2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
19 #include <linux/types.h>
20 #include <linux/string.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
34 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
);
36 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
) {}
41 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
42 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
46 #define pgprintk(x...) do { } while (0)
47 #define rmap_printk(x...) do { } while (0)
51 #if defined(MMU_DEBUG) || defined(AUDIT)
56 #define ASSERT(x) do { } while (0)
60 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
61 __FILE__, __LINE__, #x); \
65 #define PT64_PT_BITS 9
66 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
67 #define PT32_PT_BITS 10
68 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
70 #define PT_WRITABLE_SHIFT 1
72 #define PT_PRESENT_MASK (1ULL << 0)
73 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
74 #define PT_USER_MASK (1ULL << 2)
75 #define PT_PWT_MASK (1ULL << 3)
76 #define PT_PCD_MASK (1ULL << 4)
77 #define PT_ACCESSED_MASK (1ULL << 5)
78 #define PT_DIRTY_MASK (1ULL << 6)
79 #define PT_PAGE_SIZE_MASK (1ULL << 7)
80 #define PT_PAT_MASK (1ULL << 7)
81 #define PT_GLOBAL_MASK (1ULL << 8)
82 #define PT64_NX_MASK (1ULL << 63)
84 #define PT_PAT_SHIFT 7
85 #define PT_DIR_PAT_SHIFT 12
86 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
88 #define PT32_DIR_PSE36_SIZE 4
89 #define PT32_DIR_PSE36_SHIFT 13
90 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
93 #define PT32_PTE_COPY_MASK \
94 (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
96 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
98 #define PT_FIRST_AVAIL_BITS_SHIFT 9
99 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
101 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
102 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
104 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
105 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
107 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
108 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
110 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
112 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
114 #define PT64_LEVEL_BITS 9
116 #define PT64_LEVEL_SHIFT(level) \
117 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
119 #define PT64_LEVEL_MASK(level) \
120 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
122 #define PT64_INDEX(address, level)\
123 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
126 #define PT32_LEVEL_BITS 10
128 #define PT32_LEVEL_SHIFT(level) \
129 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
131 #define PT32_LEVEL_MASK(level) \
132 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
134 #define PT32_INDEX(address, level)\
135 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
138 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
139 #define PT64_DIR_BASE_ADDR_MASK \
140 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
142 #define PT32_BASE_ADDR_MASK PAGE_MASK
143 #define PT32_DIR_BASE_ADDR_MASK \
144 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
147 #define PFERR_PRESENT_MASK (1U << 0)
148 #define PFERR_WRITE_MASK (1U << 1)
149 #define PFERR_USER_MASK (1U << 2)
150 #define PFERR_FETCH_MASK (1U << 4)
152 #define PT64_ROOT_LEVEL 4
153 #define PT32_ROOT_LEVEL 2
154 #define PT32E_ROOT_LEVEL 3
156 #define PT_DIRECTORY_LEVEL 2
157 #define PT_PAGE_TABLE_LEVEL 1
161 struct kvm_rmap_desc
{
162 u64
*shadow_ptes
[RMAP_EXT
];
163 struct kvm_rmap_desc
*more
;
166 static struct kmem_cache
*pte_chain_cache
;
167 static struct kmem_cache
*rmap_desc_cache
;
169 static int is_write_protection(struct kvm_vcpu
*vcpu
)
171 return vcpu
->cr0
& CR0_WP_MASK
;
174 static int is_cpuid_PSE36(void)
179 static int is_nx(struct kvm_vcpu
*vcpu
)
181 return vcpu
->shadow_efer
& EFER_NX
;
184 static int is_present_pte(unsigned long pte
)
186 return pte
& PT_PRESENT_MASK
;
189 static int is_writeble_pte(unsigned long pte
)
191 return pte
& PT_WRITABLE_MASK
;
194 static int is_io_pte(unsigned long pte
)
196 return pte
& PT_SHADOW_IO_MARK
;
199 static int is_rmap_pte(u64 pte
)
201 return (pte
& (PT_WRITABLE_MASK
| PT_PRESENT_MASK
))
202 == (PT_WRITABLE_MASK
| PT_PRESENT_MASK
);
205 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
206 struct kmem_cache
*base_cache
, int min
,
211 if (cache
->nobjs
>= min
)
213 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
214 obj
= kmem_cache_zalloc(base_cache
, gfp_flags
);
217 cache
->objects
[cache
->nobjs
++] = obj
;
222 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
225 kfree(mc
->objects
[--mc
->nobjs
]);
228 static int __mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
, gfp_t gfp_flags
)
232 r
= mmu_topup_memory_cache(&vcpu
->mmu_pte_chain_cache
,
233 pte_chain_cache
, 4, gfp_flags
);
236 r
= mmu_topup_memory_cache(&vcpu
->mmu_rmap_desc_cache
,
237 rmap_desc_cache
, 1, gfp_flags
);
242 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
246 r
= __mmu_topup_memory_caches(vcpu
, GFP_NOWAIT
);
248 spin_unlock(&vcpu
->kvm
->lock
);
249 kvm_arch_ops
->vcpu_put(vcpu
);
250 r
= __mmu_topup_memory_caches(vcpu
, GFP_KERNEL
);
251 kvm_arch_ops
->vcpu_load(vcpu
);
252 spin_lock(&vcpu
->kvm
->lock
);
257 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
259 mmu_free_memory_cache(&vcpu
->mmu_pte_chain_cache
);
260 mmu_free_memory_cache(&vcpu
->mmu_rmap_desc_cache
);
263 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
,
269 p
= mc
->objects
[--mc
->nobjs
];
274 static void mmu_memory_cache_free(struct kvm_mmu_memory_cache
*mc
, void *obj
)
276 if (mc
->nobjs
< KVM_NR_MEM_OBJS
)
277 mc
->objects
[mc
->nobjs
++] = obj
;
282 static struct kvm_pte_chain
*mmu_alloc_pte_chain(struct kvm_vcpu
*vcpu
)
284 return mmu_memory_cache_alloc(&vcpu
->mmu_pte_chain_cache
,
285 sizeof(struct kvm_pte_chain
));
288 static void mmu_free_pte_chain(struct kvm_vcpu
*vcpu
,
289 struct kvm_pte_chain
*pc
)
291 mmu_memory_cache_free(&vcpu
->mmu_pte_chain_cache
, pc
);
294 static struct kvm_rmap_desc
*mmu_alloc_rmap_desc(struct kvm_vcpu
*vcpu
)
296 return mmu_memory_cache_alloc(&vcpu
->mmu_rmap_desc_cache
,
297 sizeof(struct kvm_rmap_desc
));
300 static void mmu_free_rmap_desc(struct kvm_vcpu
*vcpu
,
301 struct kvm_rmap_desc
*rd
)
303 mmu_memory_cache_free(&vcpu
->mmu_rmap_desc_cache
, rd
);
307 * Reverse mapping data structures:
309 * If page->private bit zero is zero, then page->private points to the
310 * shadow page table entry that points to page_address(page).
312 * If page->private bit zero is one, (then page->private & ~1) points
313 * to a struct kvm_rmap_desc containing more mappings.
315 static void rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
)
318 struct kvm_rmap_desc
*desc
;
321 if (!is_rmap_pte(*spte
))
323 page
= pfn_to_page((*spte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
);
324 if (!page_private(page
)) {
325 rmap_printk("rmap_add: %p %llx 0->1\n", spte
, *spte
);
326 set_page_private(page
,(unsigned long)spte
);
327 } else if (!(page_private(page
) & 1)) {
328 rmap_printk("rmap_add: %p %llx 1->many\n", spte
, *spte
);
329 desc
= mmu_alloc_rmap_desc(vcpu
);
330 desc
->shadow_ptes
[0] = (u64
*)page_private(page
);
331 desc
->shadow_ptes
[1] = spte
;
332 set_page_private(page
,(unsigned long)desc
| 1);
334 rmap_printk("rmap_add: %p %llx many->many\n", spte
, *spte
);
335 desc
= (struct kvm_rmap_desc
*)(page_private(page
) & ~1ul);
336 while (desc
->shadow_ptes
[RMAP_EXT
-1] && desc
->more
)
338 if (desc
->shadow_ptes
[RMAP_EXT
-1]) {
339 desc
->more
= mmu_alloc_rmap_desc(vcpu
);
342 for (i
= 0; desc
->shadow_ptes
[i
]; ++i
)
344 desc
->shadow_ptes
[i
] = spte
;
348 static void rmap_desc_remove_entry(struct kvm_vcpu
*vcpu
,
350 struct kvm_rmap_desc
*desc
,
352 struct kvm_rmap_desc
*prev_desc
)
356 for (j
= RMAP_EXT
- 1; !desc
->shadow_ptes
[j
] && j
> i
; --j
)
358 desc
->shadow_ptes
[i
] = desc
->shadow_ptes
[j
];
359 desc
->shadow_ptes
[j
] = NULL
;
362 if (!prev_desc
&& !desc
->more
)
363 set_page_private(page
,(unsigned long)desc
->shadow_ptes
[0]);
366 prev_desc
->more
= desc
->more
;
368 set_page_private(page
,(unsigned long)desc
->more
| 1);
369 mmu_free_rmap_desc(vcpu
, desc
);
372 static void rmap_remove(struct kvm_vcpu
*vcpu
, u64
*spte
)
375 struct kvm_rmap_desc
*desc
;
376 struct kvm_rmap_desc
*prev_desc
;
379 if (!is_rmap_pte(*spte
))
381 page
= pfn_to_page((*spte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
);
382 if (!page_private(page
)) {
383 printk(KERN_ERR
"rmap_remove: %p %llx 0->BUG\n", spte
, *spte
);
385 } else if (!(page_private(page
) & 1)) {
386 rmap_printk("rmap_remove: %p %llx 1->0\n", spte
, *spte
);
387 if ((u64
*)page_private(page
) != spte
) {
388 printk(KERN_ERR
"rmap_remove: %p %llx 1->BUG\n",
392 set_page_private(page
,0);
394 rmap_printk("rmap_remove: %p %llx many->many\n", spte
, *spte
);
395 desc
= (struct kvm_rmap_desc
*)(page_private(page
) & ~1ul);
398 for (i
= 0; i
< RMAP_EXT
&& desc
->shadow_ptes
[i
]; ++i
)
399 if (desc
->shadow_ptes
[i
] == spte
) {
400 rmap_desc_remove_entry(vcpu
, page
,
412 static void rmap_write_protect(struct kvm_vcpu
*vcpu
, u64 gfn
)
414 struct kvm
*kvm
= vcpu
->kvm
;
416 struct kvm_rmap_desc
*desc
;
419 page
= gfn_to_page(kvm
, gfn
);
422 while (page_private(page
)) {
423 if (!(page_private(page
) & 1))
424 spte
= (u64
*)page_private(page
);
426 desc
= (struct kvm_rmap_desc
*)(page_private(page
) & ~1ul);
427 spte
= desc
->shadow_ptes
[0];
430 BUG_ON((*spte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
431 != page_to_pfn(page
));
432 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
433 BUG_ON(!(*spte
& PT_WRITABLE_MASK
));
434 rmap_printk("rmap_write_protect: spte %p %llx\n", spte
, *spte
);
435 rmap_remove(vcpu
, spte
);
436 kvm_arch_ops
->tlb_flush(vcpu
);
437 *spte
&= ~(u64
)PT_WRITABLE_MASK
;
442 static int is_empty_shadow_page(hpa_t page_hpa
)
447 for (pos
= __va(page_hpa
), end
= pos
+ PAGE_SIZE
/ sizeof(u64
);
450 printk(KERN_ERR
"%s: %p %llx\n", __FUNCTION__
,
458 static void kvm_mmu_free_page(struct kvm_vcpu
*vcpu
, hpa_t page_hpa
)
460 struct kvm_mmu_page
*page_head
= page_header(page_hpa
);
462 ASSERT(is_empty_shadow_page(page_hpa
));
463 page_head
->page_hpa
= page_hpa
;
464 list_move(&page_head
->link
, &vcpu
->free_pages
);
465 ++vcpu
->kvm
->n_free_mmu_pages
;
468 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
473 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
476 struct kvm_mmu_page
*page
;
478 if (list_empty(&vcpu
->free_pages
))
481 page
= list_entry(vcpu
->free_pages
.next
, struct kvm_mmu_page
, link
);
482 list_move(&page
->link
, &vcpu
->kvm
->active_mmu_pages
);
483 ASSERT(is_empty_shadow_page(page
->page_hpa
));
484 page
->slot_bitmap
= 0;
485 page
->multimapped
= 0;
486 page
->parent_pte
= parent_pte
;
487 --vcpu
->kvm
->n_free_mmu_pages
;
491 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
492 struct kvm_mmu_page
*page
, u64
*parent_pte
)
494 struct kvm_pte_chain
*pte_chain
;
495 struct hlist_node
*node
;
500 if (!page
->multimapped
) {
501 u64
*old
= page
->parent_pte
;
504 page
->parent_pte
= parent_pte
;
507 page
->multimapped
= 1;
508 pte_chain
= mmu_alloc_pte_chain(vcpu
);
509 INIT_HLIST_HEAD(&page
->parent_ptes
);
510 hlist_add_head(&pte_chain
->link
, &page
->parent_ptes
);
511 pte_chain
->parent_ptes
[0] = old
;
513 hlist_for_each_entry(pte_chain
, node
, &page
->parent_ptes
, link
) {
514 if (pte_chain
->parent_ptes
[NR_PTE_CHAIN_ENTRIES
-1])
516 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
)
517 if (!pte_chain
->parent_ptes
[i
]) {
518 pte_chain
->parent_ptes
[i
] = parent_pte
;
522 pte_chain
= mmu_alloc_pte_chain(vcpu
);
524 hlist_add_head(&pte_chain
->link
, &page
->parent_ptes
);
525 pte_chain
->parent_ptes
[0] = parent_pte
;
528 static void mmu_page_remove_parent_pte(struct kvm_vcpu
*vcpu
,
529 struct kvm_mmu_page
*page
,
532 struct kvm_pte_chain
*pte_chain
;
533 struct hlist_node
*node
;
536 if (!page
->multimapped
) {
537 BUG_ON(page
->parent_pte
!= parent_pte
);
538 page
->parent_pte
= NULL
;
541 hlist_for_each_entry(pte_chain
, node
, &page
->parent_ptes
, link
)
542 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
543 if (!pte_chain
->parent_ptes
[i
])
545 if (pte_chain
->parent_ptes
[i
] != parent_pte
)
547 while (i
+ 1 < NR_PTE_CHAIN_ENTRIES
548 && pte_chain
->parent_ptes
[i
+ 1]) {
549 pte_chain
->parent_ptes
[i
]
550 = pte_chain
->parent_ptes
[i
+ 1];
553 pte_chain
->parent_ptes
[i
] = NULL
;
555 hlist_del(&pte_chain
->link
);
556 mmu_free_pte_chain(vcpu
, pte_chain
);
557 if (hlist_empty(&page
->parent_ptes
)) {
558 page
->multimapped
= 0;
559 page
->parent_pte
= NULL
;
567 static struct kvm_mmu_page
*kvm_mmu_lookup_page(struct kvm_vcpu
*vcpu
,
571 struct hlist_head
*bucket
;
572 struct kvm_mmu_page
*page
;
573 struct hlist_node
*node
;
575 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__
, gfn
);
576 index
= kvm_page_table_hashfn(gfn
) % KVM_NUM_MMU_PAGES
;
577 bucket
= &vcpu
->kvm
->mmu_page_hash
[index
];
578 hlist_for_each_entry(page
, node
, bucket
, hash_link
)
579 if (page
->gfn
== gfn
&& !page
->role
.metaphysical
) {
580 pgprintk("%s: found role %x\n",
581 __FUNCTION__
, page
->role
.word
);
587 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
592 unsigned hugepage_access
,
595 union kvm_mmu_page_role role
;
598 struct hlist_head
*bucket
;
599 struct kvm_mmu_page
*page
;
600 struct hlist_node
*node
;
603 role
.glevels
= vcpu
->mmu
.root_level
;
605 role
.metaphysical
= metaphysical
;
606 role
.hugepage_access
= hugepage_access
;
607 if (vcpu
->mmu
.root_level
<= PT32_ROOT_LEVEL
) {
608 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
609 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
610 role
.quadrant
= quadrant
;
612 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__
,
614 index
= kvm_page_table_hashfn(gfn
) % KVM_NUM_MMU_PAGES
;
615 bucket
= &vcpu
->kvm
->mmu_page_hash
[index
];
616 hlist_for_each_entry(page
, node
, bucket
, hash_link
)
617 if (page
->gfn
== gfn
&& page
->role
.word
== role
.word
) {
618 mmu_page_add_parent_pte(vcpu
, page
, parent_pte
);
619 pgprintk("%s: found\n", __FUNCTION__
);
622 page
= kvm_mmu_alloc_page(vcpu
, parent_pte
);
625 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__
, gfn
, role
.word
);
628 hlist_add_head(&page
->hash_link
, bucket
);
630 rmap_write_protect(vcpu
, gfn
);
634 static void kvm_mmu_page_unlink_children(struct kvm_vcpu
*vcpu
,
635 struct kvm_mmu_page
*page
)
641 pt
= __va(page
->page_hpa
);
643 if (page
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
644 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
645 if (pt
[i
] & PT_PRESENT_MASK
)
646 rmap_remove(vcpu
, &pt
[i
]);
649 kvm_arch_ops
->tlb_flush(vcpu
);
653 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
657 if (!(ent
& PT_PRESENT_MASK
))
659 ent
&= PT64_BASE_ADDR_MASK
;
660 mmu_page_remove_parent_pte(vcpu
, page_header(ent
), &pt
[i
]);
664 static void kvm_mmu_put_page(struct kvm_vcpu
*vcpu
,
665 struct kvm_mmu_page
*page
,
668 mmu_page_remove_parent_pte(vcpu
, page
, parent_pte
);
671 static void kvm_mmu_zap_page(struct kvm_vcpu
*vcpu
,
672 struct kvm_mmu_page
*page
)
676 while (page
->multimapped
|| page
->parent_pte
) {
677 if (!page
->multimapped
)
678 parent_pte
= page
->parent_pte
;
680 struct kvm_pte_chain
*chain
;
682 chain
= container_of(page
->parent_ptes
.first
,
683 struct kvm_pte_chain
, link
);
684 parent_pte
= chain
->parent_ptes
[0];
687 kvm_mmu_put_page(vcpu
, page
, parent_pte
);
690 kvm_mmu_page_unlink_children(vcpu
, page
);
691 if (!page
->root_count
) {
692 hlist_del(&page
->hash_link
);
693 kvm_mmu_free_page(vcpu
, page
->page_hpa
);
695 list_move(&page
->link
, &vcpu
->kvm
->active_mmu_pages
);
698 static int kvm_mmu_unprotect_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
701 struct hlist_head
*bucket
;
702 struct kvm_mmu_page
*page
;
703 struct hlist_node
*node
, *n
;
706 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__
, gfn
);
708 index
= kvm_page_table_hashfn(gfn
) % KVM_NUM_MMU_PAGES
;
709 bucket
= &vcpu
->kvm
->mmu_page_hash
[index
];
710 hlist_for_each_entry_safe(page
, node
, n
, bucket
, hash_link
)
711 if (page
->gfn
== gfn
&& !page
->role
.metaphysical
) {
712 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__
, gfn
,
714 kvm_mmu_zap_page(vcpu
, page
);
720 static void page_header_update_slot(struct kvm
*kvm
, void *pte
, gpa_t gpa
)
722 int slot
= memslot_id(kvm
, gfn_to_memslot(kvm
, gpa
>> PAGE_SHIFT
));
723 struct kvm_mmu_page
*page_head
= page_header(__pa(pte
));
725 __set_bit(slot
, &page_head
->slot_bitmap
);
728 hpa_t
safe_gpa_to_hpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
)
730 hpa_t hpa
= gpa_to_hpa(vcpu
, gpa
);
732 return is_error_hpa(hpa
) ? bad_page_address
| (gpa
& ~PAGE_MASK
): hpa
;
735 hpa_t
gpa_to_hpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
)
739 ASSERT((gpa
& HPA_ERR_MASK
) == 0);
740 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
742 return gpa
| HPA_ERR_MASK
;
743 return ((hpa_t
)page_to_pfn(page
) << PAGE_SHIFT
)
744 | (gpa
& (PAGE_SIZE
-1));
747 hpa_t
gva_to_hpa(struct kvm_vcpu
*vcpu
, gva_t gva
)
749 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, gva
);
751 if (gpa
== UNMAPPED_GVA
)
753 return gpa_to_hpa(vcpu
, gpa
);
756 struct page
*gva_to_page(struct kvm_vcpu
*vcpu
, gva_t gva
)
758 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, gva
);
760 if (gpa
== UNMAPPED_GVA
)
762 return pfn_to_page(gpa_to_hpa(vcpu
, gpa
) >> PAGE_SHIFT
);
765 static void nonpaging_new_cr3(struct kvm_vcpu
*vcpu
)
769 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, hpa_t p
)
771 int level
= PT32E_ROOT_LEVEL
;
772 hpa_t table_addr
= vcpu
->mmu
.root_hpa
;
775 u32 index
= PT64_INDEX(v
, level
);
779 ASSERT(VALID_PAGE(table_addr
));
780 table
= __va(table_addr
);
784 if (is_present_pte(pte
) && is_writeble_pte(pte
))
786 mark_page_dirty(vcpu
->kvm
, v
>> PAGE_SHIFT
);
787 page_header_update_slot(vcpu
->kvm
, table
, v
);
788 table
[index
] = p
| PT_PRESENT_MASK
| PT_WRITABLE_MASK
|
790 rmap_add(vcpu
, &table
[index
]);
794 if (table
[index
] == 0) {
795 struct kvm_mmu_page
*new_table
;
798 pseudo_gfn
= (v
& PT64_DIR_BASE_ADDR_MASK
)
800 new_table
= kvm_mmu_get_page(vcpu
, pseudo_gfn
,
802 1, 0, &table
[index
]);
804 pgprintk("nonpaging_map: ENOMEM\n");
808 table
[index
] = new_table
->page_hpa
| PT_PRESENT_MASK
809 | PT_WRITABLE_MASK
| PT_USER_MASK
;
811 table_addr
= table
[index
] & PT64_BASE_ADDR_MASK
;
815 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
818 struct kvm_mmu_page
*page
;
821 if (vcpu
->mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
822 hpa_t root
= vcpu
->mmu
.root_hpa
;
824 ASSERT(VALID_PAGE(root
));
825 page
= page_header(root
);
827 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
831 for (i
= 0; i
< 4; ++i
) {
832 hpa_t root
= vcpu
->mmu
.pae_root
[i
];
835 ASSERT(VALID_PAGE(root
));
836 root
&= PT64_BASE_ADDR_MASK
;
837 page
= page_header(root
);
840 vcpu
->mmu
.pae_root
[i
] = INVALID_PAGE
;
842 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
845 static void mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
849 struct kvm_mmu_page
*page
;
851 root_gfn
= vcpu
->cr3
>> PAGE_SHIFT
;
854 if (vcpu
->mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
855 hpa_t root
= vcpu
->mmu
.root_hpa
;
857 ASSERT(!VALID_PAGE(root
));
858 page
= kvm_mmu_get_page(vcpu
, root_gfn
, 0,
859 PT64_ROOT_LEVEL
, 0, 0, NULL
);
860 root
= page
->page_hpa
;
862 vcpu
->mmu
.root_hpa
= root
;
866 for (i
= 0; i
< 4; ++i
) {
867 hpa_t root
= vcpu
->mmu
.pae_root
[i
];
869 ASSERT(!VALID_PAGE(root
));
870 if (vcpu
->mmu
.root_level
== PT32E_ROOT_LEVEL
) {
871 if (!is_present_pte(vcpu
->pdptrs
[i
])) {
872 vcpu
->mmu
.pae_root
[i
] = 0;
875 root_gfn
= vcpu
->pdptrs
[i
] >> PAGE_SHIFT
;
876 } else if (vcpu
->mmu
.root_level
== 0)
878 page
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
879 PT32_ROOT_LEVEL
, !is_paging(vcpu
),
881 root
= page
->page_hpa
;
883 vcpu
->mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
885 vcpu
->mmu
.root_hpa
= __pa(vcpu
->mmu
.pae_root
);
888 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
)
893 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
900 r
= mmu_topup_memory_caches(vcpu
);
905 ASSERT(VALID_PAGE(vcpu
->mmu
.root_hpa
));
908 paddr
= gpa_to_hpa(vcpu
, addr
& PT64_BASE_ADDR_MASK
);
910 if (is_error_hpa(paddr
))
913 return nonpaging_map(vcpu
, addr
& PAGE_MASK
, paddr
);
916 static void nonpaging_free(struct kvm_vcpu
*vcpu
)
918 mmu_free_roots(vcpu
);
921 static int nonpaging_init_context(struct kvm_vcpu
*vcpu
)
923 struct kvm_mmu
*context
= &vcpu
->mmu
;
925 context
->new_cr3
= nonpaging_new_cr3
;
926 context
->page_fault
= nonpaging_page_fault
;
927 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
928 context
->free
= nonpaging_free
;
929 context
->root_level
= 0;
930 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
931 mmu_alloc_roots(vcpu
);
932 ASSERT(VALID_PAGE(context
->root_hpa
));
933 kvm_arch_ops
->set_cr3(vcpu
, context
->root_hpa
);
937 static void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
939 ++vcpu
->stat
.tlb_flush
;
940 kvm_arch_ops
->tlb_flush(vcpu
);
943 static void paging_new_cr3(struct kvm_vcpu
*vcpu
)
945 pgprintk("%s: cr3 %lx\n", __FUNCTION__
, vcpu
->cr3
);
946 mmu_free_roots(vcpu
);
947 if (unlikely(vcpu
->kvm
->n_free_mmu_pages
< KVM_MIN_FREE_MMU_PAGES
))
948 kvm_mmu_free_some_pages(vcpu
);
949 mmu_alloc_roots(vcpu
);
950 kvm_mmu_flush_tlb(vcpu
);
951 kvm_arch_ops
->set_cr3(vcpu
, vcpu
->mmu
.root_hpa
);
954 static inline void set_pte_common(struct kvm_vcpu
*vcpu
,
963 *shadow_pte
|= access_bits
<< PT_SHADOW_BITS_OFFSET
;
965 access_bits
&= ~PT_WRITABLE_MASK
;
967 paddr
= gpa_to_hpa(vcpu
, gaddr
& PT64_BASE_ADDR_MASK
);
969 *shadow_pte
|= access_bits
;
971 if (is_error_hpa(paddr
)) {
972 *shadow_pte
|= gaddr
;
973 *shadow_pte
|= PT_SHADOW_IO_MARK
;
974 *shadow_pte
&= ~PT_PRESENT_MASK
;
978 *shadow_pte
|= paddr
;
980 if (access_bits
& PT_WRITABLE_MASK
) {
981 struct kvm_mmu_page
*shadow
;
983 shadow
= kvm_mmu_lookup_page(vcpu
, gfn
);
985 pgprintk("%s: found shadow page for %lx, marking ro\n",
987 access_bits
&= ~PT_WRITABLE_MASK
;
988 if (is_writeble_pte(*shadow_pte
)) {
989 *shadow_pte
&= ~PT_WRITABLE_MASK
;
990 kvm_arch_ops
->tlb_flush(vcpu
);
995 if (access_bits
& PT_WRITABLE_MASK
)
996 mark_page_dirty(vcpu
->kvm
, gaddr
>> PAGE_SHIFT
);
998 page_header_update_slot(vcpu
->kvm
, shadow_pte
, gaddr
);
999 rmap_add(vcpu
, shadow_pte
);
1002 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
1006 kvm_arch_ops
->inject_page_fault(vcpu
, addr
, err_code
);
1009 static inline int fix_read_pf(u64
*shadow_ent
)
1011 if ((*shadow_ent
& PT_SHADOW_USER_MASK
) &&
1012 !(*shadow_ent
& PT_USER_MASK
)) {
1014 * If supervisor write protect is disabled, we shadow kernel
1015 * pages as user pages so we can trap the write access.
1017 *shadow_ent
|= PT_USER_MASK
;
1018 *shadow_ent
&= ~PT_WRITABLE_MASK
;
1026 static void paging_free(struct kvm_vcpu
*vcpu
)
1028 nonpaging_free(vcpu
);
1032 #include "paging_tmpl.h"
1036 #include "paging_tmpl.h"
1039 static int paging64_init_context_common(struct kvm_vcpu
*vcpu
, int level
)
1041 struct kvm_mmu
*context
= &vcpu
->mmu
;
1043 ASSERT(is_pae(vcpu
));
1044 context
->new_cr3
= paging_new_cr3
;
1045 context
->page_fault
= paging64_page_fault
;
1046 context
->gva_to_gpa
= paging64_gva_to_gpa
;
1047 context
->free
= paging_free
;
1048 context
->root_level
= level
;
1049 context
->shadow_root_level
= level
;
1050 mmu_alloc_roots(vcpu
);
1051 ASSERT(VALID_PAGE(context
->root_hpa
));
1052 kvm_arch_ops
->set_cr3(vcpu
, context
->root_hpa
|
1053 (vcpu
->cr3
& (CR3_PCD_MASK
| CR3_WPT_MASK
)));
1057 static int paging64_init_context(struct kvm_vcpu
*vcpu
)
1059 return paging64_init_context_common(vcpu
, PT64_ROOT_LEVEL
);
1062 static int paging32_init_context(struct kvm_vcpu
*vcpu
)
1064 struct kvm_mmu
*context
= &vcpu
->mmu
;
1066 context
->new_cr3
= paging_new_cr3
;
1067 context
->page_fault
= paging32_page_fault
;
1068 context
->gva_to_gpa
= paging32_gva_to_gpa
;
1069 context
->free
= paging_free
;
1070 context
->root_level
= PT32_ROOT_LEVEL
;
1071 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
1072 mmu_alloc_roots(vcpu
);
1073 ASSERT(VALID_PAGE(context
->root_hpa
));
1074 kvm_arch_ops
->set_cr3(vcpu
, context
->root_hpa
|
1075 (vcpu
->cr3
& (CR3_PCD_MASK
| CR3_WPT_MASK
)));
1079 static int paging32E_init_context(struct kvm_vcpu
*vcpu
)
1081 return paging64_init_context_common(vcpu
, PT32E_ROOT_LEVEL
);
1084 static int init_kvm_mmu(struct kvm_vcpu
*vcpu
)
1087 ASSERT(!VALID_PAGE(vcpu
->mmu
.root_hpa
));
1089 if (!is_paging(vcpu
))
1090 return nonpaging_init_context(vcpu
);
1091 else if (is_long_mode(vcpu
))
1092 return paging64_init_context(vcpu
);
1093 else if (is_pae(vcpu
))
1094 return paging32E_init_context(vcpu
);
1096 return paging32_init_context(vcpu
);
1099 static void destroy_kvm_mmu(struct kvm_vcpu
*vcpu
)
1102 if (VALID_PAGE(vcpu
->mmu
.root_hpa
)) {
1103 vcpu
->mmu
.free(vcpu
);
1104 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
1108 int kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
1112 destroy_kvm_mmu(vcpu
);
1113 r
= init_kvm_mmu(vcpu
);
1116 r
= mmu_topup_memory_caches(vcpu
);
1121 static void mmu_pre_write_zap_pte(struct kvm_vcpu
*vcpu
,
1122 struct kvm_mmu_page
*page
,
1126 struct kvm_mmu_page
*child
;
1129 if (is_present_pte(pte
)) {
1130 if (page
->role
.level
== PT_PAGE_TABLE_LEVEL
)
1131 rmap_remove(vcpu
, spte
);
1133 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
1134 mmu_page_remove_parent_pte(vcpu
, child
, spte
);
1140 void kvm_mmu_pre_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
)
1142 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1143 struct kvm_mmu_page
*page
;
1144 struct hlist_node
*node
, *n
;
1145 struct hlist_head
*bucket
;
1148 unsigned offset
= offset_in_page(gpa
);
1150 unsigned page_offset
;
1151 unsigned misaligned
;
1156 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__
, gpa
, bytes
);
1157 if (gfn
== vcpu
->last_pt_write_gfn
) {
1158 ++vcpu
->last_pt_write_count
;
1159 if (vcpu
->last_pt_write_count
>= 3)
1162 vcpu
->last_pt_write_gfn
= gfn
;
1163 vcpu
->last_pt_write_count
= 1;
1165 index
= kvm_page_table_hashfn(gfn
) % KVM_NUM_MMU_PAGES
;
1166 bucket
= &vcpu
->kvm
->mmu_page_hash
[index
];
1167 hlist_for_each_entry_safe(page
, node
, n
, bucket
, hash_link
) {
1168 if (page
->gfn
!= gfn
|| page
->role
.metaphysical
)
1170 pte_size
= page
->role
.glevels
== PT32_ROOT_LEVEL
? 4 : 8;
1171 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
1172 if (misaligned
|| flooded
) {
1174 * Misaligned accesses are too much trouble to fix
1175 * up; also, they usually indicate a page is not used
1178 * If we're seeing too many writes to a page,
1179 * it may no longer be a page table, or we may be
1180 * forking, in which case it is better to unmap the
1183 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1184 gpa
, bytes
, page
->role
.word
);
1185 kvm_mmu_zap_page(vcpu
, page
);
1188 page_offset
= offset
;
1189 level
= page
->role
.level
;
1191 if (page
->role
.glevels
== PT32_ROOT_LEVEL
) {
1192 page_offset
<<= 1; /* 32->64 */
1194 * A 32-bit pde maps 4MB while the shadow pdes map
1195 * only 2MB. So we need to double the offset again
1196 * and zap two pdes instead of one.
1198 if (level
== PT32_ROOT_LEVEL
) {
1199 page_offset
&= ~7; /* kill rounding error */
1203 page_offset
&= ~PAGE_MASK
;
1205 spte
= __va(page
->page_hpa
);
1206 spte
+= page_offset
/ sizeof(*spte
);
1208 mmu_pre_write_zap_pte(vcpu
, page
, spte
);
1214 void kvm_mmu_post_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
)
1218 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
1220 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, gva
);
1222 return kvm_mmu_unprotect_page(vcpu
, gpa
>> PAGE_SHIFT
);
1225 void kvm_mmu_free_some_pages(struct kvm_vcpu
*vcpu
)
1227 while (vcpu
->kvm
->n_free_mmu_pages
< KVM_REFILL_PAGES
) {
1228 struct kvm_mmu_page
*page
;
1230 page
= container_of(vcpu
->kvm
->active_mmu_pages
.prev
,
1231 struct kvm_mmu_page
, link
);
1232 kvm_mmu_zap_page(vcpu
, page
);
1235 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages
);
1237 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
1239 struct kvm_mmu_page
*page
;
1241 while (!list_empty(&vcpu
->kvm
->active_mmu_pages
)) {
1242 page
= container_of(vcpu
->kvm
->active_mmu_pages
.next
,
1243 struct kvm_mmu_page
, link
);
1244 kvm_mmu_zap_page(vcpu
, page
);
1246 while (!list_empty(&vcpu
->free_pages
)) {
1247 page
= list_entry(vcpu
->free_pages
.next
,
1248 struct kvm_mmu_page
, link
);
1249 list_del(&page
->link
);
1250 __free_page(pfn_to_page(page
->page_hpa
>> PAGE_SHIFT
));
1251 page
->page_hpa
= INVALID_PAGE
;
1253 free_page((unsigned long)vcpu
->mmu
.pae_root
);
1256 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
1263 for (i
= 0; i
< KVM_NUM_MMU_PAGES
; i
++) {
1264 struct kvm_mmu_page
*page_header
= &vcpu
->page_header_buf
[i
];
1266 INIT_LIST_HEAD(&page_header
->link
);
1267 if ((page
= alloc_page(GFP_KERNEL
)) == NULL
)
1269 set_page_private(page
, (unsigned long)page_header
);
1270 page_header
->page_hpa
= (hpa_t
)page_to_pfn(page
) << PAGE_SHIFT
;
1271 memset(__va(page_header
->page_hpa
), 0, PAGE_SIZE
);
1272 list_add(&page_header
->link
, &vcpu
->free_pages
);
1273 ++vcpu
->kvm
->n_free_mmu_pages
;
1277 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1278 * Therefore we need to allocate shadow page tables in the first
1279 * 4GB of memory, which happens to fit the DMA32 zone.
1281 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
1284 vcpu
->mmu
.pae_root
= page_address(page
);
1285 for (i
= 0; i
< 4; ++i
)
1286 vcpu
->mmu
.pae_root
[i
] = INVALID_PAGE
;
1291 free_mmu_pages(vcpu
);
1295 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
1298 ASSERT(!VALID_PAGE(vcpu
->mmu
.root_hpa
));
1299 ASSERT(list_empty(&vcpu
->free_pages
));
1301 return alloc_mmu_pages(vcpu
);
1304 int kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
1307 ASSERT(!VALID_PAGE(vcpu
->mmu
.root_hpa
));
1308 ASSERT(!list_empty(&vcpu
->free_pages
));
1310 return init_kvm_mmu(vcpu
);
1313 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
1317 destroy_kvm_mmu(vcpu
);
1318 free_mmu_pages(vcpu
);
1319 mmu_free_memory_caches(vcpu
);
1322 void kvm_mmu_slot_remove_write_access(struct kvm_vcpu
*vcpu
, int slot
)
1324 struct kvm
*kvm
= vcpu
->kvm
;
1325 struct kvm_mmu_page
*page
;
1327 list_for_each_entry(page
, &kvm
->active_mmu_pages
, link
) {
1331 if (!test_bit(slot
, &page
->slot_bitmap
))
1334 pt
= __va(page
->page_hpa
);
1335 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1337 if (pt
[i
] & PT_WRITABLE_MASK
) {
1338 rmap_remove(vcpu
, &pt
[i
]);
1339 pt
[i
] &= ~PT_WRITABLE_MASK
;
1344 void kvm_mmu_zap_all(struct kvm_vcpu
*vcpu
)
1346 destroy_kvm_mmu(vcpu
);
1348 while (!list_empty(&vcpu
->kvm
->active_mmu_pages
)) {
1349 struct kvm_mmu_page
*page
;
1351 page
= container_of(vcpu
->kvm
->active_mmu_pages
.next
,
1352 struct kvm_mmu_page
, link
);
1353 kvm_mmu_zap_page(vcpu
, page
);
1356 mmu_free_memory_caches(vcpu
);
1357 kvm_arch_ops
->tlb_flush(vcpu
);
1361 void kvm_mmu_module_exit(void)
1363 if (pte_chain_cache
)
1364 kmem_cache_destroy(pte_chain_cache
);
1365 if (rmap_desc_cache
)
1366 kmem_cache_destroy(rmap_desc_cache
);
1369 int kvm_mmu_module_init(void)
1371 pte_chain_cache
= kmem_cache_create("kvm_pte_chain",
1372 sizeof(struct kvm_pte_chain
),
1374 if (!pte_chain_cache
)
1376 rmap_desc_cache
= kmem_cache_create("kvm_rmap_desc",
1377 sizeof(struct kvm_rmap_desc
),
1379 if (!rmap_desc_cache
)
1385 kvm_mmu_module_exit();
1391 static const char *audit_msg
;
1393 static gva_t
canonicalize(gva_t gva
)
1395 #ifdef CONFIG_X86_64
1396 gva
= (long long)(gva
<< 16) >> 16;
1401 static void audit_mappings_page(struct kvm_vcpu
*vcpu
, u64 page_pte
,
1402 gva_t va
, int level
)
1404 u64
*pt
= __va(page_pte
& PT64_BASE_ADDR_MASK
);
1406 gva_t va_delta
= 1ul << (PAGE_SHIFT
+ 9 * (level
- 1));
1408 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
, va
+= va_delta
) {
1411 if (!(ent
& PT_PRESENT_MASK
))
1414 va
= canonicalize(va
);
1416 audit_mappings_page(vcpu
, ent
, va
, level
- 1);
1418 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, va
);
1419 hpa_t hpa
= gpa_to_hpa(vcpu
, gpa
);
1421 if ((ent
& PT_PRESENT_MASK
)
1422 && (ent
& PT64_BASE_ADDR_MASK
) != hpa
)
1423 printk(KERN_ERR
"audit error: (%s) levels %d"
1424 " gva %lx gpa %llx hpa %llx ent %llx\n",
1425 audit_msg
, vcpu
->mmu
.root_level
,
1431 static void audit_mappings(struct kvm_vcpu
*vcpu
)
1435 if (vcpu
->mmu
.root_level
== 4)
1436 audit_mappings_page(vcpu
, vcpu
->mmu
.root_hpa
, 0, 4);
1438 for (i
= 0; i
< 4; ++i
)
1439 if (vcpu
->mmu
.pae_root
[i
] & PT_PRESENT_MASK
)
1440 audit_mappings_page(vcpu
,
1441 vcpu
->mmu
.pae_root
[i
],
1446 static int count_rmaps(struct kvm_vcpu
*vcpu
)
1451 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
1452 struct kvm_memory_slot
*m
= &vcpu
->kvm
->memslots
[i
];
1453 struct kvm_rmap_desc
*d
;
1455 for (j
= 0; j
< m
->npages
; ++j
) {
1456 struct page
*page
= m
->phys_mem
[j
];
1460 if (!(page
->private & 1)) {
1464 d
= (struct kvm_rmap_desc
*)(page
->private & ~1ul);
1466 for (k
= 0; k
< RMAP_EXT
; ++k
)
1467 if (d
->shadow_ptes
[k
])
1478 static int count_writable_mappings(struct kvm_vcpu
*vcpu
)
1481 struct kvm_mmu_page
*page
;
1484 list_for_each_entry(page
, &vcpu
->kvm
->active_mmu_pages
, link
) {
1485 u64
*pt
= __va(page
->page_hpa
);
1487 if (page
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
1490 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
1493 if (!(ent
& PT_PRESENT_MASK
))
1495 if (!(ent
& PT_WRITABLE_MASK
))
1503 static void audit_rmap(struct kvm_vcpu
*vcpu
)
1505 int n_rmap
= count_rmaps(vcpu
);
1506 int n_actual
= count_writable_mappings(vcpu
);
1508 if (n_rmap
!= n_actual
)
1509 printk(KERN_ERR
"%s: (%s) rmap %d actual %d\n",
1510 __FUNCTION__
, audit_msg
, n_rmap
, n_actual
);
1513 static void audit_write_protection(struct kvm_vcpu
*vcpu
)
1515 struct kvm_mmu_page
*page
;
1517 list_for_each_entry(page
, &vcpu
->kvm
->active_mmu_pages
, link
) {
1521 if (page
->role
.metaphysical
)
1524 hfn
= gpa_to_hpa(vcpu
, (gpa_t
)page
->gfn
<< PAGE_SHIFT
)
1526 pg
= pfn_to_page(hfn
);
1528 printk(KERN_ERR
"%s: (%s) shadow page has writable"
1529 " mappings: gfn %lx role %x\n",
1530 __FUNCTION__
, audit_msg
, page
->gfn
,
1535 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
)
1542 audit_write_protection(vcpu
);
1543 audit_mappings(vcpu
);