1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
37 #define DRIVERNAPI "-NAPI"
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 char e1000_driver_version
[] = DRV_VERSION
;
41 static char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
43 /* e1000_pci_tbl - PCI Device ID Table
45 * Last entry must be all 0s
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
50 static struct pci_device_id e1000_pci_tbl
[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
84 INTEL_E1000_ETHERNET_DEVICE(0x1075),
85 INTEL_E1000_ETHERNET_DEVICE(0x1076),
86 INTEL_E1000_ETHERNET_DEVICE(0x1077),
87 INTEL_E1000_ETHERNET_DEVICE(0x1078),
88 INTEL_E1000_ETHERNET_DEVICE(0x1079),
89 INTEL_E1000_ETHERNET_DEVICE(0x107A),
90 INTEL_E1000_ETHERNET_DEVICE(0x107B),
91 INTEL_E1000_ETHERNET_DEVICE(0x107C),
92 INTEL_E1000_ETHERNET_DEVICE(0x107D),
93 INTEL_E1000_ETHERNET_DEVICE(0x107E),
94 INTEL_E1000_ETHERNET_DEVICE(0x107F),
95 INTEL_E1000_ETHERNET_DEVICE(0x108A),
96 INTEL_E1000_ETHERNET_DEVICE(0x108B),
97 INTEL_E1000_ETHERNET_DEVICE(0x108C),
98 INTEL_E1000_ETHERNET_DEVICE(0x1096),
99 INTEL_E1000_ETHERNET_DEVICE(0x1098),
100 INTEL_E1000_ETHERNET_DEVICE(0x1099),
101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
102 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107 INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108 INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109 INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110 /* required last entry */
114 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
116 int e1000_up(struct e1000_adapter
*adapter
);
117 void e1000_down(struct e1000_adapter
*adapter
);
118 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
119 void e1000_reset(struct e1000_adapter
*adapter
);
120 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
);
121 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
122 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
123 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
124 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
125 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
126 struct e1000_tx_ring
*txdr
);
127 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
128 struct e1000_rx_ring
*rxdr
);
129 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
130 struct e1000_tx_ring
*tx_ring
);
131 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
132 struct e1000_rx_ring
*rx_ring
);
133 void e1000_update_stats(struct e1000_adapter
*adapter
);
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
138 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
139 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
140 static int e1000_sw_init(struct e1000_adapter
*adapter
);
141 static int e1000_open(struct net_device
*netdev
);
142 static int e1000_close(struct net_device
*netdev
);
143 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
144 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
145 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
148 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
149 struct e1000_tx_ring
*tx_ring
);
150 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
151 struct e1000_rx_ring
*rx_ring
);
152 static void e1000_set_multi(struct net_device
*netdev
);
153 static void e1000_update_phy_info(unsigned long data
);
154 static void e1000_watchdog(unsigned long data
);
155 static void e1000_82547_tx_fifo_stall(unsigned long data
);
156 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
157 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
158 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
159 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
160 static irqreturn_t
e1000_intr(int irq
, void *data
);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t
e1000_intr_msi(int irq
, void *data
);
164 static boolean_t
e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
165 struct e1000_tx_ring
*tx_ring
);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device
*poll_dev
, int *budget
);
168 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
169 struct e1000_rx_ring
*rx_ring
,
170 int *work_done
, int work_to_do
);
171 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
172 struct e1000_rx_ring
*rx_ring
,
173 int *work_done
, int work_to_do
);
175 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
176 struct e1000_rx_ring
*rx_ring
);
177 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
178 struct e1000_rx_ring
*rx_ring
);
180 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
181 struct e1000_rx_ring
*rx_ring
,
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
184 struct e1000_rx_ring
*rx_ring
,
186 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
187 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
189 void e1000_set_ethtool_ops(struct net_device
*netdev
);
190 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
191 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
192 static void e1000_tx_timeout(struct net_device
*dev
);
193 static void e1000_reset_task(struct work_struct
*work
);
194 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
196 struct sk_buff
*skb
);
198 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
199 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
);
200 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
201 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
203 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
205 static int e1000_resume(struct pci_dev
*pdev
);
207 static void e1000_shutdown(struct pci_dev
*pdev
);
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device
*netdev
);
214 extern void e1000_check_options(struct e1000_adapter
*adapter
);
216 #define COPYBREAK_DEFAULT 256
217 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
218 module_param(copybreak
, uint
, 0644);
219 MODULE_PARM_DESC(copybreak
,
220 "Maximum size of packet that is copied to a new buffer on receive");
222 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
223 pci_channel_state_t state
);
224 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
225 static void e1000_io_resume(struct pci_dev
*pdev
);
227 static struct pci_error_handlers e1000_err_handler
= {
228 .error_detected
= e1000_io_error_detected
,
229 .slot_reset
= e1000_io_slot_reset
,
230 .resume
= e1000_io_resume
,
233 static struct pci_driver e1000_driver
= {
234 .name
= e1000_driver_name
,
235 .id_table
= e1000_pci_tbl
,
236 .probe
= e1000_probe
,
237 .remove
= __devexit_p(e1000_remove
),
239 /* Power Managment Hooks */
240 .suspend
= e1000_suspend
,
241 .resume
= e1000_resume
,
243 .shutdown
= e1000_shutdown
,
244 .err_handler
= &e1000_err_handler
247 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
248 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION
);
252 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
253 module_param(debug
, int, 0);
254 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
257 * e1000_init_module - Driver Registration Routine
259 * e1000_init_module is the first routine called when the driver is
260 * loaded. All it does is register with the PCI subsystem.
264 e1000_init_module(void)
267 printk(KERN_INFO
"%s - version %s\n",
268 e1000_driver_string
, e1000_driver_version
);
270 printk(KERN_INFO
"%s\n", e1000_copyright
);
272 ret
= pci_register_driver(&e1000_driver
);
273 if (copybreak
!= COPYBREAK_DEFAULT
) {
275 printk(KERN_INFO
"e1000: copybreak disabled\n");
277 printk(KERN_INFO
"e1000: copybreak enabled for "
278 "packets <= %u bytes\n", copybreak
);
283 module_init(e1000_init_module
);
286 * e1000_exit_module - Driver Exit Cleanup Routine
288 * e1000_exit_module is called just before the driver is removed
293 e1000_exit_module(void)
295 pci_unregister_driver(&e1000_driver
);
298 module_exit(e1000_exit_module
);
300 static int e1000_request_irq(struct e1000_adapter
*adapter
)
302 struct net_device
*netdev
= adapter
->netdev
;
306 #ifdef CONFIG_PCI_MSI
307 if (adapter
->hw
.mac_type
>= e1000_82571
) {
308 adapter
->have_msi
= TRUE
;
309 if ((err
= pci_enable_msi(adapter
->pdev
))) {
311 "Unable to allocate MSI interrupt Error: %d\n", err
);
312 adapter
->have_msi
= FALSE
;
315 if (adapter
->have_msi
) {
316 flags
&= ~IRQF_SHARED
;
317 err
= request_irq(adapter
->pdev
->irq
, &e1000_intr_msi
, flags
,
318 netdev
->name
, netdev
);
321 "Unable to allocate interrupt Error: %d\n", err
);
324 if ((err
= request_irq(adapter
->pdev
->irq
, &e1000_intr
, flags
,
325 netdev
->name
, netdev
)))
327 "Unable to allocate interrupt Error: %d\n", err
);
332 static void e1000_free_irq(struct e1000_adapter
*adapter
)
334 struct net_device
*netdev
= adapter
->netdev
;
336 free_irq(adapter
->pdev
->irq
, netdev
);
338 #ifdef CONFIG_PCI_MSI
339 if (adapter
->have_msi
)
340 pci_disable_msi(adapter
->pdev
);
345 * e1000_irq_disable - Mask off interrupt generation on the NIC
346 * @adapter: board private structure
350 e1000_irq_disable(struct e1000_adapter
*adapter
)
352 atomic_inc(&adapter
->irq_sem
);
353 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~0);
354 E1000_WRITE_FLUSH(&adapter
->hw
);
355 synchronize_irq(adapter
->pdev
->irq
);
359 * e1000_irq_enable - Enable default interrupt generation settings
360 * @adapter: board private structure
364 e1000_irq_enable(struct e1000_adapter
*adapter
)
366 if (likely(atomic_dec_and_test(&adapter
->irq_sem
))) {
367 E1000_WRITE_REG(&adapter
->hw
, IMS
, IMS_ENABLE_MASK
);
368 E1000_WRITE_FLUSH(&adapter
->hw
);
373 e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
375 struct net_device
*netdev
= adapter
->netdev
;
376 uint16_t vid
= adapter
->hw
.mng_cookie
.vlan_id
;
377 uint16_t old_vid
= adapter
->mng_vlan_id
;
378 if (adapter
->vlgrp
) {
379 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
380 if (adapter
->hw
.mng_cookie
.status
&
381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
382 e1000_vlan_rx_add_vid(netdev
, vid
);
383 adapter
->mng_vlan_id
= vid
;
385 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
387 if ((old_vid
!= (uint16_t)E1000_MNG_VLAN_NONE
) &&
389 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
390 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
392 adapter
->mng_vlan_id
= vid
;
397 * e1000_release_hw_control - release control of the h/w to f/w
398 * @adapter: address of board private structure
400 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
401 * For ASF and Pass Through versions of f/w this means that the
402 * driver is no longer loaded. For AMT version (only with 82573) i
403 * of the f/w this means that the network i/f is closed.
408 e1000_release_hw_control(struct e1000_adapter
*adapter
)
413 /* Let firmware taken over control of h/w */
414 switch (adapter
->hw
.mac_type
) {
416 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
417 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
418 swsm
& ~E1000_SWSM_DRV_LOAD
);
422 case e1000_80003es2lan
:
424 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
425 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
426 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
434 * e1000_get_hw_control - get control of the h/w from f/w
435 * @adapter: address of board private structure
437 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
438 * For ASF and Pass Through versions of f/w this means that
439 * the driver is loaded. For AMT version (only with 82573)
440 * of the f/w this means that the network i/f is open.
445 e1000_get_hw_control(struct e1000_adapter
*adapter
)
450 /* Let firmware know the driver has taken over */
451 switch (adapter
->hw
.mac_type
) {
453 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
454 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
455 swsm
| E1000_SWSM_DRV_LOAD
);
459 case e1000_80003es2lan
:
461 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
462 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
463 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
471 e1000_init_manageability(struct e1000_adapter
*adapter
)
473 if (adapter
->en_mng_pt
) {
474 uint32_t manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
476 /* disable hardware interception of ARP */
477 manc
&= ~(E1000_MANC_ARP_EN
);
479 /* enable receiving management packets to the host */
480 /* this will probably generate destination unreachable messages
481 * from the host OS, but the packets will be handled on SMBUS */
482 if (adapter
->hw
.has_manc2h
) {
483 uint32_t manc2h
= E1000_READ_REG(&adapter
->hw
, MANC2H
);
485 manc
|= E1000_MANC_EN_MNG2HOST
;
486 #define E1000_MNG2HOST_PORT_623 (1 << 5)
487 #define E1000_MNG2HOST_PORT_664 (1 << 6)
488 manc2h
|= E1000_MNG2HOST_PORT_623
;
489 manc2h
|= E1000_MNG2HOST_PORT_664
;
490 E1000_WRITE_REG(&adapter
->hw
, MANC2H
, manc2h
);
493 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
498 e1000_release_manageability(struct e1000_adapter
*adapter
)
500 if (adapter
->en_mng_pt
) {
501 uint32_t manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
503 /* re-enable hardware interception of ARP */
504 manc
|= E1000_MANC_ARP_EN
;
506 if (adapter
->hw
.has_manc2h
)
507 manc
&= ~E1000_MANC_EN_MNG2HOST
;
509 /* don't explicitly have to mess with MANC2H since
510 * MANC has an enable disable that gates MANC2H */
512 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
517 * e1000_configure - configure the hardware for RX and TX
518 * @adapter = private board structure
520 static void e1000_configure(struct e1000_adapter
*adapter
)
522 struct net_device
*netdev
= adapter
->netdev
;
525 e1000_set_multi(netdev
);
527 e1000_restore_vlan(adapter
);
528 e1000_init_manageability(adapter
);
530 e1000_configure_tx(adapter
);
531 e1000_setup_rctl(adapter
);
532 e1000_configure_rx(adapter
);
533 /* call E1000_DESC_UNUSED which always leaves
534 * at least 1 descriptor unused to make sure
535 * next_to_use != next_to_clean */
536 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
537 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
538 adapter
->alloc_rx_buf(adapter
, ring
,
539 E1000_DESC_UNUSED(ring
));
542 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
545 int e1000_up(struct e1000_adapter
*adapter
)
547 /* hardware has been reset, we need to reload some things */
548 e1000_configure(adapter
);
550 clear_bit(__E1000_DOWN
, &adapter
->flags
);
552 #ifdef CONFIG_E1000_NAPI
553 netif_poll_enable(adapter
->netdev
);
555 e1000_irq_enable(adapter
);
557 /* fire a link change interrupt to start the watchdog */
558 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_LSC
);
563 * e1000_power_up_phy - restore link in case the phy was powered down
564 * @adapter: address of board private structure
566 * The phy may be powered down to save power and turn off link when the
567 * driver is unloaded and wake on lan is not enabled (among others)
568 * *** this routine MUST be followed by a call to e1000_reset ***
572 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
574 uint16_t mii_reg
= 0;
576 /* Just clear the power down bit to wake the phy back up */
577 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
578 /* according to the manual, the phy will retain its
579 * settings across a power-down/up cycle */
580 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
581 mii_reg
&= ~MII_CR_POWER_DOWN
;
582 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
586 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
588 /* Power down the PHY so no link is implied when interface is down *
589 * The PHY cannot be powered down if any of the following is TRUE *
592 * (c) SoL/IDER session is active */
593 if (!adapter
->wol
&& adapter
->hw
.mac_type
>= e1000_82540
&&
594 adapter
->hw
.media_type
== e1000_media_type_copper
) {
595 uint16_t mii_reg
= 0;
597 switch (adapter
->hw
.mac_type
) {
600 case e1000_82545_rev_3
:
602 case e1000_82546_rev_3
:
604 case e1000_82541_rev_2
:
606 case e1000_82547_rev_2
:
607 if (E1000_READ_REG(&adapter
->hw
, MANC
) &
614 case e1000_80003es2lan
:
616 if (e1000_check_mng_mode(&adapter
->hw
) ||
617 e1000_check_phy_reset_block(&adapter
->hw
))
623 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
624 mii_reg
|= MII_CR_POWER_DOWN
;
625 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
633 e1000_down(struct e1000_adapter
*adapter
)
635 struct net_device
*netdev
= adapter
->netdev
;
637 /* signal that we're down so the interrupt handler does not
638 * reschedule our watchdog timer */
639 set_bit(__E1000_DOWN
, &adapter
->flags
);
641 #ifdef CONFIG_E1000_NAPI
642 netif_poll_disable(netdev
);
644 e1000_irq_disable(adapter
);
646 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
647 del_timer_sync(&adapter
->watchdog_timer
);
648 del_timer_sync(&adapter
->phy_info_timer
);
650 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
651 adapter
->link_speed
= 0;
652 adapter
->link_duplex
= 0;
653 netif_carrier_off(netdev
);
654 netif_stop_queue(netdev
);
656 e1000_reset(adapter
);
657 e1000_clean_all_tx_rings(adapter
);
658 e1000_clean_all_rx_rings(adapter
);
662 e1000_reinit_locked(struct e1000_adapter
*adapter
)
664 WARN_ON(in_interrupt());
665 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
669 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
673 e1000_reset(struct e1000_adapter
*adapter
)
675 uint32_t pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
676 uint16_t fc_high_water_mark
= E1000_FC_HIGH_DIFF
;
677 boolean_t legacy_pba_adjust
= FALSE
;
679 /* Repartition Pba for greater than 9k mtu
680 * To take effect CTRL.RST is required.
683 switch (adapter
->hw
.mac_type
) {
684 case e1000_82542_rev2_0
:
685 case e1000_82542_rev2_1
:
690 case e1000_82541_rev_2
:
691 legacy_pba_adjust
= TRUE
;
695 case e1000_82545_rev_3
:
697 case e1000_82546_rev_3
:
701 case e1000_82547_rev_2
:
702 legacy_pba_adjust
= TRUE
;
707 case e1000_80003es2lan
:
715 case e1000_undefined
:
720 if (legacy_pba_adjust
== TRUE
) {
721 if (adapter
->netdev
->mtu
> E1000_RXBUFFER_8192
)
722 pba
-= 8; /* allocate more FIFO for Tx */
724 if (adapter
->hw
.mac_type
== e1000_82547
) {
725 adapter
->tx_fifo_head
= 0;
726 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
727 adapter
->tx_fifo_size
=
728 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
729 atomic_set(&adapter
->tx_fifo_stall
, 0);
731 } else if (adapter
->hw
.max_frame_size
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
732 /* adjust PBA for jumbo frames */
733 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
735 /* To maintain wire speed transmits, the Tx FIFO should be
736 * large enough to accomodate two full transmit packets,
737 * rounded up to the next 1KB and expressed in KB. Likewise,
738 * the Rx FIFO should be large enough to accomodate at least
739 * one full receive packet and is similarly rounded up and
740 * expressed in KB. */
741 pba
= E1000_READ_REG(&adapter
->hw
, PBA
);
742 /* upper 16 bits has Tx packet buffer allocation size in KB */
743 tx_space
= pba
>> 16;
744 /* lower 16 bits has Rx packet buffer allocation size in KB */
746 /* don't include ethernet FCS because hardware appends/strips */
747 min_rx_space
= adapter
->netdev
->mtu
+ ENET_HEADER_SIZE
+
749 min_tx_space
= min_rx_space
;
751 min_tx_space
= ALIGN(min_tx_space
, 1024);
753 min_rx_space
= ALIGN(min_rx_space
, 1024);
756 /* If current Tx allocation is less than the min Tx FIFO size,
757 * and the min Tx FIFO size is less than the current Rx FIFO
758 * allocation, take space away from current Rx allocation */
759 if (tx_space
< min_tx_space
&&
760 ((min_tx_space
- tx_space
) < pba
)) {
761 pba
= pba
- (min_tx_space
- tx_space
);
763 /* PCI/PCIx hardware has PBA alignment constraints */
764 switch (adapter
->hw
.mac_type
) {
765 case e1000_82545
... e1000_82546_rev_3
:
766 pba
&= ~(E1000_PBA_8K
- 1);
772 /* if short on rx space, rx wins and must trump tx
773 * adjustment or use Early Receive if available */
774 if (pba
< min_rx_space
) {
775 switch (adapter
->hw
.mac_type
) {
777 /* ERT enabled in e1000_configure_rx */
787 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
789 /* flow control settings */
790 /* Set the FC high water mark to 90% of the FIFO size.
791 * Required to clear last 3 LSB */
792 fc_high_water_mark
= ((pba
* 9216)/10) & 0xFFF8;
793 /* We can't use 90% on small FIFOs because the remainder
794 * would be less than 1 full frame. In this case, we size
795 * it to allow at least a full frame above the high water
797 if (pba
< E1000_PBA_16K
)
798 fc_high_water_mark
= (pba
* 1024) - 1600;
800 adapter
->hw
.fc_high_water
= fc_high_water_mark
;
801 adapter
->hw
.fc_low_water
= fc_high_water_mark
- 8;
802 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
803 adapter
->hw
.fc_pause_time
= 0xFFFF;
805 adapter
->hw
.fc_pause_time
= E1000_FC_PAUSE_TIME
;
806 adapter
->hw
.fc_send_xon
= 1;
807 adapter
->hw
.fc
= adapter
->hw
.original_fc
;
809 /* Allow time for pending master requests to run */
810 e1000_reset_hw(&adapter
->hw
);
811 if (adapter
->hw
.mac_type
>= e1000_82544
)
812 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
814 if (e1000_init_hw(&adapter
->hw
))
815 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
816 e1000_update_mng_vlan(adapter
);
818 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
819 if (adapter
->hw
.mac_type
>= e1000_82544
&&
820 adapter
->hw
.mac_type
<= e1000_82547_rev_2
&&
821 adapter
->hw
.autoneg
== 1 &&
822 adapter
->hw
.autoneg_advertised
== ADVERTISE_1000_FULL
) {
823 uint32_t ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
824 /* clear phy power management bit if we are in gig only mode,
825 * which if enabled will attempt negotiation to 100Mb, which
826 * can cause a loss of link at power off or driver unload */
827 ctrl
&= ~E1000_CTRL_SWDPIN3
;
828 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
831 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
832 E1000_WRITE_REG(&adapter
->hw
, VET
, ETHERNET_IEEE_VLAN_TYPE
);
834 e1000_reset_adaptive(&adapter
->hw
);
835 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
837 if (!adapter
->smart_power_down
&&
838 (adapter
->hw
.mac_type
== e1000_82571
||
839 adapter
->hw
.mac_type
== e1000_82572
)) {
840 uint16_t phy_data
= 0;
841 /* speed up time to link by disabling smart power down, ignore
842 * the return value of this function because there is nothing
843 * different we would do if it failed */
844 e1000_read_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
846 phy_data
&= ~IGP02E1000_PM_SPD
;
847 e1000_write_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
851 e1000_release_manageability(adapter
);
855 * e1000_probe - Device Initialization Routine
856 * @pdev: PCI device information struct
857 * @ent: entry in e1000_pci_tbl
859 * Returns 0 on success, negative on failure
861 * e1000_probe initializes an adapter identified by a pci_dev structure.
862 * The OS initialization, configuring of the adapter private structure,
863 * and a hardware reset occur.
867 e1000_probe(struct pci_dev
*pdev
,
868 const struct pci_device_id
*ent
)
870 struct net_device
*netdev
;
871 struct e1000_adapter
*adapter
;
872 unsigned long mmio_start
, mmio_len
;
873 unsigned long flash_start
, flash_len
;
875 static int cards_found
= 0;
876 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
877 int i
, err
, pci_using_dac
;
878 uint16_t eeprom_data
= 0;
879 uint16_t eeprom_apme_mask
= E1000_EEPROM_APME
;
880 if ((err
= pci_enable_device(pdev
)))
883 if (!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) &&
884 !(err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
))) {
887 if ((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) &&
888 (err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
))) {
889 E1000_ERR("No usable DMA configuration, aborting\n");
895 if ((err
= pci_request_regions(pdev
, e1000_driver_name
)))
898 pci_set_master(pdev
);
901 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
903 goto err_alloc_etherdev
;
905 SET_MODULE_OWNER(netdev
);
906 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
908 pci_set_drvdata(pdev
, netdev
);
909 adapter
= netdev_priv(netdev
);
910 adapter
->netdev
= netdev
;
911 adapter
->pdev
= pdev
;
912 adapter
->hw
.back
= adapter
;
913 adapter
->msg_enable
= (1 << debug
) - 1;
915 mmio_start
= pci_resource_start(pdev
, BAR_0
);
916 mmio_len
= pci_resource_len(pdev
, BAR_0
);
919 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
920 if (!adapter
->hw
.hw_addr
)
923 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
924 if (pci_resource_len(pdev
, i
) == 0)
926 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
927 adapter
->hw
.io_base
= pci_resource_start(pdev
, i
);
932 netdev
->open
= &e1000_open
;
933 netdev
->stop
= &e1000_close
;
934 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
935 netdev
->get_stats
= &e1000_get_stats
;
936 netdev
->set_multicast_list
= &e1000_set_multi
;
937 netdev
->set_mac_address
= &e1000_set_mac
;
938 netdev
->change_mtu
= &e1000_change_mtu
;
939 netdev
->do_ioctl
= &e1000_ioctl
;
940 e1000_set_ethtool_ops(netdev
);
941 netdev
->tx_timeout
= &e1000_tx_timeout
;
942 netdev
->watchdog_timeo
= 5 * HZ
;
943 #ifdef CONFIG_E1000_NAPI
944 netdev
->poll
= &e1000_clean
;
947 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
948 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
949 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
950 #ifdef CONFIG_NET_POLL_CONTROLLER
951 netdev
->poll_controller
= e1000_netpoll
;
953 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
955 netdev
->mem_start
= mmio_start
;
956 netdev
->mem_end
= mmio_start
+ mmio_len
;
957 netdev
->base_addr
= adapter
->hw
.io_base
;
959 adapter
->bd_number
= cards_found
;
961 /* setup the private structure */
963 if ((err
= e1000_sw_init(adapter
)))
967 /* Flash BAR mapping must happen after e1000_sw_init
968 * because it depends on mac_type */
969 if ((adapter
->hw
.mac_type
== e1000_ich8lan
) &&
970 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
971 flash_start
= pci_resource_start(pdev
, 1);
972 flash_len
= pci_resource_len(pdev
, 1);
973 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
974 if (!adapter
->hw
.flash_address
)
978 if (e1000_check_phy_reset_block(&adapter
->hw
))
979 DPRINTK(PROBE
, INFO
, "PHY reset is blocked due to SOL/IDER session.\n");
981 if (adapter
->hw
.mac_type
>= e1000_82543
) {
982 netdev
->features
= NETIF_F_SG
|
986 NETIF_F_HW_VLAN_FILTER
;
987 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
988 netdev
->features
&= ~NETIF_F_HW_VLAN_FILTER
;
991 if ((adapter
->hw
.mac_type
>= e1000_82544
) &&
992 (adapter
->hw
.mac_type
!= e1000_82547
))
993 netdev
->features
|= NETIF_F_TSO
;
995 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
)
996 netdev
->features
|= NETIF_F_TSO6
;
998 netdev
->features
|= NETIF_F_HIGHDMA
;
1000 netdev
->features
|= NETIF_F_LLTX
;
1002 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(&adapter
->hw
);
1004 /* initialize eeprom parameters */
1006 if (e1000_init_eeprom_params(&adapter
->hw
)) {
1007 E1000_ERR("EEPROM initialization failed\n");
1011 /* before reading the EEPROM, reset the controller to
1012 * put the device in a known good starting state */
1014 e1000_reset_hw(&adapter
->hw
);
1016 /* make sure the EEPROM is good */
1018 if (e1000_validate_eeprom_checksum(&adapter
->hw
) < 0) {
1019 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
1023 /* copy the MAC address out of the EEPROM */
1025 if (e1000_read_mac_addr(&adapter
->hw
))
1026 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
1027 memcpy(netdev
->dev_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
1028 memcpy(netdev
->perm_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
1030 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1031 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
1035 e1000_get_bus_info(&adapter
->hw
);
1037 init_timer(&adapter
->tx_fifo_stall_timer
);
1038 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
1039 adapter
->tx_fifo_stall_timer
.data
= (unsigned long) adapter
;
1041 init_timer(&adapter
->watchdog_timer
);
1042 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
1043 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1045 init_timer(&adapter
->phy_info_timer
);
1046 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
1047 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1049 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1051 e1000_check_options(adapter
);
1053 /* Initial Wake on LAN setting
1054 * If APM wake is enabled in the EEPROM,
1055 * enable the ACPI Magic Packet filter
1058 switch (adapter
->hw
.mac_type
) {
1059 case e1000_82542_rev2_0
:
1060 case e1000_82542_rev2_1
:
1064 e1000_read_eeprom(&adapter
->hw
,
1065 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1066 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1069 e1000_read_eeprom(&adapter
->hw
,
1070 EEPROM_INIT_CONTROL1_REG
, 1, &eeprom_data
);
1071 eeprom_apme_mask
= E1000_EEPROM_ICH8_APME
;
1074 case e1000_82546_rev_3
:
1076 case e1000_80003es2lan
:
1077 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
){
1078 e1000_read_eeprom(&adapter
->hw
,
1079 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1084 e1000_read_eeprom(&adapter
->hw
,
1085 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1088 if (eeprom_data
& eeprom_apme_mask
)
1089 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1091 /* now that we have the eeprom settings, apply the special cases
1092 * where the eeprom may be wrong or the board simply won't support
1093 * wake on lan on a particular port */
1094 switch (pdev
->device
) {
1095 case E1000_DEV_ID_82546GB_PCIE
:
1096 adapter
->eeprom_wol
= 0;
1098 case E1000_DEV_ID_82546EB_FIBER
:
1099 case E1000_DEV_ID_82546GB_FIBER
:
1100 case E1000_DEV_ID_82571EB_FIBER
:
1101 /* Wake events only supported on port A for dual fiber
1102 * regardless of eeprom setting */
1103 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
)
1104 adapter
->eeprom_wol
= 0;
1106 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1107 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
1108 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE
:
1109 /* if quad port adapter, disable WoL on all but port A */
1110 if (global_quad_port_a
!= 0)
1111 adapter
->eeprom_wol
= 0;
1113 adapter
->quad_port_a
= 1;
1114 /* Reset for multiple quad port adapters */
1115 if (++global_quad_port_a
== 4)
1116 global_quad_port_a
= 0;
1120 /* initialize the wol settings based on the eeprom settings */
1121 adapter
->wol
= adapter
->eeprom_wol
;
1123 /* print bus type/speed/width info */
1125 struct e1000_hw
*hw
= &adapter
->hw
;
1126 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
1127 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" :
1128 (hw
->bus_type
== e1000_bus_type_pci_express
? " Express":"")),
1129 ((hw
->bus_speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
1130 (hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
1131 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
1132 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
1133 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
1134 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" :
1135 (hw
->bus_width
== e1000_bus_width_pciex_4
) ? "Width x4" :
1136 (hw
->bus_width
== e1000_bus_width_pciex_1
) ? "Width x1" :
1140 for (i
= 0; i
< 6; i
++)
1141 printk("%2.2x%c", netdev
->dev_addr
[i
], i
== 5 ? '\n' : ':');
1143 /* reset the hardware with the new settings */
1144 e1000_reset(adapter
);
1146 /* If the controller is 82573 and f/w is AMT, do not set
1147 * DRV_LOAD until the interface is up. For all other cases,
1148 * let the f/w know that the h/w is now under the control
1150 if (adapter
->hw
.mac_type
!= e1000_82573
||
1151 !e1000_check_mng_mode(&adapter
->hw
))
1152 e1000_get_hw_control(adapter
);
1154 strcpy(netdev
->name
, "eth%d");
1155 if ((err
= register_netdev(netdev
)))
1158 /* tell the stack to leave us alone until e1000_open() is called */
1159 netif_carrier_off(netdev
);
1160 netif_stop_queue(netdev
);
1162 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
1168 e1000_release_hw_control(adapter
);
1170 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1171 e1000_phy_hw_reset(&adapter
->hw
);
1173 if (adapter
->hw
.flash_address
)
1174 iounmap(adapter
->hw
.flash_address
);
1176 #ifdef CONFIG_E1000_NAPI
1177 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1178 dev_put(&adapter
->polling_netdev
[i
]);
1181 kfree(adapter
->tx_ring
);
1182 kfree(adapter
->rx_ring
);
1183 #ifdef CONFIG_E1000_NAPI
1184 kfree(adapter
->polling_netdev
);
1187 iounmap(adapter
->hw
.hw_addr
);
1189 free_netdev(netdev
);
1191 pci_release_regions(pdev
);
1194 pci_disable_device(pdev
);
1199 * e1000_remove - Device Removal Routine
1200 * @pdev: PCI device information struct
1202 * e1000_remove is called by the PCI subsystem to alert the driver
1203 * that it should release a PCI device. The could be caused by a
1204 * Hot-Plug event, or because the driver is going to be removed from
1208 static void __devexit
1209 e1000_remove(struct pci_dev
*pdev
)
1211 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1212 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1213 #ifdef CONFIG_E1000_NAPI
1217 cancel_work_sync(&adapter
->reset_task
);
1219 e1000_release_manageability(adapter
);
1221 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1222 * would have already happened in close and is redundant. */
1223 e1000_release_hw_control(adapter
);
1225 unregister_netdev(netdev
);
1226 #ifdef CONFIG_E1000_NAPI
1227 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1228 dev_put(&adapter
->polling_netdev
[i
]);
1231 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1232 e1000_phy_hw_reset(&adapter
->hw
);
1234 kfree(adapter
->tx_ring
);
1235 kfree(adapter
->rx_ring
);
1236 #ifdef CONFIG_E1000_NAPI
1237 kfree(adapter
->polling_netdev
);
1240 iounmap(adapter
->hw
.hw_addr
);
1241 if (adapter
->hw
.flash_address
)
1242 iounmap(adapter
->hw
.flash_address
);
1243 pci_release_regions(pdev
);
1245 free_netdev(netdev
);
1247 pci_disable_device(pdev
);
1251 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1252 * @adapter: board private structure to initialize
1254 * e1000_sw_init initializes the Adapter private data structure.
1255 * Fields are initialized based on PCI device information and
1256 * OS network device settings (MTU size).
1259 static int __devinit
1260 e1000_sw_init(struct e1000_adapter
*adapter
)
1262 struct e1000_hw
*hw
= &adapter
->hw
;
1263 struct net_device
*netdev
= adapter
->netdev
;
1264 struct pci_dev
*pdev
= adapter
->pdev
;
1265 #ifdef CONFIG_E1000_NAPI
1269 /* PCI config space info */
1271 hw
->vendor_id
= pdev
->vendor
;
1272 hw
->device_id
= pdev
->device
;
1273 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1274 hw
->subsystem_id
= pdev
->subsystem_device
;
1276 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &hw
->revision_id
);
1278 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1280 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1281 adapter
->rx_ps_bsize0
= E1000_RXBUFFER_128
;
1282 hw
->max_frame_size
= netdev
->mtu
+
1283 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1284 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1286 /* identify the MAC */
1288 if (e1000_set_mac_type(hw
)) {
1289 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1293 switch (hw
->mac_type
) {
1298 case e1000_82541_rev_2
:
1299 case e1000_82547_rev_2
:
1300 hw
->phy_init_script
= 1;
1304 e1000_set_media_type(hw
);
1306 hw
->wait_autoneg_complete
= FALSE
;
1307 hw
->tbi_compatibility_en
= TRUE
;
1308 hw
->adaptive_ifs
= TRUE
;
1310 /* Copper options */
1312 if (hw
->media_type
== e1000_media_type_copper
) {
1313 hw
->mdix
= AUTO_ALL_MODES
;
1314 hw
->disable_polarity_correction
= FALSE
;
1315 hw
->master_slave
= E1000_MASTER_SLAVE
;
1318 adapter
->num_tx_queues
= 1;
1319 adapter
->num_rx_queues
= 1;
1321 if (e1000_alloc_queues(adapter
)) {
1322 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1326 #ifdef CONFIG_E1000_NAPI
1327 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1328 adapter
->polling_netdev
[i
].priv
= adapter
;
1329 adapter
->polling_netdev
[i
].poll
= &e1000_clean
;
1330 adapter
->polling_netdev
[i
].weight
= 64;
1331 dev_hold(&adapter
->polling_netdev
[i
]);
1332 set_bit(__LINK_STATE_START
, &adapter
->polling_netdev
[i
].state
);
1334 spin_lock_init(&adapter
->tx_queue_lock
);
1337 atomic_set(&adapter
->irq_sem
, 1);
1338 spin_lock_init(&adapter
->stats_lock
);
1340 set_bit(__E1000_DOWN
, &adapter
->flags
);
1346 * e1000_alloc_queues - Allocate memory for all rings
1347 * @adapter: board private structure to initialize
1349 * We allocate one ring per queue at run-time since we don't know the
1350 * number of queues at compile-time. The polling_netdev array is
1351 * intended for Multiqueue, but should work fine with a single queue.
1354 static int __devinit
1355 e1000_alloc_queues(struct e1000_adapter
*adapter
)
1357 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1358 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1359 if (!adapter
->tx_ring
)
1362 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1363 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1364 if (!adapter
->rx_ring
) {
1365 kfree(adapter
->tx_ring
);
1369 #ifdef CONFIG_E1000_NAPI
1370 adapter
->polling_netdev
= kcalloc(adapter
->num_rx_queues
,
1371 sizeof(struct net_device
),
1373 if (!adapter
->polling_netdev
) {
1374 kfree(adapter
->tx_ring
);
1375 kfree(adapter
->rx_ring
);
1380 return E1000_SUCCESS
;
1384 * e1000_open - Called when a network interface is made active
1385 * @netdev: network interface device structure
1387 * Returns 0 on success, negative value on failure
1389 * The open entry point is called when a network interface is made
1390 * active by the system (IFF_UP). At this point all resources needed
1391 * for transmit and receive operations are allocated, the interrupt
1392 * handler is registered with the OS, the watchdog timer is started,
1393 * and the stack is notified that the interface is ready.
1397 e1000_open(struct net_device
*netdev
)
1399 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1402 /* disallow open during test */
1403 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1406 /* allocate transmit descriptors */
1407 err
= e1000_setup_all_tx_resources(adapter
);
1411 /* allocate receive descriptors */
1412 err
= e1000_setup_all_rx_resources(adapter
);
1416 e1000_power_up_phy(adapter
);
1418 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1419 if ((adapter
->hw
.mng_cookie
.status
&
1420 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1421 e1000_update_mng_vlan(adapter
);
1424 /* If AMT is enabled, let the firmware know that the network
1425 * interface is now open */
1426 if (adapter
->hw
.mac_type
== e1000_82573
&&
1427 e1000_check_mng_mode(&adapter
->hw
))
1428 e1000_get_hw_control(adapter
);
1430 /* before we allocate an interrupt, we must be ready to handle it.
1431 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1432 * as soon as we call pci_request_irq, so we have to setup our
1433 * clean_rx handler before we do so. */
1434 e1000_configure(adapter
);
1436 err
= e1000_request_irq(adapter
);
1440 /* From here on the code is the same as e1000_up() */
1441 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1443 #ifdef CONFIG_E1000_NAPI
1444 netif_poll_enable(netdev
);
1447 e1000_irq_enable(adapter
);
1449 /* fire a link status change interrupt to start the watchdog */
1450 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_LSC
);
1452 return E1000_SUCCESS
;
1455 e1000_release_hw_control(adapter
);
1456 e1000_power_down_phy(adapter
);
1457 e1000_free_all_rx_resources(adapter
);
1459 e1000_free_all_tx_resources(adapter
);
1461 e1000_reset(adapter
);
1467 * e1000_close - Disables a network interface
1468 * @netdev: network interface device structure
1470 * Returns 0, this is not allowed to fail
1472 * The close entry point is called when an interface is de-activated
1473 * by the OS. The hardware is still under the drivers control, but
1474 * needs to be disabled. A global MAC reset is issued to stop the
1475 * hardware, and all transmit and receive resources are freed.
1479 e1000_close(struct net_device
*netdev
)
1481 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1483 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1484 e1000_down(adapter
);
1485 e1000_power_down_phy(adapter
);
1486 e1000_free_irq(adapter
);
1488 e1000_free_all_tx_resources(adapter
);
1489 e1000_free_all_rx_resources(adapter
);
1491 /* kill manageability vlan ID if supported, but not if a vlan with
1492 * the same ID is registered on the host OS (let 8021q kill it) */
1493 if ((adapter
->hw
.mng_cookie
.status
&
1494 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1496 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
))) {
1497 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1500 /* If AMT is enabled, let the firmware know that the network
1501 * interface is now closed */
1502 if (adapter
->hw
.mac_type
== e1000_82573
&&
1503 e1000_check_mng_mode(&adapter
->hw
))
1504 e1000_release_hw_control(adapter
);
1510 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1511 * @adapter: address of board private structure
1512 * @start: address of beginning of memory
1513 * @len: length of memory
1516 e1000_check_64k_bound(struct e1000_adapter
*adapter
,
1517 void *start
, unsigned long len
)
1519 unsigned long begin
= (unsigned long) start
;
1520 unsigned long end
= begin
+ len
;
1522 /* First rev 82545 and 82546 need to not allow any memory
1523 * write location to cross 64k boundary due to errata 23 */
1524 if (adapter
->hw
.mac_type
== e1000_82545
||
1525 adapter
->hw
.mac_type
== e1000_82546
) {
1526 return ((begin
^ (end
- 1)) >> 16) != 0 ? FALSE
: TRUE
;
1533 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1534 * @adapter: board private structure
1535 * @txdr: tx descriptor ring (for a specific queue) to setup
1537 * Return 0 on success, negative on failure
1541 e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1542 struct e1000_tx_ring
*txdr
)
1544 struct pci_dev
*pdev
= adapter
->pdev
;
1547 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1548 txdr
->buffer_info
= vmalloc(size
);
1549 if (!txdr
->buffer_info
) {
1551 "Unable to allocate memory for the transmit descriptor ring\n");
1554 memset(txdr
->buffer_info
, 0, size
);
1556 /* round up to nearest 4K */
1558 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1559 txdr
->size
= ALIGN(txdr
->size
, 4096);
1561 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1564 vfree(txdr
->buffer_info
);
1566 "Unable to allocate memory for the transmit descriptor ring\n");
1570 /* Fix for errata 23, can't cross 64kB boundary */
1571 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1572 void *olddesc
= txdr
->desc
;
1573 dma_addr_t olddma
= txdr
->dma
;
1574 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1575 "at %p\n", txdr
->size
, txdr
->desc
);
1576 /* Try again, without freeing the previous */
1577 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1578 /* Failed allocation, critical failure */
1580 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1581 goto setup_tx_desc_die
;
1584 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1586 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1588 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1590 "Unable to allocate aligned memory "
1591 "for the transmit descriptor ring\n");
1592 vfree(txdr
->buffer_info
);
1595 /* Free old allocation, new allocation was successful */
1596 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1599 memset(txdr
->desc
, 0, txdr
->size
);
1601 txdr
->next_to_use
= 0;
1602 txdr
->next_to_clean
= 0;
1603 spin_lock_init(&txdr
->tx_lock
);
1609 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1610 * (Descriptors) for all queues
1611 * @adapter: board private structure
1613 * Return 0 on success, negative on failure
1617 e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1621 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1622 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1625 "Allocation for Tx Queue %u failed\n", i
);
1626 for (i
-- ; i
>= 0; i
--)
1627 e1000_free_tx_resources(adapter
,
1628 &adapter
->tx_ring
[i
]);
1637 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1638 * @adapter: board private structure
1640 * Configure the Tx unit of the MAC after a reset.
1644 e1000_configure_tx(struct e1000_adapter
*adapter
)
1647 struct e1000_hw
*hw
= &adapter
->hw
;
1648 uint32_t tdlen
, tctl
, tipg
, tarc
;
1649 uint32_t ipgr1
, ipgr2
;
1651 /* Setup the HW Tx Head and Tail descriptor pointers */
1653 switch (adapter
->num_tx_queues
) {
1656 tdba
= adapter
->tx_ring
[0].dma
;
1657 tdlen
= adapter
->tx_ring
[0].count
*
1658 sizeof(struct e1000_tx_desc
);
1659 E1000_WRITE_REG(hw
, TDLEN
, tdlen
);
1660 E1000_WRITE_REG(hw
, TDBAH
, (tdba
>> 32));
1661 E1000_WRITE_REG(hw
, TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1662 E1000_WRITE_REG(hw
, TDT
, 0);
1663 E1000_WRITE_REG(hw
, TDH
, 0);
1664 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1665 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1669 /* Set the default values for the Tx Inter Packet Gap timer */
1670 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
&&
1671 (hw
->media_type
== e1000_media_type_fiber
||
1672 hw
->media_type
== e1000_media_type_internal_serdes
))
1673 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1675 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1677 switch (hw
->mac_type
) {
1678 case e1000_82542_rev2_0
:
1679 case e1000_82542_rev2_1
:
1680 tipg
= DEFAULT_82542_TIPG_IPGT
;
1681 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1682 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1684 case e1000_80003es2lan
:
1685 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1686 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
;
1689 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1690 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1693 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1694 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1695 E1000_WRITE_REG(hw
, TIPG
, tipg
);
1697 /* Set the Tx Interrupt Delay register */
1699 E1000_WRITE_REG(hw
, TIDV
, adapter
->tx_int_delay
);
1700 if (hw
->mac_type
>= e1000_82540
)
1701 E1000_WRITE_REG(hw
, TADV
, adapter
->tx_abs_int_delay
);
1703 /* Program the Transmit Control Register */
1705 tctl
= E1000_READ_REG(hw
, TCTL
);
1706 tctl
&= ~E1000_TCTL_CT
;
1707 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1708 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1710 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
) {
1711 tarc
= E1000_READ_REG(hw
, TARC0
);
1712 /* set the speed mode bit, we'll clear it if we're not at
1713 * gigabit link later */
1715 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1716 } else if (hw
->mac_type
== e1000_80003es2lan
) {
1717 tarc
= E1000_READ_REG(hw
, TARC0
);
1719 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1720 tarc
= E1000_READ_REG(hw
, TARC1
);
1722 E1000_WRITE_REG(hw
, TARC1
, tarc
);
1725 e1000_config_collision_dist(hw
);
1727 /* Setup Transmit Descriptor Settings for eop descriptor */
1728 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1730 /* only set IDE if we are delaying interrupts using the timers */
1731 if (adapter
->tx_int_delay
)
1732 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1734 if (hw
->mac_type
< e1000_82543
)
1735 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1737 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1739 /* Cache if we're 82544 running in PCI-X because we'll
1740 * need this to apply a workaround later in the send path. */
1741 if (hw
->mac_type
== e1000_82544
&&
1742 hw
->bus_type
== e1000_bus_type_pcix
)
1743 adapter
->pcix_82544
= 1;
1745 E1000_WRITE_REG(hw
, TCTL
, tctl
);
1750 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1751 * @adapter: board private structure
1752 * @rxdr: rx descriptor ring (for a specific queue) to setup
1754 * Returns 0 on success, negative on failure
1758 e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1759 struct e1000_rx_ring
*rxdr
)
1761 struct pci_dev
*pdev
= adapter
->pdev
;
1764 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1765 rxdr
->buffer_info
= vmalloc(size
);
1766 if (!rxdr
->buffer_info
) {
1768 "Unable to allocate memory for the receive descriptor ring\n");
1771 memset(rxdr
->buffer_info
, 0, size
);
1773 rxdr
->ps_page
= kcalloc(rxdr
->count
, sizeof(struct e1000_ps_page
),
1775 if (!rxdr
->ps_page
) {
1776 vfree(rxdr
->buffer_info
);
1778 "Unable to allocate memory for the receive descriptor ring\n");
1782 rxdr
->ps_page_dma
= kcalloc(rxdr
->count
,
1783 sizeof(struct e1000_ps_page_dma
),
1785 if (!rxdr
->ps_page_dma
) {
1786 vfree(rxdr
->buffer_info
);
1787 kfree(rxdr
->ps_page
);
1789 "Unable to allocate memory for the receive descriptor ring\n");
1793 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
)
1794 desc_len
= sizeof(struct e1000_rx_desc
);
1796 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1798 /* Round up to nearest 4K */
1800 rxdr
->size
= rxdr
->count
* desc_len
;
1801 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1803 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1807 "Unable to allocate memory for the receive descriptor ring\n");
1809 vfree(rxdr
->buffer_info
);
1810 kfree(rxdr
->ps_page
);
1811 kfree(rxdr
->ps_page_dma
);
1815 /* Fix for errata 23, can't cross 64kB boundary */
1816 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1817 void *olddesc
= rxdr
->desc
;
1818 dma_addr_t olddma
= rxdr
->dma
;
1819 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1820 "at %p\n", rxdr
->size
, rxdr
->desc
);
1821 /* Try again, without freeing the previous */
1822 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1823 /* Failed allocation, critical failure */
1825 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1827 "Unable to allocate memory "
1828 "for the receive descriptor ring\n");
1829 goto setup_rx_desc_die
;
1832 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1834 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1836 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1838 "Unable to allocate aligned memory "
1839 "for the receive descriptor ring\n");
1840 goto setup_rx_desc_die
;
1842 /* Free old allocation, new allocation was successful */
1843 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1846 memset(rxdr
->desc
, 0, rxdr
->size
);
1848 rxdr
->next_to_clean
= 0;
1849 rxdr
->next_to_use
= 0;
1855 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1856 * (Descriptors) for all queues
1857 * @adapter: board private structure
1859 * Return 0 on success, negative on failure
1863 e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1867 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1868 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1871 "Allocation for Rx Queue %u failed\n", i
);
1872 for (i
-- ; i
>= 0; i
--)
1873 e1000_free_rx_resources(adapter
,
1874 &adapter
->rx_ring
[i
]);
1883 * e1000_setup_rctl - configure the receive control registers
1884 * @adapter: Board private structure
1886 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1887 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1889 e1000_setup_rctl(struct e1000_adapter
*adapter
)
1891 uint32_t rctl
, rfctl
;
1892 uint32_t psrctl
= 0;
1893 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1897 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1899 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1901 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1902 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1903 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1905 if (adapter
->hw
.tbi_compatibility_on
== 1)
1906 rctl
|= E1000_RCTL_SBP
;
1908 rctl
&= ~E1000_RCTL_SBP
;
1910 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1911 rctl
&= ~E1000_RCTL_LPE
;
1913 rctl
|= E1000_RCTL_LPE
;
1915 /* Setup buffer sizes */
1916 rctl
&= ~E1000_RCTL_SZ_4096
;
1917 rctl
|= E1000_RCTL_BSEX
;
1918 switch (adapter
->rx_buffer_len
) {
1919 case E1000_RXBUFFER_256
:
1920 rctl
|= E1000_RCTL_SZ_256
;
1921 rctl
&= ~E1000_RCTL_BSEX
;
1923 case E1000_RXBUFFER_512
:
1924 rctl
|= E1000_RCTL_SZ_512
;
1925 rctl
&= ~E1000_RCTL_BSEX
;
1927 case E1000_RXBUFFER_1024
:
1928 rctl
|= E1000_RCTL_SZ_1024
;
1929 rctl
&= ~E1000_RCTL_BSEX
;
1931 case E1000_RXBUFFER_2048
:
1933 rctl
|= E1000_RCTL_SZ_2048
;
1934 rctl
&= ~E1000_RCTL_BSEX
;
1936 case E1000_RXBUFFER_4096
:
1937 rctl
|= E1000_RCTL_SZ_4096
;
1939 case E1000_RXBUFFER_8192
:
1940 rctl
|= E1000_RCTL_SZ_8192
;
1942 case E1000_RXBUFFER_16384
:
1943 rctl
|= E1000_RCTL_SZ_16384
;
1947 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1948 /* 82571 and greater support packet-split where the protocol
1949 * header is placed in skb->data and the packet data is
1950 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1951 * In the case of a non-split, skb->data is linearly filled,
1952 * followed by the page buffers. Therefore, skb->data is
1953 * sized to hold the largest protocol header.
1955 /* allocations using alloc_page take too long for regular MTU
1956 * so only enable packet split for jumbo frames */
1957 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
1958 if ((adapter
->hw
.mac_type
>= e1000_82571
) && (pages
<= 3) &&
1959 PAGE_SIZE
<= 16384 && (rctl
& E1000_RCTL_LPE
))
1960 adapter
->rx_ps_pages
= pages
;
1962 adapter
->rx_ps_pages
= 0;
1964 if (adapter
->rx_ps_pages
) {
1965 /* Configure extra packet-split registers */
1966 rfctl
= E1000_READ_REG(&adapter
->hw
, RFCTL
);
1967 rfctl
|= E1000_RFCTL_EXTEN
;
1968 /* disable packet split support for IPv6 extension headers,
1969 * because some malformed IPv6 headers can hang the RX */
1970 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
1971 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
1973 E1000_WRITE_REG(&adapter
->hw
, RFCTL
, rfctl
);
1975 rctl
|= E1000_RCTL_DTYP_PS
;
1977 psrctl
|= adapter
->rx_ps_bsize0
>>
1978 E1000_PSRCTL_BSIZE0_SHIFT
;
1980 switch (adapter
->rx_ps_pages
) {
1982 psrctl
|= PAGE_SIZE
<<
1983 E1000_PSRCTL_BSIZE3_SHIFT
;
1985 psrctl
|= PAGE_SIZE
<<
1986 E1000_PSRCTL_BSIZE2_SHIFT
;
1988 psrctl
|= PAGE_SIZE
>>
1989 E1000_PSRCTL_BSIZE1_SHIFT
;
1993 E1000_WRITE_REG(&adapter
->hw
, PSRCTL
, psrctl
);
1996 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2000 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2001 * @adapter: board private structure
2003 * Configure the Rx unit of the MAC after a reset.
2007 e1000_configure_rx(struct e1000_adapter
*adapter
)
2010 struct e1000_hw
*hw
= &adapter
->hw
;
2011 uint32_t rdlen
, rctl
, rxcsum
, ctrl_ext
;
2013 if (adapter
->rx_ps_pages
) {
2014 /* this is a 32 byte descriptor */
2015 rdlen
= adapter
->rx_ring
[0].count
*
2016 sizeof(union e1000_rx_desc_packet_split
);
2017 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2018 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2020 rdlen
= adapter
->rx_ring
[0].count
*
2021 sizeof(struct e1000_rx_desc
);
2022 adapter
->clean_rx
= e1000_clean_rx_irq
;
2023 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2026 /* disable receives while setting up the descriptors */
2027 rctl
= E1000_READ_REG(hw
, RCTL
);
2028 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
2030 /* set the Receive Delay Timer Register */
2031 E1000_WRITE_REG(hw
, RDTR
, adapter
->rx_int_delay
);
2033 if (hw
->mac_type
>= e1000_82540
) {
2034 E1000_WRITE_REG(hw
, RADV
, adapter
->rx_abs_int_delay
);
2035 if (adapter
->itr_setting
!= 0)
2036 E1000_WRITE_REG(hw
, ITR
,
2037 1000000000 / (adapter
->itr
* 256));
2040 if (hw
->mac_type
>= e1000_82571
) {
2041 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
2042 /* Reset delay timers after every interrupt */
2043 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
2044 #ifdef CONFIG_E1000_NAPI
2045 /* Auto-Mask interrupts upon ICR access */
2046 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2047 E1000_WRITE_REG(hw
, IAM
, 0xffffffff);
2049 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
2050 E1000_WRITE_FLUSH(hw
);
2053 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2054 * the Base and Length of the Rx Descriptor Ring */
2055 switch (adapter
->num_rx_queues
) {
2058 rdba
= adapter
->rx_ring
[0].dma
;
2059 E1000_WRITE_REG(hw
, RDLEN
, rdlen
);
2060 E1000_WRITE_REG(hw
, RDBAH
, (rdba
>> 32));
2061 E1000_WRITE_REG(hw
, RDBAL
, (rdba
& 0x00000000ffffffffULL
));
2062 E1000_WRITE_REG(hw
, RDT
, 0);
2063 E1000_WRITE_REG(hw
, RDH
, 0);
2064 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
2065 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
2069 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2070 if (hw
->mac_type
>= e1000_82543
) {
2071 rxcsum
= E1000_READ_REG(hw
, RXCSUM
);
2072 if (adapter
->rx_csum
== TRUE
) {
2073 rxcsum
|= E1000_RXCSUM_TUOFL
;
2075 /* Enable 82571 IPv4 payload checksum for UDP fragments
2076 * Must be used in conjunction with packet-split. */
2077 if ((hw
->mac_type
>= e1000_82571
) &&
2078 (adapter
->rx_ps_pages
)) {
2079 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2082 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2083 /* don't need to clear IPPCSE as it defaults to 0 */
2085 E1000_WRITE_REG(hw
, RXCSUM
, rxcsum
);
2088 /* enable early receives on 82573, only takes effect if using > 2048
2089 * byte total frame size. for example only for jumbo frames */
2090 #define E1000_ERT_2048 0x100
2091 if (hw
->mac_type
== e1000_82573
)
2092 E1000_WRITE_REG(hw
, ERT
, E1000_ERT_2048
);
2094 /* Enable Receives */
2095 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2099 * e1000_free_tx_resources - Free Tx Resources per Queue
2100 * @adapter: board private structure
2101 * @tx_ring: Tx descriptor ring for a specific queue
2103 * Free all transmit software resources
2107 e1000_free_tx_resources(struct e1000_adapter
*adapter
,
2108 struct e1000_tx_ring
*tx_ring
)
2110 struct pci_dev
*pdev
= adapter
->pdev
;
2112 e1000_clean_tx_ring(adapter
, tx_ring
);
2114 vfree(tx_ring
->buffer_info
);
2115 tx_ring
->buffer_info
= NULL
;
2117 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2119 tx_ring
->desc
= NULL
;
2123 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2124 * @adapter: board private structure
2126 * Free all transmit software resources
2130 e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
2134 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2135 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
2139 e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
2140 struct e1000_buffer
*buffer_info
)
2142 if (buffer_info
->dma
) {
2143 pci_unmap_page(adapter
->pdev
,
2145 buffer_info
->length
,
2147 buffer_info
->dma
= 0;
2149 if (buffer_info
->skb
) {
2150 dev_kfree_skb_any(buffer_info
->skb
);
2151 buffer_info
->skb
= NULL
;
2153 /* buffer_info must be completely set up in the transmit path */
2157 * e1000_clean_tx_ring - Free Tx Buffers
2158 * @adapter: board private structure
2159 * @tx_ring: ring to be cleaned
2163 e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
2164 struct e1000_tx_ring
*tx_ring
)
2166 struct e1000_buffer
*buffer_info
;
2170 /* Free all the Tx ring sk_buffs */
2172 for (i
= 0; i
< tx_ring
->count
; i
++) {
2173 buffer_info
= &tx_ring
->buffer_info
[i
];
2174 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2177 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2178 memset(tx_ring
->buffer_info
, 0, size
);
2180 /* Zero out the descriptor ring */
2182 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2184 tx_ring
->next_to_use
= 0;
2185 tx_ring
->next_to_clean
= 0;
2186 tx_ring
->last_tx_tso
= 0;
2188 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdh
);
2189 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
2193 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2194 * @adapter: board private structure
2198 e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2202 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2203 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2207 * e1000_free_rx_resources - Free Rx Resources
2208 * @adapter: board private structure
2209 * @rx_ring: ring to clean the resources from
2211 * Free all receive software resources
2215 e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2216 struct e1000_rx_ring
*rx_ring
)
2218 struct pci_dev
*pdev
= adapter
->pdev
;
2220 e1000_clean_rx_ring(adapter
, rx_ring
);
2222 vfree(rx_ring
->buffer_info
);
2223 rx_ring
->buffer_info
= NULL
;
2224 kfree(rx_ring
->ps_page
);
2225 rx_ring
->ps_page
= NULL
;
2226 kfree(rx_ring
->ps_page_dma
);
2227 rx_ring
->ps_page_dma
= NULL
;
2229 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2231 rx_ring
->desc
= NULL
;
2235 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2236 * @adapter: board private structure
2238 * Free all receive software resources
2242 e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2246 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2247 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2251 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2252 * @adapter: board private structure
2253 * @rx_ring: ring to free buffers from
2257 e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2258 struct e1000_rx_ring
*rx_ring
)
2260 struct e1000_buffer
*buffer_info
;
2261 struct e1000_ps_page
*ps_page
;
2262 struct e1000_ps_page_dma
*ps_page_dma
;
2263 struct pci_dev
*pdev
= adapter
->pdev
;
2267 /* Free all the Rx ring sk_buffs */
2268 for (i
= 0; i
< rx_ring
->count
; i
++) {
2269 buffer_info
= &rx_ring
->buffer_info
[i
];
2270 if (buffer_info
->skb
) {
2271 pci_unmap_single(pdev
,
2273 buffer_info
->length
,
2274 PCI_DMA_FROMDEVICE
);
2276 dev_kfree_skb(buffer_info
->skb
);
2277 buffer_info
->skb
= NULL
;
2279 ps_page
= &rx_ring
->ps_page
[i
];
2280 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
2281 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
2282 if (!ps_page
->ps_page
[j
]) break;
2283 pci_unmap_page(pdev
,
2284 ps_page_dma
->ps_page_dma
[j
],
2285 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2286 ps_page_dma
->ps_page_dma
[j
] = 0;
2287 put_page(ps_page
->ps_page
[j
]);
2288 ps_page
->ps_page
[j
] = NULL
;
2292 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2293 memset(rx_ring
->buffer_info
, 0, size
);
2294 size
= sizeof(struct e1000_ps_page
) * rx_ring
->count
;
2295 memset(rx_ring
->ps_page
, 0, size
);
2296 size
= sizeof(struct e1000_ps_page_dma
) * rx_ring
->count
;
2297 memset(rx_ring
->ps_page_dma
, 0, size
);
2299 /* Zero out the descriptor ring */
2301 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2303 rx_ring
->next_to_clean
= 0;
2304 rx_ring
->next_to_use
= 0;
2306 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdh
);
2307 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
2311 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2312 * @adapter: board private structure
2316 e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2320 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2321 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2324 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2325 * and memory write and invalidate disabled for certain operations
2328 e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2330 struct net_device
*netdev
= adapter
->netdev
;
2333 e1000_pci_clear_mwi(&adapter
->hw
);
2335 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2336 rctl
|= E1000_RCTL_RST
;
2337 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2338 E1000_WRITE_FLUSH(&adapter
->hw
);
2341 if (netif_running(netdev
))
2342 e1000_clean_all_rx_rings(adapter
);
2346 e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2348 struct net_device
*netdev
= adapter
->netdev
;
2351 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2352 rctl
&= ~E1000_RCTL_RST
;
2353 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2354 E1000_WRITE_FLUSH(&adapter
->hw
);
2357 if (adapter
->hw
.pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2358 e1000_pci_set_mwi(&adapter
->hw
);
2360 if (netif_running(netdev
)) {
2361 /* No need to loop, because 82542 supports only 1 queue */
2362 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2363 e1000_configure_rx(adapter
);
2364 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2369 * e1000_set_mac - Change the Ethernet Address of the NIC
2370 * @netdev: network interface device structure
2371 * @p: pointer to an address structure
2373 * Returns 0 on success, negative on failure
2377 e1000_set_mac(struct net_device
*netdev
, void *p
)
2379 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2380 struct sockaddr
*addr
= p
;
2382 if (!is_valid_ether_addr(addr
->sa_data
))
2383 return -EADDRNOTAVAIL
;
2385 /* 82542 2.0 needs to be in reset to write receive address registers */
2387 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2388 e1000_enter_82542_rst(adapter
);
2390 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2391 memcpy(adapter
->hw
.mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2393 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2395 /* With 82571 controllers, LAA may be overwritten (with the default)
2396 * due to controller reset from the other port. */
2397 if (adapter
->hw
.mac_type
== e1000_82571
) {
2398 /* activate the work around */
2399 adapter
->hw
.laa_is_present
= 1;
2401 /* Hold a copy of the LAA in RAR[14] This is done so that
2402 * between the time RAR[0] gets clobbered and the time it
2403 * gets fixed (in e1000_watchdog), the actual LAA is in one
2404 * of the RARs and no incoming packets directed to this port
2405 * are dropped. Eventaully the LAA will be in RAR[0] and
2407 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
,
2408 E1000_RAR_ENTRIES
- 1);
2411 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2412 e1000_leave_82542_rst(adapter
);
2418 * e1000_set_multi - Multicast and Promiscuous mode set
2419 * @netdev: network interface device structure
2421 * The set_multi entry point is called whenever the multicast address
2422 * list or the network interface flags are updated. This routine is
2423 * responsible for configuring the hardware for proper multicast,
2424 * promiscuous mode, and all-multi behavior.
2428 e1000_set_multi(struct net_device
*netdev
)
2430 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2431 struct e1000_hw
*hw
= &adapter
->hw
;
2432 struct dev_mc_list
*mc_ptr
;
2434 uint32_t hash_value
;
2435 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2436 int mta_reg_count
= (hw
->mac_type
== e1000_ich8lan
) ?
2437 E1000_NUM_MTA_REGISTERS_ICH8LAN
:
2438 E1000_NUM_MTA_REGISTERS
;
2440 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
2441 rar_entries
= E1000_RAR_ENTRIES_ICH8LAN
;
2443 /* reserve RAR[14] for LAA over-write work-around */
2444 if (adapter
->hw
.mac_type
== e1000_82571
)
2447 /* Check for Promiscuous and All Multicast modes */
2449 rctl
= E1000_READ_REG(hw
, RCTL
);
2451 if (netdev
->flags
& IFF_PROMISC
) {
2452 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2453 } else if (netdev
->flags
& IFF_ALLMULTI
) {
2454 rctl
|= E1000_RCTL_MPE
;
2455 rctl
&= ~E1000_RCTL_UPE
;
2457 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2460 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2462 /* 82542 2.0 needs to be in reset to write receive address registers */
2464 if (hw
->mac_type
== e1000_82542_rev2_0
)
2465 e1000_enter_82542_rst(adapter
);
2467 /* load the first 14 multicast address into the exact filters 1-14
2468 * RAR 0 is used for the station MAC adddress
2469 * if there are not 14 addresses, go ahead and clear the filters
2470 * -- with 82571 controllers only 0-13 entries are filled here
2472 mc_ptr
= netdev
->mc_list
;
2474 for (i
= 1; i
< rar_entries
; i
++) {
2476 e1000_rar_set(hw
, mc_ptr
->dmi_addr
, i
);
2477 mc_ptr
= mc_ptr
->next
;
2479 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2480 E1000_WRITE_FLUSH(hw
);
2481 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2482 E1000_WRITE_FLUSH(hw
);
2486 /* clear the old settings from the multicast hash table */
2488 for (i
= 0; i
< mta_reg_count
; i
++) {
2489 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
2490 E1000_WRITE_FLUSH(hw
);
2493 /* load any remaining addresses into the hash table */
2495 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2496 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->dmi_addr
);
2497 e1000_mta_set(hw
, hash_value
);
2500 if (hw
->mac_type
== e1000_82542_rev2_0
)
2501 e1000_leave_82542_rst(adapter
);
2504 /* Need to wait a few seconds after link up to get diagnostic information from
2508 e1000_update_phy_info(unsigned long data
)
2510 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2511 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2515 * e1000_82547_tx_fifo_stall - Timer Call-back
2516 * @data: pointer to adapter cast into an unsigned long
2520 e1000_82547_tx_fifo_stall(unsigned long data
)
2522 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2523 struct net_device
*netdev
= adapter
->netdev
;
2526 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2527 if ((E1000_READ_REG(&adapter
->hw
, TDT
) ==
2528 E1000_READ_REG(&adapter
->hw
, TDH
)) &&
2529 (E1000_READ_REG(&adapter
->hw
, TDFT
) ==
2530 E1000_READ_REG(&adapter
->hw
, TDFH
)) &&
2531 (E1000_READ_REG(&adapter
->hw
, TDFTS
) ==
2532 E1000_READ_REG(&adapter
->hw
, TDFHS
))) {
2533 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2534 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
2535 tctl
& ~E1000_TCTL_EN
);
2536 E1000_WRITE_REG(&adapter
->hw
, TDFT
,
2537 adapter
->tx_head_addr
);
2538 E1000_WRITE_REG(&adapter
->hw
, TDFH
,
2539 adapter
->tx_head_addr
);
2540 E1000_WRITE_REG(&adapter
->hw
, TDFTS
,
2541 adapter
->tx_head_addr
);
2542 E1000_WRITE_REG(&adapter
->hw
, TDFHS
,
2543 adapter
->tx_head_addr
);
2544 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2545 E1000_WRITE_FLUSH(&adapter
->hw
);
2547 adapter
->tx_fifo_head
= 0;
2548 atomic_set(&adapter
->tx_fifo_stall
, 0);
2549 netif_wake_queue(netdev
);
2551 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2557 * e1000_watchdog - Timer Call-back
2558 * @data: pointer to adapter cast into an unsigned long
2561 e1000_watchdog(unsigned long data
)
2563 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2564 struct net_device
*netdev
= adapter
->netdev
;
2565 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2566 uint32_t link
, tctl
;
2569 ret_val
= e1000_check_for_link(&adapter
->hw
);
2570 if ((ret_val
== E1000_ERR_PHY
) &&
2571 (adapter
->hw
.phy_type
== e1000_phy_igp_3
) &&
2572 (E1000_READ_REG(&adapter
->hw
, CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
2573 /* See e1000_kumeran_lock_loss_workaround() */
2575 "Gigabit has been disabled, downgrading speed\n");
2578 if (adapter
->hw
.mac_type
== e1000_82573
) {
2579 e1000_enable_tx_pkt_filtering(&adapter
->hw
);
2580 if (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
)
2581 e1000_update_mng_vlan(adapter
);
2584 if ((adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
2585 !(E1000_READ_REG(&adapter
->hw
, TXCW
) & E1000_TXCW_ANE
))
2586 link
= !adapter
->hw
.serdes_link_down
;
2588 link
= E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
;
2591 if (!netif_carrier_ok(netdev
)) {
2593 boolean_t txb2b
= 1;
2594 e1000_get_speed_and_duplex(&adapter
->hw
,
2595 &adapter
->link_speed
,
2596 &adapter
->link_duplex
);
2598 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
2599 DPRINTK(LINK
, INFO
, "NIC Link is Up %d Mbps %s, "
2600 "Flow Control: %s\n",
2601 adapter
->link_speed
,
2602 adapter
->link_duplex
== FULL_DUPLEX
?
2603 "Full Duplex" : "Half Duplex",
2604 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2605 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2606 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2607 E1000_CTRL_TFCE
) ? "TX" : "None" )));
2609 /* tweak tx_queue_len according to speed/duplex
2610 * and adjust the timeout factor */
2611 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2612 adapter
->tx_timeout_factor
= 1;
2613 switch (adapter
->link_speed
) {
2616 netdev
->tx_queue_len
= 10;
2617 adapter
->tx_timeout_factor
= 8;
2621 netdev
->tx_queue_len
= 100;
2622 /* maybe add some timeout factor ? */
2626 if ((adapter
->hw
.mac_type
== e1000_82571
||
2627 adapter
->hw
.mac_type
== e1000_82572
) &&
2630 tarc0
= E1000_READ_REG(&adapter
->hw
, TARC0
);
2631 tarc0
&= ~(1 << 21);
2632 E1000_WRITE_REG(&adapter
->hw
, TARC0
, tarc0
);
2635 /* disable TSO for pcie and 10/100 speeds, to avoid
2636 * some hardware issues */
2637 if (!adapter
->tso_force
&&
2638 adapter
->hw
.bus_type
== e1000_bus_type_pci_express
){
2639 switch (adapter
->link_speed
) {
2643 "10/100 speed: disabling TSO\n");
2644 netdev
->features
&= ~NETIF_F_TSO
;
2645 netdev
->features
&= ~NETIF_F_TSO6
;
2648 netdev
->features
|= NETIF_F_TSO
;
2649 netdev
->features
|= NETIF_F_TSO6
;
2657 /* enable transmits in the hardware, need to do this
2658 * after setting TARC0 */
2659 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2660 tctl
|= E1000_TCTL_EN
;
2661 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2663 netif_carrier_on(netdev
);
2664 netif_wake_queue(netdev
);
2665 mod_timer(&adapter
->phy_info_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2666 adapter
->smartspeed
= 0;
2668 /* make sure the receive unit is started */
2669 if (adapter
->hw
.rx_needs_kicking
) {
2670 struct e1000_hw
*hw
= &adapter
->hw
;
2671 uint32_t rctl
= E1000_READ_REG(hw
, RCTL
);
2672 E1000_WRITE_REG(hw
, RCTL
, rctl
| E1000_RCTL_EN
);
2676 if (netif_carrier_ok(netdev
)) {
2677 adapter
->link_speed
= 0;
2678 adapter
->link_duplex
= 0;
2679 DPRINTK(LINK
, INFO
, "NIC Link is Down\n");
2680 netif_carrier_off(netdev
);
2681 netif_stop_queue(netdev
);
2682 mod_timer(&adapter
->phy_info_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2684 /* 80003ES2LAN workaround--
2685 * For packet buffer work-around on link down event;
2686 * disable receives in the ISR and
2687 * reset device here in the watchdog
2689 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
2691 schedule_work(&adapter
->reset_task
);
2694 e1000_smartspeed(adapter
);
2697 e1000_update_stats(adapter
);
2699 adapter
->hw
.tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2700 adapter
->tpt_old
= adapter
->stats
.tpt
;
2701 adapter
->hw
.collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2702 adapter
->colc_old
= adapter
->stats
.colc
;
2704 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2705 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2706 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2707 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2709 e1000_update_adaptive(&adapter
->hw
);
2711 if (!netif_carrier_ok(netdev
)) {
2712 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2713 /* We've lost link, so the controller stops DMA,
2714 * but we've got queued Tx work that's never going
2715 * to get done, so reset controller to flush Tx.
2716 * (Do the reset outside of interrupt context). */
2717 adapter
->tx_timeout_count
++;
2718 schedule_work(&adapter
->reset_task
);
2722 /* Cause software interrupt to ensure rx ring is cleaned */
2723 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_RXDMT0
);
2725 /* Force detection of hung controller every watchdog period */
2726 adapter
->detect_tx_hung
= TRUE
;
2728 /* With 82571 controllers, LAA may be overwritten due to controller
2729 * reset from the other port. Set the appropriate LAA in RAR[0] */
2730 if (adapter
->hw
.mac_type
== e1000_82571
&& adapter
->hw
.laa_is_present
)
2731 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2733 /* Reset the timer */
2734 mod_timer(&adapter
->watchdog_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2737 enum latency_range
{
2741 latency_invalid
= 255
2745 * e1000_update_itr - update the dynamic ITR value based on statistics
2746 * Stores a new ITR value based on packets and byte
2747 * counts during the last interrupt. The advantage of per interrupt
2748 * computation is faster updates and more accurate ITR for the current
2749 * traffic pattern. Constants in this function were computed
2750 * based on theoretical maximum wire speed and thresholds were set based
2751 * on testing data as well as attempting to minimize response time
2752 * while increasing bulk throughput.
2753 * this functionality is controlled by the InterruptThrottleRate module
2754 * parameter (see e1000_param.c)
2755 * @adapter: pointer to adapter
2756 * @itr_setting: current adapter->itr
2757 * @packets: the number of packets during this measurement interval
2758 * @bytes: the number of bytes during this measurement interval
2760 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2761 uint16_t itr_setting
,
2765 unsigned int retval
= itr_setting
;
2766 struct e1000_hw
*hw
= &adapter
->hw
;
2768 if (unlikely(hw
->mac_type
< e1000_82540
))
2769 goto update_itr_done
;
2772 goto update_itr_done
;
2774 switch (itr_setting
) {
2775 case lowest_latency
:
2776 /* jumbo frames get bulk treatment*/
2777 if (bytes
/packets
> 8000)
2778 retval
= bulk_latency
;
2779 else if ((packets
< 5) && (bytes
> 512))
2780 retval
= low_latency
;
2782 case low_latency
: /* 50 usec aka 20000 ints/s */
2783 if (bytes
> 10000) {
2784 /* jumbo frames need bulk latency setting */
2785 if (bytes
/packets
> 8000)
2786 retval
= bulk_latency
;
2787 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2788 retval
= bulk_latency
;
2789 else if ((packets
> 35))
2790 retval
= lowest_latency
;
2791 } else if (bytes
/packets
> 2000)
2792 retval
= bulk_latency
;
2793 else if (packets
<= 2 && bytes
< 512)
2794 retval
= lowest_latency
;
2796 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2797 if (bytes
> 25000) {
2799 retval
= low_latency
;
2800 } else if (bytes
< 6000) {
2801 retval
= low_latency
;
2810 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2812 struct e1000_hw
*hw
= &adapter
->hw
;
2813 uint16_t current_itr
;
2814 uint32_t new_itr
= adapter
->itr
;
2816 if (unlikely(hw
->mac_type
< e1000_82540
))
2819 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2820 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2826 adapter
->tx_itr
= e1000_update_itr(adapter
,
2828 adapter
->total_tx_packets
,
2829 adapter
->total_tx_bytes
);
2830 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2831 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2832 adapter
->tx_itr
= low_latency
;
2834 adapter
->rx_itr
= e1000_update_itr(adapter
,
2836 adapter
->total_rx_packets
,
2837 adapter
->total_rx_bytes
);
2838 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2839 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2840 adapter
->rx_itr
= low_latency
;
2842 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2844 switch (current_itr
) {
2845 /* counts and packets in update_itr are dependent on these numbers */
2846 case lowest_latency
:
2850 new_itr
= 20000; /* aka hwitr = ~200 */
2860 if (new_itr
!= adapter
->itr
) {
2861 /* this attempts to bias the interrupt rate towards Bulk
2862 * by adding intermediate steps when interrupt rate is
2864 new_itr
= new_itr
> adapter
->itr
?
2865 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2867 adapter
->itr
= new_itr
;
2868 E1000_WRITE_REG(hw
, ITR
, 1000000000 / (new_itr
* 256));
2874 #define E1000_TX_FLAGS_CSUM 0x00000001
2875 #define E1000_TX_FLAGS_VLAN 0x00000002
2876 #define E1000_TX_FLAGS_TSO 0x00000004
2877 #define E1000_TX_FLAGS_IPV4 0x00000008
2878 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2879 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2882 e1000_tso(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2883 struct sk_buff
*skb
)
2885 struct e1000_context_desc
*context_desc
;
2886 struct e1000_buffer
*buffer_info
;
2888 uint32_t cmd_length
= 0;
2889 uint16_t ipcse
= 0, tucse
, mss
;
2890 uint8_t ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2893 if (skb_is_gso(skb
)) {
2894 if (skb_header_cloned(skb
)) {
2895 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2900 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2901 mss
= skb_shinfo(skb
)->gso_size
;
2902 if (skb
->protocol
== htons(ETH_P_IP
)) {
2903 struct iphdr
*iph
= ip_hdr(skb
);
2906 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2910 cmd_length
= E1000_TXD_CMD_IP
;
2911 ipcse
= skb_transport_offset(skb
) - 1;
2912 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2913 ipv6_hdr(skb
)->payload_len
= 0;
2914 tcp_hdr(skb
)->check
=
2915 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2916 &ipv6_hdr(skb
)->daddr
,
2920 ipcss
= skb_network_offset(skb
);
2921 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2922 tucss
= skb_transport_offset(skb
);
2923 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2926 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2927 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2929 i
= tx_ring
->next_to_use
;
2930 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2931 buffer_info
= &tx_ring
->buffer_info
[i
];
2933 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2934 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2935 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2936 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2937 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2938 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2939 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2940 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2941 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2943 buffer_info
->time_stamp
= jiffies
;
2944 buffer_info
->next_to_watch
= i
;
2946 if (++i
== tx_ring
->count
) i
= 0;
2947 tx_ring
->next_to_use
= i
;
2955 e1000_tx_csum(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2956 struct sk_buff
*skb
)
2958 struct e1000_context_desc
*context_desc
;
2959 struct e1000_buffer
*buffer_info
;
2963 if (likely(skb
->ip_summed
== CHECKSUM_PARTIAL
)) {
2964 css
= skb_transport_offset(skb
);
2966 i
= tx_ring
->next_to_use
;
2967 buffer_info
= &tx_ring
->buffer_info
[i
];
2968 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2970 context_desc
->lower_setup
.ip_config
= 0;
2971 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2972 context_desc
->upper_setup
.tcp_fields
.tucso
=
2973 css
+ skb
->csum_offset
;
2974 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2975 context_desc
->tcp_seg_setup
.data
= 0;
2976 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
2978 buffer_info
->time_stamp
= jiffies
;
2979 buffer_info
->next_to_watch
= i
;
2981 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2982 tx_ring
->next_to_use
= i
;
2990 #define E1000_MAX_TXD_PWR 12
2991 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2994 e1000_tx_map(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2995 struct sk_buff
*skb
, unsigned int first
, unsigned int max_per_txd
,
2996 unsigned int nr_frags
, unsigned int mss
)
2998 struct e1000_buffer
*buffer_info
;
2999 unsigned int len
= skb
->len
;
3000 unsigned int offset
= 0, size
, count
= 0, i
;
3002 len
-= skb
->data_len
;
3004 i
= tx_ring
->next_to_use
;
3007 buffer_info
= &tx_ring
->buffer_info
[i
];
3008 size
= min(len
, max_per_txd
);
3009 /* Workaround for Controller erratum --
3010 * descriptor for non-tso packet in a linear SKB that follows a
3011 * tso gets written back prematurely before the data is fully
3012 * DMA'd to the controller */
3013 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
3015 tx_ring
->last_tx_tso
= 0;
3019 /* Workaround for premature desc write-backs
3020 * in TSO mode. Append 4-byte sentinel desc */
3021 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
3023 /* work-around for errata 10 and it applies
3024 * to all controllers in PCI-X mode
3025 * The fix is to make sure that the first descriptor of a
3026 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3028 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
3029 (size
> 2015) && count
== 0))
3032 /* Workaround for potential 82544 hang in PCI-X. Avoid
3033 * terminating buffers within evenly-aligned dwords. */
3034 if (unlikely(adapter
->pcix_82544
&&
3035 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
3039 buffer_info
->length
= size
;
3041 pci_map_single(adapter
->pdev
,
3045 buffer_info
->time_stamp
= jiffies
;
3046 buffer_info
->next_to_watch
= i
;
3051 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3054 for (f
= 0; f
< nr_frags
; f
++) {
3055 struct skb_frag_struct
*frag
;
3057 frag
= &skb_shinfo(skb
)->frags
[f
];
3059 offset
= frag
->page_offset
;
3062 buffer_info
= &tx_ring
->buffer_info
[i
];
3063 size
= min(len
, max_per_txd
);
3064 /* Workaround for premature desc write-backs
3065 * in TSO mode. Append 4-byte sentinel desc */
3066 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
3068 /* Workaround for potential 82544 hang in PCI-X.
3069 * Avoid terminating buffers within evenly-aligned
3071 if (unlikely(adapter
->pcix_82544
&&
3072 !((unsigned long)(frag
->page
+offset
+size
-1) & 4) &&
3076 buffer_info
->length
= size
;
3078 pci_map_page(adapter
->pdev
,
3083 buffer_info
->time_stamp
= jiffies
;
3084 buffer_info
->next_to_watch
= i
;
3089 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3093 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
3094 tx_ring
->buffer_info
[i
].skb
= skb
;
3095 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3101 e1000_tx_queue(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
3102 int tx_flags
, int count
)
3104 struct e1000_tx_desc
*tx_desc
= NULL
;
3105 struct e1000_buffer
*buffer_info
;
3106 uint32_t txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3109 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
3110 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3112 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3114 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
3115 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3118 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
3119 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3120 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3123 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
3124 txd_lower
|= E1000_TXD_CMD_VLE
;
3125 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3128 i
= tx_ring
->next_to_use
;
3131 buffer_info
= &tx_ring
->buffer_info
[i
];
3132 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3133 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3134 tx_desc
->lower
.data
=
3135 cpu_to_le32(txd_lower
| buffer_info
->length
);
3136 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3137 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3140 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3142 /* Force memory writes to complete before letting h/w
3143 * know there are new descriptors to fetch. (Only
3144 * applicable for weak-ordered memory model archs,
3145 * such as IA-64). */
3148 tx_ring
->next_to_use
= i
;
3149 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
3150 /* we need this if more than one processor can write to our tail
3151 * at a time, it syncronizes IO on IA64/Altix systems */
3156 * 82547 workaround to avoid controller hang in half-duplex environment.
3157 * The workaround is to avoid queuing a large packet that would span
3158 * the internal Tx FIFO ring boundary by notifying the stack to resend
3159 * the packet at a later time. This gives the Tx FIFO an opportunity to
3160 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3161 * to the beginning of the Tx FIFO.
3164 #define E1000_FIFO_HDR 0x10
3165 #define E1000_82547_PAD_LEN 0x3E0
3168 e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3170 uint32_t fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3171 uint32_t skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3173 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3175 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3176 goto no_fifo_stall_required
;
3178 if (atomic_read(&adapter
->tx_fifo_stall
))
3181 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3182 atomic_set(&adapter
->tx_fifo_stall
, 1);
3186 no_fifo_stall_required
:
3187 adapter
->tx_fifo_head
+= skb_fifo_len
;
3188 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3189 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3193 #define MINIMUM_DHCP_PACKET_SIZE 282
3195 e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3197 struct e1000_hw
*hw
= &adapter
->hw
;
3198 uint16_t length
, offset
;
3199 if (vlan_tx_tag_present(skb
)) {
3200 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
3201 ( adapter
->hw
.mng_cookie
.status
&
3202 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) )
3205 if (skb
->len
> MINIMUM_DHCP_PACKET_SIZE
) {
3206 struct ethhdr
*eth
= (struct ethhdr
*) skb
->data
;
3207 if ((htons(ETH_P_IP
) == eth
->h_proto
)) {
3208 const struct iphdr
*ip
=
3209 (struct iphdr
*)((uint8_t *)skb
->data
+14);
3210 if (IPPROTO_UDP
== ip
->protocol
) {
3211 struct udphdr
*udp
=
3212 (struct udphdr
*)((uint8_t *)ip
+
3214 if (ntohs(udp
->dest
) == 67) {
3215 offset
= (uint8_t *)udp
+ 8 - skb
->data
;
3216 length
= skb
->len
- offset
;
3218 return e1000_mng_write_dhcp_info(hw
,
3228 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3230 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3231 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3233 netif_stop_queue(netdev
);
3234 /* Herbert's original patch had:
3235 * smp_mb__after_netif_stop_queue();
3236 * but since that doesn't exist yet, just open code it. */
3239 /* We need to check again in a case another CPU has just
3240 * made room available. */
3241 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3245 netif_start_queue(netdev
);
3246 ++adapter
->restart_queue
;
3250 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3251 struct e1000_tx_ring
*tx_ring
, int size
)
3253 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3255 return __e1000_maybe_stop_tx(netdev
, size
);
3258 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3260 e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3262 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3263 struct e1000_tx_ring
*tx_ring
;
3264 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3265 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3266 unsigned int tx_flags
= 0;
3267 unsigned int len
= skb
->len
;
3268 unsigned long flags
;
3269 unsigned int nr_frags
= 0;
3270 unsigned int mss
= 0;
3274 len
-= skb
->data_len
;
3276 /* This goes back to the question of how to logically map a tx queue
3277 * to a flow. Right now, performance is impacted slightly negatively
3278 * if using multiple tx queues. If the stack breaks away from a
3279 * single qdisc implementation, we can look at this again. */
3280 tx_ring
= adapter
->tx_ring
;
3282 if (unlikely(skb
->len
<= 0)) {
3283 dev_kfree_skb_any(skb
);
3284 return NETDEV_TX_OK
;
3287 /* 82571 and newer doesn't need the workaround that limited descriptor
3289 if (adapter
->hw
.mac_type
>= e1000_82571
)
3292 mss
= skb_shinfo(skb
)->gso_size
;
3293 /* The controller does a simple calculation to
3294 * make sure there is enough room in the FIFO before
3295 * initiating the DMA for each buffer. The calc is:
3296 * 4 = ceil(buffer len/mss). To make sure we don't
3297 * overrun the FIFO, adjust the max buffer len if mss
3301 max_per_txd
= min(mss
<< 2, max_per_txd
);
3302 max_txd_pwr
= fls(max_per_txd
) - 1;
3304 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3305 * points to just header, pull a few bytes of payload from
3306 * frags into skb->data */
3307 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3308 if (skb
->data_len
&& (hdr_len
== (skb
->len
- skb
->data_len
))) {
3309 switch (adapter
->hw
.mac_type
) {
3310 unsigned int pull_size
;
3312 /* Make sure we have room to chop off 4 bytes,
3313 * and that the end alignment will work out to
3314 * this hardware's requirements
3315 * NOTE: this is a TSO only workaround
3316 * if end byte alignment not correct move us
3317 * into the next dword */
3318 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
3325 pull_size
= min((unsigned int)4, skb
->data_len
);
3326 if (!__pskb_pull_tail(skb
, pull_size
)) {
3328 "__pskb_pull_tail failed.\n");
3329 dev_kfree_skb_any(skb
);
3330 return NETDEV_TX_OK
;
3332 len
= skb
->len
- skb
->data_len
;
3341 /* reserve a descriptor for the offload context */
3342 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3346 /* Controller Erratum workaround */
3347 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3350 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3352 if (adapter
->pcix_82544
)
3355 /* work-around for errata 10 and it applies to all controllers
3356 * in PCI-X mode, so add one more descriptor to the count
3358 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
3362 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3363 for (f
= 0; f
< nr_frags
; f
++)
3364 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3366 if (adapter
->pcix_82544
)
3370 if (adapter
->hw
.tx_pkt_filtering
&&
3371 (adapter
->hw
.mac_type
== e1000_82573
))
3372 e1000_transfer_dhcp_info(adapter
, skb
);
3374 if (!spin_trylock_irqsave(&tx_ring
->tx_lock
, flags
))
3375 /* Collision - tell upper layer to requeue */
3376 return NETDEV_TX_LOCKED
;
3378 /* need: count + 2 desc gap to keep tail from touching
3379 * head, otherwise try next time */
3380 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2))) {
3381 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3382 return NETDEV_TX_BUSY
;
3385 if (unlikely(adapter
->hw
.mac_type
== e1000_82547
)) {
3386 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3387 netif_stop_queue(netdev
);
3388 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
3389 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3390 return NETDEV_TX_BUSY
;
3394 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3395 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3396 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3399 first
= tx_ring
->next_to_use
;
3401 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3403 dev_kfree_skb_any(skb
);
3404 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3405 return NETDEV_TX_OK
;
3409 tx_ring
->last_tx_tso
= 1;
3410 tx_flags
|= E1000_TX_FLAGS_TSO
;
3411 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3412 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3414 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3415 * 82571 hardware supports TSO capabilities for IPv6 as well...
3416 * no longer assume, we must. */
3417 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3418 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3420 e1000_tx_queue(adapter
, tx_ring
, tx_flags
,
3421 e1000_tx_map(adapter
, tx_ring
, skb
, first
,
3422 max_per_txd
, nr_frags
, mss
));
3424 netdev
->trans_start
= jiffies
;
3426 /* Make sure there is space in the ring for the next send. */
3427 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3429 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3430 return NETDEV_TX_OK
;
3434 * e1000_tx_timeout - Respond to a Tx Hang
3435 * @netdev: network interface device structure
3439 e1000_tx_timeout(struct net_device
*netdev
)
3441 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3443 /* Do the reset outside of interrupt context */
3444 adapter
->tx_timeout_count
++;
3445 schedule_work(&adapter
->reset_task
);
3449 e1000_reset_task(struct work_struct
*work
)
3451 struct e1000_adapter
*adapter
=
3452 container_of(work
, struct e1000_adapter
, reset_task
);
3454 e1000_reinit_locked(adapter
);
3458 * e1000_get_stats - Get System Network Statistics
3459 * @netdev: network interface device structure
3461 * Returns the address of the device statistics structure.
3462 * The statistics are actually updated from the timer callback.
3465 static struct net_device_stats
*
3466 e1000_get_stats(struct net_device
*netdev
)
3468 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3470 /* only return the current stats */
3471 return &adapter
->net_stats
;
3475 * e1000_change_mtu - Change the Maximum Transfer Unit
3476 * @netdev: network interface device structure
3477 * @new_mtu: new value for maximum frame size
3479 * Returns 0 on success, negative on failure
3483 e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3485 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3486 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3487 uint16_t eeprom_data
= 0;
3489 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3490 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3491 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3495 /* Adapter-specific max frame size limits. */
3496 switch (adapter
->hw
.mac_type
) {
3497 case e1000_undefined
... e1000_82542_rev2_1
:
3499 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3500 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3505 /* Jumbo Frames not supported if:
3506 * - this is not an 82573L device
3507 * - ASPM is enabled in any way (0x1A bits 3:2) */
3508 e1000_read_eeprom(&adapter
->hw
, EEPROM_INIT_3GIO_3
, 1,
3510 if ((adapter
->hw
.device_id
!= E1000_DEV_ID_82573L
) ||
3511 (eeprom_data
& EEPROM_WORD1A_ASPM_MASK
)) {
3512 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3514 "Jumbo Frames not supported.\n");
3519 /* ERT will be enabled later to enable wire speed receives */
3521 /* fall through to get support */
3524 case e1000_80003es2lan
:
3525 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3526 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3527 DPRINTK(PROBE
, ERR
, "MTU > 9216 not supported.\n");
3532 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3536 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3537 * means we reserve 2 more, this pushes us to allocate from the next
3539 * i.e. RXBUFFER_2048 --> size-4096 slab */
3541 if (max_frame
<= E1000_RXBUFFER_256
)
3542 adapter
->rx_buffer_len
= E1000_RXBUFFER_256
;
3543 else if (max_frame
<= E1000_RXBUFFER_512
)
3544 adapter
->rx_buffer_len
= E1000_RXBUFFER_512
;
3545 else if (max_frame
<= E1000_RXBUFFER_1024
)
3546 adapter
->rx_buffer_len
= E1000_RXBUFFER_1024
;
3547 else if (max_frame
<= E1000_RXBUFFER_2048
)
3548 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3549 else if (max_frame
<= E1000_RXBUFFER_4096
)
3550 adapter
->rx_buffer_len
= E1000_RXBUFFER_4096
;
3551 else if (max_frame
<= E1000_RXBUFFER_8192
)
3552 adapter
->rx_buffer_len
= E1000_RXBUFFER_8192
;
3553 else if (max_frame
<= E1000_RXBUFFER_16384
)
3554 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3556 /* adjust allocation if LPE protects us, and we aren't using SBP */
3557 if (!adapter
->hw
.tbi_compatibility_on
&&
3558 ((max_frame
== MAXIMUM_ETHERNET_FRAME_SIZE
) ||
3559 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3560 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3562 netdev
->mtu
= new_mtu
;
3563 adapter
->hw
.max_frame_size
= max_frame
;
3565 if (netif_running(netdev
))
3566 e1000_reinit_locked(adapter
);
3572 * e1000_update_stats - Update the board statistics counters
3573 * @adapter: board private structure
3577 e1000_update_stats(struct e1000_adapter
*adapter
)
3579 struct e1000_hw
*hw
= &adapter
->hw
;
3580 struct pci_dev
*pdev
= adapter
->pdev
;
3581 unsigned long flags
;
3584 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3587 * Prevent stats update while adapter is being reset, or if the pci
3588 * connection is down.
3590 if (adapter
->link_speed
== 0)
3592 if (pci_channel_offline(pdev
))
3595 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3597 /* these counters are modified from e1000_adjust_tbi_stats,
3598 * called from the interrupt context, so they must only
3599 * be written while holding adapter->stats_lock
3602 adapter
->stats
.crcerrs
+= E1000_READ_REG(hw
, CRCERRS
);
3603 adapter
->stats
.gprc
+= E1000_READ_REG(hw
, GPRC
);
3604 adapter
->stats
.gorcl
+= E1000_READ_REG(hw
, GORCL
);
3605 adapter
->stats
.gorch
+= E1000_READ_REG(hw
, GORCH
);
3606 adapter
->stats
.bprc
+= E1000_READ_REG(hw
, BPRC
);
3607 adapter
->stats
.mprc
+= E1000_READ_REG(hw
, MPRC
);
3608 adapter
->stats
.roc
+= E1000_READ_REG(hw
, ROC
);
3610 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3611 adapter
->stats
.prc64
+= E1000_READ_REG(hw
, PRC64
);
3612 adapter
->stats
.prc127
+= E1000_READ_REG(hw
, PRC127
);
3613 adapter
->stats
.prc255
+= E1000_READ_REG(hw
, PRC255
);
3614 adapter
->stats
.prc511
+= E1000_READ_REG(hw
, PRC511
);
3615 adapter
->stats
.prc1023
+= E1000_READ_REG(hw
, PRC1023
);
3616 adapter
->stats
.prc1522
+= E1000_READ_REG(hw
, PRC1522
);
3619 adapter
->stats
.symerrs
+= E1000_READ_REG(hw
, SYMERRS
);
3620 adapter
->stats
.mpc
+= E1000_READ_REG(hw
, MPC
);
3621 adapter
->stats
.scc
+= E1000_READ_REG(hw
, SCC
);
3622 adapter
->stats
.ecol
+= E1000_READ_REG(hw
, ECOL
);
3623 adapter
->stats
.mcc
+= E1000_READ_REG(hw
, MCC
);
3624 adapter
->stats
.latecol
+= E1000_READ_REG(hw
, LATECOL
);
3625 adapter
->stats
.dc
+= E1000_READ_REG(hw
, DC
);
3626 adapter
->stats
.sec
+= E1000_READ_REG(hw
, SEC
);
3627 adapter
->stats
.rlec
+= E1000_READ_REG(hw
, RLEC
);
3628 adapter
->stats
.xonrxc
+= E1000_READ_REG(hw
, XONRXC
);
3629 adapter
->stats
.xontxc
+= E1000_READ_REG(hw
, XONTXC
);
3630 adapter
->stats
.xoffrxc
+= E1000_READ_REG(hw
, XOFFRXC
);
3631 adapter
->stats
.xofftxc
+= E1000_READ_REG(hw
, XOFFTXC
);
3632 adapter
->stats
.fcruc
+= E1000_READ_REG(hw
, FCRUC
);
3633 adapter
->stats
.gptc
+= E1000_READ_REG(hw
, GPTC
);
3634 adapter
->stats
.gotcl
+= E1000_READ_REG(hw
, GOTCL
);
3635 adapter
->stats
.gotch
+= E1000_READ_REG(hw
, GOTCH
);
3636 adapter
->stats
.rnbc
+= E1000_READ_REG(hw
, RNBC
);
3637 adapter
->stats
.ruc
+= E1000_READ_REG(hw
, RUC
);
3638 adapter
->stats
.rfc
+= E1000_READ_REG(hw
, RFC
);
3639 adapter
->stats
.rjc
+= E1000_READ_REG(hw
, RJC
);
3640 adapter
->stats
.torl
+= E1000_READ_REG(hw
, TORL
);
3641 adapter
->stats
.torh
+= E1000_READ_REG(hw
, TORH
);
3642 adapter
->stats
.totl
+= E1000_READ_REG(hw
, TOTL
);
3643 adapter
->stats
.toth
+= E1000_READ_REG(hw
, TOTH
);
3644 adapter
->stats
.tpr
+= E1000_READ_REG(hw
, TPR
);
3646 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3647 adapter
->stats
.ptc64
+= E1000_READ_REG(hw
, PTC64
);
3648 adapter
->stats
.ptc127
+= E1000_READ_REG(hw
, PTC127
);
3649 adapter
->stats
.ptc255
+= E1000_READ_REG(hw
, PTC255
);
3650 adapter
->stats
.ptc511
+= E1000_READ_REG(hw
, PTC511
);
3651 adapter
->stats
.ptc1023
+= E1000_READ_REG(hw
, PTC1023
);
3652 adapter
->stats
.ptc1522
+= E1000_READ_REG(hw
, PTC1522
);
3655 adapter
->stats
.mptc
+= E1000_READ_REG(hw
, MPTC
);
3656 adapter
->stats
.bptc
+= E1000_READ_REG(hw
, BPTC
);
3658 /* used for adaptive IFS */
3660 hw
->tx_packet_delta
= E1000_READ_REG(hw
, TPT
);
3661 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3662 hw
->collision_delta
= E1000_READ_REG(hw
, COLC
);
3663 adapter
->stats
.colc
+= hw
->collision_delta
;
3665 if (hw
->mac_type
>= e1000_82543
) {
3666 adapter
->stats
.algnerrc
+= E1000_READ_REG(hw
, ALGNERRC
);
3667 adapter
->stats
.rxerrc
+= E1000_READ_REG(hw
, RXERRC
);
3668 adapter
->stats
.tncrs
+= E1000_READ_REG(hw
, TNCRS
);
3669 adapter
->stats
.cexterr
+= E1000_READ_REG(hw
, CEXTERR
);
3670 adapter
->stats
.tsctc
+= E1000_READ_REG(hw
, TSCTC
);
3671 adapter
->stats
.tsctfc
+= E1000_READ_REG(hw
, TSCTFC
);
3673 if (hw
->mac_type
> e1000_82547_rev_2
) {
3674 adapter
->stats
.iac
+= E1000_READ_REG(hw
, IAC
);
3675 adapter
->stats
.icrxoc
+= E1000_READ_REG(hw
, ICRXOC
);
3677 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3678 adapter
->stats
.icrxptc
+= E1000_READ_REG(hw
, ICRXPTC
);
3679 adapter
->stats
.icrxatc
+= E1000_READ_REG(hw
, ICRXATC
);
3680 adapter
->stats
.ictxptc
+= E1000_READ_REG(hw
, ICTXPTC
);
3681 adapter
->stats
.ictxatc
+= E1000_READ_REG(hw
, ICTXATC
);
3682 adapter
->stats
.ictxqec
+= E1000_READ_REG(hw
, ICTXQEC
);
3683 adapter
->stats
.ictxqmtc
+= E1000_READ_REG(hw
, ICTXQMTC
);
3684 adapter
->stats
.icrxdmtc
+= E1000_READ_REG(hw
, ICRXDMTC
);
3688 /* Fill out the OS statistics structure */
3689 adapter
->net_stats
.rx_packets
= adapter
->stats
.gprc
;
3690 adapter
->net_stats
.tx_packets
= adapter
->stats
.gptc
;
3691 adapter
->net_stats
.rx_bytes
= adapter
->stats
.gorcl
;
3692 adapter
->net_stats
.tx_bytes
= adapter
->stats
.gotcl
;
3693 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3694 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3698 /* RLEC on some newer hardware can be incorrect so build
3699 * our own version based on RUC and ROC */
3700 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3701 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3702 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3703 adapter
->stats
.cexterr
;
3704 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3705 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3706 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3707 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3708 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3711 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3712 adapter
->net_stats
.tx_errors
= adapter
->stats
.txerrc
;
3713 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3714 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3715 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3716 if (adapter
->hw
.bad_tx_carr_stats_fd
&&
3717 adapter
->link_duplex
== FULL_DUPLEX
) {
3718 adapter
->net_stats
.tx_carrier_errors
= 0;
3719 adapter
->stats
.tncrs
= 0;
3722 /* Tx Dropped needs to be maintained elsewhere */
3725 if (hw
->media_type
== e1000_media_type_copper
) {
3726 if ((adapter
->link_speed
== SPEED_1000
) &&
3727 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3728 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3729 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3732 if ((hw
->mac_type
<= e1000_82546
) &&
3733 (hw
->phy_type
== e1000_phy_m88
) &&
3734 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3735 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3738 /* Management Stats */
3739 if (adapter
->hw
.has_smbus
) {
3740 adapter
->stats
.mgptc
+= E1000_READ_REG(hw
, MGTPTC
);
3741 adapter
->stats
.mgprc
+= E1000_READ_REG(hw
, MGTPRC
);
3742 adapter
->stats
.mgpdc
+= E1000_READ_REG(hw
, MGTPDC
);
3745 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3747 #ifdef CONFIG_PCI_MSI
3750 * e1000_intr_msi - Interrupt Handler
3751 * @irq: interrupt number
3752 * @data: pointer to a network interface device structure
3756 e1000_intr_msi(int irq
, void *data
)
3758 struct net_device
*netdev
= data
;
3759 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3760 struct e1000_hw
*hw
= &adapter
->hw
;
3761 #ifndef CONFIG_E1000_NAPI
3764 uint32_t icr
= E1000_READ_REG(hw
, ICR
);
3766 #ifdef CONFIG_E1000_NAPI
3767 /* read ICR disables interrupts using IAM, so keep up with our
3768 * enable/disable accounting */
3769 atomic_inc(&adapter
->irq_sem
);
3771 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3772 hw
->get_link_status
= 1;
3773 /* 80003ES2LAN workaround-- For packet buffer work-around on
3774 * link down event; disable receives here in the ISR and reset
3775 * adapter in watchdog */
3776 if (netif_carrier_ok(netdev
) &&
3777 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3778 /* disable receives */
3779 uint32_t rctl
= E1000_READ_REG(hw
, RCTL
);
3780 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3782 /* guard against interrupt when we're going down */
3783 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3784 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3787 #ifdef CONFIG_E1000_NAPI
3788 if (likely(netif_rx_schedule_prep(netdev
))) {
3789 adapter
->total_tx_bytes
= 0;
3790 adapter
->total_tx_packets
= 0;
3791 adapter
->total_rx_bytes
= 0;
3792 adapter
->total_rx_packets
= 0;
3793 __netif_rx_schedule(netdev
);
3795 e1000_irq_enable(adapter
);
3797 adapter
->total_tx_bytes
= 0;
3798 adapter
->total_rx_bytes
= 0;
3799 adapter
->total_tx_packets
= 0;
3800 adapter
->total_rx_packets
= 0;
3802 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3803 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3804 !e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3807 if (likely(adapter
->itr_setting
& 3))
3808 e1000_set_itr(adapter
);
3816 * e1000_intr - Interrupt Handler
3817 * @irq: interrupt number
3818 * @data: pointer to a network interface device structure
3822 e1000_intr(int irq
, void *data
)
3824 struct net_device
*netdev
= data
;
3825 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3826 struct e1000_hw
*hw
= &adapter
->hw
;
3827 uint32_t rctl
, icr
= E1000_READ_REG(hw
, ICR
);
3828 #ifndef CONFIG_E1000_NAPI
3832 return IRQ_NONE
; /* Not our interrupt */
3834 #ifdef CONFIG_E1000_NAPI
3835 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3836 * not set, then the adapter didn't send an interrupt */
3837 if (unlikely(hw
->mac_type
>= e1000_82571
&&
3838 !(icr
& E1000_ICR_INT_ASSERTED
)))
3841 /* Interrupt Auto-Mask...upon reading ICR,
3842 * interrupts are masked. No need for the
3843 * IMC write, but it does mean we should
3844 * account for it ASAP. */
3845 if (likely(hw
->mac_type
>= e1000_82571
))
3846 atomic_inc(&adapter
->irq_sem
);
3849 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3850 hw
->get_link_status
= 1;
3851 /* 80003ES2LAN workaround--
3852 * For packet buffer work-around on link down event;
3853 * disable receives here in the ISR and
3854 * reset adapter in watchdog
3856 if (netif_carrier_ok(netdev
) &&
3857 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3858 /* disable receives */
3859 rctl
= E1000_READ_REG(hw
, RCTL
);
3860 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3862 /* guard against interrupt when we're going down */
3863 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3864 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3867 #ifdef CONFIG_E1000_NAPI
3868 if (unlikely(hw
->mac_type
< e1000_82571
)) {
3869 /* disable interrupts, without the synchronize_irq bit */
3870 atomic_inc(&adapter
->irq_sem
);
3871 E1000_WRITE_REG(hw
, IMC
, ~0);
3872 E1000_WRITE_FLUSH(hw
);
3874 if (likely(netif_rx_schedule_prep(netdev
))) {
3875 adapter
->total_tx_bytes
= 0;
3876 adapter
->total_tx_packets
= 0;
3877 adapter
->total_rx_bytes
= 0;
3878 adapter
->total_rx_packets
= 0;
3879 __netif_rx_schedule(netdev
);
3881 /* this really should not happen! if it does it is basically a
3882 * bug, but not a hard error, so enable ints and continue */
3883 e1000_irq_enable(adapter
);
3885 /* Writing IMC and IMS is needed for 82547.
3886 * Due to Hub Link bus being occupied, an interrupt
3887 * de-assertion message is not able to be sent.
3888 * When an interrupt assertion message is generated later,
3889 * two messages are re-ordered and sent out.
3890 * That causes APIC to think 82547 is in de-assertion
3891 * state, while 82547 is in assertion state, resulting
3892 * in dead lock. Writing IMC forces 82547 into
3893 * de-assertion state.
3895 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
) {
3896 atomic_inc(&adapter
->irq_sem
);
3897 E1000_WRITE_REG(hw
, IMC
, ~0);
3900 adapter
->total_tx_bytes
= 0;
3901 adapter
->total_rx_bytes
= 0;
3902 adapter
->total_tx_packets
= 0;
3903 adapter
->total_rx_packets
= 0;
3905 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3906 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3907 !e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3910 if (likely(adapter
->itr_setting
& 3))
3911 e1000_set_itr(adapter
);
3913 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
)
3914 e1000_irq_enable(adapter
);
3920 #ifdef CONFIG_E1000_NAPI
3922 * e1000_clean - NAPI Rx polling callback
3923 * @adapter: board private structure
3927 e1000_clean(struct net_device
*poll_dev
, int *budget
)
3929 struct e1000_adapter
*adapter
;
3930 int work_to_do
= min(*budget
, poll_dev
->quota
);
3931 int tx_cleaned
= 0, work_done
= 0;
3933 /* Must NOT use netdev_priv macro here. */
3934 adapter
= poll_dev
->priv
;
3936 /* Keep link state information with original netdev */
3937 if (!netif_carrier_ok(poll_dev
))
3940 /* e1000_clean is called per-cpu. This lock protects
3941 * tx_ring[0] from being cleaned by multiple cpus
3942 * simultaneously. A failure obtaining the lock means
3943 * tx_ring[0] is currently being cleaned anyway. */
3944 if (spin_trylock(&adapter
->tx_queue_lock
)) {
3945 tx_cleaned
= e1000_clean_tx_irq(adapter
,
3946 &adapter
->tx_ring
[0]);
3947 spin_unlock(&adapter
->tx_queue_lock
);
3950 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0],
3951 &work_done
, work_to_do
);
3953 *budget
-= work_done
;
3954 poll_dev
->quota
-= work_done
;
3956 /* If no Tx and not enough Rx work done, exit the polling mode */
3957 if ((!tx_cleaned
&& (work_done
== 0)) ||
3958 !netif_running(poll_dev
)) {
3960 if (likely(adapter
->itr_setting
& 3))
3961 e1000_set_itr(adapter
);
3962 netif_rx_complete(poll_dev
);
3963 e1000_irq_enable(adapter
);
3972 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3973 * @adapter: board private structure
3977 e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3978 struct e1000_tx_ring
*tx_ring
)
3980 struct net_device
*netdev
= adapter
->netdev
;
3981 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3982 struct e1000_buffer
*buffer_info
;
3983 unsigned int i
, eop
;
3984 #ifdef CONFIG_E1000_NAPI
3985 unsigned int count
= 0;
3987 boolean_t cleaned
= FALSE
;
3988 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3990 i
= tx_ring
->next_to_clean
;
3991 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3992 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3994 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
3995 for (cleaned
= FALSE
; !cleaned
; ) {
3996 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3997 buffer_info
= &tx_ring
->buffer_info
[i
];
3998 cleaned
= (i
== eop
);
4001 struct sk_buff
*skb
= buffer_info
->skb
;
4002 unsigned int segs
, bytecount
;
4003 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
4004 /* multiply data chunks by size of headers */
4005 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
4007 total_tx_packets
+= segs
;
4008 total_tx_bytes
+= bytecount
;
4010 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
4011 tx_desc
->upper
.data
= 0;
4013 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
4016 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
4017 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
4018 #ifdef CONFIG_E1000_NAPI
4019 #define E1000_TX_WEIGHT 64
4020 /* weight of a sort for tx, to avoid endless transmit cleanup */
4021 if (count
++ == E1000_TX_WEIGHT
) break;
4025 tx_ring
->next_to_clean
= i
;
4027 #define TX_WAKE_THRESHOLD 32
4028 if (unlikely(cleaned
&& netif_carrier_ok(netdev
) &&
4029 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
4030 /* Make sure that anybody stopping the queue after this
4031 * sees the new next_to_clean.
4034 if (netif_queue_stopped(netdev
)) {
4035 netif_wake_queue(netdev
);
4036 ++adapter
->restart_queue
;
4040 if (adapter
->detect_tx_hung
) {
4041 /* Detect a transmit hang in hardware, this serializes the
4042 * check with the clearing of time_stamp and movement of i */
4043 adapter
->detect_tx_hung
= FALSE
;
4044 if (tx_ring
->buffer_info
[eop
].dma
&&
4045 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
4046 (adapter
->tx_timeout_factor
* HZ
))
4047 && !(E1000_READ_REG(&adapter
->hw
, STATUS
) &
4048 E1000_STATUS_TXOFF
)) {
4050 /* detected Tx unit hang */
4051 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
4055 " next_to_use <%x>\n"
4056 " next_to_clean <%x>\n"
4057 "buffer_info[next_to_clean]\n"
4058 " time_stamp <%lx>\n"
4059 " next_to_watch <%x>\n"
4061 " next_to_watch.status <%x>\n",
4062 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
4063 sizeof(struct e1000_tx_ring
)),
4064 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdh
),
4065 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdt
),
4066 tx_ring
->next_to_use
,
4067 tx_ring
->next_to_clean
,
4068 tx_ring
->buffer_info
[eop
].time_stamp
,
4071 eop_desc
->upper
.fields
.status
);
4072 netif_stop_queue(netdev
);
4075 adapter
->total_tx_bytes
+= total_tx_bytes
;
4076 adapter
->total_tx_packets
+= total_tx_packets
;
4081 * e1000_rx_checksum - Receive Checksum Offload for 82543
4082 * @adapter: board private structure
4083 * @status_err: receive descriptor status and error fields
4084 * @csum: receive descriptor csum field
4085 * @sk_buff: socket buffer with received data
4089 e1000_rx_checksum(struct e1000_adapter
*adapter
,
4090 uint32_t status_err
, uint32_t csum
,
4091 struct sk_buff
*skb
)
4093 uint16_t status
= (uint16_t)status_err
;
4094 uint8_t errors
= (uint8_t)(status_err
>> 24);
4095 skb
->ip_summed
= CHECKSUM_NONE
;
4097 /* 82543 or newer only */
4098 if (unlikely(adapter
->hw
.mac_type
< e1000_82543
)) return;
4099 /* Ignore Checksum bit is set */
4100 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
4101 /* TCP/UDP checksum error bit is set */
4102 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
4103 /* let the stack verify checksum errors */
4104 adapter
->hw_csum_err
++;
4107 /* TCP/UDP Checksum has not been calculated */
4108 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
) {
4109 if (!(status
& E1000_RXD_STAT_TCPCS
))
4112 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
4115 /* It must be a TCP or UDP packet with a valid checksum */
4116 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
4117 /* TCP checksum is good */
4118 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
4119 } else if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
4120 /* IP fragment with UDP payload */
4121 /* Hardware complements the payload checksum, so we undo it
4122 * and then put the value in host order for further stack use.
4124 csum
= ntohl(csum
^ 0xFFFF);
4126 skb
->ip_summed
= CHECKSUM_COMPLETE
;
4128 adapter
->hw_csum_good
++;
4132 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4133 * @adapter: board private structure
4137 #ifdef CONFIG_E1000_NAPI
4138 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4139 struct e1000_rx_ring
*rx_ring
,
4140 int *work_done
, int work_to_do
)
4142 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4143 struct e1000_rx_ring
*rx_ring
)
4146 struct net_device
*netdev
= adapter
->netdev
;
4147 struct pci_dev
*pdev
= adapter
->pdev
;
4148 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
4149 struct e1000_buffer
*buffer_info
, *next_buffer
;
4150 unsigned long flags
;
4154 int cleaned_count
= 0;
4155 boolean_t cleaned
= FALSE
;
4156 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4158 i
= rx_ring
->next_to_clean
;
4159 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4160 buffer_info
= &rx_ring
->buffer_info
[i
];
4162 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4163 struct sk_buff
*skb
;
4166 #ifdef CONFIG_E1000_NAPI
4167 if (*work_done
>= work_to_do
)
4171 status
= rx_desc
->status
;
4172 skb
= buffer_info
->skb
;
4173 buffer_info
->skb
= NULL
;
4175 prefetch(skb
->data
- NET_IP_ALIGN
);
4177 if (++i
== rx_ring
->count
) i
= 0;
4178 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4181 next_buffer
= &rx_ring
->buffer_info
[i
];
4185 pci_unmap_single(pdev
,
4187 buffer_info
->length
,
4188 PCI_DMA_FROMDEVICE
);
4190 length
= le16_to_cpu(rx_desc
->length
);
4192 if (unlikely(!(status
& E1000_RXD_STAT_EOP
))) {
4193 /* All receives must fit into a single buffer */
4194 E1000_DBG("%s: Receive packet consumed multiple"
4195 " buffers\n", netdev
->name
);
4197 buffer_info
->skb
= skb
;
4201 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4202 last_byte
= *(skb
->data
+ length
- 1);
4203 if (TBI_ACCEPT(&adapter
->hw
, status
,
4204 rx_desc
->errors
, length
, last_byte
)) {
4205 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4206 e1000_tbi_adjust_stats(&adapter
->hw
,
4209 spin_unlock_irqrestore(&adapter
->stats_lock
,
4214 buffer_info
->skb
= skb
;
4219 /* adjust length to remove Ethernet CRC, this must be
4220 * done after the TBI_ACCEPT workaround above */
4223 /* probably a little skewed due to removing CRC */
4224 total_rx_bytes
+= length
;
4227 /* code added for copybreak, this should improve
4228 * performance for small packets with large amounts
4229 * of reassembly being done in the stack */
4230 if (length
< copybreak
) {
4231 struct sk_buff
*new_skb
=
4232 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
4234 skb_reserve(new_skb
, NET_IP_ALIGN
);
4235 skb_copy_to_linear_data_offset(new_skb
,
4241 /* save the skb in buffer_info as good */
4242 buffer_info
->skb
= skb
;
4245 /* else just continue with the old one */
4247 /* end copybreak code */
4248 skb_put(skb
, length
);
4250 /* Receive Checksum Offload */
4251 e1000_rx_checksum(adapter
,
4252 (uint32_t)(status
) |
4253 ((uint32_t)(rx_desc
->errors
) << 24),
4254 le16_to_cpu(rx_desc
->csum
), skb
);
4256 skb
->protocol
= eth_type_trans(skb
, netdev
);
4257 #ifdef CONFIG_E1000_NAPI
4258 if (unlikely(adapter
->vlgrp
&&
4259 (status
& E1000_RXD_STAT_VP
))) {
4260 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4261 le16_to_cpu(rx_desc
->special
) &
4262 E1000_RXD_SPC_VLAN_MASK
);
4264 netif_receive_skb(skb
);
4266 #else /* CONFIG_E1000_NAPI */
4267 if (unlikely(adapter
->vlgrp
&&
4268 (status
& E1000_RXD_STAT_VP
))) {
4269 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
4270 le16_to_cpu(rx_desc
->special
) &
4271 E1000_RXD_SPC_VLAN_MASK
);
4275 #endif /* CONFIG_E1000_NAPI */
4276 netdev
->last_rx
= jiffies
;
4279 rx_desc
->status
= 0;
4281 /* return some buffers to hardware, one at a time is too slow */
4282 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4283 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4287 /* use prefetched values */
4289 buffer_info
= next_buffer
;
4291 rx_ring
->next_to_clean
= i
;
4293 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4295 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4297 adapter
->total_rx_packets
+= total_rx_packets
;
4298 adapter
->total_rx_bytes
+= total_rx_bytes
;
4303 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4304 * @adapter: board private structure
4308 #ifdef CONFIG_E1000_NAPI
4309 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
4310 struct e1000_rx_ring
*rx_ring
,
4311 int *work_done
, int work_to_do
)
4313 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
4314 struct e1000_rx_ring
*rx_ring
)
4317 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
4318 struct net_device
*netdev
= adapter
->netdev
;
4319 struct pci_dev
*pdev
= adapter
->pdev
;
4320 struct e1000_buffer
*buffer_info
, *next_buffer
;
4321 struct e1000_ps_page
*ps_page
;
4322 struct e1000_ps_page_dma
*ps_page_dma
;
4323 struct sk_buff
*skb
;
4325 uint32_t length
, staterr
;
4326 int cleaned_count
= 0;
4327 boolean_t cleaned
= FALSE
;
4328 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4330 i
= rx_ring
->next_to_clean
;
4331 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
4332 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
4333 buffer_info
= &rx_ring
->buffer_info
[i
];
4335 while (staterr
& E1000_RXD_STAT_DD
) {
4336 ps_page
= &rx_ring
->ps_page
[i
];
4337 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4338 #ifdef CONFIG_E1000_NAPI
4339 if (unlikely(*work_done
>= work_to_do
))
4343 skb
= buffer_info
->skb
;
4345 /* in the packet split case this is header only */
4346 prefetch(skb
->data
- NET_IP_ALIGN
);
4348 if (++i
== rx_ring
->count
) i
= 0;
4349 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
4352 next_buffer
= &rx_ring
->buffer_info
[i
];
4356 pci_unmap_single(pdev
, buffer_info
->dma
,
4357 buffer_info
->length
,
4358 PCI_DMA_FROMDEVICE
);
4360 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
))) {
4361 E1000_DBG("%s: Packet Split buffers didn't pick up"
4362 " the full packet\n", netdev
->name
);
4363 dev_kfree_skb_irq(skb
);
4367 if (unlikely(staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
)) {
4368 dev_kfree_skb_irq(skb
);
4372 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
4374 if (unlikely(!length
)) {
4375 E1000_DBG("%s: Last part of the packet spanning"
4376 " multiple descriptors\n", netdev
->name
);
4377 dev_kfree_skb_irq(skb
);
4382 skb_put(skb
, length
);
4385 /* this looks ugly, but it seems compiler issues make it
4386 more efficient than reusing j */
4387 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
4389 /* page alloc/put takes too long and effects small packet
4390 * throughput, so unsplit small packets and save the alloc/put*/
4391 if (l1
&& (l1
<= copybreak
) && ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
4393 /* there is no documentation about how to call
4394 * kmap_atomic, so we can't hold the mapping
4396 pci_dma_sync_single_for_cpu(pdev
,
4397 ps_page_dma
->ps_page_dma
[0],
4399 PCI_DMA_FROMDEVICE
);
4400 vaddr
= kmap_atomic(ps_page
->ps_page
[0],
4401 KM_SKB_DATA_SOFTIRQ
);
4402 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
4403 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
4404 pci_dma_sync_single_for_device(pdev
,
4405 ps_page_dma
->ps_page_dma
[0],
4406 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
4407 /* remove the CRC */
4414 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
4415 if (!(length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
])))
4417 pci_unmap_page(pdev
, ps_page_dma
->ps_page_dma
[j
],
4418 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
4419 ps_page_dma
->ps_page_dma
[j
] = 0;
4420 skb_fill_page_desc(skb
, j
, ps_page
->ps_page
[j
], 0,
4422 ps_page
->ps_page
[j
] = NULL
;
4424 skb
->data_len
+= length
;
4425 skb
->truesize
+= length
;
4428 /* strip the ethernet crc, problem is we're using pages now so
4429 * this whole operation can get a little cpu intensive */
4430 pskb_trim(skb
, skb
->len
- 4);
4433 total_rx_bytes
+= skb
->len
;
4436 e1000_rx_checksum(adapter
, staterr
,
4437 le16_to_cpu(rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
4438 skb
->protocol
= eth_type_trans(skb
, netdev
);
4440 if (likely(rx_desc
->wb
.upper
.header_status
&
4441 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
)))
4442 adapter
->rx_hdr_split
++;
4443 #ifdef CONFIG_E1000_NAPI
4444 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
4445 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4446 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
4447 E1000_RXD_SPC_VLAN_MASK
);
4449 netif_receive_skb(skb
);
4451 #else /* CONFIG_E1000_NAPI */
4452 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
4453 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
4454 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
4455 E1000_RXD_SPC_VLAN_MASK
);
4459 #endif /* CONFIG_E1000_NAPI */
4460 netdev
->last_rx
= jiffies
;
4463 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
4464 buffer_info
->skb
= NULL
;
4466 /* return some buffers to hardware, one at a time is too slow */
4467 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4468 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4472 /* use prefetched values */
4474 buffer_info
= next_buffer
;
4476 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
4478 rx_ring
->next_to_clean
= i
;
4480 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4482 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4484 adapter
->total_rx_packets
+= total_rx_packets
;
4485 adapter
->total_rx_bytes
+= total_rx_bytes
;
4490 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4491 * @adapter: address of board private structure
4495 e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4496 struct e1000_rx_ring
*rx_ring
,
4499 struct net_device
*netdev
= adapter
->netdev
;
4500 struct pci_dev
*pdev
= adapter
->pdev
;
4501 struct e1000_rx_desc
*rx_desc
;
4502 struct e1000_buffer
*buffer_info
;
4503 struct sk_buff
*skb
;
4505 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
4507 i
= rx_ring
->next_to_use
;
4508 buffer_info
= &rx_ring
->buffer_info
[i
];
4510 while (cleaned_count
--) {
4511 skb
= buffer_info
->skb
;
4517 skb
= netdev_alloc_skb(netdev
, bufsz
);
4518 if (unlikely(!skb
)) {
4519 /* Better luck next round */
4520 adapter
->alloc_rx_buff_failed
++;
4524 /* Fix for errata 23, can't cross 64kB boundary */
4525 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4526 struct sk_buff
*oldskb
= skb
;
4527 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
4528 "at %p\n", bufsz
, skb
->data
);
4529 /* Try again, without freeing the previous */
4530 skb
= netdev_alloc_skb(netdev
, bufsz
);
4531 /* Failed allocation, critical failure */
4533 dev_kfree_skb(oldskb
);
4537 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4540 dev_kfree_skb(oldskb
);
4541 break; /* while !buffer_info->skb */
4544 /* Use new allocation */
4545 dev_kfree_skb(oldskb
);
4547 /* Make buffer alignment 2 beyond a 16 byte boundary
4548 * this will result in a 16 byte aligned IP header after
4549 * the 14 byte MAC header is removed
4551 skb_reserve(skb
, NET_IP_ALIGN
);
4553 buffer_info
->skb
= skb
;
4554 buffer_info
->length
= adapter
->rx_buffer_len
;
4556 buffer_info
->dma
= pci_map_single(pdev
,
4558 adapter
->rx_buffer_len
,
4559 PCI_DMA_FROMDEVICE
);
4561 /* Fix for errata 23, can't cross 64kB boundary */
4562 if (!e1000_check_64k_bound(adapter
,
4563 (void *)(unsigned long)buffer_info
->dma
,
4564 adapter
->rx_buffer_len
)) {
4565 DPRINTK(RX_ERR
, ERR
,
4566 "dma align check failed: %u bytes at %p\n",
4567 adapter
->rx_buffer_len
,
4568 (void *)(unsigned long)buffer_info
->dma
);
4570 buffer_info
->skb
= NULL
;
4572 pci_unmap_single(pdev
, buffer_info
->dma
,
4573 adapter
->rx_buffer_len
,
4574 PCI_DMA_FROMDEVICE
);
4576 break; /* while !buffer_info->skb */
4578 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4579 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4581 if (unlikely(++i
== rx_ring
->count
))
4583 buffer_info
= &rx_ring
->buffer_info
[i
];
4586 if (likely(rx_ring
->next_to_use
!= i
)) {
4587 rx_ring
->next_to_use
= i
;
4588 if (unlikely(i
-- == 0))
4589 i
= (rx_ring
->count
- 1);
4591 /* Force memory writes to complete before letting h/w
4592 * know there are new descriptors to fetch. (Only
4593 * applicable for weak-ordered memory model archs,
4594 * such as IA-64). */
4596 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4601 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4602 * @adapter: address of board private structure
4606 e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
4607 struct e1000_rx_ring
*rx_ring
,
4610 struct net_device
*netdev
= adapter
->netdev
;
4611 struct pci_dev
*pdev
= adapter
->pdev
;
4612 union e1000_rx_desc_packet_split
*rx_desc
;
4613 struct e1000_buffer
*buffer_info
;
4614 struct e1000_ps_page
*ps_page
;
4615 struct e1000_ps_page_dma
*ps_page_dma
;
4616 struct sk_buff
*skb
;
4619 i
= rx_ring
->next_to_use
;
4620 buffer_info
= &rx_ring
->buffer_info
[i
];
4621 ps_page
= &rx_ring
->ps_page
[i
];
4622 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4624 while (cleaned_count
--) {
4625 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
4627 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
4628 if (j
< adapter
->rx_ps_pages
) {
4629 if (likely(!ps_page
->ps_page
[j
])) {
4630 ps_page
->ps_page
[j
] =
4631 alloc_page(GFP_ATOMIC
);
4632 if (unlikely(!ps_page
->ps_page
[j
])) {
4633 adapter
->alloc_rx_buff_failed
++;
4636 ps_page_dma
->ps_page_dma
[j
] =
4638 ps_page
->ps_page
[j
],
4640 PCI_DMA_FROMDEVICE
);
4642 /* Refresh the desc even if buffer_addrs didn't
4643 * change because each write-back erases
4646 rx_desc
->read
.buffer_addr
[j
+1] =
4647 cpu_to_le64(ps_page_dma
->ps_page_dma
[j
]);
4649 rx_desc
->read
.buffer_addr
[j
+1] = ~0;
4652 skb
= netdev_alloc_skb(netdev
,
4653 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
4655 if (unlikely(!skb
)) {
4656 adapter
->alloc_rx_buff_failed
++;
4660 /* Make buffer alignment 2 beyond a 16 byte boundary
4661 * this will result in a 16 byte aligned IP header after
4662 * the 14 byte MAC header is removed
4664 skb_reserve(skb
, NET_IP_ALIGN
);
4666 buffer_info
->skb
= skb
;
4667 buffer_info
->length
= adapter
->rx_ps_bsize0
;
4668 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4669 adapter
->rx_ps_bsize0
,
4670 PCI_DMA_FROMDEVICE
);
4672 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
4674 if (unlikely(++i
== rx_ring
->count
)) i
= 0;
4675 buffer_info
= &rx_ring
->buffer_info
[i
];
4676 ps_page
= &rx_ring
->ps_page
[i
];
4677 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4681 if (likely(rx_ring
->next_to_use
!= i
)) {
4682 rx_ring
->next_to_use
= i
;
4683 if (unlikely(i
-- == 0)) i
= (rx_ring
->count
- 1);
4685 /* Force memory writes to complete before letting h/w
4686 * know there are new descriptors to fetch. (Only
4687 * applicable for weak-ordered memory model archs,
4688 * such as IA-64). */
4690 /* Hardware increments by 16 bytes, but packet split
4691 * descriptors are 32 bytes...so we increment tail
4694 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4699 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4704 e1000_smartspeed(struct e1000_adapter
*adapter
)
4706 uint16_t phy_status
;
4709 if ((adapter
->hw
.phy_type
!= e1000_phy_igp
) || !adapter
->hw
.autoneg
||
4710 !(adapter
->hw
.autoneg_advertised
& ADVERTISE_1000_FULL
))
4713 if (adapter
->smartspeed
== 0) {
4714 /* If Master/Slave config fault is asserted twice,
4715 * we assume back-to-back */
4716 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4717 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4718 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4719 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4720 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4721 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4722 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4723 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
,
4725 adapter
->smartspeed
++;
4726 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4727 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
,
4729 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4730 MII_CR_RESTART_AUTO_NEG
);
4731 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
,
4736 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4737 /* If still no link, perhaps using 2/3 pair cable */
4738 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4739 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4740 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, phy_ctrl
);
4741 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4742 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_ctrl
)) {
4743 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4744 MII_CR_RESTART_AUTO_NEG
);
4745 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_ctrl
);
4748 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4749 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4750 adapter
->smartspeed
= 0;
4761 e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4767 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4781 e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4783 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4784 struct mii_ioctl_data
*data
= if_mii(ifr
);
4788 unsigned long flags
;
4790 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
4795 data
->phy_id
= adapter
->hw
.phy_addr
;
4798 if (!capable(CAP_NET_ADMIN
))
4800 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4801 if (e1000_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4803 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4806 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4809 if (!capable(CAP_NET_ADMIN
))
4811 if (data
->reg_num
& ~(0x1F))
4813 mii_reg
= data
->val_in
;
4814 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4815 if (e1000_write_phy_reg(&adapter
->hw
, data
->reg_num
,
4817 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4820 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
4821 switch (data
->reg_num
) {
4823 if (mii_reg
& MII_CR_POWER_DOWN
)
4825 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4826 adapter
->hw
.autoneg
= 1;
4827 adapter
->hw
.autoneg_advertised
= 0x2F;
4830 spddplx
= SPEED_1000
;
4831 else if (mii_reg
& 0x2000)
4832 spddplx
= SPEED_100
;
4835 spddplx
+= (mii_reg
& 0x100)
4838 retval
= e1000_set_spd_dplx(adapter
,
4841 spin_unlock_irqrestore(
4842 &adapter
->stats_lock
,
4847 if (netif_running(adapter
->netdev
))
4848 e1000_reinit_locked(adapter
);
4850 e1000_reset(adapter
);
4852 case M88E1000_PHY_SPEC_CTRL
:
4853 case M88E1000_EXT_PHY_SPEC_CTRL
:
4854 if (e1000_phy_reset(&adapter
->hw
)) {
4855 spin_unlock_irqrestore(
4856 &adapter
->stats_lock
, flags
);
4862 switch (data
->reg_num
) {
4864 if (mii_reg
& MII_CR_POWER_DOWN
)
4866 if (netif_running(adapter
->netdev
))
4867 e1000_reinit_locked(adapter
);
4869 e1000_reset(adapter
);
4873 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4878 return E1000_SUCCESS
;
4882 e1000_pci_set_mwi(struct e1000_hw
*hw
)
4884 struct e1000_adapter
*adapter
= hw
->back
;
4885 int ret_val
= pci_set_mwi(adapter
->pdev
);
4888 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4892 e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4894 struct e1000_adapter
*adapter
= hw
->back
;
4896 pci_clear_mwi(adapter
->pdev
);
4900 e1000_read_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4902 struct e1000_adapter
*adapter
= hw
->back
;
4904 pci_read_config_word(adapter
->pdev
, reg
, value
);
4908 e1000_write_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4910 struct e1000_adapter
*adapter
= hw
->back
;
4912 pci_write_config_word(adapter
->pdev
, reg
, *value
);
4916 e1000_read_pcie_cap_reg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4918 struct e1000_adapter
*adapter
= hw
->back
;
4919 uint16_t cap_offset
;
4921 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
4923 return -E1000_ERR_CONFIG
;
4925 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
4927 return E1000_SUCCESS
;
4931 e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, uint32_t value
)
4937 e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
)
4939 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4940 uint32_t ctrl
, rctl
;
4942 e1000_irq_disable(adapter
);
4943 adapter
->vlgrp
= grp
;
4946 /* enable VLAN tag insert/strip */
4947 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4948 ctrl
|= E1000_CTRL_VME
;
4949 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4951 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4952 /* enable VLAN receive filtering */
4953 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4954 rctl
|= E1000_RCTL_VFE
;
4955 rctl
&= ~E1000_RCTL_CFIEN
;
4956 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4957 e1000_update_mng_vlan(adapter
);
4960 /* disable VLAN tag insert/strip */
4961 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4962 ctrl
&= ~E1000_CTRL_VME
;
4963 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4965 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4966 /* disable VLAN filtering */
4967 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4968 rctl
&= ~E1000_RCTL_VFE
;
4969 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4970 if (adapter
->mng_vlan_id
!=
4971 (uint16_t)E1000_MNG_VLAN_NONE
) {
4972 e1000_vlan_rx_kill_vid(netdev
,
4973 adapter
->mng_vlan_id
);
4974 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4979 e1000_irq_enable(adapter
);
4983 e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
)
4985 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4986 uint32_t vfta
, index
;
4988 if ((adapter
->hw
.mng_cookie
.status
&
4989 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4990 (vid
== adapter
->mng_vlan_id
))
4992 /* add VID to filter table */
4993 index
= (vid
>> 5) & 0x7F;
4994 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
4995 vfta
|= (1 << (vid
& 0x1F));
4996 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
5000 e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
)
5002 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5003 uint32_t vfta
, index
;
5005 e1000_irq_disable(adapter
);
5006 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
5007 e1000_irq_enable(adapter
);
5009 if ((adapter
->hw
.mng_cookie
.status
&
5010 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
5011 (vid
== adapter
->mng_vlan_id
)) {
5012 /* release control to f/w */
5013 e1000_release_hw_control(adapter
);
5017 /* remove VID from filter table */
5018 index
= (vid
>> 5) & 0x7F;
5019 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
5020 vfta
&= ~(1 << (vid
& 0x1F));
5021 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
5025 e1000_restore_vlan(struct e1000_adapter
*adapter
)
5027 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
5029 if (adapter
->vlgrp
) {
5031 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
5032 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
5034 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
5040 e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
)
5042 adapter
->hw
.autoneg
= 0;
5044 /* Fiber NICs only allow 1000 gbps Full duplex */
5045 if ((adapter
->hw
.media_type
== e1000_media_type_fiber
) &&
5046 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
5047 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
5052 case SPEED_10
+ DUPLEX_HALF
:
5053 adapter
->hw
.forced_speed_duplex
= e1000_10_half
;
5055 case SPEED_10
+ DUPLEX_FULL
:
5056 adapter
->hw
.forced_speed_duplex
= e1000_10_full
;
5058 case SPEED_100
+ DUPLEX_HALF
:
5059 adapter
->hw
.forced_speed_duplex
= e1000_100_half
;
5061 case SPEED_100
+ DUPLEX_FULL
:
5062 adapter
->hw
.forced_speed_duplex
= e1000_100_full
;
5064 case SPEED_1000
+ DUPLEX_FULL
:
5065 adapter
->hw
.autoneg
= 1;
5066 adapter
->hw
.autoneg_advertised
= ADVERTISE_1000_FULL
;
5068 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
5070 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
5077 e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5079 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5080 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5081 uint32_t ctrl
, ctrl_ext
, rctl
, status
;
5082 uint32_t wufc
= adapter
->wol
;
5087 netif_device_detach(netdev
);
5089 if (netif_running(netdev
)) {
5090 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
5091 e1000_down(adapter
);
5095 retval
= pci_save_state(pdev
);
5100 status
= E1000_READ_REG(&adapter
->hw
, STATUS
);
5101 if (status
& E1000_STATUS_LU
)
5102 wufc
&= ~E1000_WUFC_LNKC
;
5105 e1000_setup_rctl(adapter
);
5106 e1000_set_multi(netdev
);
5108 /* turn on all-multi mode if wake on multicast is enabled */
5109 if (wufc
& E1000_WUFC_MC
) {
5110 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
5111 rctl
|= E1000_RCTL_MPE
;
5112 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
5115 if (adapter
->hw
.mac_type
>= e1000_82540
) {
5116 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
5117 /* advertise wake from D3Cold */
5118 #define E1000_CTRL_ADVD3WUC 0x00100000
5119 /* phy power management enable */
5120 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5121 ctrl
|= E1000_CTRL_ADVD3WUC
|
5122 E1000_CTRL_EN_PHY_PWR_MGMT
;
5123 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
5126 if (adapter
->hw
.media_type
== e1000_media_type_fiber
||
5127 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
5128 /* keep the laser running in D3 */
5129 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
5130 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
5131 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
, ctrl_ext
);
5134 /* Allow time for pending master requests to run */
5135 e1000_disable_pciex_master(&adapter
->hw
);
5137 E1000_WRITE_REG(&adapter
->hw
, WUC
, E1000_WUC_PME_EN
);
5138 E1000_WRITE_REG(&adapter
->hw
, WUFC
, wufc
);
5139 pci_enable_wake(pdev
, PCI_D3hot
, 1);
5140 pci_enable_wake(pdev
, PCI_D3cold
, 1);
5142 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
5143 E1000_WRITE_REG(&adapter
->hw
, WUFC
, 0);
5144 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5145 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5148 e1000_release_manageability(adapter
);
5150 /* make sure adapter isn't asleep if manageability is enabled */
5151 if (adapter
->en_mng_pt
) {
5152 pci_enable_wake(pdev
, PCI_D3hot
, 1);
5153 pci_enable_wake(pdev
, PCI_D3cold
, 1);
5156 if (adapter
->hw
.phy_type
== e1000_phy_igp_3
)
5157 e1000_phy_powerdown_workaround(&adapter
->hw
);
5159 if (netif_running(netdev
))
5160 e1000_free_irq(adapter
);
5162 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5163 * would have already happened in close and is redundant. */
5164 e1000_release_hw_control(adapter
);
5166 pci_disable_device(pdev
);
5168 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
5175 e1000_resume(struct pci_dev
*pdev
)
5177 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5178 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5181 pci_set_power_state(pdev
, PCI_D0
);
5182 pci_restore_state(pdev
);
5183 if ((err
= pci_enable_device(pdev
))) {
5184 printk(KERN_ERR
"e1000: Cannot enable PCI device from suspend\n");
5187 pci_set_master(pdev
);
5189 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5190 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5192 if (netif_running(netdev
) && (err
= e1000_request_irq(adapter
)))
5195 e1000_power_up_phy(adapter
);
5196 e1000_reset(adapter
);
5197 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
5199 e1000_init_manageability(adapter
);
5201 if (netif_running(netdev
))
5204 netif_device_attach(netdev
);
5206 /* If the controller is 82573 and f/w is AMT, do not set
5207 * DRV_LOAD until the interface is up. For all other cases,
5208 * let the f/w know that the h/w is now under the control
5210 if (adapter
->hw
.mac_type
!= e1000_82573
||
5211 !e1000_check_mng_mode(&adapter
->hw
))
5212 e1000_get_hw_control(adapter
);
5218 static void e1000_shutdown(struct pci_dev
*pdev
)
5220 e1000_suspend(pdev
, PMSG_SUSPEND
);
5223 #ifdef CONFIG_NET_POLL_CONTROLLER
5225 * Polling 'interrupt' - used by things like netconsole to send skbs
5226 * without having to re-enable interrupts. It's not called while
5227 * the interrupt routine is executing.
5230 e1000_netpoll(struct net_device
*netdev
)
5232 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5234 disable_irq(adapter
->pdev
->irq
);
5235 e1000_intr(adapter
->pdev
->irq
, netdev
);
5236 e1000_clean_tx_irq(adapter
, adapter
->tx_ring
);
5237 #ifndef CONFIG_E1000_NAPI
5238 adapter
->clean_rx(adapter
, adapter
->rx_ring
);
5240 enable_irq(adapter
->pdev
->irq
);
5245 * e1000_io_error_detected - called when PCI error is detected
5246 * @pdev: Pointer to PCI device
5247 * @state: The current pci conneection state
5249 * This function is called after a PCI bus error affecting
5250 * this device has been detected.
5252 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
5254 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5255 struct e1000_adapter
*adapter
= netdev
->priv
;
5257 netif_device_detach(netdev
);
5259 if (netif_running(netdev
))
5260 e1000_down(adapter
);
5261 pci_disable_device(pdev
);
5263 /* Request a slot slot reset. */
5264 return PCI_ERS_RESULT_NEED_RESET
;
5268 * e1000_io_slot_reset - called after the pci bus has been reset.
5269 * @pdev: Pointer to PCI device
5271 * Restart the card from scratch, as if from a cold-boot. Implementation
5272 * resembles the first-half of the e1000_resume routine.
5274 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5276 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5277 struct e1000_adapter
*adapter
= netdev
->priv
;
5279 if (pci_enable_device(pdev
)) {
5280 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
5281 return PCI_ERS_RESULT_DISCONNECT
;
5283 pci_set_master(pdev
);
5285 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5286 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5288 e1000_reset(adapter
);
5289 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
5291 return PCI_ERS_RESULT_RECOVERED
;
5295 * e1000_io_resume - called when traffic can start flowing again.
5296 * @pdev: Pointer to PCI device
5298 * This callback is called when the error recovery driver tells us that
5299 * its OK to resume normal operation. Implementation resembles the
5300 * second-half of the e1000_resume routine.
5302 static void e1000_io_resume(struct pci_dev
*pdev
)
5304 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5305 struct e1000_adapter
*adapter
= netdev
->priv
;
5307 e1000_init_manageability(adapter
);
5309 if (netif_running(netdev
)) {
5310 if (e1000_up(adapter
)) {
5311 printk("e1000: can't bring device back up after reset\n");
5316 netif_device_attach(netdev
);
5318 /* If the controller is 82573 and f/w is AMT, do not set
5319 * DRV_LOAD until the interface is up. For all other cases,
5320 * let the f/w know that the h/w is now under the control
5322 if (adapter
->hw
.mac_type
!= e1000_82573
||
5323 !e1000_check_mng_mode(&adapter
->hw
))
5324 e1000_get_hw_control(adapter
);