata'.
1479 * Returns 0 on success, non-0 otherwise.
1480 * Assumes vcpu_load() was already called.
1482 static int get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1484 return kvm_arch_ops
->get_msr(vcpu
, msr_index
, pdata
);
1487 #ifdef CONFIG_X86_64
1489 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1491 if (efer
& EFER_RESERVED_BITS
) {
1492 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
1499 && (vcpu
->shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
1500 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
1505 kvm_arch_ops
->set_efer(vcpu
, efer
);
1508 efer
|= vcpu
->shadow_efer
& EFER_LMA
;
1510 vcpu
->shadow_efer
= efer
;
1515 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1518 #ifdef CONFIG_X86_64
1520 set_efer(vcpu
, data
);
1523 case MSR_IA32_MC0_STATUS
:
1524 printk(KERN_WARNING
"%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1525 __FUNCTION__
, data
);
1527 case MSR_IA32_MCG_STATUS
:
1528 printk(KERN_WARNING
"%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1529 __FUNCTION__
, data
);
1531 case MSR_IA32_UCODE_REV
:
1532 case MSR_IA32_UCODE_WRITE
:
1533 case 0x200 ... 0x2ff: /* MTRRs */
1535 case MSR_IA32_APICBASE
:
1536 vcpu
->apic_base
= data
;
1538 case MSR_IA32_MISC_ENABLE
:
1539 vcpu
->ia32_misc_enable_msr
= data
;
1542 * This is the 'probe whether the host is KVM' logic:
1544 case MSR_KVM_API_MAGIC
:
1545 return vcpu_register_para(vcpu
, data
);
1548 printk(KERN_ERR
"kvm: unhandled wrmsr: 0x%x\n", msr
);
1553 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1556 * Writes msr value into into the appropriate "register".
1557 * Returns 0 on success, non-0 otherwise.
1558 * Assumes vcpu_load() was already called.
1560 static int set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
1562 return kvm_arch_ops
->set_msr(vcpu
, msr_index
, data
);
1565 void kvm_resched(struct kvm_vcpu
*vcpu
)
1567 if (!need_resched())
1573 EXPORT_SYMBOL_GPL(kvm_resched
);
1575 void load_msrs(struct vmx_msr_entry
*e
, int n
)
1579 for (i
= 0; i
< n
; ++i
)
1580 wrmsrl(e
[i
].index
, e
[i
].data
);
1582 EXPORT_SYMBOL_GPL(load_msrs
);
1584 void save_msrs(struct vmx_msr_entry
*e
, int n
)
1588 for (i
= 0; i
< n
; ++i
)
1589 rdmsrl(e
[i
].index
, e
[i
].data
);
1591 EXPORT_SYMBOL_GPL(save_msrs
);
1593 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
1597 struct kvm_cpuid_entry
*e
, *best
;
1599 kvm_arch_ops
->cache_regs(vcpu
);
1600 function
= vcpu
->regs
[VCPU_REGS_RAX
];
1601 vcpu
->regs
[VCPU_REGS_RAX
] = 0;
1602 vcpu
->regs
[VCPU_REGS_RBX
] = 0;
1603 vcpu
->regs
[VCPU_REGS_RCX
] = 0;
1604 vcpu
->regs
[VCPU_REGS_RDX
] = 0;
1606 for (i
= 0; i
< vcpu
->cpuid_nent
; ++i
) {
1607 e
= &vcpu
->cpuid_entries
[i
];
1608 if (e
->function
== function
) {
1613 * Both basic or both extended?
1615 if (((e
->function
^ function
) & 0x80000000) == 0)
1616 if (!best
|| e
->function
> best
->function
)
1620 vcpu
->regs
[VCPU_REGS_RAX
] = best
->eax
;
1621 vcpu
->regs
[VCPU_REGS_RBX
] = best
->ebx
;
1622 vcpu
->regs
[VCPU_REGS_RCX
] = best
->ecx
;
1623 vcpu
->regs
[VCPU_REGS_RDX
] = best
->edx
;
1625 kvm_arch_ops
->decache_regs(vcpu
);
1626 kvm_arch_ops
->skip_emulated_instruction(vcpu
);
1628 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
1630 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
1632 void *p
= vcpu
->pio_data
;
1635 int nr_pages
= vcpu
->pio
.guest_pages
[1] ? 2 : 1;
1637 kvm_arch_ops
->vcpu_put(vcpu
);
1638 q
= vmap(vcpu
->pio
.guest_pages
, nr_pages
, VM_READ
|VM_WRITE
,
1641 kvm_arch_ops
->vcpu_load(vcpu
);
1642 free_pio_guest_pages(vcpu
);
1645 q
+= vcpu
->pio
.guest_page_offset
;
1646 bytes
= vcpu
->pio
.size
* vcpu
->pio
.cur_count
;
1648 memcpy(q
, p
, bytes
);
1650 memcpy(p
, q
, bytes
);
1651 q
-= vcpu
->pio
.guest_page_offset
;
1653 kvm_arch_ops
->vcpu_load(vcpu
);
1654 free_pio_guest_pages(vcpu
);
1658 static int complete_pio(struct kvm_vcpu
*vcpu
)
1660 struct kvm_pio_request
*io
= &vcpu
->pio
;
1664 kvm_arch_ops
->cache_regs(vcpu
);
1668 memcpy(&vcpu
->regs
[VCPU_REGS_RAX
], vcpu
->pio_data
,
1672 r
= pio_copy_data(vcpu
);
1674 kvm_arch_ops
->cache_regs(vcpu
);
1681 delta
*= io
->cur_count
;
1683 * The size of the register should really depend on
1684 * current address size.
1686 vcpu
->regs
[VCPU_REGS_RCX
] -= delta
;
1692 vcpu
->regs
[VCPU_REGS_RDI
] += delta
;
1694 vcpu
->regs
[VCPU_REGS_RSI
] += delta
;
1697 kvm_arch_ops
->decache_regs(vcpu
);
1699 io
->count
-= io
->cur_count
;
1703 kvm_arch_ops
->skip_emulated_instruction(vcpu
);
1707 int kvm_setup_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
1708 int size
, unsigned long count
, int string
, int down
,
1709 gva_t address
, int rep
, unsigned port
)
1711 unsigned now
, in_page
;
1716 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
1717 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
1718 vcpu
->run
->io
.size
= size
;
1719 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
1720 vcpu
->run
->io
.count
= count
;
1721 vcpu
->run
->io
.port
= port
;
1722 vcpu
->pio
.count
= count
;
1723 vcpu
->pio
.cur_count
= count
;
1724 vcpu
->pio
.size
= size
;
1726 vcpu
->pio
.string
= string
;
1727 vcpu
->pio
.down
= down
;
1728 vcpu
->pio
.guest_page_offset
= offset_in_page(address
);
1729 vcpu
->pio
.rep
= rep
;
1732 kvm_arch_ops
->cache_regs(vcpu
);
1733 memcpy(vcpu
->pio_data
, &vcpu
->regs
[VCPU_REGS_RAX
], 4);
1734 kvm_arch_ops
->decache_regs(vcpu
);
1739 kvm_arch_ops
->skip_emulated_instruction(vcpu
);
1743 now
= min(count
, PAGE_SIZE
/ size
);
1746 in_page
= PAGE_SIZE
- offset_in_page(address
);
1748 in_page
= offset_in_page(address
) + size
;
1749 now
= min(count
, (unsigned long)in_page
/ size
);
1752 * String I/O straddles page boundary. Pin two guest pages
1753 * so that we satisfy atomicity constraints. Do just one
1754 * transaction to avoid complexity.
1761 * String I/O in reverse. Yuck. Kill the guest, fix later.
1763 printk(KERN_ERR
"kvm: guest string pio down\n");
1767 vcpu
->run
->io
.count
= now
;
1768 vcpu
->pio
.cur_count
= now
;
1770 for (i
= 0; i
< nr_pages
; ++i
) {
1771 spin_lock(&vcpu
->kvm
->lock
);
1772 page
= gva_to_page(vcpu
, address
+ i
* PAGE_SIZE
);
1775 vcpu
->pio
.guest_pages
[i
] = page
;
1776 spin_unlock(&vcpu
->kvm
->lock
);
1779 free_pio_guest_pages(vcpu
);
1785 return pio_copy_data(vcpu
);
1788 EXPORT_SYMBOL_GPL(kvm_setup_pio
);
1790 static int kvm_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1797 if (vcpu
->sigset_active
)
1798 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
1800 /* re-sync apic's tpr */
1801 vcpu
->cr8
= kvm_run
->cr8
;
1803 if (vcpu
->pio
.cur_count
) {
1804 r
= complete_pio(vcpu
);
1809 if (vcpu
->mmio_needed
) {
1810 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
1811 vcpu
->mmio_read_completed
= 1;
1812 vcpu
->mmio_needed
= 0;
1813 r
= emulate_instruction(vcpu
, kvm_run
,
1814 vcpu
->mmio_fault_cr2
, 0);
1815 if (r
== EMULATE_DO_MMIO
) {
1817 * Read-modify-write. Back to userspace.
1819 kvm_run
->exit_reason
= KVM_EXIT_MMIO
;
1825 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
) {
1826 kvm_arch_ops
->cache_regs(vcpu
);
1827 vcpu
->regs
[VCPU_REGS_RAX
] = kvm_run
->hypercall
.ret
;
1828 kvm_arch_ops
->decache_regs(vcpu
);
1831 r
= kvm_arch_ops
->run(vcpu
, kvm_run
);
1834 if (vcpu
->sigset_active
)
1835 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
1841 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
,
1842 struct kvm_regs
*regs
)
1846 kvm_arch_ops
->cache_regs(vcpu
);
1848 regs
->rax
= vcpu
->regs
[VCPU_REGS_RAX
];
1849 regs
->rbx
= vcpu
->regs
[VCPU_REGS_RBX
];
1850 regs
->rcx
= vcpu
->regs
[VCPU_REGS_RCX
];
1851 regs
->rdx
= vcpu
->regs
[VCPU_REGS_RDX
];
1852 regs
->rsi
= vcpu
->regs
[VCPU_REGS_RSI
];
1853 regs
->rdi
= vcpu
->regs
[VCPU_REGS_RDI
];
1854 regs
->rsp
= vcpu
->regs
[VCPU_REGS_RSP
];
1855 regs
->rbp
= vcpu
->regs
[VCPU_REGS_RBP
];
1856 #ifdef CONFIG_X86_64
1857 regs
->r8
= vcpu
->regs
[VCPU_REGS_R8
];
1858 regs
->r9
= vcpu
->regs
[VCPU_REGS_R9
];
1859 regs
->r10
= vcpu
->regs
[VCPU_REGS_R10
];
1860 regs
->r11
= vcpu
->regs
[VCPU_REGS_R11
];
1861 regs
->r12
= vcpu
->regs
[VCPU_REGS_R12
];
1862 regs
->r13
= vcpu
->regs
[VCPU_REGS_R13
];
1863 regs
->r14
= vcpu
->regs
[VCPU_REGS_R14
];
1864 regs
->r15
= vcpu
->regs
[VCPU_REGS_R15
];
1867 regs
->rip
= vcpu
->rip
;
1868 regs
->rflags
= kvm_arch_ops
->get_rflags(vcpu
);
1871 * Don't leak debug flags in case they were set for guest debugging
1873 if (vcpu
->guest_debug
.enabled
&& vcpu
->guest_debug
.singlestep
)
1874 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1881 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
,
1882 struct kvm_regs
*regs
)
1886 vcpu
->regs
[VCPU_REGS_RAX
] = regs
->rax
;
1887 vcpu
->regs
[VCPU_REGS_RBX
] = regs
->rbx
;
1888 vcpu
->regs
[VCPU_REGS_RCX
] = regs
->rcx
;
1889 vcpu
->regs
[VCPU_REGS_RDX
] = regs
->rdx
;
1890 vcpu
->regs
[VCPU_REGS_RSI
] = regs
->rsi
;
1891 vcpu
->regs
[VCPU_REGS_RDI
] = regs
->rdi
;
1892 vcpu
->regs
[VCPU_REGS_RSP
] = regs
->rsp
;
1893 vcpu
->regs
[VCPU_REGS_RBP
] = regs
->rbp
;
1894 #ifdef CONFIG_X86_64
1895 vcpu
->regs
[VCPU_REGS_R8
] = regs
->r8
;
1896 vcpu
->regs
[VCPU_REGS_R9
] = regs
->r9
;
1897 vcpu
->regs
[VCPU_REGS_R10
] = regs
->r10
;
1898 vcpu
->regs
[VCPU_REGS_R11
] = regs
->r11
;
1899 vcpu
->regs
[VCPU_REGS_R12
] = regs
->r12
;
1900 vcpu
->regs
[VCPU_REGS_R13
] = regs
->r13
;
1901 vcpu
->regs
[VCPU_REGS_R14
] = regs
->r14
;
1902 vcpu
->regs
[VCPU_REGS_R15
] = regs
->r15
;
1905 vcpu
->rip
= regs
->rip
;
1906 kvm_arch_ops
->set_rflags(vcpu
, regs
->rflags
);
1908 kvm_arch_ops
->decache_regs(vcpu
);
1915 static void get_segment(struct kvm_vcpu
*vcpu
,
1916 struct kvm_segment
*var
, int seg
)
1918 return kvm_arch_ops
->get_segment(vcpu
, var
, seg
);
1921 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
1922 struct kvm_sregs
*sregs
)
1924 struct descriptor_table dt
;
1928 get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
1929 get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
1930 get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
1931 get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
1932 get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
1933 get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
1935 get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
1936 get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
1938 kvm_arch_ops
->get_idt(vcpu
, &dt
);
1939 sregs
->idt
.limit
= dt
.limit
;
1940 sregs
->idt
.base
= dt
.base
;
1941 kvm_arch_ops
->get_gdt(vcpu
, &dt
);
1942 sregs
->gdt
.limit
= dt
.limit
;
1943 sregs
->gdt
.base
= dt
.base
;
1945 kvm_arch_ops
->decache_cr4_guest_bits(vcpu
);
1946 sregs
->cr0
= vcpu
->cr0
;
1947 sregs
->cr2
= vcpu
->cr2
;
1948 sregs
->cr3
= vcpu
->cr3
;
1949 sregs
->cr4
= vcpu
->cr4
;
1950 sregs
->cr8
= vcpu
->cr8
;
1951 sregs
->efer
= vcpu
->shadow_efer
;
1952 sregs
->apic_base
= vcpu
->apic_base
;
1954 memcpy(sregs
->interrupt_bitmap
, vcpu
->irq_pending
,
1955 sizeof sregs
->interrupt_bitmap
);
1962 static void set_segment(struct kvm_vcpu
*vcpu
,
1963 struct kvm_segment
*var
, int seg
)
1965 return kvm_arch_ops
->set_segment(vcpu
, var
, seg
);
1968 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
1969 struct kvm_sregs
*sregs
)
1971 int mmu_reset_needed
= 0;
1973 struct descriptor_table dt
;
1977 dt
.limit
= sregs
->idt
.limit
;
1978 dt
.base
= sregs
->idt
.base
;
1979 kvm_arch_ops
->set_idt(vcpu
, &dt
);
1980 dt
.limit
= sregs
->gdt
.limit
;
1981 dt
.base
= sregs
->gdt
.base
;
1982 kvm_arch_ops
->set_gdt(vcpu
, &dt
);
1984 vcpu
->cr2
= sregs
->cr2
;
1985 mmu_reset_needed
|= vcpu
->cr3
!= sregs
->cr3
;
1986 vcpu
->cr3
= sregs
->cr3
;
1988 vcpu
->cr8
= sregs
->cr8
;
1990 mmu_reset_needed
|= vcpu
->shadow_efer
!= sregs
->efer
;
1991 #ifdef CONFIG_X86_64
1992 kvm_arch_ops
->set_efer(vcpu
, sregs
->efer
);
1994 vcpu
->apic_base
= sregs
->apic_base
;
1996 kvm_arch_ops
->decache_cr4_guest_bits(vcpu
);
1998 mmu_reset_needed
|= vcpu
->cr0
!= sregs
->cr0
;
1999 kvm_arch_ops
->set_cr0(vcpu
, sregs
->cr0
);
2001 mmu_reset_needed
|= vcpu
->cr4
!= sregs
->cr4
;
2002 kvm_arch_ops
->set_cr4(vcpu
, sregs
->cr4
);
2003 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
2004 load_pdptrs(vcpu
, vcpu
->cr3
);
2006 if (mmu_reset_needed
)
2007 kvm_mmu_reset_context(vcpu
);
2009 memcpy(vcpu
->irq_pending
, sregs
->interrupt_bitmap
,
2010 sizeof vcpu
->irq_pending
);
2011 vcpu
->irq_summary
= 0;
2012 for (i
= 0; i
< NR_IRQ_WORDS
; ++i
)
2013 if (vcpu
->irq_pending
[i
])
2014 __set_bit(i
, &vcpu
->irq_summary
);
2016 set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
2017 set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
2018 set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
2019 set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
2020 set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
2021 set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
2023 set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
2024 set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
2032 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2033 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2035 * This list is modified at module load time to reflect the
2036 * capabilities of the host cpu.
2038 static u32 msrs_to_save
[] = {
2039 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
2041 #ifdef CONFIG_X86_64
2042 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
2044 MSR_IA32_TIME_STAMP_COUNTER
,
2047 static unsigned num_msrs_to_save
;
2049 static u32 emulated_msrs
[] = {
2050 MSR_IA32_MISC_ENABLE
,
2053 static __init
void kvm_init_msr_list(void)
2058 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2059 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2062 msrs_to_save
[j
] = msrs_to_save
[i
];
2065 num_msrs_to_save
= j
;
2069 * Adapt set_msr() to msr_io()'s calling convention
2071 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
2073 return set_msr(vcpu
, index
, *data
);
2077 * Read or write a bunch of msrs. All parameters are kernel addresses.
2079 * @return number of msrs set successfully.
2081 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2082 struct kvm_msr_entry
*entries
,
2083 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2084 unsigned index
, u64
*data
))
2090 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2091 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2100 * Read or write a bunch of msrs. Parameters are user addresses.
2102 * @return number of msrs set successfully.
2104 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2105 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2106 unsigned index
, u64
*data
),
2109 struct kvm_msrs msrs
;
2110 struct kvm_msr_entry
*entries
;
2115 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2119 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2123 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2124 entries
= vmalloc(size
);
2129 if (copy_from_user(entries
, user_msrs
->entries
, size
))
2132 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2137 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2149 * Translate a guest virtual address to a guest physical address.
2151 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
2152 struct kvm_translation
*tr
)
2154 unsigned long vaddr
= tr
->linear_address
;
2158 spin_lock(&vcpu
->kvm
->lock
);
2159 gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, vaddr
);
2160 tr
->physical_address
= gpa
;
2161 tr
->valid
= gpa
!= UNMAPPED_GVA
;
2164 spin_unlock(&vcpu
->kvm
->lock
);
2170 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2171 struct kvm_interrupt
*irq
)
2173 if (irq
->irq
< 0 || irq
->irq
>= 256)
2177 set_bit(irq
->irq
, vcpu
->irq_pending
);
2178 set_bit(irq
->irq
/ BITS_PER_LONG
, &vcpu
->irq_summary
);
2185 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu
*vcpu
,
2186 struct kvm_debug_guest
*dbg
)
2192 r
= kvm_arch_ops
->set_guest_debug(vcpu
, dbg
);
2199 static struct page
*kvm_vcpu_nopage(struct vm_area_struct
*vma
,
2200 unsigned long address
,
2203 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
2204 unsigned long pgoff
;
2207 *type
= VM_FAULT_MINOR
;
2208 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2210 page
= virt_to_page(vcpu
->run
);
2211 else if (pgoff
== KVM_PIO_PAGE_OFFSET
)
2212 page
= virt_to_page(vcpu
->pio_data
);
2214 return NOPAGE_SIGBUS
;
2219 static struct vm_operations_struct kvm_vcpu_vm_ops
= {
2220 .nopage
= kvm_vcpu_nopage
,
2223 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2225 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2229 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2231 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2233 fput(vcpu
->kvm
->filp
);
2237 static struct file_operations kvm_vcpu_fops
= {
2238 .release
= kvm_vcpu_release
,
2239 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2240 .compat_ioctl
= kvm_vcpu_ioctl
,
2241 .mmap
= kvm_vcpu_mmap
,
2245 * Allocates an inode for the vcpu.
2247 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2250 struct inode
*inode
;
2253 atomic_inc(&vcpu
->kvm
->filp
->f_count
);
2254 inode
= kvmfs_inode(&kvm_vcpu_fops
);
2255 if (IS_ERR(inode
)) {
2260 file
= kvmfs_file(inode
, vcpu
);
2266 r
= get_unused_fd();
2270 fd_install(fd
, file
);
2279 fput(vcpu
->kvm
->filp
);
2284 * Creates some virtual cpus. Good luck creating more than one.
2286 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, int n
)
2289 struct kvm_vcpu
*vcpu
;
2296 vcpu
= &kvm
->vcpus
[n
];
2298 mutex_lock(&vcpu
->mutex
);
2301 mutex_unlock(&vcpu
->mutex
);
2305 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2309 vcpu
->run
= page_address(page
);
2311 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2315 vcpu
->pio_data
= page_address(page
);
2317 vcpu
->host_fx_image
= (char*)ALIGN((hva_t
)vcpu
->fx_buf
,
2319 vcpu
->guest_fx_image
= vcpu
->host_fx_image
+ FX_IMAGE_SIZE
;
2322 r
= kvm_arch_ops
->vcpu_create(vcpu
);
2324 goto out_free_vcpus
;
2326 r
= kvm_mmu_create(vcpu
);
2328 goto out_free_vcpus
;
2330 kvm_arch_ops
->vcpu_load(vcpu
);
2331 r
= kvm_mmu_setup(vcpu
);
2333 r
= kvm_arch_ops
->vcpu_setup(vcpu
);
2337 goto out_free_vcpus
;
2339 r
= create_vcpu_fd(vcpu
);
2341 goto out_free_vcpus
;
2346 kvm_free_vcpu(vcpu
);
2348 free_page((unsigned long)vcpu
->run
);
2351 mutex_unlock(&vcpu
->mutex
);
2356 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
2357 struct kvm_cpuid
*cpuid
,
2358 struct kvm_cpuid_entry __user
*entries
)
2363 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2366 if (copy_from_user(&vcpu
->cpuid_entries
, entries
,
2367 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
2369 vcpu
->cpuid_nent
= cpuid
->nent
;
2376 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2379 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2380 vcpu
->sigset_active
= 1;
2381 vcpu
->sigset
= *sigset
;
2383 vcpu
->sigset_active
= 0;
2388 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2389 * we have asm/x86/processor.h
2400 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2401 #ifdef CONFIG_X86_64
2402 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2404 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2408 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
2410 struct fxsave
*fxsave
= (struct fxsave
*)vcpu
->guest_fx_image
;
2414 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
2415 fpu
->fcw
= fxsave
->cwd
;
2416 fpu
->fsw
= fxsave
->swd
;
2417 fpu
->ftwx
= fxsave
->twd
;
2418 fpu
->last_opcode
= fxsave
->fop
;
2419 fpu
->last_ip
= fxsave
->rip
;
2420 fpu
->last_dp
= fxsave
->rdp
;
2421 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
2428 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
2430 struct fxsave
*fxsave
= (struct fxsave
*)vcpu
->guest_fx_image
;
2434 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
2435 fxsave
->cwd
= fpu
->fcw
;
2436 fxsave
->swd
= fpu
->fsw
;
2437 fxsave
->twd
= fpu
->ftwx
;
2438 fxsave
->fop
= fpu
->last_opcode
;
2439 fxsave
->rip
= fpu
->last_ip
;
2440 fxsave
->rdp
= fpu
->last_dp
;
2441 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
2448 static long kvm_vcpu_ioctl(struct file
*filp
,
2449 unsigned int ioctl
, unsigned long arg
)
2451 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2452 void __user
*argp
= (void __user
*)arg
;
2460 r
= kvm_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2462 case KVM_GET_REGS
: {
2463 struct kvm_regs kvm_regs
;
2465 memset(&kvm_regs
, 0, sizeof kvm_regs
);
2466 r
= kvm_vcpu_ioctl_get_regs(vcpu
, &kvm_regs
);
2470 if (copy_to_user(argp
, &kvm_regs
, sizeof kvm_regs
))
2475 case KVM_SET_REGS
: {
2476 struct kvm_regs kvm_regs
;
2479 if (copy_from_user(&kvm_regs
, argp
, sizeof kvm_regs
))
2481 r
= kvm_vcpu_ioctl_set_regs(vcpu
, &kvm_regs
);
2487 case KVM_GET_SREGS
: {
2488 struct kvm_sregs kvm_sregs
;
2490 memset(&kvm_sregs
, 0, sizeof kvm_sregs
);
2491 r
= kvm_vcpu_ioctl_get_sregs(vcpu
, &kvm_sregs
);
2495 if (copy_to_user(argp
, &kvm_sregs
, sizeof kvm_sregs
))
2500 case KVM_SET_SREGS
: {
2501 struct kvm_sregs kvm_sregs
;
2504 if (copy_from_user(&kvm_sregs
, argp
, sizeof kvm_sregs
))
2506 r
= kvm_vcpu_ioctl_set_sregs(vcpu
, &kvm_sregs
);
2512 case KVM_TRANSLATE
: {
2513 struct kvm_translation tr
;
2516 if (copy_from_user(&tr
, argp
, sizeof tr
))
2518 r
= kvm_vcpu_ioctl_translate(vcpu
, &tr
);
2522 if (copy_to_user(argp
, &tr
, sizeof tr
))
2527 case KVM_INTERRUPT
: {
2528 struct kvm_interrupt irq
;
2531 if (copy_from_user(&irq
, argp
, sizeof irq
))
2533 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
2539 case KVM_DEBUG_GUEST
: {
2540 struct kvm_debug_guest dbg
;
2543 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
2545 r
= kvm_vcpu_ioctl_debug_guest(vcpu
, &dbg
);
2552 r
= msr_io(vcpu
, argp
, get_msr
, 1);
2555 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
2557 case KVM_SET_CPUID
: {
2558 struct kvm_cpuid __user
*cpuid_arg
= argp
;
2559 struct kvm_cpuid cpuid
;
2562 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2564 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
2569 case KVM_SET_SIGNAL_MASK
: {
2570 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2571 struct kvm_signal_mask kvm_sigmask
;
2572 sigset_t sigset
, *p
;
2577 if (copy_from_user(&kvm_sigmask
, argp
,
2578 sizeof kvm_sigmask
))
2581 if (kvm_sigmask
.len
!= sizeof sigset
)
2584 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2589 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2595 memset(&fpu
, 0, sizeof fpu
);
2596 r
= kvm_vcpu_ioctl_get_fpu(vcpu
, &fpu
);
2600 if (copy_to_user(argp
, &fpu
, sizeof fpu
))
2609 if (copy_from_user(&fpu
, argp
, sizeof fpu
))
2611 r
= kvm_vcpu_ioctl_set_fpu(vcpu
, &fpu
);
2624 static long kvm_vm_ioctl(struct file
*filp
,
2625 unsigned int ioctl
, unsigned long arg
)
2627 struct kvm
*kvm
= filp
->private_data
;
2628 void __user
*argp
= (void __user
*)arg
;
2632 case KVM_CREATE_VCPU
:
2633 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2637 case KVM_SET_MEMORY_REGION
: {
2638 struct kvm_memory_region kvm_mem
;
2641 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
2643 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_mem
);
2648 case KVM_GET_DIRTY_LOG
: {
2649 struct kvm_dirty_log log
;
2652 if (copy_from_user(&log
, argp
, sizeof log
))
2654 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2659 case KVM_SET_MEMORY_ALIAS
: {
2660 struct kvm_memory_alias alias
;
2663 if (copy_from_user(&alias
, argp
, sizeof alias
))
2665 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &alias
);
2677 static struct page
*kvm_vm_nopage(struct vm_area_struct
*vma
,
2678 unsigned long address
,
2681 struct kvm
*kvm
= vma
->vm_file
->private_data
;
2682 unsigned long pgoff
;
2685 *type
= VM_FAULT_MINOR
;
2686 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2687 page
= gfn_to_page(kvm
, pgoff
);
2689 return NOPAGE_SIGBUS
;
2694 static struct vm_operations_struct kvm_vm_vm_ops
= {
2695 .nopage
= kvm_vm_nopage
,
2698 static int kvm_vm_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2700 vma
->vm_ops
= &kvm_vm_vm_ops
;
2704 static struct file_operations kvm_vm_fops
= {
2705 .release
= kvm_vm_release
,
2706 .unlocked_ioctl
= kvm_vm_ioctl
,
2707 .compat_ioctl
= kvm_vm_ioctl
,
2708 .mmap
= kvm_vm_mmap
,
2711 static int kvm_dev_ioctl_create_vm(void)
2714 struct inode
*inode
;
2718 inode
= kvmfs_inode(&kvm_vm_fops
);
2719 if (IS_ERR(inode
)) {
2724 kvm
= kvm_create_vm();
2730 file
= kvmfs_file(inode
, kvm
);
2737 r
= get_unused_fd();
2741 fd_install(fd
, file
);
2748 kvm_destroy_vm(kvm
);
2755 static long kvm_dev_ioctl(struct file
*filp
,
2756 unsigned int ioctl
, unsigned long arg
)
2758 void __user
*argp
= (void __user
*)arg
;
2762 case KVM_GET_API_VERSION
:
2766 r
= KVM_API_VERSION
;
2772 r
= kvm_dev_ioctl_create_vm();
2774 case KVM_GET_MSR_INDEX_LIST
: {
2775 struct kvm_msr_list __user
*user_msr_list
= argp
;
2776 struct kvm_msr_list msr_list
;
2780 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2783 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2784 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2787 if (n
< num_msrs_to_save
)
2790 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2791 num_msrs_to_save
* sizeof(u32
)))
2793 if (copy_to_user(user_msr_list
->indices
2794 + num_msrs_to_save
* sizeof(u32
),
2796 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2801 case KVM_CHECK_EXTENSION
:
2803 * No extensions defined at present.
2807 case KVM_GET_VCPU_MMAP_SIZE
:
2820 static struct file_operations kvm_chardev_ops
= {
2821 .open
= kvm_dev_open
,
2822 .release
= kvm_dev_release
,
2823 .unlocked_ioctl
= kvm_dev_ioctl
,
2824 .compat_ioctl
= kvm_dev_ioctl
,
2827 static struct miscdevice kvm_dev
= {
2833 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2836 if (val
== SYS_RESTART
) {
2838 * Some (well, at least mine) BIOSes hang on reboot if
2841 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
2842 on_each_cpu(kvm_arch_ops
->hardware_disable
, NULL
, 0, 1);
2847 static struct notifier_block kvm_reboot_notifier
= {
2848 .notifier_call
= kvm_reboot
,
2853 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2856 static void decache_vcpus_on_cpu(int cpu
)
2859 struct kvm_vcpu
*vcpu
;
2862 spin_lock(&kvm_lock
);
2863 list_for_each_entry(vm
, &vm_list
, vm_list
)
2864 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
2865 vcpu
= &vm
->vcpus
[i
];
2867 * If the vcpu is locked, then it is running on some
2868 * other cpu and therefore it is not cached on the
2871 * If it's not locked, check the last cpu it executed
2874 if (mutex_trylock(&vcpu
->mutex
)) {
2875 if (vcpu
->cpu
== cpu
) {
2876 kvm_arch_ops
->vcpu_decache(vcpu
);
2879 mutex_unlock(&vcpu
->mutex
);
2882 spin_unlock(&kvm_lock
);
2885 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2891 case CPU_DOWN_PREPARE
:
2892 case CPU_DOWN_PREPARE_FROZEN
:
2893 case CPU_UP_CANCELED
:
2894 case CPU_UP_CANCELED_FROZEN
:
2895 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2897 decache_vcpus_on_cpu(cpu
);
2898 smp_call_function_single(cpu
, kvm_arch_ops
->hardware_disable
,
2902 case CPU_ONLINE_FROZEN
:
2903 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
2905 smp_call_function_single(cpu
, kvm_arch_ops
->hardware_enable
,
2912 static struct notifier_block kvm_cpu_notifier
= {
2913 .notifier_call
= kvm_cpu_hotplug
,
2914 .priority
= 20, /* must be > scheduler priority */
2917 static u64
stat_get(void *_offset
)
2919 unsigned offset
= (long)_offset
;
2922 struct kvm_vcpu
*vcpu
;
2925 spin_lock(&kvm_lock
);
2926 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2927 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
2928 vcpu
= &kvm
->vcpus
[i
];
2929 total
+= *(u32
*)((void *)vcpu
+ offset
);
2931 spin_unlock(&kvm_lock
);
2935 static void stat_set(void *offset
, u64 val
)
2939 DEFINE_SIMPLE_ATTRIBUTE(stat_fops
, stat_get
, stat_set
, "%llu\n");
2941 static __init
void kvm_init_debug(void)
2943 struct kvm_stats_debugfs_item
*p
;
2945 debugfs_dir
= debugfs_create_dir("kvm", NULL
);
2946 for (p
= debugfs_entries
; p
->name
; ++p
)
2947 p
->dentry
= debugfs_create_file(p
->name
, 0444, debugfs_dir
,
2948 (void *)(long)p
->offset
,
2952 static void kvm_exit_debug(void)
2954 struct kvm_stats_debugfs_item
*p
;
2956 for (p
= debugfs_entries
; p
->name
; ++p
)
2957 debugfs_remove(p
->dentry
);
2958 debugfs_remove(debugfs_dir
);
2961 static int kvm_suspend(struct sys_device
*dev
, pm_message_t state
)
2963 decache_vcpus_on_cpu(raw_smp_processor_id());
2964 on_each_cpu(kvm_arch_ops
->hardware_disable
, NULL
, 0, 1);
2968 static int kvm_resume(struct sys_device
*dev
)
2970 on_each_cpu(kvm_arch_ops
->hardware_enable
, NULL
, 0, 1);
2974 static struct sysdev_class kvm_sysdev_class
= {
2975 set_kset_name("kvm"),
2976 .suspend
= kvm_suspend
,
2977 .resume
= kvm_resume
,
2980 static struct sys_device kvm_sysdev
= {
2982 .cls
= &kvm_sysdev_class
,
2985 hpa_t bad_page_address
;
2987 static int kvmfs_get_sb(struct file_system_type
*fs_type
, int flags
,
2988 const char *dev_name
, void *data
, struct vfsmount
*mnt
)
2990 return get_sb_pseudo(fs_type
, "kvm:", NULL
, KVMFS_SUPER_MAGIC
, mnt
);
2993 static struct file_system_type kvm_fs_type
= {
2995 .get_sb
= kvmfs_get_sb
,
2996 .kill_sb
= kill_anon_super
,
2999 int kvm_init_arch(struct kvm_arch_ops
*ops
, struct module
*module
)
3004 printk(KERN_ERR
"kvm: already loaded the other module\n");
3008 if (!ops
->cpu_has_kvm_support()) {
3009 printk(KERN_ERR
"kvm: no hardware support\n");
3012 if (ops
->disabled_by_bios()) {
3013 printk(KERN_ERR
"kvm: disabled by bios\n");
3019 r
= kvm_arch_ops
->hardware_setup();
3023 on_each_cpu(kvm_arch_ops
->hardware_enable
, NULL
, 0, 1);
3024 r
= register_cpu_notifier(&kvm_cpu_notifier
);
3027 register_reboot_notifier(&kvm_reboot_notifier
);
3029 r
= sysdev_class_register(&kvm_sysdev_class
);
3033 r
= sysdev_register(&kvm_sysdev
);
3037 kvm_chardev_ops
.owner
= module
;
3039 r
= misc_register(&kvm_dev
);
3041 printk (KERN_ERR
"kvm: misc device register failed\n");
3048 sysdev_unregister(&kvm_sysdev
);
3050 sysdev_class_unregister(&kvm_sysdev_class
);
3052 unregister_reboot_notifier(&kvm_reboot_notifier
);
3053 unregister_cpu_notifier(&kvm_cpu_notifier
);
3055 on_each_cpu(kvm_arch_ops
->hardware_disable
, NULL
, 0, 1);
3056 kvm_arch_ops
->hardware_unsetup();
3058 kvm_arch_ops
= NULL
;
3062 void kvm_exit_arch(void)
3064 misc_deregister(&kvm_dev
);
3065 sysdev_unregister(&kvm_sysdev
);
3066 sysdev_class_unregister(&kvm_sysdev_class
);
3067 unregister_reboot_notifier(&kvm_reboot_notifier
);
3068 unregister_cpu_notifier(&kvm_cpu_notifier
);
3069 on_each_cpu(kvm_arch_ops
->hardware_disable
, NULL
, 0, 1);
3070 kvm_arch_ops
->hardware_unsetup();
3071 kvm_arch_ops
= NULL
;
3074 static __init
int kvm_init(void)
3076 static struct page
*bad_page
;
3079 r
= kvm_mmu_module_init();
3083 r
= register_filesystem(&kvm_fs_type
);
3087 kvmfs_mnt
= kern_mount(&kvm_fs_type
);
3088 r
= PTR_ERR(kvmfs_mnt
);
3089 if (IS_ERR(kvmfs_mnt
))
3093 kvm_init_msr_list();
3095 if ((bad_page
= alloc_page(GFP_KERNEL
)) == NULL
) {
3100 bad_page_address
= page_to_pfn(bad_page
) << PAGE_SHIFT
;
3101 memset(__va(bad_page_address
), 0, PAGE_SIZE
);
3109 unregister_filesystem(&kvm_fs_type
);
3111 kvm_mmu_module_exit();
3116 static __exit
void kvm_exit(void)
3119 __free_page(pfn_to_page(bad_page_address
>> PAGE_SHIFT
));
3121 unregister_filesystem(&kvm_fs_type
);
3122 kvm_mmu_module_exit();
3125 module_init(kvm_init
)
3126 module_exit(kvm_exit
)
3128 EXPORT_SYMBOL_GPL(kvm_init_arch
);
3129 EXPORT_SYMBOL_GPL(kvm_exit_arch
);