1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "D-Link DL2000-based linux driver"
14 #define DRV_VERSION "v1.18"
15 #define DRV_RELDATE "2006/06/27"
17 #include <linux/dma-mapping.h>
19 static char version
[] __devinitdata
=
20 KERN_INFO DRV_NAME
" " DRV_VERSION
" " DRV_RELDATE
"\n";
22 static int mtu
[MAX_UNITS
];
23 static int vlan
[MAX_UNITS
];
24 static int jumbo
[MAX_UNITS
];
25 static char *media
[MAX_UNITS
];
26 static int tx_flow
=-1;
27 static int rx_flow
=-1;
28 static int copy_thresh
;
29 static int rx_coalesce
=10; /* Rx frame count each interrupt */
30 static int rx_timeout
=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce
=16; /* HW xmit count each TxDMAComplete */
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu
, int, NULL
, 0);
38 module_param_array(media
, charp
, NULL
, 0);
39 module_param_array(vlan
, int, NULL
, 0);
40 module_param_array(jumbo
, int, NULL
, 0);
41 module_param(tx_flow
, int, 0);
42 module_param(rx_flow
, int, 0);
43 module_param(copy_thresh
, int, 0);
44 module_param(rx_coalesce
, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout
, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce
, int, 0); /* HW xmit count each TxDMAComplete */
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
55 static const int max_intrloop
= 50;
56 static const int multicast_filter_limit
= 0x40;
58 static int rio_open (struct net_device
*dev
);
59 static void rio_timer (unsigned long data
);
60 static void rio_tx_timeout (struct net_device
*dev
);
61 static void alloc_list (struct net_device
*dev
);
62 static int start_xmit (struct sk_buff
*skb
, struct net_device
*dev
);
63 static irqreturn_t
rio_interrupt (int irq
, void *dev_instance
);
64 static void rio_free_tx (struct net_device
*dev
, int irq
);
65 static void tx_error (struct net_device
*dev
, int tx_status
);
66 static int receive_packet (struct net_device
*dev
);
67 static void rio_error (struct net_device
*dev
, int int_status
);
68 static int change_mtu (struct net_device
*dev
, int new_mtu
);
69 static void set_multicast (struct net_device
*dev
);
70 static struct net_device_stats
*get_stats (struct net_device
*dev
);
71 static int clear_stats (struct net_device
*dev
);
72 static int rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
73 static int rio_close (struct net_device
*dev
);
74 static int find_miiphy (struct net_device
*dev
);
75 static int parse_eeprom (struct net_device
*dev
);
76 static int read_eeprom (long ioaddr
, int eep_addr
);
77 static int mii_wait_link (struct net_device
*dev
, int wait
);
78 static int mii_set_media (struct net_device
*dev
);
79 static int mii_get_media (struct net_device
*dev
);
80 static int mii_set_media_pcs (struct net_device
*dev
);
81 static int mii_get_media_pcs (struct net_device
*dev
);
82 static int mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
);
83 static int mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
,
86 static const struct ethtool_ops ethtool_ops
;
89 rio_probe1 (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
91 struct net_device
*dev
;
92 struct netdev_private
*np
;
94 int chip_idx
= ent
->driver_data
;
97 static int version_printed
;
101 if (!version_printed
++)
102 printk ("%s", version
);
104 err
= pci_enable_device (pdev
);
109 err
= pci_request_regions (pdev
, "dl2k");
111 goto err_out_disable
;
113 pci_set_master (pdev
);
114 dev
= alloc_etherdev (sizeof (*np
));
119 SET_MODULE_OWNER (dev
);
120 SET_NETDEV_DEV(dev
, &pdev
->dev
);
123 ioaddr
= pci_resource_start (pdev
, 1);
124 ioaddr
= (long) ioremap (ioaddr
, RIO_IO_SIZE
);
130 ioaddr
= pci_resource_start (pdev
, 0);
132 dev
->base_addr
= ioaddr
;
134 np
= netdev_priv(dev
);
135 np
->chip_id
= chip_idx
;
137 spin_lock_init (&np
->tx_lock
);
138 spin_lock_init (&np
->rx_lock
);
140 /* Parse manual configuration */
143 if (card_idx
< MAX_UNITS
) {
144 if (media
[card_idx
] != NULL
) {
146 if (strcmp (media
[card_idx
], "auto") == 0 ||
147 strcmp (media
[card_idx
], "autosense") == 0 ||
148 strcmp (media
[card_idx
], "0") == 0 ) {
150 } else if (strcmp (media
[card_idx
], "100mbps_fd") == 0 ||
151 strcmp (media
[card_idx
], "4") == 0) {
154 } else if (strcmp (media
[card_idx
], "100mbps_hd") == 0
155 || strcmp (media
[card_idx
], "3") == 0) {
158 } else if (strcmp (media
[card_idx
], "10mbps_fd") == 0 ||
159 strcmp (media
[card_idx
], "2") == 0) {
162 } else if (strcmp (media
[card_idx
], "10mbps_hd") == 0 ||
163 strcmp (media
[card_idx
], "1") == 0) {
166 } else if (strcmp (media
[card_idx
], "1000mbps_fd") == 0 ||
167 strcmp (media
[card_idx
], "6") == 0) {
170 } else if (strcmp (media
[card_idx
], "1000mbps_hd") == 0 ||
171 strcmp (media
[card_idx
], "5") == 0) {
178 if (jumbo
[card_idx
] != 0) {
180 dev
->mtu
= MAX_JUMBO
;
183 if (mtu
[card_idx
] > 0 && mtu
[card_idx
] < PACKET_SIZE
)
184 dev
->mtu
= mtu
[card_idx
];
186 np
->vlan
= (vlan
[card_idx
] > 0 && vlan
[card_idx
] < 4096) ?
188 if (rx_coalesce
> 0 && rx_timeout
> 0) {
189 np
->rx_coalesce
= rx_coalesce
;
190 np
->rx_timeout
= rx_timeout
;
193 np
->tx_flow
= (tx_flow
== 0) ? 0 : 1;
194 np
->rx_flow
= (rx_flow
== 0) ? 0 : 1;
198 else if (tx_coalesce
> TX_RING_SIZE
-1)
199 tx_coalesce
= TX_RING_SIZE
- 1;
201 dev
->open
= &rio_open
;
202 dev
->hard_start_xmit
= &start_xmit
;
203 dev
->stop
= &rio_close
;
204 dev
->get_stats
= &get_stats
;
205 dev
->set_multicast_list
= &set_multicast
;
206 dev
->do_ioctl
= &rio_ioctl
;
207 dev
->tx_timeout
= &rio_tx_timeout
;
208 dev
->watchdog_timeo
= TX_TIMEOUT
;
209 dev
->change_mtu
= &change_mtu
;
210 SET_ETHTOOL_OPS(dev
, ðtool_ops
);
212 dev
->features
= NETIF_F_IP_CSUM
;
214 pci_set_drvdata (pdev
, dev
);
216 ring_space
= pci_alloc_consistent (pdev
, TX_TOTAL_SIZE
, &ring_dma
);
218 goto err_out_iounmap
;
219 np
->tx_ring
= (struct netdev_desc
*) ring_space
;
220 np
->tx_ring_dma
= ring_dma
;
222 ring_space
= pci_alloc_consistent (pdev
, RX_TOTAL_SIZE
, &ring_dma
);
224 goto err_out_unmap_tx
;
225 np
->rx_ring
= (struct netdev_desc
*) ring_space
;
226 np
->rx_ring_dma
= ring_dma
;
228 /* Parse eeprom data */
231 /* Find PHY address */
232 err
= find_miiphy (dev
);
234 goto err_out_unmap_rx
;
237 np
->phy_media
= (readw(ioaddr
+ ASICCtrl
) & PhyMedia
) ? 1 : 0;
239 /* Set media and reset PHY */
241 /* default Auto-Negotiation for fiber deivices */
242 if (np
->an_enable
== 2) {
245 mii_set_media_pcs (dev
);
247 /* Auto-Negotiation is mandatory for 1000BASE-T,
248 IEEE 802.3ab Annex 28D page 14 */
249 if (np
->speed
== 1000)
253 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &np
->pci_rev_id
);
255 err
= register_netdev (dev
);
257 goto err_out_unmap_rx
;
261 printk (KERN_INFO
"%s: %s, %02x:%02x:%02x:%02x:%02x:%02x, IRQ %d\n",
263 dev
->dev_addr
[0], dev
->dev_addr
[1], dev
->dev_addr
[2],
264 dev
->dev_addr
[3], dev
->dev_addr
[4], dev
->dev_addr
[5], irq
);
266 printk(KERN_INFO
"tx_coalesce:\t%d packets\n",
269 printk(KERN_INFO
"rx_coalesce:\t%d packets\n"
270 KERN_INFO
"rx_timeout: \t%d ns\n",
271 np
->rx_coalesce
, np
->rx_timeout
*640);
273 printk(KERN_INFO
"vlan(id):\t%d\n", np
->vlan
);
277 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
, np
->rx_ring_dma
);
279 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
, np
->tx_ring_dma
);
282 iounmap ((void *) ioaddr
);
289 pci_release_regions (pdev
);
292 pci_disable_device (pdev
);
297 find_miiphy (struct net_device
*dev
)
299 int i
, phy_found
= 0;
300 struct netdev_private
*np
;
302 np
= netdev_priv(dev
);
303 ioaddr
= dev
->base_addr
;
306 for (i
= 31; i
>= 0; i
--) {
307 int mii_status
= mii_read (dev
, i
, 1);
308 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
314 printk (KERN_ERR
"%s: No MII PHY found!\n", dev
->name
);
321 parse_eeprom (struct net_device
*dev
)
324 long ioaddr
= dev
->base_addr
;
328 PSROM_t psrom
= (PSROM_t
) sromdata
;
329 struct netdev_private
*np
= netdev_priv(dev
);
334 ioaddr
= pci_resource_start (np
->pdev
, 0);
337 for (i
= 0; i
< 128; i
++) {
338 ((u16
*) sromdata
)[i
] = le16_to_cpu (read_eeprom (ioaddr
, i
));
341 ioaddr
= dev
->base_addr
;
344 crc
= ~ether_crc_le (256 - 4, sromdata
);
345 if (psrom
->crc
!= crc
) {
346 printk (KERN_ERR
"%s: EEPROM data CRC error.\n", dev
->name
);
350 /* Set MAC address */
351 for (i
= 0; i
< 6; i
++)
352 dev
->dev_addr
[i
] = psrom
->mac_addr
[i
];
354 /* Parse Software Information Block */
356 psib
= (u8
*) sromdata
;
360 if ((cid
== 0 && next
== 0) || (cid
== 0xff && next
== 0xff)) {
361 printk (KERN_ERR
"Cell data error\n");
365 case 0: /* Format version */
367 case 1: /* End of cell */
369 case 2: /* Duplex Polarity */
370 np
->duplex_polarity
= psib
[i
];
371 writeb (readb (ioaddr
+ PhyCtrl
) | psib
[i
],
374 case 3: /* Wake Polarity */
375 np
->wake_polarity
= psib
[i
];
377 case 9: /* Adapter description */
378 j
= (next
- i
> 255) ? 255 : next
- i
;
379 memcpy (np
->name
, &(psib
[i
]), j
);
385 case 8: /* Reversed */
387 default: /* Unknown cell */
397 rio_open (struct net_device
*dev
)
399 struct netdev_private
*np
= netdev_priv(dev
);
400 long ioaddr
= dev
->base_addr
;
404 i
= request_irq (dev
->irq
, &rio_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
408 /* Reset all logic functions */
409 writew (GlobalReset
| DMAReset
| FIFOReset
| NetworkReset
| HostReset
,
410 ioaddr
+ ASICCtrl
+ 2);
413 /* DebugCtrl bit 4, 5, 9 must set */
414 writel (readl (ioaddr
+ DebugCtrl
) | 0x0230, ioaddr
+ DebugCtrl
);
418 writew (MAX_JUMBO
+14, ioaddr
+ MaxFrameSize
);
422 /* Get station address */
423 for (i
= 0; i
< 6; i
++)
424 writeb (dev
->dev_addr
[i
], ioaddr
+ StationAddr0
+ i
);
428 writel (np
->rx_coalesce
| np
->rx_timeout
<< 16,
429 ioaddr
+ RxDMAIntCtrl
);
431 /* Set RIO to poll every N*320nsec. */
432 writeb (0x20, ioaddr
+ RxDMAPollPeriod
);
433 writeb (0xff, ioaddr
+ TxDMAPollPeriod
);
434 writeb (0x30, ioaddr
+ RxDMABurstThresh
);
435 writeb (0x30, ioaddr
+ RxDMAUrgentThresh
);
436 writel (0x0007ffff, ioaddr
+ RmonStatMask
);
437 /* clear statistics */
442 /* priority field in RxDMAIntCtrl */
443 writel (readl(ioaddr
+ RxDMAIntCtrl
) | 0x7 << 10,
444 ioaddr
+ RxDMAIntCtrl
);
446 writew (np
->vlan
, ioaddr
+ VLANId
);
447 /* Length/Type should be 0x8100 */
448 writel (0x8100 << 16 | np
->vlan
, ioaddr
+ VLANTag
);
449 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
450 VLAN information tagged by TFC' VID, CFI fields. */
451 writel (readl (ioaddr
+ MACCtrl
) | AutoVLANuntagging
,
455 init_timer (&np
->timer
);
456 np
->timer
.expires
= jiffies
+ 1*HZ
;
457 np
->timer
.data
= (unsigned long) dev
;
458 np
->timer
.function
= &rio_timer
;
459 add_timer (&np
->timer
);
462 writel (readl (ioaddr
+ MACCtrl
) | StatsEnable
| RxEnable
| TxEnable
,
466 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
467 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
468 macctrl
|= (np
->tx_flow
) ? TxFlowControlEnable
: 0;
469 macctrl
|= (np
->rx_flow
) ? RxFlowControlEnable
: 0;
470 writew(macctrl
, ioaddr
+ MACCtrl
);
472 netif_start_queue (dev
);
474 /* Enable default interrupts */
480 rio_timer (unsigned long data
)
482 struct net_device
*dev
= (struct net_device
*)data
;
483 struct netdev_private
*np
= netdev_priv(dev
);
485 int next_tick
= 1*HZ
;
488 spin_lock_irqsave(&np
->rx_lock
, flags
);
489 /* Recover rx ring exhausted error */
490 if (np
->cur_rx
- np
->old_rx
>= RX_RING_SIZE
) {
491 printk(KERN_INFO
"Try to recover rx ring exhausted...\n");
492 /* Re-allocate skbuffs to fill the descriptor ring */
493 for (; np
->cur_rx
- np
->old_rx
> 0; np
->old_rx
++) {
495 entry
= np
->old_rx
% RX_RING_SIZE
;
496 /* Dropped packets don't need to re-allocate */
497 if (np
->rx_skbuff
[entry
] == NULL
) {
498 skb
= dev_alloc_skb (np
->rx_buf_sz
);
500 np
->rx_ring
[entry
].fraginfo
= 0;
502 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
506 np
->rx_skbuff
[entry
] = skb
;
507 /* 16 byte align the IP header */
508 skb_reserve (skb
, 2);
509 np
->rx_ring
[entry
].fraginfo
=
510 cpu_to_le64 (pci_map_single
511 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
512 PCI_DMA_FROMDEVICE
));
514 np
->rx_ring
[entry
].fraginfo
|=
515 cpu_to_le64 (np
->rx_buf_sz
) << 48;
516 np
->rx_ring
[entry
].status
= 0;
519 spin_unlock_irqrestore (&np
->rx_lock
, flags
);
520 np
->timer
.expires
= jiffies
+ next_tick
;
521 add_timer(&np
->timer
);
525 rio_tx_timeout (struct net_device
*dev
)
527 long ioaddr
= dev
->base_addr
;
529 printk (KERN_INFO
"%s: Tx timed out (%4.4x), is buffer full?\n",
530 dev
->name
, readl (ioaddr
+ TxStatus
));
533 dev
->trans_start
= jiffies
;
536 /* allocate and initialize Tx and Rx descriptors */
538 alloc_list (struct net_device
*dev
)
540 struct netdev_private
*np
= netdev_priv(dev
);
543 np
->cur_rx
= np
->cur_tx
= 0;
544 np
->old_rx
= np
->old_tx
= 0;
545 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PACKET_SIZE
: dev
->mtu
+ 32);
547 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
548 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
549 np
->tx_skbuff
[i
] = NULL
;
550 np
->tx_ring
[i
].status
= cpu_to_le64 (TFDDone
);
551 np
->tx_ring
[i
].next_desc
= cpu_to_le64 (np
->tx_ring_dma
+
552 ((i
+1)%TX_RING_SIZE
) *
553 sizeof (struct netdev_desc
));
556 /* Initialize Rx descriptors */
557 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
558 np
->rx_ring
[i
].next_desc
= cpu_to_le64 (np
->rx_ring_dma
+
559 ((i
+ 1) % RX_RING_SIZE
) *
560 sizeof (struct netdev_desc
));
561 np
->rx_ring
[i
].status
= 0;
562 np
->rx_ring
[i
].fraginfo
= 0;
563 np
->rx_skbuff
[i
] = NULL
;
566 /* Allocate the rx buffers */
567 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
568 /* Allocated fixed size of skbuff */
569 struct sk_buff
*skb
= dev_alloc_skb (np
->rx_buf_sz
);
570 np
->rx_skbuff
[i
] = skb
;
573 "%s: alloc_list: allocate Rx buffer error! ",
577 skb_reserve (skb
, 2); /* 16 byte align the IP header. */
578 /* Rubicon now supports 40 bits of addressing space. */
579 np
->rx_ring
[i
].fraginfo
=
580 cpu_to_le64 ( pci_map_single (
581 np
->pdev
, skb
->data
, np
->rx_buf_sz
,
582 PCI_DMA_FROMDEVICE
));
583 np
->rx_ring
[i
].fraginfo
|= cpu_to_le64 (np
->rx_buf_sz
) << 48;
587 writel (cpu_to_le32 (np
->rx_ring_dma
), dev
->base_addr
+ RFDListPtr0
);
588 writel (0, dev
->base_addr
+ RFDListPtr1
);
594 start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
596 struct netdev_private
*np
= netdev_priv(dev
);
597 struct netdev_desc
*txdesc
;
600 u64 tfc_vlan_tag
= 0;
602 if (np
->link_status
== 0) { /* Link Down */
606 ioaddr
= dev
->base_addr
;
607 entry
= np
->cur_tx
% TX_RING_SIZE
;
608 np
->tx_skbuff
[entry
] = skb
;
609 txdesc
= &np
->tx_ring
[entry
];
612 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
614 cpu_to_le64 (TCPChecksumEnable
| UDPChecksumEnable
|
620 cpu_to_le64 (VLANTagInsert
) |
621 (cpu_to_le64 (np
->vlan
) << 32) |
622 (cpu_to_le64 (skb
->priority
) << 45);
624 txdesc
->fraginfo
= cpu_to_le64 (pci_map_single (np
->pdev
, skb
->data
,
627 txdesc
->fraginfo
|= cpu_to_le64 (skb
->len
) << 48;
629 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
630 * Work around: Always use 1 descriptor in 10Mbps mode */
631 if (entry
% np
->tx_coalesce
== 0 || np
->speed
== 10)
632 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
635 (1 << FragCountShift
));
637 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
639 (1 << FragCountShift
));
642 writel (readl (ioaddr
+ DMACtrl
) | 0x00001000, ioaddr
+ DMACtrl
);
644 writel(10000, ioaddr
+ CountDown
);
645 np
->cur_tx
= (np
->cur_tx
+ 1) % TX_RING_SIZE
;
646 if ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
647 < TX_QUEUE_LEN
- 1 && np
->speed
!= 10) {
649 } else if (!netif_queue_stopped(dev
)) {
650 netif_stop_queue (dev
);
653 /* The first TFDListPtr */
654 if (readl (dev
->base_addr
+ TFDListPtr0
) == 0) {
655 writel (np
->tx_ring_dma
+ entry
* sizeof (struct netdev_desc
),
656 dev
->base_addr
+ TFDListPtr0
);
657 writel (0, dev
->base_addr
+ TFDListPtr1
);
660 /* NETDEV WATCHDOG timer */
661 dev
->trans_start
= jiffies
;
666 rio_interrupt (int irq
, void *dev_instance
)
668 struct net_device
*dev
= dev_instance
;
669 struct netdev_private
*np
;
672 int cnt
= max_intrloop
;
675 ioaddr
= dev
->base_addr
;
676 np
= netdev_priv(dev
);
678 int_status
= readw (ioaddr
+ IntStatus
);
679 writew (int_status
, ioaddr
+ IntStatus
);
680 int_status
&= DEFAULT_INTR
;
681 if (int_status
== 0 || --cnt
< 0)
684 /* Processing received packets */
685 if (int_status
& RxDMAComplete
)
686 receive_packet (dev
);
687 /* TxDMAComplete interrupt */
688 if ((int_status
& (TxDMAComplete
|IntRequested
))) {
690 tx_status
= readl (ioaddr
+ TxStatus
);
691 if (tx_status
& 0x01)
692 tx_error (dev
, tx_status
);
693 /* Free used tx skbuffs */
694 rio_free_tx (dev
, 1);
697 /* Handle uncommon events */
699 (HostError
| LinkEvent
| UpdateStats
))
700 rio_error (dev
, int_status
);
702 if (np
->cur_tx
!= np
->old_tx
)
703 writel (100, ioaddr
+ CountDown
);
704 return IRQ_RETVAL(handled
);
708 rio_free_tx (struct net_device
*dev
, int irq
)
710 struct netdev_private
*np
= netdev_priv(dev
);
711 int entry
= np
->old_tx
% TX_RING_SIZE
;
713 unsigned long flag
= 0;
716 spin_lock(&np
->tx_lock
);
718 spin_lock_irqsave(&np
->tx_lock
, flag
);
720 /* Free used tx skbuffs */
721 while (entry
!= np
->cur_tx
) {
724 if (!(np
->tx_ring
[entry
].status
& TFDDone
))
726 skb
= np
->tx_skbuff
[entry
];
727 pci_unmap_single (np
->pdev
,
728 np
->tx_ring
[entry
].fraginfo
& DMA_48BIT_MASK
,
729 skb
->len
, PCI_DMA_TODEVICE
);
731 dev_kfree_skb_irq (skb
);
735 np
->tx_skbuff
[entry
] = NULL
;
736 entry
= (entry
+ 1) % TX_RING_SIZE
;
740 spin_unlock(&np
->tx_lock
);
742 spin_unlock_irqrestore(&np
->tx_lock
, flag
);
745 /* If the ring is no longer full, clear tx_full and
746 call netif_wake_queue() */
748 if (netif_queue_stopped(dev
) &&
749 ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
750 < TX_QUEUE_LEN
- 1 || np
->speed
== 10)) {
751 netif_wake_queue (dev
);
756 tx_error (struct net_device
*dev
, int tx_status
)
758 struct netdev_private
*np
;
759 long ioaddr
= dev
->base_addr
;
763 np
= netdev_priv(dev
);
765 frame_id
= (tx_status
& 0xffff0000);
766 printk (KERN_ERR
"%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
767 dev
->name
, tx_status
, frame_id
);
768 np
->stats
.tx_errors
++;
769 /* Ttransmit Underrun */
770 if (tx_status
& 0x10) {
771 np
->stats
.tx_fifo_errors
++;
772 writew (readw (ioaddr
+ TxStartThresh
) + 0x10,
773 ioaddr
+ TxStartThresh
);
774 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
775 writew (TxReset
| DMAReset
| FIFOReset
| NetworkReset
,
776 ioaddr
+ ASICCtrl
+ 2);
777 /* Wait for ResetBusy bit clear */
778 for (i
= 50; i
> 0; i
--) {
779 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
783 rio_free_tx (dev
, 1);
784 /* Reset TFDListPtr */
785 writel (np
->tx_ring_dma
+
786 np
->old_tx
* sizeof (struct netdev_desc
),
787 dev
->base_addr
+ TFDListPtr0
);
788 writel (0, dev
->base_addr
+ TFDListPtr1
);
790 /* Let TxStartThresh stay default value */
793 if (tx_status
& 0x04) {
794 np
->stats
.tx_fifo_errors
++;
795 /* TxReset and clear FIFO */
796 writew (TxReset
| FIFOReset
, ioaddr
+ ASICCtrl
+ 2);
797 /* Wait reset done */
798 for (i
= 50; i
> 0; i
--) {
799 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
803 /* Let TxStartThresh stay default value */
805 /* Maximum Collisions */
807 if (tx_status
& 0x08)
808 np
->stats
.collisions16
++;
810 if (tx_status
& 0x08)
811 np
->stats
.collisions
++;
814 writel (readw (dev
->base_addr
+ MACCtrl
) | TxEnable
, ioaddr
+ MACCtrl
);
818 receive_packet (struct net_device
*dev
)
820 struct netdev_private
*np
= netdev_priv(dev
);
821 int entry
= np
->cur_rx
% RX_RING_SIZE
;
824 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
826 struct netdev_desc
*desc
= &np
->rx_ring
[entry
];
830 if (!(desc
->status
& RFDDone
) ||
831 !(desc
->status
& FrameStart
) || !(desc
->status
& FrameEnd
))
834 /* Chip omits the CRC. */
835 pkt_len
= le64_to_cpu (desc
->status
& 0xffff);
836 frame_status
= le64_to_cpu (desc
->status
);
839 /* Update rx error statistics, drop packet. */
840 if (frame_status
& RFS_Errors
) {
841 np
->stats
.rx_errors
++;
842 if (frame_status
& (RxRuntFrame
| RxLengthError
))
843 np
->stats
.rx_length_errors
++;
844 if (frame_status
& RxFCSError
)
845 np
->stats
.rx_crc_errors
++;
846 if (frame_status
& RxAlignmentError
&& np
->speed
!= 1000)
847 np
->stats
.rx_frame_errors
++;
848 if (frame_status
& RxFIFOOverrun
)
849 np
->stats
.rx_fifo_errors
++;
853 /* Small skbuffs for short packets */
854 if (pkt_len
> copy_thresh
) {
855 pci_unmap_single (np
->pdev
,
856 desc
->fraginfo
& DMA_48BIT_MASK
,
859 skb_put (skb
= np
->rx_skbuff
[entry
], pkt_len
);
860 np
->rx_skbuff
[entry
] = NULL
;
861 } else if ((skb
= dev_alloc_skb (pkt_len
+ 2)) != NULL
) {
862 pci_dma_sync_single_for_cpu(np
->pdev
,
867 /* 16 byte align the IP header */
868 skb_reserve (skb
, 2);
869 eth_copy_and_sum (skb
,
870 np
->rx_skbuff
[entry
]->data
,
872 skb_put (skb
, pkt_len
);
873 pci_dma_sync_single_for_device(np
->pdev
,
879 skb
->protocol
= eth_type_trans (skb
, dev
);
881 /* Checksum done by hw, but csum value unavailable. */
882 if (np
->pci_rev_id
>= 0x0c &&
883 !(frame_status
& (TCPError
| UDPError
| IPError
))) {
884 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
888 dev
->last_rx
= jiffies
;
890 entry
= (entry
+ 1) % RX_RING_SIZE
;
892 spin_lock(&np
->rx_lock
);
894 /* Re-allocate skbuffs to fill the descriptor ring */
896 while (entry
!= np
->cur_rx
) {
898 /* Dropped packets don't need to re-allocate */
899 if (np
->rx_skbuff
[entry
] == NULL
) {
900 skb
= dev_alloc_skb (np
->rx_buf_sz
);
902 np
->rx_ring
[entry
].fraginfo
= 0;
904 "%s: receive_packet: "
905 "Unable to re-allocate Rx skbuff.#%d\n",
909 np
->rx_skbuff
[entry
] = skb
;
910 /* 16 byte align the IP header */
911 skb_reserve (skb
, 2);
912 np
->rx_ring
[entry
].fraginfo
=
913 cpu_to_le64 (pci_map_single
914 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
915 PCI_DMA_FROMDEVICE
));
917 np
->rx_ring
[entry
].fraginfo
|=
918 cpu_to_le64 (np
->rx_buf_sz
) << 48;
919 np
->rx_ring
[entry
].status
= 0;
920 entry
= (entry
+ 1) % RX_RING_SIZE
;
923 spin_unlock(&np
->rx_lock
);
928 rio_error (struct net_device
*dev
, int int_status
)
930 long ioaddr
= dev
->base_addr
;
931 struct netdev_private
*np
= netdev_priv(dev
);
934 /* Link change event */
935 if (int_status
& LinkEvent
) {
936 if (mii_wait_link (dev
, 10) == 0) {
937 printk (KERN_INFO
"%s: Link up\n", dev
->name
);
939 mii_get_media_pcs (dev
);
942 if (np
->speed
== 1000)
943 np
->tx_coalesce
= tx_coalesce
;
947 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
948 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
949 macctrl
|= (np
->tx_flow
) ?
950 TxFlowControlEnable
: 0;
951 macctrl
|= (np
->rx_flow
) ?
952 RxFlowControlEnable
: 0;
953 writew(macctrl
, ioaddr
+ MACCtrl
);
955 netif_carrier_on(dev
);
957 printk (KERN_INFO
"%s: Link off\n", dev
->name
);
959 netif_carrier_off(dev
);
963 /* UpdateStats statistics registers */
964 if (int_status
& UpdateStats
) {
968 /* PCI Error, a catastronphic error related to the bus interface
969 occurs, set GlobalReset and HostReset to reset. */
970 if (int_status
& HostError
) {
971 printk (KERN_ERR
"%s: HostError! IntStatus %4.4x.\n",
972 dev
->name
, int_status
);
973 writew (GlobalReset
| HostReset
, ioaddr
+ ASICCtrl
+ 2);
978 static struct net_device_stats
*
979 get_stats (struct net_device
*dev
)
981 long ioaddr
= dev
->base_addr
;
982 struct netdev_private
*np
= netdev_priv(dev
);
986 unsigned int stat_reg
;
988 /* All statistics registers need to be acknowledged,
989 else statistic overflow could cause problems */
991 np
->stats
.rx_packets
+= readl (ioaddr
+ FramesRcvOk
);
992 np
->stats
.tx_packets
+= readl (ioaddr
+ FramesXmtOk
);
993 np
->stats
.rx_bytes
+= readl (ioaddr
+ OctetRcvOk
);
994 np
->stats
.tx_bytes
+= readl (ioaddr
+ OctetXmtOk
);
996 np
->stats
.multicast
= readl (ioaddr
+ McstFramesRcvdOk
);
997 np
->stats
.collisions
+= readl (ioaddr
+ SingleColFrames
)
998 + readl (ioaddr
+ MultiColFrames
);
1000 /* detailed tx errors */
1001 stat_reg
= readw (ioaddr
+ FramesAbortXSColls
);
1002 np
->stats
.tx_aborted_errors
+= stat_reg
;
1003 np
->stats
.tx_errors
+= stat_reg
;
1005 stat_reg
= readw (ioaddr
+ CarrierSenseErrors
);
1006 np
->stats
.tx_carrier_errors
+= stat_reg
;
1007 np
->stats
.tx_errors
+= stat_reg
;
1009 /* Clear all other statistic register. */
1010 readl (ioaddr
+ McstOctetXmtOk
);
1011 readw (ioaddr
+ BcstFramesXmtdOk
);
1012 readl (ioaddr
+ McstFramesXmtdOk
);
1013 readw (ioaddr
+ BcstFramesRcvdOk
);
1014 readw (ioaddr
+ MacControlFramesRcvd
);
1015 readw (ioaddr
+ FrameTooLongErrors
);
1016 readw (ioaddr
+ InRangeLengthErrors
);
1017 readw (ioaddr
+ FramesCheckSeqErrors
);
1018 readw (ioaddr
+ FramesLostRxErrors
);
1019 readl (ioaddr
+ McstOctetXmtOk
);
1020 readl (ioaddr
+ BcstOctetXmtOk
);
1021 readl (ioaddr
+ McstFramesXmtdOk
);
1022 readl (ioaddr
+ FramesWDeferredXmt
);
1023 readl (ioaddr
+ LateCollisions
);
1024 readw (ioaddr
+ BcstFramesXmtdOk
);
1025 readw (ioaddr
+ MacControlFramesXmtd
);
1026 readw (ioaddr
+ FramesWEXDeferal
);
1029 for (i
= 0x100; i
<= 0x150; i
+= 4)
1032 readw (ioaddr
+ TxJumboFrames
);
1033 readw (ioaddr
+ RxJumboFrames
);
1034 readw (ioaddr
+ TCPCheckSumErrors
);
1035 readw (ioaddr
+ UDPCheckSumErrors
);
1036 readw (ioaddr
+ IPCheckSumErrors
);
1041 clear_stats (struct net_device
*dev
)
1043 long ioaddr
= dev
->base_addr
;
1048 /* All statistics registers need to be acknowledged,
1049 else statistic overflow could cause problems */
1050 readl (ioaddr
+ FramesRcvOk
);
1051 readl (ioaddr
+ FramesXmtOk
);
1052 readl (ioaddr
+ OctetRcvOk
);
1053 readl (ioaddr
+ OctetXmtOk
);
1055 readl (ioaddr
+ McstFramesRcvdOk
);
1056 readl (ioaddr
+ SingleColFrames
);
1057 readl (ioaddr
+ MultiColFrames
);
1058 readl (ioaddr
+ LateCollisions
);
1059 /* detailed rx errors */
1060 readw (ioaddr
+ FrameTooLongErrors
);
1061 readw (ioaddr
+ InRangeLengthErrors
);
1062 readw (ioaddr
+ FramesCheckSeqErrors
);
1063 readw (ioaddr
+ FramesLostRxErrors
);
1065 /* detailed tx errors */
1066 readw (ioaddr
+ FramesAbortXSColls
);
1067 readw (ioaddr
+ CarrierSenseErrors
);
1069 /* Clear all other statistic register. */
1070 readl (ioaddr
+ McstOctetXmtOk
);
1071 readw (ioaddr
+ BcstFramesXmtdOk
);
1072 readl (ioaddr
+ McstFramesXmtdOk
);
1073 readw (ioaddr
+ BcstFramesRcvdOk
);
1074 readw (ioaddr
+ MacControlFramesRcvd
);
1075 readl (ioaddr
+ McstOctetXmtOk
);
1076 readl (ioaddr
+ BcstOctetXmtOk
);
1077 readl (ioaddr
+ McstFramesXmtdOk
);
1078 readl (ioaddr
+ FramesWDeferredXmt
);
1079 readw (ioaddr
+ BcstFramesXmtdOk
);
1080 readw (ioaddr
+ MacControlFramesXmtd
);
1081 readw (ioaddr
+ FramesWEXDeferal
);
1083 for (i
= 0x100; i
<= 0x150; i
+= 4)
1086 readw (ioaddr
+ TxJumboFrames
);
1087 readw (ioaddr
+ RxJumboFrames
);
1088 readw (ioaddr
+ TCPCheckSumErrors
);
1089 readw (ioaddr
+ UDPCheckSumErrors
);
1090 readw (ioaddr
+ IPCheckSumErrors
);
1096 change_mtu (struct net_device
*dev
, int new_mtu
)
1098 struct netdev_private
*np
= netdev_priv(dev
);
1099 int max
= (np
->jumbo
) ? MAX_JUMBO
: 1536;
1101 if ((new_mtu
< 68) || (new_mtu
> max
)) {
1111 set_multicast (struct net_device
*dev
)
1113 long ioaddr
= dev
->base_addr
;
1116 struct netdev_private
*np
= netdev_priv(dev
);
1118 hash_table
[0] = hash_table
[1] = 0;
1119 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1120 hash_table
[1] |= cpu_to_le32(0x02000000);
1121 if (dev
->flags
& IFF_PROMISC
) {
1122 /* Receive all frames promiscuously. */
1123 rx_mode
= ReceiveAllFrames
;
1124 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1125 (dev
->mc_count
> multicast_filter_limit
)) {
1126 /* Receive broadcast and multicast frames */
1127 rx_mode
= ReceiveBroadcast
| ReceiveMulticast
| ReceiveUnicast
;
1128 } else if (dev
->mc_count
> 0) {
1130 struct dev_mc_list
*mclist
;
1131 /* Receive broadcast frames and multicast frames filtering
1134 ReceiveBroadcast
| ReceiveMulticastHash
| ReceiveUnicast
;
1135 for (i
=0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1136 i
++, mclist
=mclist
->next
)
1139 int crc
= ether_crc_le (ETH_ALEN
, mclist
->dmi_addr
);
1140 /* The inverted high significant 6 bits of CRC are
1141 used as an index to hashtable */
1142 for (bit
= 0; bit
< 6; bit
++)
1143 if (crc
& (1 << (31 - bit
)))
1144 index
|= (1 << bit
);
1145 hash_table
[index
/ 32] |= (1 << (index
% 32));
1148 rx_mode
= ReceiveBroadcast
| ReceiveUnicast
;
1151 /* ReceiveVLANMatch field in ReceiveMode */
1152 rx_mode
|= ReceiveVLANMatch
;
1155 writel (hash_table
[0], ioaddr
+ HashTable0
);
1156 writel (hash_table
[1], ioaddr
+ HashTable1
);
1157 writew (rx_mode
, ioaddr
+ ReceiveMode
);
1160 static void rio_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1162 struct netdev_private
*np
= netdev_priv(dev
);
1163 strcpy(info
->driver
, "dl2k");
1164 strcpy(info
->version
, DRV_VERSION
);
1165 strcpy(info
->bus_info
, pci_name(np
->pdev
));
1168 static int rio_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1170 struct netdev_private
*np
= netdev_priv(dev
);
1171 if (np
->phy_media
) {
1173 cmd
->supported
= SUPPORTED_Autoneg
| SUPPORTED_FIBRE
;
1174 cmd
->advertising
= ADVERTISED_Autoneg
| ADVERTISED_FIBRE
;
1175 cmd
->port
= PORT_FIBRE
;
1176 cmd
->transceiver
= XCVR_INTERNAL
;
1179 cmd
->supported
= SUPPORTED_10baseT_Half
|
1180 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
1181 | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full
|
1182 SUPPORTED_Autoneg
| SUPPORTED_MII
;
1183 cmd
->advertising
= ADVERTISED_10baseT_Half
|
1184 ADVERTISED_10baseT_Full
| ADVERTISED_100baseT_Half
|
1185 ADVERTISED_100baseT_Full
| ADVERTISED_1000baseT_Full
|
1186 ADVERTISED_Autoneg
| ADVERTISED_MII
;
1187 cmd
->port
= PORT_MII
;
1188 cmd
->transceiver
= XCVR_INTERNAL
;
1190 if ( np
->link_status
) {
1191 cmd
->speed
= np
->speed
;
1192 cmd
->duplex
= np
->full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1198 cmd
->autoneg
= AUTONEG_ENABLE
;
1200 cmd
->autoneg
= AUTONEG_DISABLE
;
1202 cmd
->phy_address
= np
->phy_addr
;
1206 static int rio_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1208 struct netdev_private
*np
= netdev_priv(dev
);
1209 netif_carrier_off(dev
);
1210 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
1220 if (np
->speed
== 1000) {
1221 cmd
->speed
= SPEED_100
;
1222 cmd
->duplex
= DUPLEX_FULL
;
1223 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1225 switch(cmd
->speed
+ cmd
->duplex
) {
1227 case SPEED_10
+ DUPLEX_HALF
:
1229 np
->full_duplex
= 0;
1232 case SPEED_10
+ DUPLEX_FULL
:
1234 np
->full_duplex
= 1;
1236 case SPEED_100
+ DUPLEX_HALF
:
1238 np
->full_duplex
= 0;
1240 case SPEED_100
+ DUPLEX_FULL
:
1242 np
->full_duplex
= 1;
1244 case SPEED_1000
+ DUPLEX_HALF
:/* not supported */
1245 case SPEED_1000
+ DUPLEX_FULL
:/* not supported */
1254 static u32
rio_get_link(struct net_device
*dev
)
1256 struct netdev_private
*np
= netdev_priv(dev
);
1257 return np
->link_status
;
1260 static const struct ethtool_ops ethtool_ops
= {
1261 .get_drvinfo
= rio_get_drvinfo
,
1262 .get_settings
= rio_get_settings
,
1263 .set_settings
= rio_set_settings
,
1264 .get_link
= rio_get_link
,
1268 rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1271 struct netdev_private
*np
= netdev_priv(dev
);
1272 struct mii_data
*miidata
= (struct mii_data
*) &rq
->ifr_ifru
;
1274 struct netdev_desc
*desc
;
1277 phy_addr
= np
->phy_addr
;
1279 case SIOCDEVPRIVATE
:
1282 case SIOCDEVPRIVATE
+ 1:
1283 miidata
->out_value
= mii_read (dev
, phy_addr
, miidata
->reg_num
);
1285 case SIOCDEVPRIVATE
+ 2:
1286 mii_write (dev
, phy_addr
, miidata
->reg_num
, miidata
->in_value
);
1288 case SIOCDEVPRIVATE
+ 3:
1290 case SIOCDEVPRIVATE
+ 4:
1292 case SIOCDEVPRIVATE
+ 5:
1293 netif_stop_queue (dev
);
1295 case SIOCDEVPRIVATE
+ 6:
1296 netif_wake_queue (dev
);
1298 case SIOCDEVPRIVATE
+ 7:
1300 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1301 netif_queue_stopped(dev
), np
->cur_tx
, np
->old_tx
, np
->cur_rx
,
1304 case SIOCDEVPRIVATE
+ 8:
1305 printk("TX ring:\n");
1306 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1307 desc
= &np
->tx_ring
[i
];
1309 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1311 (u32
) (np
->tx_ring_dma
+ i
* sizeof (*desc
)),
1312 (u32
) desc
->next_desc
,
1313 (u32
) desc
->status
, (u32
) (desc
->fraginfo
>> 32),
1314 (u32
) desc
->fraginfo
);
1326 #define EEP_READ 0x0200
1327 #define EEP_BUSY 0x8000
1328 /* Read the EEPROM word */
1329 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1331 read_eeprom (long ioaddr
, int eep_addr
)
1334 outw (EEP_READ
| (eep_addr
& 0xff), ioaddr
+ EepromCtrl
);
1336 if (!(inw (ioaddr
+ EepromCtrl
) & EEP_BUSY
)) {
1337 return inw (ioaddr
+ EepromData
);
1343 enum phy_ctrl_bits
{
1344 MII_READ
= 0x00, MII_CLK
= 0x01, MII_DATA1
= 0x02, MII_WRITE
= 0x04,
1348 #define mii_delay() readb(ioaddr)
1350 mii_sendbit (struct net_device
*dev
, u32 data
)
1352 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1353 data
= (data
) ? MII_DATA1
: 0;
1355 data
|= (readb (ioaddr
) & 0xf8) | MII_WRITE
;
1356 writeb (data
, ioaddr
);
1358 writeb (data
| MII_CLK
, ioaddr
);
1363 mii_getbit (struct net_device
*dev
)
1365 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1368 data
= (readb (ioaddr
) & 0xf8) | MII_READ
;
1369 writeb (data
, ioaddr
);
1371 writeb (data
| MII_CLK
, ioaddr
);
1373 return ((readb (ioaddr
) >> 1) & 1);
1377 mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1380 for (i
= len
- 1; i
>= 0; i
--) {
1381 mii_sendbit (dev
, data
& (1 << i
));
1386 mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
)
1393 mii_send_bits (dev
, 0xffffffff, 32);
1394 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1395 /* ST,OP = 0110'b for read operation */
1396 cmd
= (0x06 << 10 | phy_addr
<< 5 | reg_num
);
1397 mii_send_bits (dev
, cmd
, 14);
1399 if (mii_getbit (dev
))
1402 for (i
= 0; i
< 16; i
++) {
1403 retval
|= mii_getbit (dev
);
1408 return (retval
>> 1) & 0xffff;
1414 mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
, u16 data
)
1419 mii_send_bits (dev
, 0xffffffff, 32);
1420 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1421 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1422 cmd
= (0x5002 << 16) | (phy_addr
<< 23) | (reg_num
<< 18) | data
;
1423 mii_send_bits (dev
, cmd
, 32);
1429 mii_wait_link (struct net_device
*dev
, int wait
)
1433 struct netdev_private
*np
;
1435 np
= netdev_priv(dev
);
1436 phy_addr
= np
->phy_addr
;
1439 bmsr
.image
= mii_read (dev
, phy_addr
, MII_BMSR
);
1440 if (bmsr
.bits
.link_status
)
1443 } while (--wait
> 0);
1447 mii_get_media (struct net_device
*dev
)
1455 struct netdev_private
*np
;
1457 np
= netdev_priv(dev
);
1458 phy_addr
= np
->phy_addr
;
1460 bmsr
.image
= mii_read (dev
, phy_addr
, MII_BMSR
);
1461 if (np
->an_enable
) {
1462 if (!bmsr
.bits
.an_complete
) {
1463 /* Auto-Negotiation not completed */
1466 negotiate
.image
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1467 mii_read (dev
, phy_addr
, MII_ANLPAR
);
1468 mscr
.image
= mii_read (dev
, phy_addr
, MII_MSCR
);
1469 mssr
.image
= mii_read (dev
, phy_addr
, MII_MSSR
);
1470 if (mscr
.bits
.media_1000BT_FD
& mssr
.bits
.lp_1000BT_FD
) {
1472 np
->full_duplex
= 1;
1473 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1474 } else if (mscr
.bits
.media_1000BT_HD
& mssr
.bits
.lp_1000BT_HD
) {
1476 np
->full_duplex
= 0;
1477 printk (KERN_INFO
"Auto 1000 Mbps, Half duplex\n");
1478 } else if (negotiate
.bits
.media_100BX_FD
) {
1480 np
->full_duplex
= 1;
1481 printk (KERN_INFO
"Auto 100 Mbps, Full duplex\n");
1482 } else if (negotiate
.bits
.media_100BX_HD
) {
1484 np
->full_duplex
= 0;
1485 printk (KERN_INFO
"Auto 100 Mbps, Half duplex\n");
1486 } else if (negotiate
.bits
.media_10BT_FD
) {
1488 np
->full_duplex
= 1;
1489 printk (KERN_INFO
"Auto 10 Mbps, Full duplex\n");
1490 } else if (negotiate
.bits
.media_10BT_HD
) {
1492 np
->full_duplex
= 0;
1493 printk (KERN_INFO
"Auto 10 Mbps, Half duplex\n");
1495 if (negotiate
.bits
.pause
) {
1498 } else if (negotiate
.bits
.asymmetric
) {
1502 /* else tx_flow, rx_flow = user select */
1504 bmcr
.image
= mii_read (dev
, phy_addr
, MII_BMCR
);
1505 if (bmcr
.bits
.speed100
== 1 && bmcr
.bits
.speed1000
== 0) {
1506 printk (KERN_INFO
"Operating at 100 Mbps, ");
1507 } else if (bmcr
.bits
.speed100
== 0 && bmcr
.bits
.speed1000
== 0) {
1508 printk (KERN_INFO
"Operating at 10 Mbps, ");
1509 } else if (bmcr
.bits
.speed100
== 0 && bmcr
.bits
.speed1000
== 1) {
1510 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1512 if (bmcr
.bits
.duplex_mode
) {
1513 printk ("Full duplex\n");
1515 printk ("Half duplex\n");
1519 printk(KERN_INFO
"Enable Tx Flow Control\n");
1521 printk(KERN_INFO
"Disable Tx Flow Control\n");
1523 printk(KERN_INFO
"Enable Rx Flow Control\n");
1525 printk(KERN_INFO
"Disable Rx Flow Control\n");
1531 mii_set_media (struct net_device
*dev
)
1538 struct netdev_private
*np
;
1539 np
= netdev_priv(dev
);
1540 phy_addr
= np
->phy_addr
;
1542 /* Does user set speed? */
1543 if (np
->an_enable
) {
1544 /* Advertise capabilities */
1545 bmsr
.image
= mii_read (dev
, phy_addr
, MII_BMSR
);
1546 anar
.image
= mii_read (dev
, phy_addr
, MII_ANAR
);
1547 anar
.bits
.media_100BX_FD
= bmsr
.bits
.media_100BX_FD
;
1548 anar
.bits
.media_100BX_HD
= bmsr
.bits
.media_100BX_HD
;
1549 anar
.bits
.media_100BT4
= bmsr
.bits
.media_100BT4
;
1550 anar
.bits
.media_10BT_FD
= bmsr
.bits
.media_10BT_FD
;
1551 anar
.bits
.media_10BT_HD
= bmsr
.bits
.media_10BT_HD
;
1552 anar
.bits
.pause
= 1;
1553 anar
.bits
.asymmetric
= 1;
1554 mii_write (dev
, phy_addr
, MII_ANAR
, anar
.image
);
1556 /* Enable Auto crossover */
1557 pscr
.image
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1558 pscr
.bits
.mdi_crossover_mode
= 3; /* 11'b */
1559 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
.image
);
1561 /* Soft reset PHY */
1562 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1564 bmcr
.bits
.an_enable
= 1;
1565 bmcr
.bits
.restart_an
= 1;
1566 bmcr
.bits
.reset
= 1;
1567 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1570 /* Force speed setting */
1571 /* 1) Disable Auto crossover */
1572 pscr
.image
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1573 pscr
.bits
.mdi_crossover_mode
= 0;
1574 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
.image
);
1577 bmcr
.image
= mii_read (dev
, phy_addr
, MII_BMCR
);
1578 bmcr
.bits
.reset
= 1;
1579 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1582 bmcr
.image
= 0x1940; /* must be 0x1940 */
1583 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1584 mdelay (100); /* wait a certain time */
1586 /* 4) Advertise nothing */
1587 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1589 /* 5) Set media and Power Up */
1591 bmcr
.bits
.power_down
= 1;
1592 if (np
->speed
== 100) {
1593 bmcr
.bits
.speed100
= 1;
1594 bmcr
.bits
.speed1000
= 0;
1595 printk (KERN_INFO
"Manual 100 Mbps, ");
1596 } else if (np
->speed
== 10) {
1597 bmcr
.bits
.speed100
= 0;
1598 bmcr
.bits
.speed1000
= 0;
1599 printk (KERN_INFO
"Manual 10 Mbps, ");
1601 if (np
->full_duplex
) {
1602 bmcr
.bits
.duplex_mode
= 1;
1603 printk ("Full duplex\n");
1605 bmcr
.bits
.duplex_mode
= 0;
1606 printk ("Half duplex\n");
1609 /* Set 1000BaseT Master/Slave setting */
1610 mscr
.image
= mii_read (dev
, phy_addr
, MII_MSCR
);
1611 mscr
.bits
.cfg_enable
= 1;
1612 mscr
.bits
.cfg_value
= 0;
1614 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1621 mii_get_media_pcs (struct net_device
*dev
)
1623 ANAR_PCS_t negotiate
;
1627 struct netdev_private
*np
;
1629 np
= netdev_priv(dev
);
1630 phy_addr
= np
->phy_addr
;
1632 bmsr
.image
= mii_read (dev
, phy_addr
, PCS_BMSR
);
1633 if (np
->an_enable
) {
1634 if (!bmsr
.bits
.an_complete
) {
1635 /* Auto-Negotiation not completed */
1638 negotiate
.image
= mii_read (dev
, phy_addr
, PCS_ANAR
) &
1639 mii_read (dev
, phy_addr
, PCS_ANLPAR
);
1641 if (negotiate
.bits
.full_duplex
) {
1642 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1643 np
->full_duplex
= 1;
1645 printk (KERN_INFO
"Auto 1000 Mbps, half duplex\n");
1646 np
->full_duplex
= 0;
1648 if (negotiate
.bits
.pause
) {
1651 } else if (negotiate
.bits
.asymmetric
) {
1655 /* else tx_flow, rx_flow = user select */
1657 bmcr
.image
= mii_read (dev
, phy_addr
, PCS_BMCR
);
1658 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1659 if (bmcr
.bits
.duplex_mode
) {
1660 printk ("Full duplex\n");
1662 printk ("Half duplex\n");
1666 printk(KERN_INFO
"Enable Tx Flow Control\n");
1668 printk(KERN_INFO
"Disable Tx Flow Control\n");
1670 printk(KERN_INFO
"Enable Rx Flow Control\n");
1672 printk(KERN_INFO
"Disable Rx Flow Control\n");
1678 mii_set_media_pcs (struct net_device
*dev
)
1684 struct netdev_private
*np
;
1685 np
= netdev_priv(dev
);
1686 phy_addr
= np
->phy_addr
;
1688 /* Auto-Negotiation? */
1689 if (np
->an_enable
) {
1690 /* Advertise capabilities */
1691 esr
.image
= mii_read (dev
, phy_addr
, PCS_ESR
);
1692 anar
.image
= mii_read (dev
, phy_addr
, MII_ANAR
);
1693 anar
.bits
.half_duplex
=
1694 esr
.bits
.media_1000BT_HD
| esr
.bits
.media_1000BX_HD
;
1695 anar
.bits
.full_duplex
=
1696 esr
.bits
.media_1000BT_FD
| esr
.bits
.media_1000BX_FD
;
1697 anar
.bits
.pause
= 1;
1698 anar
.bits
.asymmetric
= 1;
1699 mii_write (dev
, phy_addr
, MII_ANAR
, anar
.image
);
1701 /* Soft reset PHY */
1702 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1704 bmcr
.bits
.an_enable
= 1;
1705 bmcr
.bits
.restart_an
= 1;
1706 bmcr
.bits
.reset
= 1;
1707 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1710 /* Force speed setting */
1713 bmcr
.bits
.reset
= 1;
1714 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1717 bmcr
.bits
.an_enable
= 0;
1718 if (np
->full_duplex
) {
1719 bmcr
.bits
.duplex_mode
= 1;
1720 printk (KERN_INFO
"Manual full duplex\n");
1722 bmcr
.bits
.duplex_mode
= 0;
1723 printk (KERN_INFO
"Manual half duplex\n");
1725 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1728 /* Advertise nothing */
1729 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1736 rio_close (struct net_device
*dev
)
1738 long ioaddr
= dev
->base_addr
;
1739 struct netdev_private
*np
= netdev_priv(dev
);
1740 struct sk_buff
*skb
;
1743 netif_stop_queue (dev
);
1745 /* Disable interrupts */
1746 writew (0, ioaddr
+ IntEnable
);
1748 /* Stop Tx and Rx logics */
1749 writel (TxDisable
| RxDisable
| StatsDisable
, ioaddr
+ MACCtrl
);
1750 synchronize_irq (dev
->irq
);
1751 free_irq (dev
->irq
, dev
);
1752 del_timer_sync (&np
->timer
);
1754 /* Free all the skbuffs in the queue. */
1755 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1756 np
->rx_ring
[i
].status
= 0;
1757 np
->rx_ring
[i
].fraginfo
= 0;
1758 skb
= np
->rx_skbuff
[i
];
1760 pci_unmap_single(np
->pdev
,
1761 np
->rx_ring
[i
].fraginfo
& DMA_48BIT_MASK
,
1762 skb
->len
, PCI_DMA_FROMDEVICE
);
1763 dev_kfree_skb (skb
);
1764 np
->rx_skbuff
[i
] = NULL
;
1767 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1768 skb
= np
->tx_skbuff
[i
];
1770 pci_unmap_single(np
->pdev
,
1771 np
->tx_ring
[i
].fraginfo
& DMA_48BIT_MASK
,
1772 skb
->len
, PCI_DMA_TODEVICE
);
1773 dev_kfree_skb (skb
);
1774 np
->tx_skbuff
[i
] = NULL
;
1781 static void __devexit
1782 rio_remove1 (struct pci_dev
*pdev
)
1784 struct net_device
*dev
= pci_get_drvdata (pdev
);
1787 struct netdev_private
*np
= netdev_priv(dev
);
1789 unregister_netdev (dev
);
1790 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
,
1792 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
,
1795 iounmap ((char *) (dev
->base_addr
));
1798 pci_release_regions (pdev
);
1799 pci_disable_device (pdev
);
1801 pci_set_drvdata (pdev
, NULL
);
1804 static struct pci_driver rio_driver
= {
1806 .id_table
= rio_pci_tbl
,
1807 .probe
= rio_probe1
,
1808 .remove
= __devexit_p(rio_remove1
),
1814 return pci_register_driver(&rio_driver
);
1820 pci_unregister_driver (&rio_driver
);
1823 module_init (rio_init
);
1824 module_exit (rio_exit
);
1830 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1832 Read Documentation/networking/dl2k.txt for details.