1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
74 #include <linux/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
80 #include <asm/div64.h>
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.23.1"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name
[] = "Neterion";
91 static char s2io_driver_version
[] = DRV_VERSION
;
93 static int rxd_size
[4] = {32,48,48,64};
94 static int rxd_count
[4] = {127,85,85,63};
96 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
100 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
101 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 static inline int rx_buffer_level(struct s2io_nic
* sp
, int rxb_size
, int ring
)
123 struct mac_info
*mac_control
;
125 mac_control
= &sp
->mac_control
;
126 if (rxb_size
<= rxd_count
[sp
->rxd_mode
])
128 else if ((mac_control
->rings
[ring
].pkt_cnt
- rxb_size
) > 16)
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
142 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
144 {"tmac_data_octets"},
148 {"tmac_pause_ctrl_frms"},
152 {"tmac_any_err_frms"},
153 {"tmac_ttl_less_fb_octets"},
154 {"tmac_vld_ip_octets"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
168 {"rmac_out_rng_len_err_frms"},
170 {"rmac_pause_ctrl_frms"},
171 {"rmac_unsup_ctrl_frms"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
175 {"rmac_discarded_frms"},
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
182 {"rmac_jabber_frms"},
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
196 {"rmac_err_drp_udp"},
197 {"rmac_xgmii_err_sym"},
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
217 {"rmac_accepted_ip"},
221 {"new_rd_req_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
226 {"new_wr_req_rtry_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
239 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
258 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
284 ("mem_alloc_fail_cnt"),
285 ("watchdog_timer_cnt"),
292 ("tx_tcode_buf_abort_cnt"),
293 ("tx_tcode_desc_abort_cnt"),
294 ("tx_tcode_parity_err_cnt"),
295 ("tx_tcode_link_loss_cnt"),
296 ("tx_tcode_list_proc_err_cnt"),
297 ("rx_tcode_parity_err_cnt"),
298 ("rx_tcode_abort_cnt"),
299 ("rx_tcode_parity_abort_cnt"),
300 ("rx_tcode_rda_fail_cnt"),
301 ("rx_tcode_unkn_prot_cnt"),
302 ("rx_tcode_fcs_err_cnt"),
303 ("rx_tcode_buf_size_err_cnt"),
304 ("rx_tcode_rxd_corrupt_cnt"),
305 ("rx_tcode_unkn_err_cnt")
308 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
309 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
311 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
313 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
314 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
316 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
317 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
319 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
320 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
322 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
323 init_timer(&timer); \
324 timer.function = handle; \
325 timer.data = (unsigned long) arg; \
326 mod_timer(&timer, (jiffies + exp)) \
329 static void s2io_vlan_rx_register(struct net_device
*dev
,
330 struct vlan_group
*grp
)
332 struct s2io_nic
*nic
= dev
->priv
;
335 spin_lock_irqsave(&nic
->tx_lock
, flags
);
337 spin_unlock_irqrestore(&nic
->tx_lock
, flags
);
340 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
341 static int vlan_strip_flag
;
343 /* Unregister the vlan */
344 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned long vid
)
346 struct s2io_nic
*nic
= dev
->priv
;
349 spin_lock_irqsave(&nic
->tx_lock
, flags
);
350 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
351 spin_unlock_irqrestore(&nic
->tx_lock
, flags
);
355 * Constants to be programmed into the Xena's registers, to configure
360 static const u64 herc_act_dtx_cfg
[] = {
362 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
364 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
366 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
368 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
370 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
372 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
374 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
376 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
381 static const u64 xena_dtx_cfg
[] = {
383 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
385 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
387 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
389 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
391 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
393 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
398 * Constants for Fixing the MacAddress problem seen mostly on
401 static const u64 fix_mac
[] = {
402 0x0060000000000000ULL
, 0x0060600000000000ULL
,
403 0x0040600000000000ULL
, 0x0000600000000000ULL
,
404 0x0020600000000000ULL
, 0x0060600000000000ULL
,
405 0x0020600000000000ULL
, 0x0060600000000000ULL
,
406 0x0020600000000000ULL
, 0x0060600000000000ULL
,
407 0x0020600000000000ULL
, 0x0060600000000000ULL
,
408 0x0020600000000000ULL
, 0x0060600000000000ULL
,
409 0x0020600000000000ULL
, 0x0060600000000000ULL
,
410 0x0020600000000000ULL
, 0x0060600000000000ULL
,
411 0x0020600000000000ULL
, 0x0060600000000000ULL
,
412 0x0020600000000000ULL
, 0x0060600000000000ULL
,
413 0x0020600000000000ULL
, 0x0060600000000000ULL
,
414 0x0020600000000000ULL
, 0x0000600000000000ULL
,
415 0x0040600000000000ULL
, 0x0060600000000000ULL
,
419 MODULE_LICENSE("GPL");
420 MODULE_VERSION(DRV_VERSION
);
423 /* Module Loadable parameters. */
424 S2IO_PARM_INT(tx_fifo_num
, 1);
425 S2IO_PARM_INT(rx_ring_num
, 1);
428 S2IO_PARM_INT(rx_ring_mode
, 1);
429 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
430 S2IO_PARM_INT(rmac_pause_time
, 0x100);
431 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
432 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
433 S2IO_PARM_INT(shared_splits
, 0);
434 S2IO_PARM_INT(tmac_util_period
, 5);
435 S2IO_PARM_INT(rmac_util_period
, 5);
436 S2IO_PARM_INT(bimodal
, 0);
437 S2IO_PARM_INT(l3l4hdr_size
, 128);
438 /* Frequency of Rx desc syncs expressed as power of 2 */
439 S2IO_PARM_INT(rxsync_frequency
, 3);
440 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
441 S2IO_PARM_INT(intr_type
, 0);
442 /* Large receive offload feature */
443 S2IO_PARM_INT(lro
, 0);
444 /* Max pkts to be aggregated by LRO at one time. If not specified,
445 * aggregation happens until we hit max IP pkt size(64K)
447 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
448 S2IO_PARM_INT(indicate_max_pkts
, 0);
450 S2IO_PARM_INT(napi
, 1);
451 S2IO_PARM_INT(ufo
, 0);
452 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
454 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
455 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
456 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
457 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
458 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
459 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
461 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
462 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
463 module_param_array(rts_frm_len
, uint
, NULL
, 0);
467 * This table lists all the devices that this driver supports.
469 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
470 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
471 PCI_ANY_ID
, PCI_ANY_ID
},
472 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
473 PCI_ANY_ID
, PCI_ANY_ID
},
474 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
475 PCI_ANY_ID
, PCI_ANY_ID
},
476 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
477 PCI_ANY_ID
, PCI_ANY_ID
},
481 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
483 static struct pci_driver s2io_driver
= {
485 .id_table
= s2io_tbl
,
486 .probe
= s2io_init_nic
,
487 .remove
= __devexit_p(s2io_rem_nic
),
490 /* A simplifier macro used both by init and free shared_mem Fns(). */
491 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
494 * init_shared_mem - Allocation and Initialization of Memory
495 * @nic: Device private variable.
496 * Description: The function allocates all the memory areas shared
497 * between the NIC and the driver. This includes Tx descriptors,
498 * Rx descriptors and the statistics block.
501 static int init_shared_mem(struct s2io_nic
*nic
)
504 void *tmp_v_addr
, *tmp_v_addr_next
;
505 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
506 struct RxD_block
*pre_rxd_blk
= NULL
;
508 int lst_size
, lst_per_page
;
509 struct net_device
*dev
= nic
->dev
;
513 struct mac_info
*mac_control
;
514 struct config_param
*config
;
515 unsigned long long mem_allocated
= 0;
517 mac_control
= &nic
->mac_control
;
518 config
= &nic
->config
;
521 /* Allocation and initialization of TXDLs in FIOFs */
523 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
524 size
+= config
->tx_cfg
[i
].fifo_len
;
526 if (size
> MAX_AVAILABLE_TXDS
) {
527 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
528 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
532 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
533 lst_per_page
= PAGE_SIZE
/ lst_size
;
535 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
536 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
537 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
538 mac_control
->fifos
[i
].list_info
= kmalloc(list_holder_size
,
540 if (!mac_control
->fifos
[i
].list_info
) {
542 "Malloc failed for list_info\n");
545 mem_allocated
+= list_holder_size
;
546 memset(mac_control
->fifos
[i
].list_info
, 0, list_holder_size
);
548 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
549 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
551 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
552 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
553 config
->tx_cfg
[i
].fifo_len
- 1;
554 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
555 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
556 config
->tx_cfg
[i
].fifo_len
- 1;
557 mac_control
->fifos
[i
].fifo_no
= i
;
558 mac_control
->fifos
[i
].nic
= nic
;
559 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
561 for (j
= 0; j
< page_num
; j
++) {
565 tmp_v
= pci_alloc_consistent(nic
->pdev
,
569 "pci_alloc_consistent ");
570 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
573 /* If we got a zero DMA address(can happen on
574 * certain platforms like PPC), reallocate.
575 * Store virtual address of page we don't want,
579 mac_control
->zerodma_virt_addr
= tmp_v
;
581 "%s: Zero DMA address for TxDL. ", dev
->name
);
583 "Virtual address %p\n", tmp_v
);
584 tmp_v
= pci_alloc_consistent(nic
->pdev
,
588 "pci_alloc_consistent ");
589 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
592 mem_allocated
+= PAGE_SIZE
;
594 while (k
< lst_per_page
) {
595 int l
= (j
* lst_per_page
) + k
;
596 if (l
== config
->tx_cfg
[i
].fifo_len
)
598 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
599 tmp_v
+ (k
* lst_size
);
600 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
601 tmp_p
+ (k
* lst_size
);
607 nic
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
608 if (!nic
->ufo_in_band_v
)
610 mem_allocated
+= (size
* sizeof(u64
));
612 /* Allocation and initialization of RXDs in Rings */
614 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
615 if (config
->rx_cfg
[i
].num_rxd
%
616 (rxd_count
[nic
->rxd_mode
] + 1)) {
617 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
618 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
620 DBG_PRINT(ERR_DBG
, "RxDs per Block");
623 size
+= config
->rx_cfg
[i
].num_rxd
;
624 mac_control
->rings
[i
].block_count
=
625 config
->rx_cfg
[i
].num_rxd
/
626 (rxd_count
[nic
->rxd_mode
] + 1 );
627 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
628 mac_control
->rings
[i
].block_count
;
630 if (nic
->rxd_mode
== RXD_MODE_1
)
631 size
= (size
* (sizeof(struct RxD1
)));
633 size
= (size
* (sizeof(struct RxD3
)));
635 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
636 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
637 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
638 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
639 config
->rx_cfg
[i
].num_rxd
- 1;
640 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
641 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
642 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
643 config
->rx_cfg
[i
].num_rxd
- 1;
644 mac_control
->rings
[i
].nic
= nic
;
645 mac_control
->rings
[i
].ring_no
= i
;
647 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
648 (rxd_count
[nic
->rxd_mode
] + 1);
649 /* Allocating all the Rx blocks */
650 for (j
= 0; j
< blk_cnt
; j
++) {
651 struct rx_block_info
*rx_blocks
;
654 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
655 size
= SIZE_OF_BLOCK
; //size is always page size
656 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
658 if (tmp_v_addr
== NULL
) {
660 * In case of failure, free_shared_mem()
661 * is called, which should free any
662 * memory that was alloced till the
665 rx_blocks
->block_virt_addr
= tmp_v_addr
;
668 mem_allocated
+= size
;
669 memset(tmp_v_addr
, 0, size
);
670 rx_blocks
->block_virt_addr
= tmp_v_addr
;
671 rx_blocks
->block_dma_addr
= tmp_p_addr
;
672 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
673 rxd_count
[nic
->rxd_mode
],
675 if (!rx_blocks
->rxds
)
678 (sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
679 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
680 rx_blocks
->rxds
[l
].virt_addr
=
681 rx_blocks
->block_virt_addr
+
682 (rxd_size
[nic
->rxd_mode
] * l
);
683 rx_blocks
->rxds
[l
].dma_addr
=
684 rx_blocks
->block_dma_addr
+
685 (rxd_size
[nic
->rxd_mode
] * l
);
688 /* Interlinking all Rx Blocks */
689 for (j
= 0; j
< blk_cnt
; j
++) {
691 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
693 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
694 blk_cnt
].block_virt_addr
;
696 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
698 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
699 blk_cnt
].block_dma_addr
;
701 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
702 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
703 (unsigned long) tmp_v_addr_next
;
704 pre_rxd_blk
->pNext_RxD_Blk_physical
=
705 (u64
) tmp_p_addr_next
;
708 if (nic
->rxd_mode
>= RXD_MODE_3A
) {
710 * Allocation of Storages for buffer addresses in 2BUFF mode
711 * and the buffers as well.
713 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
714 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
715 (rxd_count
[nic
->rxd_mode
]+ 1);
716 mac_control
->rings
[i
].ba
=
717 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
719 if (!mac_control
->rings
[i
].ba
)
721 mem_allocated
+=(sizeof(struct buffAdd
*) * blk_cnt
);
722 for (j
= 0; j
< blk_cnt
; j
++) {
724 mac_control
->rings
[i
].ba
[j
] =
725 kmalloc((sizeof(struct buffAdd
) *
726 (rxd_count
[nic
->rxd_mode
] + 1)),
728 if (!mac_control
->rings
[i
].ba
[j
])
730 mem_allocated
+= (sizeof(struct buffAdd
) * \
731 (rxd_count
[nic
->rxd_mode
] + 1));
732 while (k
!= rxd_count
[nic
->rxd_mode
]) {
733 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
735 ba
->ba_0_org
= (void *) kmalloc
736 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
740 (BUF0_LEN
+ ALIGN_SIZE
);
741 tmp
= (unsigned long)ba
->ba_0_org
;
743 tmp
&= ~((unsigned long) ALIGN_SIZE
);
744 ba
->ba_0
= (void *) tmp
;
746 ba
->ba_1_org
= (void *) kmalloc
747 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
751 += (BUF1_LEN
+ ALIGN_SIZE
);
752 tmp
= (unsigned long) ba
->ba_1_org
;
754 tmp
&= ~((unsigned long) ALIGN_SIZE
);
755 ba
->ba_1
= (void *) tmp
;
762 /* Allocation and initialization of Statistics block */
763 size
= sizeof(struct stat_block
);
764 mac_control
->stats_mem
= pci_alloc_consistent
765 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
767 if (!mac_control
->stats_mem
) {
769 * In case of failure, free_shared_mem() is called, which
770 * should free any memory that was alloced till the
775 mem_allocated
+= size
;
776 mac_control
->stats_mem_sz
= size
;
778 tmp_v_addr
= mac_control
->stats_mem
;
779 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
780 memset(tmp_v_addr
, 0, size
);
781 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
782 (unsigned long long) tmp_p_addr
);
783 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
788 * free_shared_mem - Free the allocated Memory
789 * @nic: Device private variable.
790 * Description: This function is to free all memory locations allocated by
791 * the init_shared_mem() function and return it to the kernel.
794 static void free_shared_mem(struct s2io_nic
*nic
)
796 int i
, j
, blk_cnt
, size
;
799 dma_addr_t tmp_p_addr
;
800 struct mac_info
*mac_control
;
801 struct config_param
*config
;
802 int lst_size
, lst_per_page
;
803 struct net_device
*dev
= nic
->dev
;
809 mac_control
= &nic
->mac_control
;
810 config
= &nic
->config
;
812 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
813 lst_per_page
= PAGE_SIZE
/ lst_size
;
815 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
816 ufo_size
+= config
->tx_cfg
[i
].fifo_len
;
817 page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
819 for (j
= 0; j
< page_num
; j
++) {
820 int mem_blks
= (j
* lst_per_page
);
821 if (!mac_control
->fifos
[i
].list_info
)
823 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
826 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
827 mac_control
->fifos
[i
].
830 mac_control
->fifos
[i
].
833 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
836 /* If we got a zero DMA address during allocation,
839 if (mac_control
->zerodma_virt_addr
) {
840 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
841 mac_control
->zerodma_virt_addr
,
844 "%s: Freeing TxDL with zero DMA addr. ",
846 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
847 mac_control
->zerodma_virt_addr
);
848 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
851 kfree(mac_control
->fifos
[i
].list_info
);
852 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
853 (nic
->config
.tx_cfg
[i
].fifo_len
*sizeof(struct list_info_hold
));
856 size
= SIZE_OF_BLOCK
;
857 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
858 blk_cnt
= mac_control
->rings
[i
].block_count
;
859 for (j
= 0; j
< blk_cnt
; j
++) {
860 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
862 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
864 if (tmp_v_addr
== NULL
)
866 pci_free_consistent(nic
->pdev
, size
,
867 tmp_v_addr
, tmp_p_addr
);
868 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= size
;
869 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
870 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
871 ( sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
875 if (nic
->rxd_mode
>= RXD_MODE_3A
) {
876 /* Freeing buffer storage addresses in 2BUFF mode. */
877 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
878 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
879 (rxd_count
[nic
->rxd_mode
] + 1);
880 for (j
= 0; j
< blk_cnt
; j
++) {
882 if (!mac_control
->rings
[i
].ba
[j
])
884 while (k
!= rxd_count
[nic
->rxd_mode
]) {
886 &mac_control
->rings
[i
].ba
[j
][k
];
888 nic
->mac_control
.stats_info
->sw_stat
.\
889 mem_freed
+= (BUF0_LEN
+ ALIGN_SIZE
);
891 nic
->mac_control
.stats_info
->sw_stat
.\
892 mem_freed
+= (BUF1_LEN
+ ALIGN_SIZE
);
895 kfree(mac_control
->rings
[i
].ba
[j
]);
896 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= (sizeof(struct buffAdd
) *
897 (rxd_count
[nic
->rxd_mode
] + 1));
899 kfree(mac_control
->rings
[i
].ba
);
900 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
901 (sizeof(struct buffAdd
*) * blk_cnt
);
905 if (mac_control
->stats_mem
) {
906 pci_free_consistent(nic
->pdev
,
907 mac_control
->stats_mem_sz
,
908 mac_control
->stats_mem
,
909 mac_control
->stats_mem_phy
);
910 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
911 mac_control
->stats_mem_sz
;
913 if (nic
->ufo_in_band_v
) {
914 kfree(nic
->ufo_in_band_v
);
915 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
916 += (ufo_size
* sizeof(u64
));
921 * s2io_verify_pci_mode -
924 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
926 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
927 register u64 val64
= 0;
930 val64
= readq(&bar0
->pci_mode
);
931 mode
= (u8
)GET_PCI_MODE(val64
);
933 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
934 return -1; /* Unknown PCI mode */
938 #define NEC_VENID 0x1033
939 #define NEC_DEVID 0x0125
940 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
942 struct pci_dev
*tdev
= NULL
;
943 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
944 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
945 if (tdev
->bus
== s2io_pdev
->bus
->parent
)
953 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
955 * s2io_print_pci_mode -
957 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
959 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
960 register u64 val64
= 0;
962 struct config_param
*config
= &nic
->config
;
964 val64
= readq(&bar0
->pci_mode
);
965 mode
= (u8
)GET_PCI_MODE(val64
);
967 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
968 return -1; /* Unknown PCI mode */
970 config
->bus_speed
= bus_speed
[mode
];
972 if (s2io_on_nec_bridge(nic
->pdev
)) {
973 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
978 if (val64
& PCI_MODE_32_BITS
) {
979 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
981 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
985 case PCI_MODE_PCI_33
:
986 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
988 case PCI_MODE_PCI_66
:
989 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
991 case PCI_MODE_PCIX_M1_66
:
992 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
994 case PCI_MODE_PCIX_M1_100
:
995 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
997 case PCI_MODE_PCIX_M1_133
:
998 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
1000 case PCI_MODE_PCIX_M2_66
:
1001 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
1003 case PCI_MODE_PCIX_M2_100
:
1004 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
1006 case PCI_MODE_PCIX_M2_133
:
1007 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
1010 return -1; /* Unsupported bus speed */
1017 * init_nic - Initialization of hardware
1018 * @nic: device peivate variable
1019 * Description: The function sequentially configures every block
1020 * of the H/W from their reset values.
1021 * Return Value: SUCCESS on success and
1022 * '-1' on failure (endian settings incorrect).
1025 static int init_nic(struct s2io_nic
*nic
)
1027 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1028 struct net_device
*dev
= nic
->dev
;
1029 register u64 val64
= 0;
1033 struct mac_info
*mac_control
;
1034 struct config_param
*config
;
1036 unsigned long long mem_share
;
1039 mac_control
= &nic
->mac_control
;
1040 config
= &nic
->config
;
1042 /* to set the swapper controle on the card */
1043 if(s2io_set_swapper(nic
)) {
1044 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
1049 * Herc requires EOI to be removed from reset before XGXS, so..
1051 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1052 val64
= 0xA500000000ULL
;
1053 writeq(val64
, &bar0
->sw_reset
);
1055 val64
= readq(&bar0
->sw_reset
);
1058 /* Remove XGXS from reset state */
1060 writeq(val64
, &bar0
->sw_reset
);
1062 val64
= readq(&bar0
->sw_reset
);
1064 /* Enable Receiving broadcasts */
1065 add
= &bar0
->mac_cfg
;
1066 val64
= readq(&bar0
->mac_cfg
);
1067 val64
|= MAC_RMAC_BCAST_ENABLE
;
1068 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1069 writel((u32
) val64
, add
);
1070 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1071 writel((u32
) (val64
>> 32), (add
+ 4));
1073 /* Read registers in all blocks */
1074 val64
= readq(&bar0
->mac_int_mask
);
1075 val64
= readq(&bar0
->mc_int_mask
);
1076 val64
= readq(&bar0
->xgxs_int_mask
);
1080 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1082 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1083 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1084 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1085 &bar0
->dtx_control
, UF
);
1087 msleep(1); /* Necessary!! */
1091 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1092 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1093 &bar0
->dtx_control
, UF
);
1094 val64
= readq(&bar0
->dtx_control
);
1099 /* Tx DMA Initialization */
1101 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1102 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1103 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1104 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1107 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1109 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((i
* 32) + 19),
1110 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1113 if (i
== (config
->tx_fifo_num
- 1)) {
1120 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1124 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1128 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1132 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1138 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1139 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1141 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1142 (get_xena_rev_id(nic
->pdev
) < 4))
1143 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1145 val64
= readq(&bar0
->tx_fifo_partition_0
);
1146 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1147 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1150 * Initialization of Tx_PA_CONFIG register to ignore packet
1151 * integrity checking.
1153 val64
= readq(&bar0
->tx_pa_cfg
);
1154 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1155 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1156 writeq(val64
, &bar0
->tx_pa_cfg
);
1158 /* Rx DMA intialization. */
1160 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1162 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1165 writeq(val64
, &bar0
->rx_queue_priority
);
1168 * Allocating equal share of memory to all the
1172 if (nic
->device_type
& XFRAME_II_DEVICE
)
1177 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1180 mem_share
= (mem_size
/ config
->rx_ring_num
+
1181 mem_size
% config
->rx_ring_num
);
1182 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1185 mem_share
= (mem_size
/ config
->rx_ring_num
);
1186 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1189 mem_share
= (mem_size
/ config
->rx_ring_num
);
1190 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1193 mem_share
= (mem_size
/ config
->rx_ring_num
);
1194 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1197 mem_share
= (mem_size
/ config
->rx_ring_num
);
1198 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1201 mem_share
= (mem_size
/ config
->rx_ring_num
);
1202 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1205 mem_share
= (mem_size
/ config
->rx_ring_num
);
1206 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1209 mem_share
= (mem_size
/ config
->rx_ring_num
);
1210 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1214 writeq(val64
, &bar0
->rx_queue_cfg
);
1217 * Filling Tx round robin registers
1218 * as per the number of FIFOs
1220 switch (config
->tx_fifo_num
) {
1222 val64
= 0x0000000000000000ULL
;
1223 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1224 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1225 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1226 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1227 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1230 val64
= 0x0000010000010000ULL
;
1231 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1232 val64
= 0x0100000100000100ULL
;
1233 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1234 val64
= 0x0001000001000001ULL
;
1235 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1236 val64
= 0x0000010000010000ULL
;
1237 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1238 val64
= 0x0100000000000000ULL
;
1239 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1242 val64
= 0x0001000102000001ULL
;
1243 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1244 val64
= 0x0001020000010001ULL
;
1245 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1246 val64
= 0x0200000100010200ULL
;
1247 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1248 val64
= 0x0001000102000001ULL
;
1249 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1250 val64
= 0x0001020000000000ULL
;
1251 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1254 val64
= 0x0001020300010200ULL
;
1255 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1256 val64
= 0x0100000102030001ULL
;
1257 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1258 val64
= 0x0200010000010203ULL
;
1259 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1260 val64
= 0x0001020001000001ULL
;
1261 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1262 val64
= 0x0203000100000000ULL
;
1263 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1266 val64
= 0x0001000203000102ULL
;
1267 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1268 val64
= 0x0001020001030004ULL
;
1269 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1270 val64
= 0x0001000203000102ULL
;
1271 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1272 val64
= 0x0001020001030004ULL
;
1273 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1274 val64
= 0x0001000000000000ULL
;
1275 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1278 val64
= 0x0001020304000102ULL
;
1279 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1280 val64
= 0x0304050001020001ULL
;
1281 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1282 val64
= 0x0203000100000102ULL
;
1283 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1284 val64
= 0x0304000102030405ULL
;
1285 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1286 val64
= 0x0001000200000000ULL
;
1287 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1290 val64
= 0x0001020001020300ULL
;
1291 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1292 val64
= 0x0102030400010203ULL
;
1293 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1294 val64
= 0x0405060001020001ULL
;
1295 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1296 val64
= 0x0304050000010200ULL
;
1297 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1298 val64
= 0x0102030000000000ULL
;
1299 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1302 val64
= 0x0001020300040105ULL
;
1303 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1304 val64
= 0x0200030106000204ULL
;
1305 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1306 val64
= 0x0103000502010007ULL
;
1307 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1308 val64
= 0x0304010002060500ULL
;
1309 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1310 val64
= 0x0103020400000000ULL
;
1311 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1315 /* Enable all configured Tx FIFO partitions */
1316 val64
= readq(&bar0
->tx_fifo_partition_0
);
1317 val64
|= (TX_FIFO_PARTITION_EN
);
1318 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1320 /* Filling the Rx round robin registers as per the
1321 * number of Rings and steering based on QoS.
1323 switch (config
->rx_ring_num
) {
1325 val64
= 0x8080808080808080ULL
;
1326 writeq(val64
, &bar0
->rts_qos_steering
);
1329 val64
= 0x0000010000010000ULL
;
1330 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1331 val64
= 0x0100000100000100ULL
;
1332 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1333 val64
= 0x0001000001000001ULL
;
1334 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1335 val64
= 0x0000010000010000ULL
;
1336 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1337 val64
= 0x0100000000000000ULL
;
1338 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1340 val64
= 0x8080808040404040ULL
;
1341 writeq(val64
, &bar0
->rts_qos_steering
);
1344 val64
= 0x0001000102000001ULL
;
1345 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1346 val64
= 0x0001020000010001ULL
;
1347 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1348 val64
= 0x0200000100010200ULL
;
1349 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1350 val64
= 0x0001000102000001ULL
;
1351 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1352 val64
= 0x0001020000000000ULL
;
1353 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1355 val64
= 0x8080804040402020ULL
;
1356 writeq(val64
, &bar0
->rts_qos_steering
);
1359 val64
= 0x0001020300010200ULL
;
1360 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1361 val64
= 0x0100000102030001ULL
;
1362 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1363 val64
= 0x0200010000010203ULL
;
1364 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1365 val64
= 0x0001020001000001ULL
;
1366 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1367 val64
= 0x0203000100000000ULL
;
1368 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1370 val64
= 0x8080404020201010ULL
;
1371 writeq(val64
, &bar0
->rts_qos_steering
);
1374 val64
= 0x0001000203000102ULL
;
1375 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1376 val64
= 0x0001020001030004ULL
;
1377 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1378 val64
= 0x0001000203000102ULL
;
1379 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1380 val64
= 0x0001020001030004ULL
;
1381 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1382 val64
= 0x0001000000000000ULL
;
1383 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1385 val64
= 0x8080404020201008ULL
;
1386 writeq(val64
, &bar0
->rts_qos_steering
);
1389 val64
= 0x0001020304000102ULL
;
1390 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1391 val64
= 0x0304050001020001ULL
;
1392 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1393 val64
= 0x0203000100000102ULL
;
1394 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1395 val64
= 0x0304000102030405ULL
;
1396 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1397 val64
= 0x0001000200000000ULL
;
1398 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1400 val64
= 0x8080404020100804ULL
;
1401 writeq(val64
, &bar0
->rts_qos_steering
);
1404 val64
= 0x0001020001020300ULL
;
1405 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1406 val64
= 0x0102030400010203ULL
;
1407 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1408 val64
= 0x0405060001020001ULL
;
1409 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1410 val64
= 0x0304050000010200ULL
;
1411 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1412 val64
= 0x0102030000000000ULL
;
1413 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1415 val64
= 0x8080402010080402ULL
;
1416 writeq(val64
, &bar0
->rts_qos_steering
);
1419 val64
= 0x0001020300040105ULL
;
1420 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1421 val64
= 0x0200030106000204ULL
;
1422 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1423 val64
= 0x0103000502010007ULL
;
1424 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1425 val64
= 0x0304010002060500ULL
;
1426 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1427 val64
= 0x0103020400000000ULL
;
1428 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1430 val64
= 0x8040201008040201ULL
;
1431 writeq(val64
, &bar0
->rts_qos_steering
);
1437 for (i
= 0; i
< 8; i
++)
1438 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1440 /* Set the default rts frame length for the rings configured */
1441 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1442 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1443 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1445 /* Set the frame length for the configured rings
1446 * desired by the user
1448 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1449 /* If rts_frm_len[i] == 0 then it is assumed that user not
1450 * specified frame length steering.
1451 * If the user provides the frame length then program
1452 * the rts_frm_len register for those values or else
1453 * leave it as it is.
1455 if (rts_frm_len
[i
] != 0) {
1456 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1457 &bar0
->rts_frm_len_n
[i
]);
1461 /* Disable differentiated services steering logic */
1462 for (i
= 0; i
< 64; i
++) {
1463 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1464 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1466 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1471 /* Program statistics memory */
1472 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1474 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1475 val64
= STAT_BC(0x320);
1476 writeq(val64
, &bar0
->stat_byte_cnt
);
1480 * Initializing the sampling rate for the device to calculate the
1481 * bandwidth utilization.
1483 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1484 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1485 writeq(val64
, &bar0
->mac_link_util
);
1489 * Initializing the Transmit and Receive Traffic Interrupt
1493 * TTI Initialization. Default Tx timer gets us about
1494 * 250 interrupts per sec. Continuous interrupts are enabled
1497 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1498 int count
= (nic
->config
.bus_speed
* 125)/2;
1499 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1502 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1504 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1505 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1506 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1507 if (use_continuous_tx_intrs
)
1508 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1509 writeq(val64
, &bar0
->tti_data1_mem
);
1511 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1512 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1513 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1514 writeq(val64
, &bar0
->tti_data2_mem
);
1516 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
;
1517 writeq(val64
, &bar0
->tti_command_mem
);
1520 * Once the operation completes, the Strobe bit of the command
1521 * register will be reset. We poll for this particular condition
1522 * We wait for a maximum of 500ms for the operation to complete,
1523 * if it's not complete by then we return error.
1527 val64
= readq(&bar0
->tti_command_mem
);
1528 if (!(val64
& TTI_CMD_MEM_STROBE_NEW_CMD
)) {
1532 DBG_PRINT(ERR_DBG
, "%s: TTI init Failed\n",
1540 if (nic
->config
.bimodal
) {
1542 for (k
= 0; k
< config
->rx_ring_num
; k
++) {
1543 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
;
1544 val64
|= TTI_CMD_MEM_OFFSET(0x38+k
);
1545 writeq(val64
, &bar0
->tti_command_mem
);
1548 * Once the operation completes, the Strobe bit of the command
1549 * register will be reset. We poll for this particular condition
1550 * We wait for a maximum of 500ms for the operation to complete,
1551 * if it's not complete by then we return error.
1555 val64
= readq(&bar0
->tti_command_mem
);
1556 if (!(val64
& TTI_CMD_MEM_STROBE_NEW_CMD
)) {
1561 "%s: TTI init Failed\n",
1571 /* RTI Initialization */
1572 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1574 * Programmed to generate Apprx 500 Intrs per
1577 int count
= (nic
->config
.bus_speed
* 125)/4;
1578 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1580 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1582 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1583 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1584 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1586 writeq(val64
, &bar0
->rti_data1_mem
);
1588 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1589 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1590 if (nic
->intr_type
== MSI_X
)
1591 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1592 RTI_DATA2_MEM_RX_UFC_D(0x40));
1594 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1595 RTI_DATA2_MEM_RX_UFC_D(0x80));
1596 writeq(val64
, &bar0
->rti_data2_mem
);
1598 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1599 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1600 | RTI_CMD_MEM_OFFSET(i
);
1601 writeq(val64
, &bar0
->rti_command_mem
);
1604 * Once the operation completes, the Strobe bit of the
1605 * command register will be reset. We poll for this
1606 * particular condition. We wait for a maximum of 500ms
1607 * for the operation to complete, if it's not complete
1608 * by then we return error.
1612 val64
= readq(&bar0
->rti_command_mem
);
1613 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
)) {
1617 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1628 * Initializing proper values as Pause threshold into all
1629 * the 8 Queues on Rx side.
1631 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1632 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1634 /* Disable RMAC PAD STRIPPING */
1635 add
= &bar0
->mac_cfg
;
1636 val64
= readq(&bar0
->mac_cfg
);
1637 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1638 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1639 writel((u32
) (val64
), add
);
1640 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1641 writel((u32
) (val64
>> 32), (add
+ 4));
1642 val64
= readq(&bar0
->mac_cfg
);
1644 /* Enable FCS stripping by adapter */
1645 add
= &bar0
->mac_cfg
;
1646 val64
= readq(&bar0
->mac_cfg
);
1647 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1648 if (nic
->device_type
== XFRAME_II_DEVICE
)
1649 writeq(val64
, &bar0
->mac_cfg
);
1651 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1652 writel((u32
) (val64
), add
);
1653 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1654 writel((u32
) (val64
>> 32), (add
+ 4));
1658 * Set the time value to be inserted in the pause frame
1659 * generated by xena.
1661 val64
= readq(&bar0
->rmac_pause_cfg
);
1662 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1663 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1664 writeq(val64
, &bar0
->rmac_pause_cfg
);
1667 * Set the Threshold Limit for Generating the pause frame
1668 * If the amount of data in any Queue exceeds ratio of
1669 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1670 * pause frame is generated
1673 for (i
= 0; i
< 4; i
++) {
1675 (((u64
) 0xFF00 | nic
->mac_control
.
1676 mc_pause_threshold_q0q3
)
1679 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1682 for (i
= 0; i
< 4; i
++) {
1684 (((u64
) 0xFF00 | nic
->mac_control
.
1685 mc_pause_threshold_q4q7
)
1688 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1691 * TxDMA will stop Read request if the number of read split has
1692 * exceeded the limit pointed by shared_splits
1694 val64
= readq(&bar0
->pic_control
);
1695 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1696 writeq(val64
, &bar0
->pic_control
);
1698 if (nic
->config
.bus_speed
== 266) {
1699 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1700 writeq(0x0, &bar0
->read_retry_delay
);
1701 writeq(0x0, &bar0
->write_retry_delay
);
1705 * Programming the Herc to split every write transaction
1706 * that does not start on an ADB to reduce disconnects.
1708 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1709 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1710 MISC_LINK_STABILITY_PRD(3);
1711 writeq(val64
, &bar0
->misc_control
);
1712 val64
= readq(&bar0
->pic_control2
);
1713 val64
&= ~(BIT(13)|BIT(14)|BIT(15));
1714 writeq(val64
, &bar0
->pic_control2
);
1716 if (strstr(nic
->product_name
, "CX4")) {
1717 val64
= TMAC_AVG_IPG(0x17);
1718 writeq(val64
, &bar0
->tmac_avg_ipg
);
1723 #define LINK_UP_DOWN_INTERRUPT 1
1724 #define MAC_RMAC_ERR_TIMER 2
1726 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1728 if (nic
->intr_type
!= INTA
)
1729 return MAC_RMAC_ERR_TIMER
;
1730 if (nic
->device_type
== XFRAME_II_DEVICE
)
1731 return LINK_UP_DOWN_INTERRUPT
;
1733 return MAC_RMAC_ERR_TIMER
;
1737 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1738 * @nic: device private variable,
1739 * @mask: A mask indicating which Intr block must be modified and,
1740 * @flag: A flag indicating whether to enable or disable the Intrs.
1741 * Description: This function will either disable or enable the interrupts
1742 * depending on the flag argument. The mask argument can be used to
1743 * enable/disable any Intr block.
1744 * Return Value: NONE.
1747 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
1749 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1750 register u64 val64
= 0, temp64
= 0;
1752 /* Top level interrupt classification */
1753 /* PIC Interrupts */
1754 if ((mask
& (TX_PIC_INTR
| RX_PIC_INTR
))) {
1755 /* Enable PIC Intrs in the general intr mask register */
1756 val64
= TXPIC_INT_M
;
1757 if (flag
== ENABLE_INTRS
) {
1758 temp64
= readq(&bar0
->general_int_mask
);
1759 temp64
&= ~((u64
) val64
);
1760 writeq(temp64
, &bar0
->general_int_mask
);
1762 * If Hercules adapter enable GPIO otherwise
1763 * disable all PCIX, Flash, MDIO, IIC and GPIO
1764 * interrupts for now.
1767 if (s2io_link_fault_indication(nic
) ==
1768 LINK_UP_DOWN_INTERRUPT
) {
1769 temp64
= readq(&bar0
->pic_int_mask
);
1770 temp64
&= ~((u64
) PIC_INT_GPIO
);
1771 writeq(temp64
, &bar0
->pic_int_mask
);
1772 temp64
= readq(&bar0
->gpio_int_mask
);
1773 temp64
&= ~((u64
) GPIO_INT_MASK_LINK_UP
);
1774 writeq(temp64
, &bar0
->gpio_int_mask
);
1776 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1779 * No MSI Support is available presently, so TTI and
1780 * RTI interrupts are also disabled.
1782 } else if (flag
== DISABLE_INTRS
) {
1784 * Disable PIC Intrs in the general
1785 * intr mask register
1787 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1788 temp64
= readq(&bar0
->general_int_mask
);
1790 writeq(val64
, &bar0
->general_int_mask
);
1794 /* MAC Interrupts */
1795 /* Enabling/Disabling MAC interrupts */
1796 if (mask
& (TX_MAC_INTR
| RX_MAC_INTR
)) {
1797 val64
= TXMAC_INT_M
| RXMAC_INT_M
;
1798 if (flag
== ENABLE_INTRS
) {
1799 temp64
= readq(&bar0
->general_int_mask
);
1800 temp64
&= ~((u64
) val64
);
1801 writeq(temp64
, &bar0
->general_int_mask
);
1803 * All MAC block error interrupts are disabled for now
1806 } else if (flag
== DISABLE_INTRS
) {
1808 * Disable MAC Intrs in the general intr mask register
1810 writeq(DISABLE_ALL_INTRS
, &bar0
->mac_int_mask
);
1811 writeq(DISABLE_ALL_INTRS
,
1812 &bar0
->mac_rmac_err_mask
);
1814 temp64
= readq(&bar0
->general_int_mask
);
1816 writeq(val64
, &bar0
->general_int_mask
);
1820 /* Tx traffic interrupts */
1821 if (mask
& TX_TRAFFIC_INTR
) {
1822 val64
= TXTRAFFIC_INT_M
;
1823 if (flag
== ENABLE_INTRS
) {
1824 temp64
= readq(&bar0
->general_int_mask
);
1825 temp64
&= ~((u64
) val64
);
1826 writeq(temp64
, &bar0
->general_int_mask
);
1828 * Enable all the Tx side interrupts
1829 * writing 0 Enables all 64 TX interrupt levels
1831 writeq(0x0, &bar0
->tx_traffic_mask
);
1832 } else if (flag
== DISABLE_INTRS
) {
1834 * Disable Tx Traffic Intrs in the general intr mask
1837 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
1838 temp64
= readq(&bar0
->general_int_mask
);
1840 writeq(val64
, &bar0
->general_int_mask
);
1844 /* Rx traffic interrupts */
1845 if (mask
& RX_TRAFFIC_INTR
) {
1846 val64
= RXTRAFFIC_INT_M
;
1847 if (flag
== ENABLE_INTRS
) {
1848 temp64
= readq(&bar0
->general_int_mask
);
1849 temp64
&= ~((u64
) val64
);
1850 writeq(temp64
, &bar0
->general_int_mask
);
1851 /* writing 0 Enables all 8 RX interrupt levels */
1852 writeq(0x0, &bar0
->rx_traffic_mask
);
1853 } else if (flag
== DISABLE_INTRS
) {
1855 * Disable Rx Traffic Intrs in the general intr mask
1858 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
1859 temp64
= readq(&bar0
->general_int_mask
);
1861 writeq(val64
, &bar0
->general_int_mask
);
1867 * verify_pcc_quiescent- Checks for PCC quiescent state
1868 * Return: 1 If PCC is quiescence
1869 * 0 If PCC is not quiescence
1871 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
1874 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
1875 u64 val64
= readq(&bar0
->adapter_status
);
1877 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
1879 if (flag
== FALSE
) {
1880 if ((!herc
&& (get_xena_rev_id(sp
->pdev
) >= 4)) || herc
) {
1881 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
1884 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
1888 if ((!herc
&& (get_xena_rev_id(sp
->pdev
) >= 4)) || herc
) {
1889 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
1890 ADAPTER_STATUS_RMAC_PCC_IDLE
))
1893 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
1894 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
1902 * verify_xena_quiescence - Checks whether the H/W is ready
1903 * Description: Returns whether the H/W is ready to go or not. Depending
1904 * on whether adapter enable bit was written or not the comparison
1905 * differs and the calling function passes the input argument flag to
1907 * Return: 1 If xena is quiescence
1908 * 0 If Xena is not quiescence
1911 static int verify_xena_quiescence(struct s2io_nic
*sp
)
1914 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
1915 u64 val64
= readq(&bar0
->adapter_status
);
1916 mode
= s2io_verify_pci_mode(sp
);
1918 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
1919 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
1922 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
1923 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
1926 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
1927 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
1930 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
1931 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
1934 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
1935 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
1938 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
1939 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
1942 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
1943 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
1946 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
1947 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
1952 * In PCI 33 mode, the P_PLL is not used, and therefore,
1953 * the the P_PLL_LOCK bit in the adapter_status register will
1956 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
1957 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
1959 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
1962 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
1963 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
1964 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
1971 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1972 * @sp: Pointer to device specifc structure
1974 * New procedure to clear mac address reading problems on Alpha platforms
1978 static void fix_mac_address(struct s2io_nic
* sp
)
1980 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
1984 while (fix_mac
[i
] != END_SIGN
) {
1985 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
1987 val64
= readq(&bar0
->gpio_control
);
1992 * start_nic - Turns the device on
1993 * @nic : device private variable.
1995 * This function actually turns the device on. Before this function is
1996 * called,all Registers are configured from their reset states
1997 * and shared memory is allocated but the NIC is still quiescent. On
1998 * calling this function, the device interrupts are cleared and the NIC is
1999 * literally switched on by writing into the adapter control register.
2001 * SUCCESS on success and -1 on failure.
2004 static int start_nic(struct s2io_nic
*nic
)
2006 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2007 struct net_device
*dev
= nic
->dev
;
2008 register u64 val64
= 0;
2010 struct mac_info
*mac_control
;
2011 struct config_param
*config
;
2013 mac_control
= &nic
->mac_control
;
2014 config
= &nic
->config
;
2016 /* PRC Initialization and configuration */
2017 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2018 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2019 &bar0
->prc_rxd0_n
[i
]);
2021 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2022 if (nic
->config
.bimodal
)
2023 val64
|= PRC_CTRL_BIMODAL_INTERRUPT
;
2024 if (nic
->rxd_mode
== RXD_MODE_1
)
2025 val64
|= PRC_CTRL_RC_ENABLED
;
2027 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2028 if (nic
->device_type
== XFRAME_II_DEVICE
)
2029 val64
|= PRC_CTRL_GROUP_READS
;
2030 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2031 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2032 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2035 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2036 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2037 val64
= readq(&bar0
->rx_pa_cfg
);
2038 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2039 writeq(val64
, &bar0
->rx_pa_cfg
);
2042 if (vlan_tag_strip
== 0) {
2043 val64
= readq(&bar0
->rx_pa_cfg
);
2044 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2045 writeq(val64
, &bar0
->rx_pa_cfg
);
2046 vlan_strip_flag
= 0;
2050 * Enabling MC-RLDRAM. After enabling the device, we timeout
2051 * for around 100ms, which is approximately the time required
2052 * for the device to be ready for operation.
2054 val64
= readq(&bar0
->mc_rldram_mrs
);
2055 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2056 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2057 val64
= readq(&bar0
->mc_rldram_mrs
);
2059 msleep(100); /* Delay by around 100 ms. */
2061 /* Enabling ECC Protection. */
2062 val64
= readq(&bar0
->adapter_control
);
2063 val64
&= ~ADAPTER_ECC_EN
;
2064 writeq(val64
, &bar0
->adapter_control
);
2067 * Clearing any possible Link state change interrupts that
2068 * could have popped up just before Enabling the card.
2070 val64
= readq(&bar0
->mac_rmac_err_reg
);
2072 writeq(val64
, &bar0
->mac_rmac_err_reg
);
2075 * Verify if the device is ready to be enabled, if so enable
2078 val64
= readq(&bar0
->adapter_status
);
2079 if (!verify_xena_quiescence(nic
)) {
2080 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2081 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2082 (unsigned long long) val64
);
2087 * With some switches, link might be already up at this point.
2088 * Because of this weird behavior, when we enable laser,
2089 * we may not get link. We need to handle this. We cannot
2090 * figure out which switch is misbehaving. So we are forced to
2091 * make a global change.
2094 /* Enabling Laser. */
2095 val64
= readq(&bar0
->adapter_control
);
2096 val64
|= ADAPTER_EOI_TX_ON
;
2097 writeq(val64
, &bar0
->adapter_control
);
2099 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2101 * Dont see link state interrupts initally on some switches,
2102 * so directly scheduling the link state task here.
2104 schedule_work(&nic
->set_link_task
);
2106 /* SXE-002: Initialize link and activity LED */
2107 subid
= nic
->pdev
->subsystem_device
;
2108 if (((subid
& 0xFF) >= 0x07) &&
2109 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2110 val64
= readq(&bar0
->gpio_control
);
2111 val64
|= 0x0000800000000000ULL
;
2112 writeq(val64
, &bar0
->gpio_control
);
2113 val64
= 0x0411040400000000ULL
;
2114 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2120 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2122 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2123 TxD
*txdlp
, int get_off
)
2125 struct s2io_nic
*nic
= fifo_data
->nic
;
2126 struct sk_buff
*skb
;
2131 if (txds
->Host_Control
== (u64
)(long)nic
->ufo_in_band_v
) {
2132 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2133 txds
->Buffer_Pointer
, sizeof(u64
),
2138 skb
= (struct sk_buff
*) ((unsigned long)
2139 txds
->Host_Control
);
2141 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2144 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2145 txds
->Buffer_Pointer
,
2146 skb
->len
- skb
->data_len
,
2148 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2151 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2152 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2153 if (!txds
->Buffer_Pointer
)
2155 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2156 txds
->Buffer_Pointer
,
2157 frag
->size
, PCI_DMA_TODEVICE
);
2160 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2165 * free_tx_buffers - Free all queued Tx buffers
2166 * @nic : device private variable.
2168 * Free all queued Tx buffers.
2169 * Return Value: void
2172 static void free_tx_buffers(struct s2io_nic
*nic
)
2174 struct net_device
*dev
= nic
->dev
;
2175 struct sk_buff
*skb
;
2178 struct mac_info
*mac_control
;
2179 struct config_param
*config
;
2182 mac_control
= &nic
->mac_control
;
2183 config
= &nic
->config
;
2185 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2186 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
- 1; j
++) {
2187 txdp
= (struct TxD
*) \
2188 mac_control
->fifos
[i
].list_info
[j
].list_virt_addr
;
2189 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2191 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
2198 "%s:forcibly freeing %d skbs on FIFO%d\n",
2200 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2201 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2206 * stop_nic - To stop the nic
2207 * @nic ; device private variable.
2209 * This function does exactly the opposite of what the start_nic()
2210 * function does. This function is called to stop the device.
2215 static void stop_nic(struct s2io_nic
*nic
)
2217 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2218 register u64 val64
= 0;
2220 struct mac_info
*mac_control
;
2221 struct config_param
*config
;
2223 mac_control
= &nic
->mac_control
;
2224 config
= &nic
->config
;
2226 /* Disable all interrupts */
2227 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2228 interruptible
|= TX_PIC_INTR
| RX_PIC_INTR
;
2229 interruptible
|= TX_MAC_INTR
| RX_MAC_INTR
;
2230 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2232 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2233 val64
= readq(&bar0
->adapter_control
);
2234 val64
&= ~(ADAPTER_CNTL_EN
);
2235 writeq(val64
, &bar0
->adapter_control
);
2238 static int fill_rxd_3buf(struct s2io_nic
*nic
, struct RxD_t
*rxdp
, struct \
2241 struct net_device
*dev
= nic
->dev
;
2242 struct sk_buff
*frag_list
;
2245 /* Buffer-1 receives L3/L4 headers */
2246 ((struct RxD3
*)rxdp
)->Buffer1_ptr
= pci_map_single
2247 (nic
->pdev
, skb
->data
, l3l4hdr_size
+ 4,
2248 PCI_DMA_FROMDEVICE
);
2250 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2251 skb_shinfo(skb
)->frag_list
= dev_alloc_skb(dev
->mtu
+ ALIGN_SIZE
);
2252 if (skb_shinfo(skb
)->frag_list
== NULL
) {
2253 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
2254 DBG_PRINT(INFO_DBG
, "%s: dev_alloc_skb failed\n ", dev
->name
);
2257 frag_list
= skb_shinfo(skb
)->frag_list
;
2258 skb
->truesize
+= frag_list
->truesize
;
2259 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
2260 += frag_list
->truesize
;
2261 frag_list
->next
= NULL
;
2262 tmp
= (void *)ALIGN((long)frag_list
->data
, ALIGN_SIZE
+ 1);
2263 frag_list
->data
= tmp
;
2264 skb_reset_tail_pointer(frag_list
);
2266 /* Buffer-2 receives L4 data payload */
2267 ((struct RxD3
*)rxdp
)->Buffer2_ptr
= pci_map_single(nic
->pdev
,
2268 frag_list
->data
, dev
->mtu
,
2269 PCI_DMA_FROMDEVICE
);
2270 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(l3l4hdr_size
+ 4);
2271 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
);
2277 * fill_rx_buffers - Allocates the Rx side skbs
2278 * @nic: device private variable
2279 * @ring_no: ring number
2281 * The function allocates Rx side skbs and puts the physical
2282 * address of these buffers into the RxD buffer pointers, so that the NIC
2283 * can DMA the received frame into these locations.
2284 * The NIC supports 3 receive modes, viz
2286 * 2. three buffer and
2287 * 3. Five buffer modes.
2288 * Each mode defines how many fragments the received frame will be split
2289 * up into by the NIC. The frame is split into L3 header, L4 Header,
2290 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2291 * is split into 3 fragments. As of now only single buffer mode is
2294 * SUCCESS on success or an appropriate -ve value on failure.
2297 static int fill_rx_buffers(struct s2io_nic
*nic
, int ring_no
)
2299 struct net_device
*dev
= nic
->dev
;
2300 struct sk_buff
*skb
;
2302 int off
, off1
, size
, block_no
, block_no1
;
2305 struct mac_info
*mac_control
;
2306 struct config_param
*config
;
2309 unsigned long flags
;
2310 struct RxD_t
*first_rxdp
= NULL
;
2311 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2313 mac_control
= &nic
->mac_control
;
2314 config
= &nic
->config
;
2315 alloc_cnt
= mac_control
->rings
[ring_no
].pkt_cnt
-
2316 atomic_read(&nic
->rx_bufs_left
[ring_no
]);
2318 block_no1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.block_index
;
2319 off1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.offset
;
2320 while (alloc_tab
< alloc_cnt
) {
2321 block_no
= mac_control
->rings
[ring_no
].rx_curr_put_info
.
2323 off
= mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
;
2325 rxdp
= mac_control
->rings
[ring_no
].
2326 rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2328 if ((block_no
== block_no1
) && (off
== off1
) &&
2329 (rxdp
->Host_Control
)) {
2330 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2332 DBG_PRINT(INTR_DBG
, " info equated\n");
2335 if (off
&& (off
== rxd_count
[nic
->rxd_mode
])) {
2336 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2338 if (mac_control
->rings
[ring_no
].rx_curr_put_info
.
2339 block_index
== mac_control
->rings
[ring_no
].
2341 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2343 block_no
= mac_control
->rings
[ring_no
].
2344 rx_curr_put_info
.block_index
;
2345 if (off
== rxd_count
[nic
->rxd_mode
])
2347 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2349 rxdp
= mac_control
->rings
[ring_no
].
2350 rx_blocks
[block_no
].block_virt_addr
;
2351 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2355 spin_lock_irqsave(&nic
->put_lock
, flags
);
2356 mac_control
->rings
[ring_no
].put_pos
=
2357 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2358 spin_unlock_irqrestore(&nic
->put_lock
, flags
);
2360 mac_control
->rings
[ring_no
].put_pos
=
2361 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2363 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2364 ((nic
->rxd_mode
>= RXD_MODE_3A
) &&
2365 (rxdp
->Control_2
& BIT(0)))) {
2366 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2370 /* calculate size of skb based on ring mode */
2371 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2372 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2373 if (nic
->rxd_mode
== RXD_MODE_1
)
2374 size
+= NET_IP_ALIGN
;
2375 else if (nic
->rxd_mode
== RXD_MODE_3B
)
2376 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2378 size
= l3l4hdr_size
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2381 skb
= dev_alloc_skb(size
);
2383 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
2384 DBG_PRINT(INFO_DBG
, "memory to allocate SKBs\n");
2387 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2389 nic
->mac_control
.stats_info
->sw_stat
. \
2390 mem_alloc_fail_cnt
++;
2393 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
2395 if (nic
->rxd_mode
== RXD_MODE_1
) {
2396 /* 1 buffer mode - normal operation mode */
2397 memset(rxdp
, 0, sizeof(struct RxD1
));
2398 skb_reserve(skb
, NET_IP_ALIGN
);
2399 ((struct RxD1
*)rxdp
)->Buffer0_ptr
= pci_map_single
2400 (nic
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2401 PCI_DMA_FROMDEVICE
);
2403 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2405 } else if (nic
->rxd_mode
>= RXD_MODE_3A
) {
2407 * 2 or 3 buffer mode -
2408 * Both 2 buffer mode and 3 buffer mode provides 128
2409 * byte aligned receive buffers.
2411 * 3 buffer mode provides header separation where in
2412 * skb->data will have L3/L4 headers where as
2413 * skb_shinfo(skb)->frag_list will have the L4 data
2417 /* save buffer pointers to avoid frequent dma mapping */
2418 Buffer0_ptr
= ((struct RxD3
*)rxdp
)->Buffer0_ptr
;
2419 Buffer1_ptr
= ((struct RxD3
*)rxdp
)->Buffer1_ptr
;
2420 memset(rxdp
, 0, sizeof(struct RxD3
));
2421 /* restore the buffer pointers for dma sync*/
2422 ((struct RxD3
*)rxdp
)->Buffer0_ptr
= Buffer0_ptr
;
2423 ((struct RxD3
*)rxdp
)->Buffer1_ptr
= Buffer1_ptr
;
2425 ba
= &mac_control
->rings
[ring_no
].ba
[block_no
][off
];
2426 skb_reserve(skb
, BUF0_LEN
);
2427 tmp
= (u64
)(unsigned long) skb
->data
;
2430 skb
->data
= (void *) (unsigned long)tmp
;
2431 skb_reset_tail_pointer(skb
);
2433 if (!(((struct RxD3
*)rxdp
)->Buffer0_ptr
))
2434 ((struct RxD3
*)rxdp
)->Buffer0_ptr
=
2435 pci_map_single(nic
->pdev
, ba
->ba_0
, BUF0_LEN
,
2436 PCI_DMA_FROMDEVICE
);
2438 pci_dma_sync_single_for_device(nic
->pdev
,
2439 (dma_addr_t
) ((struct RxD3
*)rxdp
)->Buffer0_ptr
,
2440 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2441 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2442 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2443 /* Two buffer mode */
2446 * Buffer2 will have L3/L4 header plus
2449 ((struct RxD3
*)rxdp
)->Buffer2_ptr
= pci_map_single
2450 (nic
->pdev
, skb
->data
, dev
->mtu
+ 4,
2451 PCI_DMA_FROMDEVICE
);
2453 /* Buffer-1 will be dummy buffer. Not used */
2454 if (!(((struct RxD3
*)rxdp
)->Buffer1_ptr
)) {
2455 ((struct RxD3
*)rxdp
)->Buffer1_ptr
=
2456 pci_map_single(nic
->pdev
,
2458 PCI_DMA_FROMDEVICE
);
2460 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2461 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2465 if (fill_rxd_3buf(nic
, rxdp
, skb
) == -ENOMEM
) {
2466 nic
->mac_control
.stats_info
->sw_stat
.\
2467 mem_freed
+= skb
->truesize
;
2468 dev_kfree_skb_irq(skb
);
2471 first_rxdp
->Control_1
|=
2477 rxdp
->Control_2
|= BIT(0);
2479 rxdp
->Host_Control
= (unsigned long) (skb
);
2480 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2481 rxdp
->Control_1
|= RXD_OWN_XENA
;
2483 if (off
== (rxd_count
[nic
->rxd_mode
] + 1))
2485 mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
= off
;
2487 rxdp
->Control_2
|= SET_RXD_MARKER
;
2488 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2491 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2495 atomic_inc(&nic
->rx_bufs_left
[ring_no
]);
2500 /* Transfer ownership of first descriptor to adapter just before
2501 * exiting. Before that, use memory barrier so that ownership
2502 * and other fields are seen by adapter correctly.
2506 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2512 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2514 struct net_device
*dev
= sp
->dev
;
2516 struct sk_buff
*skb
;
2518 struct mac_info
*mac_control
;
2521 mac_control
= &sp
->mac_control
;
2522 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2523 rxdp
= mac_control
->rings
[ring_no
].
2524 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2525 skb
= (struct sk_buff
*)
2526 ((unsigned long) rxdp
->Host_Control
);
2530 if (sp
->rxd_mode
== RXD_MODE_1
) {
2531 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2532 ((struct RxD1
*)rxdp
)->Buffer0_ptr
,
2534 HEADER_ETHERNET_II_802_3_SIZE
2535 + HEADER_802_2_SIZE
+
2537 PCI_DMA_FROMDEVICE
);
2538 memset(rxdp
, 0, sizeof(struct RxD1
));
2539 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2540 ba
= &mac_control
->rings
[ring_no
].
2542 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2543 ((struct RxD3
*)rxdp
)->Buffer0_ptr
,
2545 PCI_DMA_FROMDEVICE
);
2546 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2547 ((struct RxD3
*)rxdp
)->Buffer1_ptr
,
2549 PCI_DMA_FROMDEVICE
);
2550 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2551 ((struct RxD3
*)rxdp
)->Buffer2_ptr
,
2553 PCI_DMA_FROMDEVICE
);
2554 memset(rxdp
, 0, sizeof(struct RxD3
));
2556 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2557 ((struct RxD3
*)rxdp
)->Buffer0_ptr
, BUF0_LEN
,
2558 PCI_DMA_FROMDEVICE
);
2559 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2560 ((struct RxD3
*)rxdp
)->Buffer1_ptr
,
2562 PCI_DMA_FROMDEVICE
);
2563 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2564 ((struct RxD3
*)rxdp
)->Buffer2_ptr
, dev
->mtu
,
2565 PCI_DMA_FROMDEVICE
);
2566 memset(rxdp
, 0, sizeof(struct RxD3
));
2568 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2570 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
2575 * free_rx_buffers - Frees all Rx buffers
2576 * @sp: device private variable.
2578 * This function will free all Rx buffers allocated by host.
2583 static void free_rx_buffers(struct s2io_nic
*sp
)
2585 struct net_device
*dev
= sp
->dev
;
2586 int i
, blk
= 0, buf_cnt
= 0;
2587 struct mac_info
*mac_control
;
2588 struct config_param
*config
;
2590 mac_control
= &sp
->mac_control
;
2591 config
= &sp
->config
;
2593 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2594 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2595 free_rxd_blk(sp
,i
,blk
);
2597 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2598 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2599 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2600 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2601 atomic_set(&sp
->rx_bufs_left
[i
], 0);
2602 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2603 dev
->name
, buf_cnt
, i
);
2608 * s2io_poll - Rx interrupt handler for NAPI support
2609 * @dev : pointer to the device structure.
2610 * @budget : The number of packets that were budgeted to be processed
2611 * during one pass through the 'Poll" function.
2613 * Comes into picture only if NAPI support has been incorporated. It does
2614 * the same thing that rx_intr_handler does, but not in a interrupt context
2615 * also It will process only a given number of packets.
2617 * 0 on success and 1 if there are No Rx packets to be processed.
2620 static int s2io_poll(struct net_device
*dev
, int *budget
)
2622 struct s2io_nic
*nic
= dev
->priv
;
2623 int pkt_cnt
= 0, org_pkts_to_process
;
2624 struct mac_info
*mac_control
;
2625 struct config_param
*config
;
2626 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2629 atomic_inc(&nic
->isr_cnt
);
2630 mac_control
= &nic
->mac_control
;
2631 config
= &nic
->config
;
2633 nic
->pkts_to_process
= *budget
;
2634 if (nic
->pkts_to_process
> dev
->quota
)
2635 nic
->pkts_to_process
= dev
->quota
;
2636 org_pkts_to_process
= nic
->pkts_to_process
;
2638 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
2639 readl(&bar0
->rx_traffic_int
);
2641 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2642 rx_intr_handler(&mac_control
->rings
[i
]);
2643 pkt_cnt
= org_pkts_to_process
- nic
->pkts_to_process
;
2644 if (!nic
->pkts_to_process
) {
2645 /* Quota for the current iteration has been met */
2652 dev
->quota
-= pkt_cnt
;
2654 netif_rx_complete(dev
);
2656 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2657 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2658 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2659 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2663 /* Re enable the Rx interrupts. */
2664 writeq(0x0, &bar0
->rx_traffic_mask
);
2665 readl(&bar0
->rx_traffic_mask
);
2666 atomic_dec(&nic
->isr_cnt
);
2670 dev
->quota
-= pkt_cnt
;
2673 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2674 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2675 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2676 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2680 atomic_dec(&nic
->isr_cnt
);
2684 #ifdef CONFIG_NET_POLL_CONTROLLER
2686 * s2io_netpoll - netpoll event handler entry point
2687 * @dev : pointer to the device structure.
2689 * This function will be called by upper layer to check for events on the
2690 * interface in situations where interrupts are disabled. It is used for
2691 * specific in-kernel networking tasks, such as remote consoles and kernel
2692 * debugging over the network (example netdump in RedHat).
2694 static void s2io_netpoll(struct net_device
*dev
)
2696 struct s2io_nic
*nic
= dev
->priv
;
2697 struct mac_info
*mac_control
;
2698 struct config_param
*config
;
2699 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2700 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2703 disable_irq(dev
->irq
);
2705 atomic_inc(&nic
->isr_cnt
);
2706 mac_control
= &nic
->mac_control
;
2707 config
= &nic
->config
;
2709 writeq(val64
, &bar0
->rx_traffic_int
);
2710 writeq(val64
, &bar0
->tx_traffic_int
);
2712 /* we need to free up the transmitted skbufs or else netpoll will
2713 * run out of skbs and will fail and eventually netpoll application such
2714 * as netdump will fail.
2716 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2717 tx_intr_handler(&mac_control
->fifos
[i
]);
2719 /* check for received packet and indicate up to network */
2720 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2721 rx_intr_handler(&mac_control
->rings
[i
]);
2723 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2724 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2725 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2726 DBG_PRINT(INFO_DBG
, " in Rx Netpoll!!\n");
2730 atomic_dec(&nic
->isr_cnt
);
2731 enable_irq(dev
->irq
);
2737 * rx_intr_handler - Rx interrupt handler
2738 * @nic: device private variable.
2740 * If the interrupt is because of a received frame or if the
2741 * receive ring contains fresh as yet un-processed frames,this function is
2742 * called. It picks out the RxD at which place the last Rx processing had
2743 * stopped and sends the skb to the OSM's Rx handler and then increments
2748 static void rx_intr_handler(struct ring_info
*ring_data
)
2750 struct s2io_nic
*nic
= ring_data
->nic
;
2751 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2752 int get_block
, put_block
, put_offset
;
2753 struct rx_curr_get_info get_info
, put_info
;
2755 struct sk_buff
*skb
;
2759 spin_lock(&nic
->rx_lock
);
2760 if (atomic_read(&nic
->card_state
) == CARD_DOWN
) {
2761 DBG_PRINT(INTR_DBG
, "%s: %s going down for reset\n",
2762 __FUNCTION__
, dev
->name
);
2763 spin_unlock(&nic
->rx_lock
);
2767 get_info
= ring_data
->rx_curr_get_info
;
2768 get_block
= get_info
.block_index
;
2769 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2770 put_block
= put_info
.block_index
;
2771 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2773 spin_lock(&nic
->put_lock
);
2774 put_offset
= ring_data
->put_pos
;
2775 spin_unlock(&nic
->put_lock
);
2777 put_offset
= ring_data
->put_pos
;
2779 while (RXD_IS_UP2DT(rxdp
)) {
2781 * If your are next to put index then it's
2782 * FIFO full condition
2784 if ((get_block
== put_block
) &&
2785 (get_info
.offset
+ 1) == put_info
.offset
) {
2786 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",dev
->name
);
2789 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
2791 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
2793 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
2794 spin_unlock(&nic
->rx_lock
);
2797 if (nic
->rxd_mode
== RXD_MODE_1
) {
2798 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2799 ((struct RxD1
*)rxdp
)->Buffer0_ptr
,
2801 HEADER_ETHERNET_II_802_3_SIZE
+
2804 PCI_DMA_FROMDEVICE
);
2805 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2806 pci_dma_sync_single_for_cpu(nic
->pdev
, (dma_addr_t
)
2807 ((struct RxD3
*)rxdp
)->Buffer0_ptr
,
2808 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2809 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2810 ((struct RxD3
*)rxdp
)->Buffer2_ptr
,
2812 PCI_DMA_FROMDEVICE
);
2814 pci_dma_sync_single_for_cpu(nic
->pdev
, (dma_addr_t
)
2815 ((struct RxD3
*)rxdp
)->Buffer0_ptr
, BUF0_LEN
,
2816 PCI_DMA_FROMDEVICE
);
2817 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2818 ((struct RxD3
*)rxdp
)->Buffer1_ptr
,
2820 PCI_DMA_FROMDEVICE
);
2821 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2822 ((struct RxD3
*)rxdp
)->Buffer2_ptr
,
2823 dev
->mtu
, PCI_DMA_FROMDEVICE
);
2825 prefetch(skb
->data
);
2826 rx_osm_handler(ring_data
, rxdp
);
2828 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2829 rxdp
= ring_data
->rx_blocks
[get_block
].
2830 rxds
[get_info
.offset
].virt_addr
;
2831 if (get_info
.offset
== rxd_count
[nic
->rxd_mode
]) {
2832 get_info
.offset
= 0;
2833 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2835 if (get_block
== ring_data
->block_count
)
2837 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2838 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2841 nic
->pkts_to_process
-= 1;
2842 if ((napi
) && (!nic
->pkts_to_process
))
2845 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2849 /* Clear all LRO sessions before exiting */
2850 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
2851 struct lro
*lro
= &nic
->lro0_n
[i
];
2853 update_L3L4_header(nic
, lro
);
2854 queue_rx_frame(lro
->parent
);
2855 clear_lro_session(lro
);
2860 spin_unlock(&nic
->rx_lock
);
2864 * tx_intr_handler - Transmit interrupt handler
2865 * @nic : device private variable
2867 * If an interrupt was raised to indicate DMA complete of the
2868 * Tx packet, this function is called. It identifies the last TxD
2869 * whose buffer was freed and frees all skbs whose data have already
2870 * DMA'ed into the NICs internal memory.
2875 static void tx_intr_handler(struct fifo_info
*fifo_data
)
2877 struct s2io_nic
*nic
= fifo_data
->nic
;
2878 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2879 struct tx_curr_get_info get_info
, put_info
;
2880 struct sk_buff
*skb
;
2883 get_info
= fifo_data
->tx_curr_get_info
;
2884 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
2885 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
2887 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
2888 (get_info
.offset
!= put_info
.offset
) &&
2889 (txdlp
->Host_Control
)) {
2890 /* Check for TxD errors */
2891 if (txdlp
->Control_1
& TXD_T_CODE
) {
2892 unsigned long long err
;
2893 err
= txdlp
->Control_1
& TXD_T_CODE
;
2895 nic
->mac_control
.stats_info
->sw_stat
.
2899 /* update t_code statistics */
2903 nic
->mac_control
.stats_info
->sw_stat
.
2908 nic
->mac_control
.stats_info
->sw_stat
.
2909 tx_desc_abort_cnt
++;
2913 nic
->mac_control
.stats_info
->sw_stat
.
2914 tx_parity_err_cnt
++;
2918 nic
->mac_control
.stats_info
->sw_stat
.
2923 nic
->mac_control
.stats_info
->sw_stat
.
2924 tx_list_proc_err_cnt
++;
2929 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
2931 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
2933 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
2937 /* Updating the statistics block */
2938 nic
->stats
.tx_bytes
+= skb
->len
;
2939 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2940 dev_kfree_skb_irq(skb
);
2943 if (get_info
.offset
== get_info
.fifo_len
+ 1)
2944 get_info
.offset
= 0;
2945 txdlp
= (struct TxD
*) fifo_data
->list_info
2946 [get_info
.offset
].list_virt_addr
;
2947 fifo_data
->tx_curr_get_info
.offset
=
2951 spin_lock(&nic
->tx_lock
);
2952 if (netif_queue_stopped(dev
))
2953 netif_wake_queue(dev
);
2954 spin_unlock(&nic
->tx_lock
);
2958 * s2io_mdio_write - Function to write in to MDIO registers
2959 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2960 * @addr : address value
2961 * @value : data value
2962 * @dev : pointer to net_device structure
2964 * This function is used to write values to the MDIO registers
2967 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
2970 struct s2io_nic
*sp
= dev
->priv
;
2971 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2973 //address transaction
2974 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2975 | MDIO_MMD_DEV_ADDR(mmd_type
)
2976 | MDIO_MMS_PRT_ADDR(0x0);
2977 writeq(val64
, &bar0
->mdio_control
);
2978 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2979 writeq(val64
, &bar0
->mdio_control
);
2984 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2985 | MDIO_MMD_DEV_ADDR(mmd_type
)
2986 | MDIO_MMS_PRT_ADDR(0x0)
2987 | MDIO_MDIO_DATA(value
)
2988 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
2989 writeq(val64
, &bar0
->mdio_control
);
2990 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2991 writeq(val64
, &bar0
->mdio_control
);
2995 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2996 | MDIO_MMD_DEV_ADDR(mmd_type
)
2997 | MDIO_MMS_PRT_ADDR(0x0)
2998 | MDIO_OP(MDIO_OP_READ_TRANS
);
2999 writeq(val64
, &bar0
->mdio_control
);
3000 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3001 writeq(val64
, &bar0
->mdio_control
);
3007 * s2io_mdio_read - Function to write in to MDIO registers
3008 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3009 * @addr : address value
3010 * @dev : pointer to net_device structure
3012 * This function is used to read values to the MDIO registers
3015 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3019 struct s2io_nic
*sp
= dev
->priv
;
3020 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3022 /* address transaction */
3023 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3024 | MDIO_MMD_DEV_ADDR(mmd_type
)
3025 | MDIO_MMS_PRT_ADDR(0x0);
3026 writeq(val64
, &bar0
->mdio_control
);
3027 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3028 writeq(val64
, &bar0
->mdio_control
);
3031 /* Data transaction */
3033 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3034 | MDIO_MMD_DEV_ADDR(mmd_type
)
3035 | MDIO_MMS_PRT_ADDR(0x0)
3036 | MDIO_OP(MDIO_OP_READ_TRANS
);
3037 writeq(val64
, &bar0
->mdio_control
);
3038 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3039 writeq(val64
, &bar0
->mdio_control
);
3042 /* Read the value from regs */
3043 rval64
= readq(&bar0
->mdio_control
);
3044 rval64
= rval64
& 0xFFFF0000;
3045 rval64
= rval64
>> 16;
3049 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3050 * @counter : couter value to be updated
3051 * @flag : flag to indicate the status
3052 * @type : counter type
3054 * This function is to check the status of the xpak counters value
3058 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
3063 for(i
= 0; i
<index
; i
++)
3068 *counter
= *counter
+ 1;
3069 val64
= *regs_stat
& mask
;
3070 val64
= val64
>> (index
* 0x2);
3077 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3078 "service. Excessive temperatures may "
3079 "result in premature transceiver "
3083 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3084 "service Excessive bias currents may "
3085 "indicate imminent laser diode "
3089 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3090 "service Excessive laser output "
3091 "power may saturate far-end "
3095 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3100 val64
= val64
<< (index
* 0x2);
3101 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3104 *regs_stat
= *regs_stat
& (~mask
);
3109 * s2io_updt_xpak_counter - Function to update the xpak counters
3110 * @dev : pointer to net_device struct
3112 * This function is to upate the status of the xpak counters value
3115 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3123 struct s2io_nic
*sp
= dev
->priv
;
3124 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3126 /* Check the communication with the MDIO slave */
3129 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3130 if((val64
== 0xFFFF) || (val64
== 0x0000))
3132 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3133 "Returned %llx\n", (unsigned long long)val64
);
3137 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3140 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3141 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3142 (unsigned long long)val64
);
3146 /* Loading the DOM register to MDIO register */
3148 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3149 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3151 /* Reading the Alarm flags */
3154 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3156 flag
= CHECKBIT(val64
, 0x7);
3158 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3159 &stat_info
->xpak_stat
.xpak_regs_stat
,
3162 if(CHECKBIT(val64
, 0x6))
3163 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3165 flag
= CHECKBIT(val64
, 0x3);
3167 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3168 &stat_info
->xpak_stat
.xpak_regs_stat
,
3171 if(CHECKBIT(val64
, 0x2))
3172 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3174 flag
= CHECKBIT(val64
, 0x1);
3176 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3177 &stat_info
->xpak_stat
.xpak_regs_stat
,
3180 if(CHECKBIT(val64
, 0x0))
3181 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3183 /* Reading the Warning flags */
3186 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3188 if(CHECKBIT(val64
, 0x7))
3189 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3191 if(CHECKBIT(val64
, 0x6))
3192 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3194 if(CHECKBIT(val64
, 0x3))
3195 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3197 if(CHECKBIT(val64
, 0x2))
3198 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3200 if(CHECKBIT(val64
, 0x1))
3201 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3203 if(CHECKBIT(val64
, 0x0))
3204 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3208 * alarm_intr_handler - Alarm Interrrupt handler
3209 * @nic: device private variable
3210 * Description: If the interrupt was neither because of Rx packet or Tx
3211 * complete, this function is called. If the interrupt was to indicate
3212 * a loss of link, the OSM link status handler is invoked for any other
3213 * alarm interrupt the block that raised the interrupt is displayed
3214 * and a H/W reset is issued.
3219 static void alarm_intr_handler(struct s2io_nic
*nic
)
3221 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
3222 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3223 register u64 val64
= 0, err_reg
= 0;
3226 if (atomic_read(&nic
->card_state
) == CARD_DOWN
)
3228 nic
->mac_control
.stats_info
->sw_stat
.ring_full_cnt
= 0;
3229 /* Handling the XPAK counters update */
3230 if(nic
->mac_control
.stats_info
->xpak_stat
.xpak_timer_count
< 72000) {
3231 /* waiting for an hour */
3232 nic
->mac_control
.stats_info
->xpak_stat
.xpak_timer_count
++;
3234 s2io_updt_xpak_counter(dev
);
3235 /* reset the count to zero */
3236 nic
->mac_control
.stats_info
->xpak_stat
.xpak_timer_count
= 0;
3239 /* Handling link status change error Intr */
3240 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
3241 err_reg
= readq(&bar0
->mac_rmac_err_reg
);
3242 writeq(err_reg
, &bar0
->mac_rmac_err_reg
);
3243 if (err_reg
& RMAC_LINK_STATE_CHANGE_INT
) {
3244 schedule_work(&nic
->set_link_task
);
3248 /* Handling Ecc errors */
3249 val64
= readq(&bar0
->mc_err_reg
);
3250 writeq(val64
, &bar0
->mc_err_reg
);
3251 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
3252 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
3253 nic
->mac_control
.stats_info
->sw_stat
.
3255 DBG_PRINT(INIT_DBG
, "%s: Device indicates ",
3257 DBG_PRINT(INIT_DBG
, "double ECC error!!\n");
3258 if (nic
->device_type
!= XFRAME_II_DEVICE
) {
3259 /* Reset XframeI only if critical error */
3260 if (val64
& (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
3261 MC_ERR_REG_MIRI_ECC_DB_ERR_1
)) {
3262 netif_stop_queue(dev
);
3263 schedule_work(&nic
->rst_timer_task
);
3264 nic
->mac_control
.stats_info
->sw_stat
.
3269 nic
->mac_control
.stats_info
->sw_stat
.
3274 /* In case of a serious error, the device will be Reset. */
3275 val64
= readq(&bar0
->serr_source
);
3276 if (val64
& SERR_SOURCE_ANY
) {
3277 nic
->mac_control
.stats_info
->sw_stat
.serious_err_cnt
++;
3278 DBG_PRINT(ERR_DBG
, "%s: Device indicates ", dev
->name
);
3279 DBG_PRINT(ERR_DBG
, "serious error %llx!!\n",
3280 (unsigned long long)val64
);
3281 netif_stop_queue(dev
);
3282 schedule_work(&nic
->rst_timer_task
);
3283 nic
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
3287 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3288 * Error occurs, the adapter will be recycled by disabling the
3289 * adapter enable bit and enabling it again after the device
3290 * becomes Quiescent.
3292 val64
= readq(&bar0
->pcc_err_reg
);
3293 writeq(val64
, &bar0
->pcc_err_reg
);
3294 if (val64
& PCC_FB_ECC_DB_ERR
) {
3295 u64 ac
= readq(&bar0
->adapter_control
);
3296 ac
&= ~(ADAPTER_CNTL_EN
);
3297 writeq(ac
, &bar0
->adapter_control
);
3298 ac
= readq(&bar0
->adapter_control
);
3299 schedule_work(&nic
->set_link_task
);
3301 /* Check for data parity error */
3302 val64
= readq(&bar0
->pic_int_status
);
3303 if (val64
& PIC_INT_GPIO
) {
3304 val64
= readq(&bar0
->gpio_int_reg
);
3305 if (val64
& GPIO_INT_REG_DP_ERR_INT
) {
3306 nic
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
3307 schedule_work(&nic
->rst_timer_task
);
3308 nic
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
3312 /* Check for ring full counter */
3313 if (nic
->device_type
& XFRAME_II_DEVICE
) {
3314 val64
= readq(&bar0
->ring_bump_counter1
);
3315 for (i
=0; i
<4; i
++) {
3316 cnt
= ( val64
& vBIT(0xFFFF,(i
*16),16));
3317 cnt
>>= 64 - ((i
+1)*16);
3318 nic
->mac_control
.stats_info
->sw_stat
.ring_full_cnt
3322 val64
= readq(&bar0
->ring_bump_counter2
);
3323 for (i
=0; i
<4; i
++) {
3324 cnt
= ( val64
& vBIT(0xFFFF,(i
*16),16));
3325 cnt
>>= 64 - ((i
+1)*16);
3326 nic
->mac_control
.stats_info
->sw_stat
.ring_full_cnt
3331 /* Other type of interrupts are not being handled now, TODO */
3335 * wait_for_cmd_complete - waits for a command to complete.
3336 * @sp : private member of the device structure, which is a pointer to the
3337 * s2io_nic structure.
3338 * Description: Function that waits for a command to Write into RMAC
3339 * ADDR DATA registers to be completed and returns either success or
3340 * error depending on whether the command was complete or not.
3342 * SUCCESS on success and FAILURE on failure.
3345 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3348 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3351 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3355 val64
= readq(addr
);
3356 if (bit_state
== S2IO_BIT_RESET
) {
3357 if (!(val64
& busy_bit
)) {
3362 if (!(val64
& busy_bit
)) {
3379 * check_pci_device_id - Checks if the device id is supported
3381 * Description: Function to check if the pci device id is supported by driver.
3382 * Return value: Actual device id if supported else PCI_ANY_ID
3384 static u16
check_pci_device_id(u16 id
)
3387 case PCI_DEVICE_ID_HERC_WIN
:
3388 case PCI_DEVICE_ID_HERC_UNI
:
3389 return XFRAME_II_DEVICE
;
3390 case PCI_DEVICE_ID_S2IO_UNI
:
3391 case PCI_DEVICE_ID_S2IO_WIN
:
3392 return XFRAME_I_DEVICE
;
3399 * s2io_reset - Resets the card.
3400 * @sp : private member of the device structure.
3401 * Description: Function to Reset the card. This function then also
3402 * restores the previously saved PCI configuration space registers as
3403 * the card reset also resets the configuration space.
3408 static void s2io_reset(struct s2io_nic
* sp
)
3410 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3415 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3416 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3418 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3419 __FUNCTION__
, sp
->dev
->name
);
3421 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3422 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3424 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3426 ret
= pci_set_power_state(sp
->pdev
, 3);
3428 ret
= pci_set_power_state(sp
->pdev
, 0);
3430 DBG_PRINT(ERR_DBG
,"%s PME based SW_Reset failed!\n",
3438 val64
= SW_RESET_ALL
;
3439 writeq(val64
, &bar0
->sw_reset
);
3441 if (strstr(sp
->product_name
, "CX4")) {
3445 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3447 /* Restore the PCI state saved during initialization. */
3448 pci_restore_state(sp
->pdev
);
3449 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3450 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3455 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3456 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __FUNCTION__
);
3459 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3463 /* Set swapper to enable I/O register access */
3464 s2io_set_swapper(sp
);
3466 /* Restore the MSIX table entries from local variables */
3467 restore_xmsi_data(sp
);
3469 /* Clear certain PCI/PCI-X fields after reset */
3470 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3471 /* Clear "detected parity error" bit */
3472 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3474 /* Clearing PCIX Ecc status register */
3475 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3477 /* Clearing PCI_STATUS error reflected here */
3478 writeq(BIT(62), &bar0
->txpic_int_reg
);
3481 /* Reset device statistics maintained by OS */
3482 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3484 up_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
;
3485 down_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
;
3486 up_time
= sp
->mac_control
.stats_info
->sw_stat
.link_up_time
;
3487 down_time
= sp
->mac_control
.stats_info
->sw_stat
.link_down_time
;
3488 reset_cnt
= sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
;
3489 mem_alloc_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
;
3490 mem_free_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_freed
;
3491 watchdog_cnt
= sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
;
3492 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3493 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
3494 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3495 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
= up_cnt
;
3496 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
= down_cnt
;
3497 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
= up_time
;
3498 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
= down_time
;
3499 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
= reset_cnt
;
3500 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
= mem_alloc_cnt
;
3501 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
= mem_free_cnt
;
3502 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
= watchdog_cnt
;
3504 /* SXE-002: Configure link and activity LED to turn it off */
3505 subid
= sp
->pdev
->subsystem_device
;
3506 if (((subid
& 0xFF) >= 0x07) &&
3507 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3508 val64
= readq(&bar0
->gpio_control
);
3509 val64
|= 0x0000800000000000ULL
;
3510 writeq(val64
, &bar0
->gpio_control
);
3511 val64
= 0x0411040400000000ULL
;
3512 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3516 * Clear spurious ECC interrupts that would have occured on
3517 * XFRAME II cards after reset.
3519 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3520 val64
= readq(&bar0
->pcc_err_reg
);
3521 writeq(val64
, &bar0
->pcc_err_reg
);
3524 /* restore the previously assigned mac address */
3525 s2io_set_mac_addr(sp
->dev
, (u8
*)&sp
->def_mac_addr
[0].mac_addr
);
3527 sp
->device_enabled_once
= FALSE
;
3531 * s2io_set_swapper - to set the swapper controle on the card
3532 * @sp : private member of the device structure,
3533 * pointer to the s2io_nic structure.
3534 * Description: Function to set the swapper control on the card
3535 * correctly depending on the 'endianness' of the system.
3537 * SUCCESS on success and FAILURE on failure.
3540 static int s2io_set_swapper(struct s2io_nic
* sp
)
3542 struct net_device
*dev
= sp
->dev
;
3543 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3544 u64 val64
, valt
, valr
;
3547 * Set proper endian settings and verify the same by reading
3548 * the PIF Feed-back register.
3551 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3552 if (val64
!= 0x0123456789ABCDEFULL
) {
3554 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3555 0x8100008181000081ULL
, /* FE=1, SE=0 */
3556 0x4200004242000042ULL
, /* FE=0, SE=1 */
3557 0}; /* FE=0, SE=0 */
3560 writeq(value
[i
], &bar0
->swapper_ctrl
);
3561 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3562 if (val64
== 0x0123456789ABCDEFULL
)
3567 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3569 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3570 (unsigned long long) val64
);
3575 valr
= readq(&bar0
->swapper_ctrl
);
3578 valt
= 0x0123456789ABCDEFULL
;
3579 writeq(valt
, &bar0
->xmsi_address
);
3580 val64
= readq(&bar0
->xmsi_address
);
3584 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3585 0x0081810000818100ULL
, /* FE=1, SE=0 */
3586 0x0042420000424200ULL
, /* FE=0, SE=1 */
3587 0}; /* FE=0, SE=0 */
3590 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3591 writeq(valt
, &bar0
->xmsi_address
);
3592 val64
= readq(&bar0
->xmsi_address
);
3598 unsigned long long x
= val64
;
3599 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3600 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3604 val64
= readq(&bar0
->swapper_ctrl
);
3605 val64
&= 0xFFFF000000000000ULL
;
3609 * The device by default set to a big endian format, so a
3610 * big endian driver need not set anything.
3612 val64
|= (SWAPPER_CTRL_TXP_FE
|
3613 SWAPPER_CTRL_TXP_SE
|
3614 SWAPPER_CTRL_TXD_R_FE
|
3615 SWAPPER_CTRL_TXD_W_FE
|
3616 SWAPPER_CTRL_TXF_R_FE
|
3617 SWAPPER_CTRL_RXD_R_FE
|
3618 SWAPPER_CTRL_RXD_W_FE
|
3619 SWAPPER_CTRL_RXF_W_FE
|
3620 SWAPPER_CTRL_XMSI_FE
|
3621 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3622 if (sp
->intr_type
== INTA
)
3623 val64
|= SWAPPER_CTRL_XMSI_SE
;
3624 writeq(val64
, &bar0
->swapper_ctrl
);
3627 * Initially we enable all bits to make it accessible by the
3628 * driver, then we selectively enable only those bits that
3631 val64
|= (SWAPPER_CTRL_TXP_FE
|
3632 SWAPPER_CTRL_TXP_SE
|
3633 SWAPPER_CTRL_TXD_R_FE
|
3634 SWAPPER_CTRL_TXD_R_SE
|
3635 SWAPPER_CTRL_TXD_W_FE
|
3636 SWAPPER_CTRL_TXD_W_SE
|
3637 SWAPPER_CTRL_TXF_R_FE
|
3638 SWAPPER_CTRL_RXD_R_FE
|
3639 SWAPPER_CTRL_RXD_R_SE
|
3640 SWAPPER_CTRL_RXD_W_FE
|
3641 SWAPPER_CTRL_RXD_W_SE
|
3642 SWAPPER_CTRL_RXF_W_FE
|
3643 SWAPPER_CTRL_XMSI_FE
|
3644 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3645 if (sp
->intr_type
== INTA
)
3646 val64
|= SWAPPER_CTRL_XMSI_SE
;
3647 writeq(val64
, &bar0
->swapper_ctrl
);
3649 val64
= readq(&bar0
->swapper_ctrl
);
3652 * Verifying if endian settings are accurate by reading a
3653 * feedback register.
3655 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3656 if (val64
!= 0x0123456789ABCDEFULL
) {
3657 /* Endian settings are incorrect, calls for another dekko. */
3658 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3660 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3661 (unsigned long long) val64
);
3668 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3670 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3672 int ret
= 0, cnt
= 0;
3675 val64
= readq(&bar0
->xmsi_access
);
3676 if (!(val64
& BIT(15)))
3682 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3689 static void restore_xmsi_data(struct s2io_nic
*nic
)
3691 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3695 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3696 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3697 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3698 val64
= (BIT(7) | BIT(15) | vBIT(i
, 26, 6));
3699 writeq(val64
, &bar0
->xmsi_access
);
3700 if (wait_for_msix_trans(nic
, i
)) {
3701 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3707 static void store_xmsi_data(struct s2io_nic
*nic
)
3709 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3710 u64 val64
, addr
, data
;
3713 /* Store and display */
3714 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3715 val64
= (BIT(15) | vBIT(i
, 26, 6));
3716 writeq(val64
, &bar0
->xmsi_access
);
3717 if (wait_for_msix_trans(nic
, i
)) {
3718 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3721 addr
= readq(&bar0
->xmsi_address
);
3722 data
= readq(&bar0
->xmsi_data
);
3724 nic
->msix_info
[i
].addr
= addr
;
3725 nic
->msix_info
[i
].data
= data
;
3730 int s2io_enable_msi(struct s2io_nic
*nic
)
3732 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3733 u16 msi_ctrl
, msg_val
;
3734 struct config_param
*config
= &nic
->config
;
3735 struct net_device
*dev
= nic
->dev
;
3736 u64 val64
, tx_mat
, rx_mat
;
3739 val64
= readq(&bar0
->pic_control
);
3741 writeq(val64
, &bar0
->pic_control
);
3743 err
= pci_enable_msi(nic
->pdev
);
3745 DBG_PRINT(ERR_DBG
, "%s: enabling MSI failed\n",
3751 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3752 * for interrupt handling.
3754 pci_read_config_word(nic
->pdev
, 0x4c, &msg_val
);
3756 pci_write_config_word(nic
->pdev
, 0x4c, msg_val
);
3757 pci_read_config_word(nic
->pdev
, 0x4c, &msg_val
);
3759 pci_read_config_word(nic
->pdev
, 0x42, &msi_ctrl
);
3761 pci_write_config_word(nic
->pdev
, 0x42, msi_ctrl
);
3763 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3764 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3765 for (i
=0; i
<config
->tx_fifo_num
; i
++) {
3766 tx_mat
|= TX_MAT_SET(i
, 1);
3768 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3770 rx_mat
= readq(&bar0
->rx_mat
);
3771 for (i
=0; i
<config
->rx_ring_num
; i
++) {
3772 rx_mat
|= RX_MAT_SET(i
, 1);
3774 writeq(rx_mat
, &bar0
->rx_mat
);
3776 dev
->irq
= nic
->pdev
->irq
;
3780 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3782 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3784 u16 msi_control
; /* Temp variable */
3785 int ret
, i
, j
, msix_indx
= 1;
3787 nic
->entries
= kmalloc(MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
),
3789 if (nic
->entries
== NULL
) {
3790 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n", \
3792 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3795 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3796 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3797 memset(nic
->entries
, 0,MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3800 kmalloc(MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
),
3802 if (nic
->s2io_entries
== NULL
) {
3803 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3805 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3806 kfree(nic
->entries
);
3807 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3808 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3811 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3812 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3813 memset(nic
->s2io_entries
, 0,
3814 MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3816 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3817 nic
->entries
[i
].entry
= i
;
3818 nic
->s2io_entries
[i
].entry
= i
;
3819 nic
->s2io_entries
[i
].arg
= NULL
;
3820 nic
->s2io_entries
[i
].in_use
= 0;
3823 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3824 for (i
=0; i
<nic
->config
.tx_fifo_num
; i
++, msix_indx
++) {
3825 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3826 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.fifos
[i
];
3827 nic
->s2io_entries
[msix_indx
].type
= MSIX_FIFO_TYPE
;
3828 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3830 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3832 if (!nic
->config
.bimodal
) {
3833 rx_mat
= readq(&bar0
->rx_mat
);
3834 for (j
=0; j
<nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3835 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3836 nic
->s2io_entries
[msix_indx
].arg
3837 = &nic
->mac_control
.rings
[j
];
3838 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3839 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3841 writeq(rx_mat
, &bar0
->rx_mat
);
3843 tx_mat
= readq(&bar0
->tx_mat0_n
[7]);
3844 for (j
=0; j
<nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3845 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3846 nic
->s2io_entries
[msix_indx
].arg
3847 = &nic
->mac_control
.rings
[j
];
3848 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3849 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3851 writeq(tx_mat
, &bar0
->tx_mat0_n
[7]);
3854 nic
->avail_msix_vectors
= 0;
3855 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, MAX_REQUESTED_MSI_X
);
3856 /* We fail init if error or we get less vectors than min required */
3857 if (ret
>= (nic
->config
.tx_fifo_num
+ nic
->config
.rx_ring_num
+ 1)) {
3858 nic
->avail_msix_vectors
= ret
;
3859 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, ret
);
3862 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3863 kfree(nic
->entries
);
3864 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3865 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3866 kfree(nic
->s2io_entries
);
3867 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3868 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3869 nic
->entries
= NULL
;
3870 nic
->s2io_entries
= NULL
;
3871 nic
->avail_msix_vectors
= 0;
3874 if (!nic
->avail_msix_vectors
)
3875 nic
->avail_msix_vectors
= MAX_REQUESTED_MSI_X
;
3878 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3879 * in the herc NIC. (Temp change, needs to be removed later)
3881 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3882 msi_control
|= 0x1; /* Enable MSI */
3883 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3888 /* ********************************************************* *
3889 * Functions defined below concern the OS part of the driver *
3890 * ********************************************************* */
3893 * s2io_open - open entry point of the driver
3894 * @dev : pointer to the device structure.
3896 * This function is the open entry point of the driver. It mainly calls a
3897 * function to allocate Rx buffers and inserts them into the buffer
3898 * descriptors and then enables the Rx part of the NIC.
3900 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3904 static int s2io_open(struct net_device
*dev
)
3906 struct s2io_nic
*sp
= dev
->priv
;
3910 * Make sure you have link off by default every time
3911 * Nic is initialized
3913 netif_carrier_off(dev
);
3914 sp
->last_link_state
= 0;
3916 /* Initialize H/W and enable interrupts */
3917 err
= s2io_card_up(sp
);
3919 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3921 goto hw_init_failed
;
3924 if (s2io_set_mac_addr(dev
, dev
->dev_addr
) == FAILURE
) {
3925 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3928 goto hw_init_failed
;
3931 netif_start_queue(dev
);
3935 if (sp
->intr_type
== MSI_X
) {
3938 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
3939 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3941 if (sp
->s2io_entries
) {
3942 kfree(sp
->s2io_entries
);
3943 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
3944 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3951 * s2io_close -close entry point of the driver
3952 * @dev : device pointer.
3954 * This is the stop entry point of the driver. It needs to undo exactly
3955 * whatever was done by the open entry point,thus it's usually referred to
3956 * as the close function.Among other things this function mainly stops the
3957 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3959 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3963 static int s2io_close(struct net_device
*dev
)
3965 struct s2io_nic
*sp
= dev
->priv
;
3967 netif_stop_queue(dev
);
3968 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3971 sp
->device_close_flag
= TRUE
; /* Device is shut down. */
3976 * s2io_xmit - Tx entry point of te driver
3977 * @skb : the socket buffer containing the Tx data.
3978 * @dev : device pointer.
3980 * This function is the Tx entry point of the driver. S2IO NIC supports
3981 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3982 * NOTE: when device cant queue the pkt,just the trans_start variable will
3985 * 0 on success & 1 on failure.
3988 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
3990 struct s2io_nic
*sp
= dev
->priv
;
3991 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
3994 struct TxFIFO_element __iomem
*tx_fifo
;
3995 unsigned long flags
;
3997 int vlan_priority
= 0;
3998 struct mac_info
*mac_control
;
3999 struct config_param
*config
;
4002 mac_control
= &sp
->mac_control
;
4003 config
= &sp
->config
;
4005 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4007 if (unlikely(skb
->len
<= 0)) {
4008 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
4009 dev_kfree_skb_any(skb
);
4013 spin_lock_irqsave(&sp
->tx_lock
, flags
);
4014 if (atomic_read(&sp
->card_state
) == CARD_DOWN
) {
4015 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4017 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
4023 /* Get Fifo number to Transmit based on vlan priority */
4024 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4025 vlan_tag
= vlan_tx_tag_get(skb
);
4026 vlan_priority
= vlan_tag
>> 13;
4027 queue
= config
->fifo_mapping
[vlan_priority
];
4030 put_off
= (u16
) mac_control
->fifos
[queue
].tx_curr_put_info
.offset
;
4031 get_off
= (u16
) mac_control
->fifos
[queue
].tx_curr_get_info
.offset
;
4032 txdp
= (struct TxD
*) mac_control
->fifos
[queue
].list_info
[put_off
].
4035 queue_len
= mac_control
->fifos
[queue
].tx_curr_put_info
.fifo_len
+ 1;
4036 /* Avoid "put" pointer going beyond "get" pointer */
4037 if (txdp
->Host_Control
||
4038 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4039 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4040 netif_stop_queue(dev
);
4042 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
4046 offload_type
= s2io_offload_type(skb
);
4047 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4048 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4049 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4051 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4053 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
4056 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4057 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4058 txdp
->Control_2
|= config
->tx_intr_type
;
4060 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4061 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4062 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4065 frg_len
= skb
->len
- skb
->data_len
;
4066 if (offload_type
== SKB_GSO_UDP
) {
4069 ufo_size
= s2io_udp_mss(skb
);
4071 txdp
->Control_1
|= TXD_UFO_EN
;
4072 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4073 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4075 sp
->ufo_in_band_v
[put_off
] =
4076 (u64
)skb_shinfo(skb
)->ip6_frag_id
;
4078 sp
->ufo_in_band_v
[put_off
] =
4079 (u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4081 txdp
->Host_Control
= (unsigned long)sp
->ufo_in_band_v
;
4082 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4084 sizeof(u64
), PCI_DMA_TODEVICE
);
4088 txdp
->Buffer_Pointer
= pci_map_single
4089 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
4090 txdp
->Host_Control
= (unsigned long) skb
;
4091 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4092 if (offload_type
== SKB_GSO_UDP
)
4093 txdp
->Control_1
|= TXD_UFO_EN
;
4095 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4096 /* For fragmented SKB. */
4097 for (i
= 0; i
< frg_cnt
; i
++) {
4098 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4099 /* A '0' length fragment will be ignored */
4103 txdp
->Buffer_Pointer
= (u64
) pci_map_page
4104 (sp
->pdev
, frag
->page
, frag
->page_offset
,
4105 frag
->size
, PCI_DMA_TODEVICE
);
4106 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4107 if (offload_type
== SKB_GSO_UDP
)
4108 txdp
->Control_1
|= TXD_UFO_EN
;
4110 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4112 if (offload_type
== SKB_GSO_UDP
)
4113 frg_cnt
++; /* as Txd0 was used for inband header */
4115 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4116 val64
= mac_control
->fifos
[queue
].list_info
[put_off
].list_phy_addr
;
4117 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4119 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4122 val64
|= TX_FIFO_SPECIAL_FUNC
;
4124 writeq(val64
, &tx_fifo
->List_Control
);
4129 if (put_off
== mac_control
->fifos
[queue
].tx_curr_put_info
.fifo_len
+ 1)
4131 mac_control
->fifos
[queue
].tx_curr_put_info
.offset
= put_off
;
4133 /* Avoid "put" pointer going beyond "get" pointer */
4134 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4135 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
4137 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4139 netif_stop_queue(dev
);
4141 mac_control
->stats_info
->sw_stat
.mem_allocated
+= skb
->truesize
;
4142 dev
->trans_start
= jiffies
;
4143 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
4149 s2io_alarm_handle(unsigned long data
)
4151 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4153 alarm_intr_handler(sp
);
4154 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4157 static int s2io_chk_rx_buffers(struct s2io_nic
*sp
, int rng_n
)
4159 int rxb_size
, level
;
4162 rxb_size
= atomic_read(&sp
->rx_bufs_left
[rng_n
]);
4163 level
= rx_buffer_level(sp
, rxb_size
, rng_n
);
4165 if ((level
== PANIC
) && (!TASKLET_IN_USE
)) {
4167 DBG_PRINT(INTR_DBG
, "%s: Rx BD hit ", __FUNCTION__
);
4168 DBG_PRINT(INTR_DBG
, "PANIC levels\n");
4169 if ((ret
= fill_rx_buffers(sp
, rng_n
)) == -ENOMEM
) {
4170 DBG_PRINT(INFO_DBG
, "Out of memory in %s",
4172 clear_bit(0, (&sp
->tasklet_status
));
4175 clear_bit(0, (&sp
->tasklet_status
));
4176 } else if (level
== LOW
)
4177 tasklet_schedule(&sp
->task
);
4179 } else if (fill_rx_buffers(sp
, rng_n
) == -ENOMEM
) {
4180 DBG_PRINT(INFO_DBG
, "%s:Out of memory", sp
->dev
->name
);
4181 DBG_PRINT(INFO_DBG
, " in Rx Intr!!\n");
4186 static irqreturn_t
s2io_msi_handle(int irq
, void *dev_id
)
4188 struct net_device
*dev
= (struct net_device
*) dev_id
;
4189 struct s2io_nic
*sp
= dev
->priv
;
4191 struct mac_info
*mac_control
;
4192 struct config_param
*config
;
4194 atomic_inc(&sp
->isr_cnt
);
4195 mac_control
= &sp
->mac_control
;
4196 config
= &sp
->config
;
4197 DBG_PRINT(INTR_DBG
, "%s: MSI handler\n", __FUNCTION__
);
4199 /* If Intr is because of Rx Traffic */
4200 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4201 rx_intr_handler(&mac_control
->rings
[i
]);
4203 /* If Intr is because of Tx Traffic */
4204 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4205 tx_intr_handler(&mac_control
->fifos
[i
]);
4208 * If the Rx buffer count is below the panic threshold then
4209 * reallocate the buffers from the interrupt handler itself,
4210 * else schedule a tasklet to reallocate the buffers.
4212 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4213 s2io_chk_rx_buffers(sp
, i
);
4215 atomic_dec(&sp
->isr_cnt
);
4219 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4221 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4222 struct s2io_nic
*sp
= ring
->nic
;
4224 atomic_inc(&sp
->isr_cnt
);
4226 rx_intr_handler(ring
);
4227 s2io_chk_rx_buffers(sp
, ring
->ring_no
);
4229 atomic_dec(&sp
->isr_cnt
);
4233 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4235 struct fifo_info
*fifo
= (struct fifo_info
*)dev_id
;
4236 struct s2io_nic
*sp
= fifo
->nic
;
4238 atomic_inc(&sp
->isr_cnt
);
4239 tx_intr_handler(fifo
);
4240 atomic_dec(&sp
->isr_cnt
);
4243 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4245 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4248 val64
= readq(&bar0
->pic_int_status
);
4249 if (val64
& PIC_INT_GPIO
) {
4250 val64
= readq(&bar0
->gpio_int_reg
);
4251 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4252 (val64
& GPIO_INT_REG_LINK_UP
)) {
4254 * This is unstable state so clear both up/down
4255 * interrupt and adapter to re-evaluate the link state.
4257 val64
|= GPIO_INT_REG_LINK_DOWN
;
4258 val64
|= GPIO_INT_REG_LINK_UP
;
4259 writeq(val64
, &bar0
->gpio_int_reg
);
4260 val64
= readq(&bar0
->gpio_int_mask
);
4261 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4262 GPIO_INT_MASK_LINK_DOWN
);
4263 writeq(val64
, &bar0
->gpio_int_mask
);
4265 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4266 val64
= readq(&bar0
->adapter_status
);
4267 /* Enable Adapter */
4268 val64
= readq(&bar0
->adapter_control
);
4269 val64
|= ADAPTER_CNTL_EN
;
4270 writeq(val64
, &bar0
->adapter_control
);
4271 val64
|= ADAPTER_LED_ON
;
4272 writeq(val64
, &bar0
->adapter_control
);
4273 if (!sp
->device_enabled_once
)
4274 sp
->device_enabled_once
= 1;
4276 s2io_link(sp
, LINK_UP
);
4278 * unmask link down interrupt and mask link-up
4281 val64
= readq(&bar0
->gpio_int_mask
);
4282 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4283 val64
|= GPIO_INT_MASK_LINK_UP
;
4284 writeq(val64
, &bar0
->gpio_int_mask
);
4286 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4287 val64
= readq(&bar0
->adapter_status
);
4288 s2io_link(sp
, LINK_DOWN
);
4289 /* Link is down so unmaks link up interrupt */
4290 val64
= readq(&bar0
->gpio_int_mask
);
4291 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4292 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4293 writeq(val64
, &bar0
->gpio_int_mask
);
4296 val64
= readq(&bar0
->adapter_control
);
4297 val64
= val64
&(~ADAPTER_LED_ON
);
4298 writeq(val64
, &bar0
->adapter_control
);
4301 val64
= readq(&bar0
->gpio_int_mask
);
4305 * s2io_isr - ISR handler of the device .
4306 * @irq: the irq of the device.
4307 * @dev_id: a void pointer to the dev structure of the NIC.
4308 * Description: This function is the ISR handler of the device. It
4309 * identifies the reason for the interrupt and calls the relevant
4310 * service routines. As a contongency measure, this ISR allocates the
4311 * recv buffers, if their numbers are below the panic value which is
4312 * presently set to 25% of the original number of rcv buffers allocated.
4314 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4315 * IRQ_NONE: will be returned if interrupt is not from our device
4317 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4319 struct net_device
*dev
= (struct net_device
*) dev_id
;
4320 struct s2io_nic
*sp
= dev
->priv
;
4321 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4324 struct mac_info
*mac_control
;
4325 struct config_param
*config
;
4327 atomic_inc(&sp
->isr_cnt
);
4328 mac_control
= &sp
->mac_control
;
4329 config
= &sp
->config
;
4332 * Identify the cause for interrupt and call the appropriate
4333 * interrupt handler. Causes for the interrupt could be;
4337 * 4. Error in any functional blocks of the NIC.
4339 reason
= readq(&bar0
->general_int_status
);
4342 /* The interrupt was not raised by us. */
4343 atomic_dec(&sp
->isr_cnt
);
4346 else if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4347 /* Disable device and get out */
4348 atomic_dec(&sp
->isr_cnt
);
4353 if (reason
& GEN_INTR_RXTRAFFIC
) {
4354 if ( likely ( netif_rx_schedule_prep(dev
)) ) {
4355 __netif_rx_schedule(dev
);
4356 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4359 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4363 * Rx handler is called by default, without checking for the
4364 * cause of interrupt.
4365 * rx_traffic_int reg is an R1 register, writing all 1's
4366 * will ensure that the actual interrupt causing bit get's
4367 * cleared and hence a read can be avoided.
4369 if (reason
& GEN_INTR_RXTRAFFIC
)
4370 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4372 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4373 rx_intr_handler(&mac_control
->rings
[i
]);
4378 * tx_traffic_int reg is an R1 register, writing all 1's
4379 * will ensure that the actual interrupt causing bit get's
4380 * cleared and hence a read can be avoided.
4382 if (reason
& GEN_INTR_TXTRAFFIC
)
4383 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4385 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4386 tx_intr_handler(&mac_control
->fifos
[i
]);
4388 if (reason
& GEN_INTR_TXPIC
)
4389 s2io_txpic_intr_handle(sp
);
4391 * If the Rx buffer count is below the panic threshold then
4392 * reallocate the buffers from the interrupt handler itself,
4393 * else schedule a tasklet to reallocate the buffers.
4396 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4397 s2io_chk_rx_buffers(sp
, i
);
4400 writeq(0, &bar0
->general_int_mask
);
4401 readl(&bar0
->general_int_status
);
4403 atomic_dec(&sp
->isr_cnt
);
4410 static void s2io_updt_stats(struct s2io_nic
*sp
)
4412 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4416 if (atomic_read(&sp
->card_state
) == CARD_UP
) {
4417 /* Apprx 30us on a 133 MHz bus */
4418 val64
= SET_UPDT_CLICKS(10) |
4419 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4420 writeq(val64
, &bar0
->stat_cfg
);
4423 val64
= readq(&bar0
->stat_cfg
);
4424 if (!(val64
& BIT(0)))
4428 break; /* Updt failed */
4434 * s2io_get_stats - Updates the device statistics structure.
4435 * @dev : pointer to the device structure.
4437 * This function updates the device statistics structure in the s2io_nic
4438 * structure and returns a pointer to the same.
4440 * pointer to the updated net_device_stats structure.
4443 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4445 struct s2io_nic
*sp
= dev
->priv
;
4446 struct mac_info
*mac_control
;
4447 struct config_param
*config
;
4450 mac_control
= &sp
->mac_control
;
4451 config
= &sp
->config
;
4453 /* Configure Stats for immediate updt */
4454 s2io_updt_stats(sp
);
4456 sp
->stats
.tx_packets
=
4457 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4458 sp
->stats
.tx_errors
=
4459 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4460 sp
->stats
.rx_errors
=
4461 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4462 sp
->stats
.multicast
=
4463 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4464 sp
->stats
.rx_length_errors
=
4465 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4467 return (&sp
->stats
);
4471 * s2io_set_multicast - entry point for multicast address enable/disable.
4472 * @dev : pointer to the device structure
4474 * This function is a driver entry point which gets called by the kernel
4475 * whenever multicast addresses must be enabled/disabled. This also gets
4476 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4477 * determine, if multicast address must be enabled or if promiscuous mode
4478 * is to be disabled etc.
4483 static void s2io_set_multicast(struct net_device
*dev
)
4486 struct dev_mc_list
*mclist
;
4487 struct s2io_nic
*sp
= dev
->priv
;
4488 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4489 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4491 u64 dis_addr
= 0xffffffffffffULL
, mac_addr
= 0;
4494 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4495 /* Enable all Multicast addresses */
4496 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4497 &bar0
->rmac_addr_data0_mem
);
4498 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4499 &bar0
->rmac_addr_data1_mem
);
4500 val64
= RMAC_ADDR_CMD_MEM_WE
|
4501 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4502 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET
);
4503 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4504 /* Wait till command completes */
4505 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4506 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4510 sp
->all_multi_pos
= MAC_MC_ALL_MC_ADDR_OFFSET
;
4511 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4512 /* Disable all Multicast addresses */
4513 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4514 &bar0
->rmac_addr_data0_mem
);
4515 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4516 &bar0
->rmac_addr_data1_mem
);
4517 val64
= RMAC_ADDR_CMD_MEM_WE
|
4518 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4519 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4520 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4521 /* Wait till command completes */
4522 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4523 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4527 sp
->all_multi_pos
= 0;
4530 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4531 /* Put the NIC into promiscuous mode */
4532 add
= &bar0
->mac_cfg
;
4533 val64
= readq(&bar0
->mac_cfg
);
4534 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4536 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4537 writel((u32
) val64
, add
);
4538 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4539 writel((u32
) (val64
>> 32), (add
+ 4));
4541 if (vlan_tag_strip
!= 1) {
4542 val64
= readq(&bar0
->rx_pa_cfg
);
4543 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
4544 writeq(val64
, &bar0
->rx_pa_cfg
);
4545 vlan_strip_flag
= 0;
4548 val64
= readq(&bar0
->mac_cfg
);
4549 sp
->promisc_flg
= 1;
4550 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4552 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
4553 /* Remove the NIC from promiscuous mode */
4554 add
= &bar0
->mac_cfg
;
4555 val64
= readq(&bar0
->mac_cfg
);
4556 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
4558 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4559 writel((u32
) val64
, add
);
4560 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4561 writel((u32
) (val64
>> 32), (add
+ 4));
4563 if (vlan_tag_strip
!= 0) {
4564 val64
= readq(&bar0
->rx_pa_cfg
);
4565 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
4566 writeq(val64
, &bar0
->rx_pa_cfg
);
4567 vlan_strip_flag
= 1;
4570 val64
= readq(&bar0
->mac_cfg
);
4571 sp
->promisc_flg
= 0;
4572 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
4576 /* Update individual M_CAST address list */
4577 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
4579 (MAX_ADDRS_SUPPORTED
- MAC_MC_ADDR_START_OFFSET
- 1)) {
4580 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
4582 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
4583 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
4587 prev_cnt
= sp
->mc_addr_count
;
4588 sp
->mc_addr_count
= dev
->mc_count
;
4590 /* Clear out the previous list of Mc in the H/W. */
4591 for (i
= 0; i
< prev_cnt
; i
++) {
4592 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4593 &bar0
->rmac_addr_data0_mem
);
4594 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4595 &bar0
->rmac_addr_data1_mem
);
4596 val64
= RMAC_ADDR_CMD_MEM_WE
|
4597 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4598 RMAC_ADDR_CMD_MEM_OFFSET
4599 (MAC_MC_ADDR_START_OFFSET
+ i
);
4600 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4602 /* Wait for command completes */
4603 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4604 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4606 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4608 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4613 /* Create the new Rx filter list and update the same in H/W. */
4614 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
4615 i
++, mclist
= mclist
->next
) {
4616 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
4619 for (j
= 0; j
< ETH_ALEN
; j
++) {
4620 mac_addr
|= mclist
->dmi_addr
[j
];
4624 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
4625 &bar0
->rmac_addr_data0_mem
);
4626 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4627 &bar0
->rmac_addr_data1_mem
);
4628 val64
= RMAC_ADDR_CMD_MEM_WE
|
4629 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4630 RMAC_ADDR_CMD_MEM_OFFSET
4631 (i
+ MAC_MC_ADDR_START_OFFSET
);
4632 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4634 /* Wait for command completes */
4635 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4636 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4638 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4640 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4648 * s2io_set_mac_addr - Programs the Xframe mac address
4649 * @dev : pointer to the device structure.
4650 * @addr: a uchar pointer to the new mac address which is to be set.
4651 * Description : This procedure will program the Xframe to receive
4652 * frames with new Mac Address
4653 * Return value: SUCCESS on success and an appropriate (-)ve integer
4654 * as defined in errno.h file on failure.
4657 static int s2io_set_mac_addr(struct net_device
*dev
, u8
* addr
)
4659 struct s2io_nic
*sp
= dev
->priv
;
4660 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4661 register u64 val64
, mac_addr
= 0;
4663 u64 old_mac_addr
= 0;
4666 * Set the new MAC address as the new unicast filter and reflect this
4667 * change on the device address registered with the OS. It will be
4670 for (i
= 0; i
< ETH_ALEN
; i
++) {
4672 mac_addr
|= addr
[i
];
4674 old_mac_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
4680 /* Update the internal structure with this new mac address */
4681 if(mac_addr
!= old_mac_addr
) {
4682 memset(sp
->def_mac_addr
[0].mac_addr
, 0, sizeof(ETH_ALEN
));
4683 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_addr
);
4684 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_addr
>> 8);
4685 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_addr
>> 16);
4686 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_addr
>> 24);
4687 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_addr
>> 32);
4688 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_addr
>> 40);
4691 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
4692 &bar0
->rmac_addr_data0_mem
);
4695 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4696 RMAC_ADDR_CMD_MEM_OFFSET(0);
4697 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4698 /* Wait till command completes */
4699 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4700 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
)) {
4701 DBG_PRINT(ERR_DBG
, "%s: set_mac_addr failed\n", dev
->name
);
4709 * s2io_ethtool_sset - Sets different link parameters.
4710 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4711 * @info: pointer to the structure with parameters given by ethtool to set
4714 * The function sets different link parameters provided by the user onto
4720 static int s2io_ethtool_sset(struct net_device
*dev
,
4721 struct ethtool_cmd
*info
)
4723 struct s2io_nic
*sp
= dev
->priv
;
4724 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
4725 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
4728 s2io_close(sp
->dev
);
4736 * s2io_ethtol_gset - Return link specific information.
4737 * @sp : private member of the device structure, pointer to the
4738 * s2io_nic structure.
4739 * @info : pointer to the structure with parameters given by ethtool
4740 * to return link information.
4742 * Returns link specific information like speed, duplex etc.. to ethtool.
4744 * return 0 on success.
4747 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
4749 struct s2io_nic
*sp
= dev
->priv
;
4750 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
4751 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
4752 info
->port
= PORT_FIBRE
;
4753 /* info->transceiver?? TODO */
4755 if (netif_carrier_ok(sp
->dev
)) {
4756 info
->speed
= 10000;
4757 info
->duplex
= DUPLEX_FULL
;
4763 info
->autoneg
= AUTONEG_DISABLE
;
4768 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4769 * @sp : private member of the device structure, which is a pointer to the
4770 * s2io_nic structure.
4771 * @info : pointer to the structure with parameters given by ethtool to
4772 * return driver information.
4774 * Returns driver specefic information like name, version etc.. to ethtool.
4779 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
4780 struct ethtool_drvinfo
*info
)
4782 struct s2io_nic
*sp
= dev
->priv
;
4784 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
4785 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
4786 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
4787 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
4788 info
->regdump_len
= XENA_REG_SPACE
;
4789 info
->eedump_len
= XENA_EEPROM_SPACE
;
4790 info
->testinfo_len
= S2IO_TEST_LEN
;
4792 if (sp
->device_type
== XFRAME_I_DEVICE
)
4793 info
->n_stats
= XFRAME_I_STAT_LEN
;
4795 info
->n_stats
= XFRAME_II_STAT_LEN
;
4799 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4800 * @sp: private member of the device structure, which is a pointer to the
4801 * s2io_nic structure.
4802 * @regs : pointer to the structure with parameters given by ethtool for
4803 * dumping the registers.
4804 * @reg_space: The input argumnet into which all the registers are dumped.
4806 * Dumps the entire register space of xFrame NIC into the user given
4812 static void s2io_ethtool_gregs(struct net_device
*dev
,
4813 struct ethtool_regs
*regs
, void *space
)
4817 u8
*reg_space
= (u8
*) space
;
4818 struct s2io_nic
*sp
= dev
->priv
;
4820 regs
->len
= XENA_REG_SPACE
;
4821 regs
->version
= sp
->pdev
->subsystem_device
;
4823 for (i
= 0; i
< regs
->len
; i
+= 8) {
4824 reg
= readq(sp
->bar0
+ i
);
4825 memcpy((reg_space
+ i
), ®
, 8);
4830 * s2io_phy_id - timer function that alternates adapter LED.
4831 * @data : address of the private member of the device structure, which
4832 * is a pointer to the s2io_nic structure, provided as an u32.
4833 * Description: This is actually the timer function that alternates the
4834 * adapter LED bit of the adapter control bit to set/reset every time on
4835 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4836 * once every second.
4838 static void s2io_phy_id(unsigned long data
)
4840 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
4841 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4845 subid
= sp
->pdev
->subsystem_device
;
4846 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
4847 ((subid
& 0xFF) >= 0x07)) {
4848 val64
= readq(&bar0
->gpio_control
);
4849 val64
^= GPIO_CTRL_GPIO_0
;
4850 writeq(val64
, &bar0
->gpio_control
);
4852 val64
= readq(&bar0
->adapter_control
);
4853 val64
^= ADAPTER_LED_ON
;
4854 writeq(val64
, &bar0
->adapter_control
);
4857 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
4861 * s2io_ethtool_idnic - To physically identify the nic on the system.
4862 * @sp : private member of the device structure, which is a pointer to the
4863 * s2io_nic structure.
4864 * @id : pointer to the structure with identification parameters given by
4866 * Description: Used to physically identify the NIC on the system.
4867 * The Link LED will blink for a time specified by the user for
4869 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4870 * identification is possible only if it's link is up.
4872 * int , returns 0 on success
4875 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
4877 u64 val64
= 0, last_gpio_ctrl_val
;
4878 struct s2io_nic
*sp
= dev
->priv
;
4879 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4882 subid
= sp
->pdev
->subsystem_device
;
4883 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
4884 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
4885 ((subid
& 0xFF) < 0x07)) {
4886 val64
= readq(&bar0
->adapter_control
);
4887 if (!(val64
& ADAPTER_CNTL_EN
)) {
4889 "Adapter Link down, cannot blink LED\n");
4893 if (sp
->id_timer
.function
== NULL
) {
4894 init_timer(&sp
->id_timer
);
4895 sp
->id_timer
.function
= s2io_phy_id
;
4896 sp
->id_timer
.data
= (unsigned long) sp
;
4898 mod_timer(&sp
->id_timer
, jiffies
);
4900 msleep_interruptible(data
* HZ
);
4902 msleep_interruptible(MAX_FLICKER_TIME
);
4903 del_timer_sync(&sp
->id_timer
);
4905 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
4906 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
4907 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
4913 static void s2io_ethtool_gringparam(struct net_device
*dev
,
4914 struct ethtool_ringparam
*ering
)
4916 struct s2io_nic
*sp
= dev
->priv
;
4917 int i
,tx_desc_count
=0,rx_desc_count
=0;
4919 if (sp
->rxd_mode
== RXD_MODE_1
)
4920 ering
->rx_max_pending
= MAX_RX_DESC_1
;
4921 else if (sp
->rxd_mode
== RXD_MODE_3B
)
4922 ering
->rx_max_pending
= MAX_RX_DESC_2
;
4923 else if (sp
->rxd_mode
== RXD_MODE_3A
)
4924 ering
->rx_max_pending
= MAX_RX_DESC_3
;
4926 ering
->tx_max_pending
= MAX_TX_DESC
;
4927 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++) {
4928 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
4930 DBG_PRINT(INFO_DBG
,"\nmax txds : %d\n",sp
->config
.max_txds
);
4931 ering
->tx_pending
= tx_desc_count
;
4933 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++) {
4934 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
4936 ering
->rx_pending
= rx_desc_count
;
4938 ering
->rx_mini_max_pending
= 0;
4939 ering
->rx_mini_pending
= 0;
4940 if(sp
->rxd_mode
== RXD_MODE_1
)
4941 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
4942 else if (sp
->rxd_mode
== RXD_MODE_3B
)
4943 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
4944 ering
->rx_jumbo_pending
= rx_desc_count
;
4948 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4949 * @sp : private member of the device structure, which is a pointer to the
4950 * s2io_nic structure.
4951 * @ep : pointer to the structure with pause parameters given by ethtool.
4953 * Returns the Pause frame generation and reception capability of the NIC.
4957 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
4958 struct ethtool_pauseparam
*ep
)
4961 struct s2io_nic
*sp
= dev
->priv
;
4962 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4964 val64
= readq(&bar0
->rmac_pause_cfg
);
4965 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
4966 ep
->tx_pause
= TRUE
;
4967 if (val64
& RMAC_PAUSE_RX_ENABLE
)
4968 ep
->rx_pause
= TRUE
;
4969 ep
->autoneg
= FALSE
;
4973 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4974 * @sp : private member of the device structure, which is a pointer to the
4975 * s2io_nic structure.
4976 * @ep : pointer to the structure with pause parameters given by ethtool.
4978 * It can be used to set or reset Pause frame generation or reception
4979 * support of the NIC.
4981 * int, returns 0 on Success
4984 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
4985 struct ethtool_pauseparam
*ep
)
4988 struct s2io_nic
*sp
= dev
->priv
;
4989 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4991 val64
= readq(&bar0
->rmac_pause_cfg
);
4993 val64
|= RMAC_PAUSE_GEN_ENABLE
;
4995 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
4997 val64
|= RMAC_PAUSE_RX_ENABLE
;
4999 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5000 writeq(val64
, &bar0
->rmac_pause_cfg
);
5005 * read_eeprom - reads 4 bytes of data from user given offset.
5006 * @sp : private member of the device structure, which is a pointer to the
5007 * s2io_nic structure.
5008 * @off : offset at which the data must be written
5009 * @data : Its an output parameter where the data read at the given
5012 * Will read 4 bytes of data from the user given offset and return the
5014 * NOTE: Will allow to read only part of the EEPROM visible through the
5017 * -1 on failure and 0 on success.
5020 #define S2IO_DEV_ID 5
5021 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
5026 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5028 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5029 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5030 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
5031 I2C_CONTROL_CNTL_START
;
5032 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5034 while (exit_cnt
< 5) {
5035 val64
= readq(&bar0
->i2c_control
);
5036 if (I2C_CONTROL_CNTL_END(val64
)) {
5037 *data
= I2C_CONTROL_GET_DATA(val64
);
5046 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5047 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5048 SPI_CONTROL_BYTECNT(0x3) |
5049 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5050 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5051 val64
|= SPI_CONTROL_REQ
;
5052 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5053 while (exit_cnt
< 5) {
5054 val64
= readq(&bar0
->spi_control
);
5055 if (val64
& SPI_CONTROL_NACK
) {
5058 } else if (val64
& SPI_CONTROL_DONE
) {
5059 *data
= readq(&bar0
->spi_data
);
5072 * write_eeprom - actually writes the relevant part of the data value.
5073 * @sp : private member of the device structure, which is a pointer to the
5074 * s2io_nic structure.
5075 * @off : offset at which the data must be written
5076 * @data : The data that is to be written
5077 * @cnt : Number of bytes of the data that are actually to be written into
5078 * the Eeprom. (max of 3)
5080 * Actually writes the relevant part of the data value into the Eeprom
5081 * through the I2C bus.
5083 * 0 on success, -1 on failure.
5086 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
5088 int exit_cnt
= 0, ret
= -1;
5090 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5092 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5093 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5094 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
5095 I2C_CONTROL_CNTL_START
;
5096 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5098 while (exit_cnt
< 5) {
5099 val64
= readq(&bar0
->i2c_control
);
5100 if (I2C_CONTROL_CNTL_END(val64
)) {
5101 if (!(val64
& I2C_CONTROL_NACK
))
5110 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5111 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5112 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
5114 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5115 SPI_CONTROL_BYTECNT(write_cnt
) |
5116 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5117 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5118 val64
|= SPI_CONTROL_REQ
;
5119 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5120 while (exit_cnt
< 5) {
5121 val64
= readq(&bar0
->spi_control
);
5122 if (val64
& SPI_CONTROL_NACK
) {
5125 } else if (val64
& SPI_CONTROL_DONE
) {
5135 static void s2io_vpd_read(struct s2io_nic
*nic
)
5139 int i
=0, cnt
, fail
= 0;
5140 int vpd_addr
= 0x80;
5142 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5143 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5147 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5150 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5152 vpd_data
= kmalloc(256, GFP_KERNEL
);
5154 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
5157 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
+= 256;
5159 for (i
= 0; i
< 256; i
+=4 ) {
5160 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5161 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5162 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5163 for (cnt
= 0; cnt
<5; cnt
++) {
5165 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5170 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5174 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5175 (u32
*)&vpd_data
[i
]);
5179 /* read serial number of adapter */
5180 for (cnt
= 0; cnt
< 256; cnt
++) {
5181 if ((vpd_data
[cnt
] == 'S') &&
5182 (vpd_data
[cnt
+1] == 'N') &&
5183 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5184 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5185 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5192 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5193 memset(nic
->product_name
, 0, vpd_data
[1]);
5194 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5197 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= 256;
5201 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5202 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5203 * @eeprom : pointer to the user level structure provided by ethtool,
5204 * containing all relevant information.
5205 * @data_buf : user defined value to be written into Eeprom.
5206 * Description: Reads the values stored in the Eeprom at given offset
5207 * for a given length. Stores these values int the input argument data
5208 * buffer 'data_buf' and returns these to the caller (ethtool.)
5213 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5214 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5218 struct s2io_nic
*sp
= dev
->priv
;
5220 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5222 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5223 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5225 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5226 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5227 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5231 memcpy((data_buf
+ i
), &valid
, 4);
5237 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5238 * @sp : private member of the device structure, which is a pointer to the
5239 * s2io_nic structure.
5240 * @eeprom : pointer to the user level structure provided by ethtool,
5241 * containing all relevant information.
5242 * @data_buf ; user defined value to be written into Eeprom.
5244 * Tries to write the user provided value in the Eeprom, at the offset
5245 * given by the user.
5247 * 0 on success, -EFAULT on failure.
5250 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5251 struct ethtool_eeprom
*eeprom
,
5254 int len
= eeprom
->len
, cnt
= 0;
5255 u64 valid
= 0, data
;
5256 struct s2io_nic
*sp
= dev
->priv
;
5258 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5260 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5261 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5267 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5269 valid
= (u32
) (data
<< 24);
5273 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5275 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5277 "write into the specified offset\n");
5288 * s2io_register_test - reads and writes into all clock domains.
5289 * @sp : private member of the device structure, which is a pointer to the
5290 * s2io_nic structure.
5291 * @data : variable that returns the result of each of the test conducted b
5294 * Read and write into all clock domains. The NIC has 3 clock domains,
5295 * see that registers in all the three regions are accessible.
5300 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5302 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5303 u64 val64
= 0, exp_val
;
5306 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5307 if (val64
!= 0x123456789abcdefULL
) {
5309 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5312 val64
= readq(&bar0
->rmac_pause_cfg
);
5313 if (val64
!= 0xc000ffff00000000ULL
) {
5315 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5318 val64
= readq(&bar0
->rx_queue_cfg
);
5319 if (sp
->device_type
== XFRAME_II_DEVICE
)
5320 exp_val
= 0x0404040404040404ULL
;
5322 exp_val
= 0x0808080808080808ULL
;
5323 if (val64
!= exp_val
) {
5325 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5328 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5329 if (val64
!= 0x000000001923141EULL
) {
5331 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5334 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5335 writeq(val64
, &bar0
->xmsi_data
);
5336 val64
= readq(&bar0
->xmsi_data
);
5337 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5339 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5342 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5343 writeq(val64
, &bar0
->xmsi_data
);
5344 val64
= readq(&bar0
->xmsi_data
);
5345 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5347 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5355 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5356 * @sp : private member of the device structure, which is a pointer to the
5357 * s2io_nic structure.
5358 * @data:variable that returns the result of each of the test conducted by
5361 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5367 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5370 u64 ret_data
, org_4F0
, org_7F0
;
5371 u8 saved_4F0
= 0, saved_7F0
= 0;
5372 struct net_device
*dev
= sp
->dev
;
5374 /* Test Write Error at offset 0 */
5375 /* Note that SPI interface allows write access to all areas
5376 * of EEPROM. Hence doing all negative testing only for Xframe I.
5378 if (sp
->device_type
== XFRAME_I_DEVICE
)
5379 if (!write_eeprom(sp
, 0, 0, 3))
5382 /* Save current values at offsets 0x4F0 and 0x7F0 */
5383 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5385 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5388 /* Test Write at offset 4f0 */
5389 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5391 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5394 if (ret_data
!= 0x012345) {
5395 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5396 "Data written %llx Data read %llx\n",
5397 dev
->name
, (unsigned long long)0x12345,
5398 (unsigned long long)ret_data
);
5402 /* Reset the EEPROM data go FFFF */
5403 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5405 /* Test Write Request Error at offset 0x7c */
5406 if (sp
->device_type
== XFRAME_I_DEVICE
)
5407 if (!write_eeprom(sp
, 0x07C, 0, 3))
5410 /* Test Write Request at offset 0x7f0 */
5411 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
5413 if (read_eeprom(sp
, 0x7F0, &ret_data
))
5416 if (ret_data
!= 0x012345) {
5417 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
5418 "Data written %llx Data read %llx\n",
5419 dev
->name
, (unsigned long long)0x12345,
5420 (unsigned long long)ret_data
);
5424 /* Reset the EEPROM data go FFFF */
5425 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
5427 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5428 /* Test Write Error at offset 0x80 */
5429 if (!write_eeprom(sp
, 0x080, 0, 3))
5432 /* Test Write Error at offset 0xfc */
5433 if (!write_eeprom(sp
, 0x0FC, 0, 3))
5436 /* Test Write Error at offset 0x100 */
5437 if (!write_eeprom(sp
, 0x100, 0, 3))
5440 /* Test Write Error at offset 4ec */
5441 if (!write_eeprom(sp
, 0x4EC, 0, 3))
5445 /* Restore values at offsets 0x4F0 and 0x7F0 */
5447 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
5449 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
5456 * s2io_bist_test - invokes the MemBist test of the card .
5457 * @sp : private member of the device structure, which is a pointer to the
5458 * s2io_nic structure.
5459 * @data:variable that returns the result of each of the test conducted by
5462 * This invokes the MemBist test of the card. We give around
5463 * 2 secs time for the Test to complete. If it's still not complete
5464 * within this peiod, we consider that the test failed.
5466 * 0 on success and -1 on failure.
5469 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
5472 int cnt
= 0, ret
= -1;
5474 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5475 bist
|= PCI_BIST_START
;
5476 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
5479 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5480 if (!(bist
& PCI_BIST_START
)) {
5481 *data
= (bist
& PCI_BIST_CODE_MASK
);
5493 * s2io-link_test - verifies the link state of the nic
5494 * @sp ; private member of the device structure, which is a pointer to the
5495 * s2io_nic structure.
5496 * @data: variable that returns the result of each of the test conducted by
5499 * The function verifies the link state of the NIC and updates the input
5500 * argument 'data' appropriately.
5505 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
5507 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5510 val64
= readq(&bar0
->adapter_status
);
5511 if(!(LINK_IS_UP(val64
)))
5520 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5521 * @sp - private member of the device structure, which is a pointer to the
5522 * s2io_nic structure.
5523 * @data - variable that returns the result of each of the test
5524 * conducted by the driver.
5526 * This is one of the offline test that tests the read and write
5527 * access to the RldRam chip on the NIC.
5532 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
5534 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5536 int cnt
, iteration
= 0, test_fail
= 0;
5538 val64
= readq(&bar0
->adapter_control
);
5539 val64
&= ~ADAPTER_ECC_EN
;
5540 writeq(val64
, &bar0
->adapter_control
);
5542 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5543 val64
|= MC_RLDRAM_TEST_MODE
;
5544 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5546 val64
= readq(&bar0
->mc_rldram_mrs
);
5547 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
5548 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5550 val64
|= MC_RLDRAM_MRS_ENABLE
;
5551 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5553 while (iteration
< 2) {
5554 val64
= 0x55555555aaaa0000ULL
;
5555 if (iteration
== 1) {
5556 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5558 writeq(val64
, &bar0
->mc_rldram_test_d0
);
5560 val64
= 0xaaaa5a5555550000ULL
;
5561 if (iteration
== 1) {
5562 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5564 writeq(val64
, &bar0
->mc_rldram_test_d1
);
5566 val64
= 0x55aaaaaaaa5a0000ULL
;
5567 if (iteration
== 1) {
5568 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5570 writeq(val64
, &bar0
->mc_rldram_test_d2
);
5572 val64
= (u64
) (0x0000003ffffe0100ULL
);
5573 writeq(val64
, &bar0
->mc_rldram_test_add
);
5575 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
5577 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5579 for (cnt
= 0; cnt
< 5; cnt
++) {
5580 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5581 if (val64
& MC_RLDRAM_TEST_DONE
)
5589 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
5590 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5592 for (cnt
= 0; cnt
< 5; cnt
++) {
5593 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5594 if (val64
& MC_RLDRAM_TEST_DONE
)
5602 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5603 if (!(val64
& MC_RLDRAM_TEST_PASS
))
5611 /* Bring the adapter out of test mode */
5612 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
5618 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5619 * @sp : private member of the device structure, which is a pointer to the
5620 * s2io_nic structure.
5621 * @ethtest : pointer to a ethtool command specific structure that will be
5622 * returned to the user.
5623 * @data : variable that returns the result of each of the test
5624 * conducted by the driver.
5626 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5627 * the health of the card.
5632 static void s2io_ethtool_test(struct net_device
*dev
,
5633 struct ethtool_test
*ethtest
,
5636 struct s2io_nic
*sp
= dev
->priv
;
5637 int orig_state
= netif_running(sp
->dev
);
5639 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
5640 /* Offline Tests. */
5642 s2io_close(sp
->dev
);
5644 if (s2io_register_test(sp
, &data
[0]))
5645 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5649 if (s2io_rldram_test(sp
, &data
[3]))
5650 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5654 if (s2io_eeprom_test(sp
, &data
[1]))
5655 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5657 if (s2io_bist_test(sp
, &data
[4]))
5658 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5668 "%s: is not up, cannot run test\n",
5677 if (s2io_link_test(sp
, &data
[2]))
5678 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5687 static void s2io_get_ethtool_stats(struct net_device
*dev
,
5688 struct ethtool_stats
*estats
,
5692 struct s2io_nic
*sp
= dev
->priv
;
5693 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
5695 s2io_updt_stats(sp
);
5697 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
5698 le32_to_cpu(stat_info
->tmac_frms
);
5700 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
5701 le32_to_cpu(stat_info
->tmac_data_octets
);
5702 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
5704 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
5705 le32_to_cpu(stat_info
->tmac_mcst_frms
);
5707 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
5708 le32_to_cpu(stat_info
->tmac_bcst_frms
);
5709 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
5711 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
5712 le32_to_cpu(stat_info
->tmac_ttl_octets
);
5714 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
5715 le32_to_cpu(stat_info
->tmac_ucst_frms
);
5717 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
5718 le32_to_cpu(stat_info
->tmac_nucst_frms
);
5720 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
5721 le32_to_cpu(stat_info
->tmac_any_err_frms
);
5722 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
5723 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
5725 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
5726 le32_to_cpu(stat_info
->tmac_vld_ip
);
5728 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
5729 le32_to_cpu(stat_info
->tmac_drop_ip
);
5731 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
5732 le32_to_cpu(stat_info
->tmac_icmp
);
5734 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
5735 le32_to_cpu(stat_info
->tmac_rst_tcp
);
5736 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
5737 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
5738 le32_to_cpu(stat_info
->tmac_udp
);
5740 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
5741 le32_to_cpu(stat_info
->rmac_vld_frms
);
5743 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
5744 le32_to_cpu(stat_info
->rmac_data_octets
);
5745 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
5746 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
5748 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
5749 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
5751 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
5752 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
5753 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
5754 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
5755 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
5756 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
5757 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
5759 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
5760 le32_to_cpu(stat_info
->rmac_ttl_octets
);
5762 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
5763 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
5765 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
5766 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
5768 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
5769 le32_to_cpu(stat_info
->rmac_discarded_frms
);
5771 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
5772 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
5773 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
5774 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
5776 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
5777 le32_to_cpu(stat_info
->rmac_usized_frms
);
5779 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
5780 le32_to_cpu(stat_info
->rmac_osized_frms
);
5782 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
5783 le32_to_cpu(stat_info
->rmac_frag_frms
);
5785 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
5786 le32_to_cpu(stat_info
->rmac_jabber_frms
);
5787 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
5788 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
5789 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
5790 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
5791 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
5792 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
5794 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
5795 le32_to_cpu(stat_info
->rmac_ip
);
5796 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
5797 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
5799 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
5800 le32_to_cpu(stat_info
->rmac_drop_ip
);
5802 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
5803 le32_to_cpu(stat_info
->rmac_icmp
);
5804 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
5806 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
5807 le32_to_cpu(stat_info
->rmac_udp
);
5809 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
5810 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
5811 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
5812 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
5813 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
5814 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
5815 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
5816 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
5817 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
5818 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
5819 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
5820 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
5821 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
5822 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
5823 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
5824 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
5825 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
5826 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
5827 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
5829 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
5830 le32_to_cpu(stat_info
->rmac_pause_cnt
);
5831 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
5832 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
5834 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
5835 le32_to_cpu(stat_info
->rmac_accepted_ip
);
5836 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
5837 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
5838 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
5839 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
5840 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
5841 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
5842 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
5843 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
5844 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
5845 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
5846 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
5847 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
5848 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
5849 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
5850 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
5851 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
5852 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
5853 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
5854 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
5856 /* Enhanced statistics exist only for Hercules */
5857 if(sp
->device_type
== XFRAME_II_DEVICE
) {
5859 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
5861 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
5863 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
5864 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
5865 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
5866 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
5867 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
5868 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
5869 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
5870 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
5871 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
5872 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
5873 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
5874 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
5875 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
5876 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
5880 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
5881 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
5882 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
5883 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
5884 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
5885 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
5886 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
;
5887 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
5888 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
5889 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
5890 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
5891 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
5892 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
5893 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
5894 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
5895 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
5896 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
5897 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
5898 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
5899 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
5900 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
5901 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
5902 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
5903 if (stat_info
->sw_stat
.num_aggregations
) {
5904 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
5907 * Since 64-bit divide does not work on all platforms,
5908 * do repeated subtraction.
5910 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
5911 tmp
-= stat_info
->sw_stat
.num_aggregations
;
5914 tmp_stats
[i
++] = count
;
5918 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_alloc_fail_cnt
;
5919 tmp_stats
[i
++] = stat_info
->sw_stat
.watchdog_timer_cnt
;
5920 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_allocated
;
5921 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_freed
;
5922 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_cnt
;
5923 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_cnt
;
5924 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_time
;
5925 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_time
;
5927 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_buf_abort_cnt
;
5928 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_desc_abort_cnt
;
5929 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_parity_err_cnt
;
5930 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_link_loss_cnt
;
5931 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_list_proc_err_cnt
;
5933 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_err_cnt
;
5934 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_abort_cnt
;
5935 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_abort_cnt
;
5936 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rda_fail_cnt
;
5937 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_prot_cnt
;
5938 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_fcs_err_cnt
;
5939 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_buf_size_err_cnt
;
5940 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rxd_corrupt_cnt
;
5941 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_err_cnt
;
5944 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
5946 return (XENA_REG_SPACE
);
5950 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
5952 struct s2io_nic
*sp
= dev
->priv
;
5954 return (sp
->rx_csum
);
5957 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
5959 struct s2io_nic
*sp
= dev
->priv
;
5969 static int s2io_get_eeprom_len(struct net_device
*dev
)
5971 return (XENA_EEPROM_SPACE
);
5974 static int s2io_ethtool_self_test_count(struct net_device
*dev
)
5976 return (S2IO_TEST_LEN
);
5979 static void s2io_ethtool_get_strings(struct net_device
*dev
,
5980 u32 stringset
, u8
* data
)
5983 struct s2io_nic
*sp
= dev
->priv
;
5985 switch (stringset
) {
5987 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
5990 stat_size
= sizeof(ethtool_xena_stats_keys
);
5991 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
5992 if(sp
->device_type
== XFRAME_II_DEVICE
) {
5993 memcpy(data
+ stat_size
,
5994 ðtool_enhanced_stats_keys
,
5995 sizeof(ethtool_enhanced_stats_keys
));
5996 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
5999 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6000 sizeof(ethtool_driver_stats_keys
));
6003 static int s2io_ethtool_get_stats_count(struct net_device
*dev
)
6005 struct s2io_nic
*sp
= dev
->priv
;
6007 switch(sp
->device_type
) {
6008 case XFRAME_I_DEVICE
:
6009 stat_count
= XFRAME_I_STAT_LEN
;
6012 case XFRAME_II_DEVICE
:
6013 stat_count
= XFRAME_II_STAT_LEN
;
6020 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6023 dev
->features
|= NETIF_F_IP_CSUM
;
6025 dev
->features
&= ~NETIF_F_IP_CSUM
;
6030 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6032 return (dev
->features
& NETIF_F_TSO
) != 0;
6034 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6037 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6039 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6044 static const struct ethtool_ops netdev_ethtool_ops
= {
6045 .get_settings
= s2io_ethtool_gset
,
6046 .set_settings
= s2io_ethtool_sset
,
6047 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6048 .get_regs_len
= s2io_ethtool_get_regs_len
,
6049 .get_regs
= s2io_ethtool_gregs
,
6050 .get_link
= ethtool_op_get_link
,
6051 .get_eeprom_len
= s2io_get_eeprom_len
,
6052 .get_eeprom
= s2io_ethtool_geeprom
,
6053 .set_eeprom
= s2io_ethtool_seeprom
,
6054 .get_ringparam
= s2io_ethtool_gringparam
,
6055 .get_pauseparam
= s2io_ethtool_getpause_data
,
6056 .set_pauseparam
= s2io_ethtool_setpause_data
,
6057 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6058 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6059 .get_tx_csum
= ethtool_op_get_tx_csum
,
6060 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6061 .get_sg
= ethtool_op_get_sg
,
6062 .set_sg
= ethtool_op_set_sg
,
6063 .get_tso
= s2io_ethtool_op_get_tso
,
6064 .set_tso
= s2io_ethtool_op_set_tso
,
6065 .get_ufo
= ethtool_op_get_ufo
,
6066 .set_ufo
= ethtool_op_set_ufo
,
6067 .self_test_count
= s2io_ethtool_self_test_count
,
6068 .self_test
= s2io_ethtool_test
,
6069 .get_strings
= s2io_ethtool_get_strings
,
6070 .phys_id
= s2io_ethtool_idnic
,
6071 .get_stats_count
= s2io_ethtool_get_stats_count
,
6072 .get_ethtool_stats
= s2io_get_ethtool_stats
6076 * s2io_ioctl - Entry point for the Ioctl
6077 * @dev : Device pointer.
6078 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6079 * a proprietary structure used to pass information to the driver.
6080 * @cmd : This is used to distinguish between the different commands that
6081 * can be passed to the IOCTL functions.
6083 * Currently there are no special functionality supported in IOCTL, hence
6084 * function always return EOPNOTSUPPORTED
6087 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6093 * s2io_change_mtu - entry point to change MTU size for the device.
6094 * @dev : device pointer.
6095 * @new_mtu : the new MTU size for the device.
6096 * Description: A driver entry point to change MTU size for the device.
6097 * Before changing the MTU the device must be stopped.
6099 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6103 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6105 struct s2io_nic
*sp
= dev
->priv
;
6107 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6108 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
6114 if (netif_running(dev
)) {
6116 netif_stop_queue(dev
);
6117 if (s2io_card_up(sp
)) {
6118 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6121 if (netif_queue_stopped(dev
))
6122 netif_wake_queue(dev
);
6123 } else { /* Device is down */
6124 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6125 u64 val64
= new_mtu
;
6127 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6134 * s2io_tasklet - Bottom half of the ISR.
6135 * @dev_adr : address of the device structure in dma_addr_t format.
6137 * This is the tasklet or the bottom half of the ISR. This is
6138 * an extension of the ISR which is scheduled by the scheduler to be run
6139 * when the load on the CPU is low. All low priority tasks of the ISR can
6140 * be pushed into the tasklet. For now the tasklet is used only to
6141 * replenish the Rx buffers in the Rx buffer descriptors.
6146 static void s2io_tasklet(unsigned long dev_addr
)
6148 struct net_device
*dev
= (struct net_device
*) dev_addr
;
6149 struct s2io_nic
*sp
= dev
->priv
;
6151 struct mac_info
*mac_control
;
6152 struct config_param
*config
;
6154 mac_control
= &sp
->mac_control
;
6155 config
= &sp
->config
;
6157 if (!TASKLET_IN_USE
) {
6158 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6159 ret
= fill_rx_buffers(sp
, i
);
6160 if (ret
== -ENOMEM
) {
6161 DBG_PRINT(INFO_DBG
, "%s: Out of ",
6163 DBG_PRINT(INFO_DBG
, "memory in tasklet\n");
6165 } else if (ret
== -EFILL
) {
6167 "%s: Rx Ring %d is full\n",
6172 clear_bit(0, (&sp
->tasklet_status
));
6177 * s2io_set_link - Set the LInk status
6178 * @data: long pointer to device private structue
6179 * Description: Sets the link status for the adapter
6182 static void s2io_set_link(struct work_struct
*work
)
6184 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
6185 struct net_device
*dev
= nic
->dev
;
6186 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6192 if (!netif_running(dev
))
6195 if (test_and_set_bit(0, &(nic
->link_state
))) {
6196 /* The card is being reset, no point doing anything */
6200 subid
= nic
->pdev
->subsystem_device
;
6201 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6203 * Allow a small delay for the NICs self initiated
6204 * cleanup to complete.
6209 val64
= readq(&bar0
->adapter_status
);
6210 if (LINK_IS_UP(val64
)) {
6211 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6212 if (verify_xena_quiescence(nic
)) {
6213 val64
= readq(&bar0
->adapter_control
);
6214 val64
|= ADAPTER_CNTL_EN
;
6215 writeq(val64
, &bar0
->adapter_control
);
6216 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6217 nic
->device_type
, subid
)) {
6218 val64
= readq(&bar0
->gpio_control
);
6219 val64
|= GPIO_CTRL_GPIO_0
;
6220 writeq(val64
, &bar0
->gpio_control
);
6221 val64
= readq(&bar0
->gpio_control
);
6223 val64
|= ADAPTER_LED_ON
;
6224 writeq(val64
, &bar0
->adapter_control
);
6226 nic
->device_enabled_once
= TRUE
;
6228 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6229 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6230 netif_stop_queue(dev
);
6233 val64
= readq(&bar0
->adapter_status
);
6234 if (!LINK_IS_UP(val64
)) {
6235 DBG_PRINT(ERR_DBG
, "%s:", dev
->name
);
6236 DBG_PRINT(ERR_DBG
, " Link down after enabling ");
6237 DBG_PRINT(ERR_DBG
, "device \n");
6239 s2io_link(nic
, LINK_UP
);
6241 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6243 val64
= readq(&bar0
->gpio_control
);
6244 val64
&= ~GPIO_CTRL_GPIO_0
;
6245 writeq(val64
, &bar0
->gpio_control
);
6246 val64
= readq(&bar0
->gpio_control
);
6248 s2io_link(nic
, LINK_DOWN
);
6250 clear_bit(0, &(nic
->link_state
));
6256 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6258 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6259 u64
*temp2
, int size
)
6261 struct net_device
*dev
= sp
->dev
;
6262 struct sk_buff
*frag_list
;
6264 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6267 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6269 * As Rx frame are not going to be processed,
6270 * using same mapped address for the Rxd
6273 ((struct RxD1
*)rxdp
)->Buffer0_ptr
= *temp0
;
6275 *skb
= dev_alloc_skb(size
);
6277 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6278 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6279 DBG_PRINT(INFO_DBG
, "1 buf mode SKBs\n");
6280 sp
->mac_control
.stats_info
->sw_stat
. \
6281 mem_alloc_fail_cnt
++;
6284 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6285 += (*skb
)->truesize
;
6286 /* storing the mapped addr in a temp variable
6287 * such it will be used for next rxd whose
6288 * Host Control is NULL
6290 ((struct RxD1
*)rxdp
)->Buffer0_ptr
= *temp0
=
6291 pci_map_single( sp
->pdev
, (*skb
)->data
,
6292 size
- NET_IP_ALIGN
,
6293 PCI_DMA_FROMDEVICE
);
6294 rxdp
->Host_Control
= (unsigned long) (*skb
);
6296 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6297 /* Two buffer Mode */
6299 ((struct RxD3
*)rxdp
)->Buffer2_ptr
= *temp2
;
6300 ((struct RxD3
*)rxdp
)->Buffer0_ptr
= *temp0
;
6301 ((struct RxD3
*)rxdp
)->Buffer1_ptr
= *temp1
;
6303 *skb
= dev_alloc_skb(size
);
6305 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6306 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6307 DBG_PRINT(INFO_DBG
, "2 buf mode SKBs\n");
6308 sp
->mac_control
.stats_info
->sw_stat
. \
6309 mem_alloc_fail_cnt
++;
6312 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6313 += (*skb
)->truesize
;
6314 ((struct RxD3
*)rxdp
)->Buffer2_ptr
= *temp2
=
6315 pci_map_single(sp
->pdev
, (*skb
)->data
,
6317 PCI_DMA_FROMDEVICE
);
6318 ((struct RxD3
*)rxdp
)->Buffer0_ptr
= *temp0
=
6319 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6320 PCI_DMA_FROMDEVICE
);
6321 rxdp
->Host_Control
= (unsigned long) (*skb
);
6323 /* Buffer-1 will be dummy buffer not used */
6324 ((struct RxD3
*)rxdp
)->Buffer1_ptr
= *temp1
=
6325 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6326 PCI_DMA_FROMDEVICE
);
6328 } else if ((rxdp
->Host_Control
== 0)) {
6329 /* Three buffer mode */
6331 ((struct RxD3
*)rxdp
)->Buffer0_ptr
= *temp0
;
6332 ((struct RxD3
*)rxdp
)->Buffer1_ptr
= *temp1
;
6333 ((struct RxD3
*)rxdp
)->Buffer2_ptr
= *temp2
;
6335 *skb
= dev_alloc_skb(size
);
6337 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6338 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6339 DBG_PRINT(INFO_DBG
, "3 buf mode SKBs\n");
6340 sp
->mac_control
.stats_info
->sw_stat
. \
6341 mem_alloc_fail_cnt
++;
6344 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6345 += (*skb
)->truesize
;
6346 ((struct RxD3
*)rxdp
)->Buffer0_ptr
= *temp0
=
6347 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6348 PCI_DMA_FROMDEVICE
);
6349 /* Buffer-1 receives L3/L4 headers */
6350 ((struct RxD3
*)rxdp
)->Buffer1_ptr
= *temp1
=
6351 pci_map_single( sp
->pdev
, (*skb
)->data
,
6353 PCI_DMA_FROMDEVICE
);
6355 * skb_shinfo(skb)->frag_list will have L4
6358 skb_shinfo(*skb
)->frag_list
= dev_alloc_skb(dev
->mtu
+
6360 if (skb_shinfo(*skb
)->frag_list
== NULL
) {
6361 DBG_PRINT(ERR_DBG
, "%s: dev_alloc_skb \
6362 failed\n ", dev
->name
);
6363 sp
->mac_control
.stats_info
->sw_stat
. \
6364 mem_alloc_fail_cnt
++;
6367 frag_list
= skb_shinfo(*skb
)->frag_list
;
6368 frag_list
->next
= NULL
;
6369 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6370 += frag_list
->truesize
;
6372 * Buffer-2 receives L4 data payload
6374 ((struct RxD3
*)rxdp
)->Buffer2_ptr
= *temp2
=
6375 pci_map_single( sp
->pdev
, frag_list
->data
,
6376 dev
->mtu
, PCI_DMA_FROMDEVICE
);
6381 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6384 struct net_device
*dev
= sp
->dev
;
6385 if (sp
->rxd_mode
== RXD_MODE_1
) {
6386 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6387 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6388 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6389 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6390 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6392 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6393 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(l3l4hdr_size
+ 4);
6394 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
);
6398 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6400 int i
, j
, k
, blk_cnt
= 0, size
;
6401 struct mac_info
* mac_control
= &sp
->mac_control
;
6402 struct config_param
*config
= &sp
->config
;
6403 struct net_device
*dev
= sp
->dev
;
6404 struct RxD_t
*rxdp
= NULL
;
6405 struct sk_buff
*skb
= NULL
;
6406 struct buffAdd
*ba
= NULL
;
6407 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6409 /* Calculate the size based on ring mode */
6410 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6411 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6412 if (sp
->rxd_mode
== RXD_MODE_1
)
6413 size
+= NET_IP_ALIGN
;
6414 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6415 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6417 size
= l3l4hdr_size
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6419 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6420 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6421 (rxd_count
[sp
->rxd_mode
] +1);
6423 for (j
= 0; j
< blk_cnt
; j
++) {
6424 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6425 rxdp
= mac_control
->rings
[i
].
6426 rx_blocks
[j
].rxds
[k
].virt_addr
;
6427 if(sp
->rxd_mode
>= RXD_MODE_3A
)
6428 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6429 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6430 &skb
,(u64
*)&temp0_64
,
6437 set_rxd_buffer_size(sp
, rxdp
, size
);
6439 /* flip the Ownership bit to Hardware */
6440 rxdp
->Control_1
|= RXD_OWN_XENA
;
6448 static int s2io_add_isr(struct s2io_nic
* sp
)
6451 struct net_device
*dev
= sp
->dev
;
6454 if (sp
->intr_type
== MSI
)
6455 ret
= s2io_enable_msi(sp
);
6456 else if (sp
->intr_type
== MSI_X
)
6457 ret
= s2io_enable_msi_x(sp
);
6459 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6460 sp
->intr_type
= INTA
;
6463 /* Store the values of the MSIX table in the struct s2io_nic structure */
6464 store_xmsi_data(sp
);
6466 /* After proper initialization of H/W, register ISR */
6467 if (sp
->intr_type
== MSI
) {
6468 err
= request_irq((int) sp
->pdev
->irq
, s2io_msi_handle
,
6469 IRQF_SHARED
, sp
->name
, dev
);
6471 pci_disable_msi(sp
->pdev
);
6472 DBG_PRINT(ERR_DBG
, "%s: MSI registration failed\n",
6477 if (sp
->intr_type
== MSI_X
) {
6478 int i
, msix_tx_cnt
=0,msix_rx_cnt
=0;
6480 for (i
=1; (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
); i
++) {
6481 if (sp
->s2io_entries
[i
].type
== MSIX_FIFO_TYPE
) {
6482 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
6484 err
= request_irq(sp
->entries
[i
].vector
,
6485 s2io_msix_fifo_handle
, 0, sp
->desc
[i
],
6486 sp
->s2io_entries
[i
].arg
);
6487 /* If either data or addr is zero print it */
6488 if(!(sp
->msix_info
[i
].addr
&&
6489 sp
->msix_info
[i
].data
)) {
6490 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx"
6491 "Data:0x%lx\n",sp
->desc
[i
],
6492 (unsigned long long)
6493 sp
->msix_info
[i
].addr
,
6495 ntohl(sp
->msix_info
[i
].data
));
6500 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
6502 err
= request_irq(sp
->entries
[i
].vector
,
6503 s2io_msix_ring_handle
, 0, sp
->desc
[i
],
6504 sp
->s2io_entries
[i
].arg
);
6505 /* If either data or addr is zero print it */
6506 if(!(sp
->msix_info
[i
].addr
&&
6507 sp
->msix_info
[i
].data
)) {
6508 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx"
6509 "Data:0x%lx\n",sp
->desc
[i
],
6510 (unsigned long long)
6511 sp
->msix_info
[i
].addr
,
6513 ntohl(sp
->msix_info
[i
].data
));
6519 DBG_PRINT(ERR_DBG
,"%s:MSI-X-%d registration "
6520 "failed\n", dev
->name
, i
);
6521 DBG_PRINT(ERR_DBG
, "Returned: %d\n", err
);
6524 sp
->s2io_entries
[i
].in_use
= MSIX_REGISTERED_SUCCESS
;
6526 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt
);
6527 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt
);
6529 if (sp
->intr_type
== INTA
) {
6530 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
6533 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
6540 static void s2io_rem_isr(struct s2io_nic
* sp
)
6543 struct net_device
*dev
= sp
->dev
;
6545 if (sp
->intr_type
== MSI_X
) {
6549 for (i
=1; (sp
->s2io_entries
[i
].in_use
==
6550 MSIX_REGISTERED_SUCCESS
); i
++) {
6551 int vector
= sp
->entries
[i
].vector
;
6552 void *arg
= sp
->s2io_entries
[i
].arg
;
6554 free_irq(vector
, arg
);
6556 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
6557 msi_control
&= 0xFFFE; /* Disable MSI */
6558 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
6560 pci_disable_msix(sp
->pdev
);
6562 free_irq(sp
->pdev
->irq
, dev
);
6563 if (sp
->intr_type
== MSI
) {
6566 pci_disable_msi(sp
->pdev
);
6567 pci_read_config_word(sp
->pdev
, 0x4c, &val
);
6569 pci_write_config_word(sp
->pdev
, 0x4c, val
);
6572 /* Waiting till all Interrupt handlers are complete */
6576 if (!atomic_read(&sp
->isr_cnt
))
6582 static void s2io_card_down(struct s2io_nic
* sp
)
6585 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6586 unsigned long flags
;
6587 register u64 val64
= 0;
6589 del_timer_sync(&sp
->alarm_timer
);
6590 /* If s2io_set_link task is executing, wait till it completes. */
6591 while (test_and_set_bit(0, &(sp
->link_state
))) {
6594 atomic_set(&sp
->card_state
, CARD_DOWN
);
6596 /* disable Tx and Rx traffic on the NIC */
6602 tasklet_kill(&sp
->task
);
6604 /* Check if the device is Quiescent and then Reset the NIC */
6606 /* As per the HW requirement we need to replenish the
6607 * receive buffer to avoid the ring bump. Since there is
6608 * no intention of processing the Rx frame at this pointwe are
6609 * just settting the ownership bit of rxd in Each Rx
6610 * ring to HW and set the appropriate buffer size
6611 * based on the ring mode
6613 rxd_owner_bit_reset(sp
);
6615 val64
= readq(&bar0
->adapter_status
);
6616 if (verify_xena_quiescence(sp
)) {
6617 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
6625 "s2io_close:Device not Quiescent ");
6626 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
6627 (unsigned long long) val64
);
6633 spin_lock_irqsave(&sp
->tx_lock
, flags
);
6634 /* Free all Tx buffers */
6635 free_tx_buffers(sp
);
6636 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
6638 /* Free all Rx buffers */
6639 spin_lock_irqsave(&sp
->rx_lock
, flags
);
6640 free_rx_buffers(sp
);
6641 spin_unlock_irqrestore(&sp
->rx_lock
, flags
);
6643 clear_bit(0, &(sp
->link_state
));
6646 static int s2io_card_up(struct s2io_nic
* sp
)
6649 struct mac_info
*mac_control
;
6650 struct config_param
*config
;
6651 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
6654 /* Initialize the H/W I/O registers */
6655 if (init_nic(sp
) != 0) {
6656 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
6663 * Initializing the Rx buffers. For now we are considering only 1
6664 * Rx ring and initializing buffers into 30 Rx blocks
6666 mac_control
= &sp
->mac_control
;
6667 config
= &sp
->config
;
6669 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6670 if ((ret
= fill_rx_buffers(sp
, i
))) {
6671 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
6674 free_rx_buffers(sp
);
6677 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
6678 atomic_read(&sp
->rx_bufs_left
[i
]));
6680 /* Maintain the state prior to the open */
6681 if (sp
->promisc_flg
)
6682 sp
->promisc_flg
= 0;
6683 if (sp
->m_cast_flg
) {
6685 sp
->all_multi_pos
= 0;
6688 /* Setting its receive mode */
6689 s2io_set_multicast(dev
);
6692 /* Initialize max aggregatable pkts per session based on MTU */
6693 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
6694 /* Check if we can use(if specified) user provided value */
6695 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
6696 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
6699 /* Enable Rx Traffic and interrupts on the NIC */
6700 if (start_nic(sp
)) {
6701 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
6703 free_rx_buffers(sp
);
6707 /* Add interrupt service routine */
6708 if (s2io_add_isr(sp
) != 0) {
6709 if (sp
->intr_type
== MSI_X
)
6712 free_rx_buffers(sp
);
6716 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
6718 /* Enable tasklet for the device */
6719 tasklet_init(&sp
->task
, s2io_tasklet
, (unsigned long) dev
);
6721 /* Enable select interrupts */
6722 if (sp
->intr_type
!= INTA
)
6723 en_dis_able_nic_intrs(sp
, ENA_ALL_INTRS
, DISABLE_INTRS
);
6725 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
6726 interruptible
|= TX_PIC_INTR
| RX_PIC_INTR
;
6727 interruptible
|= TX_MAC_INTR
| RX_MAC_INTR
;
6728 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
6732 atomic_set(&sp
->card_state
, CARD_UP
);
6737 * s2io_restart_nic - Resets the NIC.
6738 * @data : long pointer to the device private structure
6740 * This function is scheduled to be run by the s2io_tx_watchdog
6741 * function after 0.5 secs to reset the NIC. The idea is to reduce
6742 * the run time of the watch dog routine which is run holding a
6746 static void s2io_restart_nic(struct work_struct
*work
)
6748 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
6749 struct net_device
*dev
= sp
->dev
;
6753 if (!netif_running(dev
))
6757 if (s2io_card_up(sp
)) {
6758 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6761 netif_wake_queue(dev
);
6762 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
6769 * s2io_tx_watchdog - Watchdog for transmit side.
6770 * @dev : Pointer to net device structure
6772 * This function is triggered if the Tx Queue is stopped
6773 * for a pre-defined amount of time when the Interface is still up.
6774 * If the Interface is jammed in such a situation, the hardware is
6775 * reset (by s2io_close) and restarted again (by s2io_open) to
6776 * overcome any problem that might have been caused in the hardware.
6781 static void s2io_tx_watchdog(struct net_device
*dev
)
6783 struct s2io_nic
*sp
= dev
->priv
;
6785 if (netif_carrier_ok(dev
)) {
6786 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
++;
6787 schedule_work(&sp
->rst_timer_task
);
6788 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
6793 * rx_osm_handler - To perform some OS related operations on SKB.
6794 * @sp: private member of the device structure,pointer to s2io_nic structure.
6795 * @skb : the socket buffer pointer.
6796 * @len : length of the packet
6797 * @cksum : FCS checksum of the frame.
6798 * @ring_no : the ring from which this RxD was extracted.
6800 * This function is called by the Rx interrupt serivce routine to perform
6801 * some OS related operations on the SKB before passing it to the upper
6802 * layers. It mainly checks if the checksum is OK, if so adds it to the
6803 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6804 * to the upper layer. If the checksum is wrong, it increments the Rx
6805 * packet error count, frees the SKB and returns error.
6807 * SUCCESS on success and -1 on failure.
6809 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
6811 struct s2io_nic
*sp
= ring_data
->nic
;
6812 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
6813 struct sk_buff
*skb
= (struct sk_buff
*)
6814 ((unsigned long) rxdp
->Host_Control
);
6815 int ring_no
= ring_data
->ring_no
;
6816 u16 l3_csum
, l4_csum
;
6817 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
6823 /* Check for parity error */
6825 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
6830 sp
->mac_control
.stats_info
->sw_stat
.
6831 rx_parity_err_cnt
++;
6835 sp
->mac_control
.stats_info
->sw_stat
.
6840 sp
->mac_control
.stats_info
->sw_stat
.
6841 rx_parity_abort_cnt
++;
6845 sp
->mac_control
.stats_info
->sw_stat
.
6850 sp
->mac_control
.stats_info
->sw_stat
.
6855 sp
->mac_control
.stats_info
->sw_stat
.
6860 sp
->mac_control
.stats_info
->sw_stat
.
6861 rx_buf_size_err_cnt
++;
6865 sp
->mac_control
.stats_info
->sw_stat
.
6866 rx_rxd_corrupt_cnt
++;
6870 sp
->mac_control
.stats_info
->sw_stat
.
6875 * Drop the packet if bad transfer code. Exception being
6876 * 0x5, which could be due to unsupported IPv6 extension header.
6877 * In this case, we let stack handle the packet.
6878 * Note that in this case, since checksum will be incorrect,
6879 * stack will validate the same.
6882 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%llx\n",
6884 sp
->stats
.rx_crc_errors
++;
6885 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
6888 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
6889 rxdp
->Host_Control
= 0;
6894 /* Updating statistics */
6895 rxdp
->Host_Control
= 0;
6896 if (sp
->rxd_mode
== RXD_MODE_1
) {
6897 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
6899 sp
->stats
.rx_bytes
+= len
;
6902 } else if (sp
->rxd_mode
>= RXD_MODE_3A
) {
6903 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
6904 int get_off
= ring_data
->rx_curr_get_info
.offset
;
6905 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
6906 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
6907 unsigned char *buff
= skb_push(skb
, buf0_len
);
6909 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
6910 sp
->stats
.rx_bytes
+= buf0_len
+ buf2_len
;
6911 memcpy(buff
, ba
->ba_0
, buf0_len
);
6913 if (sp
->rxd_mode
== RXD_MODE_3A
) {
6914 int buf1_len
= RXD_GET_BUFFER1_SIZE_3(rxdp
->Control_2
);
6916 skb_put(skb
, buf1_len
);
6917 skb
->len
+= buf2_len
;
6918 skb
->data_len
+= buf2_len
;
6919 skb_put(skb_shinfo(skb
)->frag_list
, buf2_len
);
6920 sp
->stats
.rx_bytes
+= buf1_len
;
6923 skb_put(skb
, buf2_len
);
6926 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!sp
->lro
) ||
6927 (sp
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
6929 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
6930 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
6931 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
6933 * NIC verifies if the Checksum of the received
6934 * frame is Ok or not and accordingly returns
6935 * a flag in the RxD.
6937 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
6943 ret
= s2io_club_tcp_session(skb
->data
, &tcp
,
6944 &tcp_len
, &lro
, rxdp
, sp
);
6946 case 3: /* Begin anew */
6949 case 1: /* Aggregate */
6951 lro_append_pkt(sp
, lro
,
6955 case 4: /* Flush session */
6957 lro_append_pkt(sp
, lro
,
6959 queue_rx_frame(lro
->parent
);
6960 clear_lro_session(lro
);
6961 sp
->mac_control
.stats_info
->
6962 sw_stat
.flush_max_pkts
++;
6965 case 2: /* Flush both */
6966 lro
->parent
->data_len
=
6968 sp
->mac_control
.stats_info
->
6969 sw_stat
.sending_both
++;
6970 queue_rx_frame(lro
->parent
);
6971 clear_lro_session(lro
);
6973 case 0: /* sessions exceeded */
6974 case -1: /* non-TCP or not
6978 * First pkt in session not
6979 * L3/L4 aggregatable
6984 "%s: Samadhana!!\n",
6991 * Packet with erroneous checksum, let the
6992 * upper layers deal with it.
6994 skb
->ip_summed
= CHECKSUM_NONE
;
6997 skb
->ip_summed
= CHECKSUM_NONE
;
6999 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
7001 skb
->protocol
= eth_type_trans(skb
, dev
);
7002 if ((sp
->vlgrp
&& RXD_GET_VLAN_TAG(rxdp
->Control_2
) &&
7004 /* Queueing the vlan frame to the upper layer */
7006 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
,
7007 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7009 vlan_hwaccel_rx(skb
, sp
->vlgrp
,
7010 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7013 netif_receive_skb(skb
);
7019 queue_rx_frame(skb
);
7021 dev
->last_rx
= jiffies
;
7023 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
7028 * s2io_link - stops/starts the Tx queue.
7029 * @sp : private member of the device structure, which is a pointer to the
7030 * s2io_nic structure.
7031 * @link : inidicates whether link is UP/DOWN.
7033 * This function stops/starts the Tx queue depending on whether the link
7034 * status of the NIC is is down or up. This is called by the Alarm
7035 * interrupt handler whenever a link change interrupt comes up.
7040 static void s2io_link(struct s2io_nic
* sp
, int link
)
7042 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7044 if (link
!= sp
->last_link_state
) {
7045 if (link
== LINK_DOWN
) {
7046 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7047 netif_carrier_off(dev
);
7048 if(sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
)
7049 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
=
7050 jiffies
- sp
->start_time
;
7051 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
++;
7053 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7054 if (sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
)
7055 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
=
7056 jiffies
- sp
->start_time
;
7057 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
++;
7058 netif_carrier_on(dev
);
7061 sp
->last_link_state
= link
;
7062 sp
->start_time
= jiffies
;
7066 * get_xena_rev_id - to identify revision ID of xena.
7067 * @pdev : PCI Dev structure
7069 * Function to identify the Revision ID of xena.
7071 * returns the revision ID of the device.
7074 static int get_xena_rev_id(struct pci_dev
*pdev
)
7078 ret
= pci_read_config_byte(pdev
, PCI_REVISION_ID
, (u8
*) & id
);
7083 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7084 * @sp : private member of the device structure, which is a pointer to the
7085 * s2io_nic structure.
7087 * This function initializes a few of the PCI and PCI-X configuration registers
7088 * with recommended values.
7093 static void s2io_init_pci(struct s2io_nic
* sp
)
7095 u16 pci_cmd
= 0, pcix_cmd
= 0;
7097 /* Enable Data Parity Error Recovery in PCI-X command register. */
7098 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7100 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7102 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7105 /* Set the PErr Response bit in PCI command register. */
7106 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7107 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7108 (pci_cmd
| PCI_COMMAND_PARITY
));
7109 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7112 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
)
7114 if ( tx_fifo_num
> 8) {
7115 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Tx fifos not "
7117 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Tx fifos\n");
7120 if ( rx_ring_num
> 8) {
7121 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Rx rings not "
7123 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Rx rings\n");
7126 if (*dev_intr_type
!= INTA
)
7129 #ifndef CONFIG_PCI_MSI
7130 if (*dev_intr_type
!= INTA
) {
7131 DBG_PRINT(ERR_DBG
, "s2io: This kernel does not support"
7132 "MSI/MSI-X. Defaulting to INTA\n");
7133 *dev_intr_type
= INTA
;
7136 if (*dev_intr_type
> MSI_X
) {
7137 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
7138 "Defaulting to INTA\n");
7139 *dev_intr_type
= INTA
;
7142 if ((*dev_intr_type
== MSI_X
) &&
7143 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7144 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7145 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
7146 "Defaulting to INTA\n");
7147 *dev_intr_type
= INTA
;
7150 if (rx_ring_mode
> 3) {
7151 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
7152 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 3-buffer mode\n");
7159 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7160 * or Traffic class respectively.
7161 * @nic: device peivate variable
7162 * Description: The function configures the receive steering to
7163 * desired receive ring.
7164 * Return Value: SUCCESS on success and
7165 * '-1' on failure (endian settings incorrect).
7167 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7169 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7170 register u64 val64
= 0;
7172 if (ds_codepoint
> 63)
7175 val64
= RTS_DS_MEM_DATA(ring
);
7176 writeq(val64
, &bar0
->rts_ds_mem_data
);
7178 val64
= RTS_DS_MEM_CTRL_WE
|
7179 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7180 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7182 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7184 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7185 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7190 * s2io_init_nic - Initialization of the adapter .
7191 * @pdev : structure containing the PCI related information of the device.
7192 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7194 * The function initializes an adapter identified by the pci_dec structure.
7195 * All OS related initialization including memory and device structure and
7196 * initlaization of the device private variable is done. Also the swapper
7197 * control register is initialized to enable read and write into the I/O
7198 * registers of the device.
7200 * returns 0 on success and negative on failure.
7203 static int __devinit
7204 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7206 struct s2io_nic
*sp
;
7207 struct net_device
*dev
;
7209 int dma_flag
= FALSE
;
7210 u32 mac_up
, mac_down
;
7211 u64 val64
= 0, tmp64
= 0;
7212 struct XENA_dev_config __iomem
*bar0
= NULL
;
7214 struct mac_info
*mac_control
;
7215 struct config_param
*config
;
7217 u8 dev_intr_type
= intr_type
;
7219 if ((ret
= s2io_verify_parm(pdev
, &dev_intr_type
)))
7222 if ((ret
= pci_enable_device(pdev
))) {
7224 "s2io_init_nic: pci_enable_device failed\n");
7228 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
7229 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
7231 if (pci_set_consistent_dma_mask
7232 (pdev
, DMA_64BIT_MASK
)) {
7234 "Unable to obtain 64bit DMA for \
7235 consistent allocations\n");
7236 pci_disable_device(pdev
);
7239 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
7240 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
7242 pci_disable_device(pdev
);
7245 if (dev_intr_type
!= MSI_X
) {
7246 if (pci_request_regions(pdev
, s2io_driver_name
)) {
7247 DBG_PRINT(ERR_DBG
, "Request Regions failed\n");
7248 pci_disable_device(pdev
);
7253 if (!(request_mem_region(pci_resource_start(pdev
, 0),
7254 pci_resource_len(pdev
, 0), s2io_driver_name
))) {
7255 DBG_PRINT(ERR_DBG
, "bar0 Request Regions failed\n");
7256 pci_disable_device(pdev
);
7259 if (!(request_mem_region(pci_resource_start(pdev
, 2),
7260 pci_resource_len(pdev
, 2), s2io_driver_name
))) {
7261 DBG_PRINT(ERR_DBG
, "bar1 Request Regions failed\n");
7262 release_mem_region(pci_resource_start(pdev
, 0),
7263 pci_resource_len(pdev
, 0));
7264 pci_disable_device(pdev
);
7269 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7271 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7272 pci_disable_device(pdev
);
7273 pci_release_regions(pdev
);
7277 pci_set_master(pdev
);
7278 pci_set_drvdata(pdev
, dev
);
7279 SET_MODULE_OWNER(dev
);
7280 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7282 /* Private member variable initialized to s2io NIC structure */
7284 memset(sp
, 0, sizeof(struct s2io_nic
));
7287 sp
->high_dma_flag
= dma_flag
;
7288 sp
->device_enabled_once
= FALSE
;
7289 if (rx_ring_mode
== 1)
7290 sp
->rxd_mode
= RXD_MODE_1
;
7291 if (rx_ring_mode
== 2)
7292 sp
->rxd_mode
= RXD_MODE_3B
;
7293 if (rx_ring_mode
== 3)
7294 sp
->rxd_mode
= RXD_MODE_3A
;
7296 sp
->intr_type
= dev_intr_type
;
7298 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7299 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7300 sp
->device_type
= XFRAME_II_DEVICE
;
7302 sp
->device_type
= XFRAME_I_DEVICE
;
7306 /* Initialize some PCI/PCI-X fields of the NIC. */
7310 * Setting the device configuration parameters.
7311 * Most of these parameters can be specified by the user during
7312 * module insertion as they are module loadable parameters. If
7313 * these parameters are not not specified during load time, they
7314 * are initialized with default values.
7316 mac_control
= &sp
->mac_control
;
7317 config
= &sp
->config
;
7319 /* Tx side parameters. */
7320 config
->tx_fifo_num
= tx_fifo_num
;
7321 for (i
= 0; i
< MAX_TX_FIFOS
; i
++) {
7322 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7323 config
->tx_cfg
[i
].fifo_priority
= i
;
7326 /* mapping the QoS priority to the configured fifos */
7327 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7328 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
][i
];
7330 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7331 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7332 config
->tx_cfg
[i
].f_no_snoop
=
7333 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7334 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7335 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7339 /* + 2 because one Txd for skb->data and one Txd for UFO */
7340 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7342 /* Rx side parameters. */
7343 config
->rx_ring_num
= rx_ring_num
;
7344 for (i
= 0; i
< MAX_RX_RINGS
; i
++) {
7345 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7346 (rxd_count
[sp
->rxd_mode
] + 1);
7347 config
->rx_cfg
[i
].ring_priority
= i
;
7350 for (i
= 0; i
< rx_ring_num
; i
++) {
7351 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7352 config
->rx_cfg
[i
].f_no_snoop
=
7353 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7356 /* Setting Mac Control parameters */
7357 mac_control
->rmac_pause_time
= rmac_pause_time
;
7358 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7359 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7362 /* Initialize Ring buffer parameters. */
7363 for (i
= 0; i
< config
->rx_ring_num
; i
++)
7364 atomic_set(&sp
->rx_bufs_left
[i
], 0);
7366 /* Initialize the number of ISRs currently running */
7367 atomic_set(&sp
->isr_cnt
, 0);
7369 /* initialize the shared memory used by the NIC and the host */
7370 if (init_shared_mem(sp
)) {
7371 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7374 goto mem_alloc_failed
;
7377 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7378 pci_resource_len(pdev
, 0));
7380 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7383 goto bar0_remap_failed
;
7386 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7387 pci_resource_len(pdev
, 2));
7389 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7392 goto bar1_remap_failed
;
7395 dev
->irq
= pdev
->irq
;
7396 dev
->base_addr
= (unsigned long) sp
->bar0
;
7398 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7399 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7400 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7401 (sp
->bar1
+ (j
* 0x00020000));
7404 /* Driver entry points */
7405 dev
->open
= &s2io_open
;
7406 dev
->stop
= &s2io_close
;
7407 dev
->hard_start_xmit
= &s2io_xmit
;
7408 dev
->get_stats
= &s2io_get_stats
;
7409 dev
->set_multicast_list
= &s2io_set_multicast
;
7410 dev
->do_ioctl
= &s2io_ioctl
;
7411 dev
->change_mtu
= &s2io_change_mtu
;
7412 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7413 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7414 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
7415 dev
->vlan_rx_kill_vid
= (void *)s2io_vlan_rx_kill_vid
;
7418 * will use eth_mac_addr() for dev->set_mac_address
7419 * mac address will be set every time dev->open() is called
7421 dev
->poll
= s2io_poll
;
7424 #ifdef CONFIG_NET_POLL_CONTROLLER
7425 dev
->poll_controller
= s2io_netpoll
;
7428 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7429 if (sp
->high_dma_flag
== TRUE
)
7430 dev
->features
|= NETIF_F_HIGHDMA
;
7431 dev
->features
|= NETIF_F_TSO
;
7432 dev
->features
|= NETIF_F_TSO6
;
7433 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7434 dev
->features
|= NETIF_F_UFO
;
7435 dev
->features
|= NETIF_F_HW_CSUM
;
7438 dev
->tx_timeout
= &s2io_tx_watchdog
;
7439 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7440 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7441 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7443 pci_save_state(sp
->pdev
);
7445 /* Setting swapper control on the NIC, for proper reset operation */
7446 if (s2io_set_swapper(sp
)) {
7447 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
7450 goto set_swap_failed
;
7453 /* Verify if the Herc works on the slot its placed into */
7454 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7455 mode
= s2io_verify_pci_mode(sp
);
7457 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
7458 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7460 goto set_swap_failed
;
7464 /* Not needed for Herc */
7465 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7467 * Fix for all "FFs" MAC address problems observed on
7470 fix_mac_address(sp
);
7475 * MAC address initialization.
7476 * For now only one mac address will be read and used.
7479 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
7480 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET
);
7481 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
7482 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
7483 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
7484 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
7485 mac_down
= (u32
) tmp64
;
7486 mac_up
= (u32
) (tmp64
>> 32);
7488 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
7489 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
7490 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
7491 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
7492 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
7493 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
7495 /* Set the factory defined MAC address initially */
7496 dev
->addr_len
= ETH_ALEN
;
7497 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
7499 /* reset Nic and bring it to known state */
7503 * Initialize the tasklet status and link state flags
7504 * and the card state parameter
7506 atomic_set(&(sp
->card_state
), 0);
7507 sp
->tasklet_status
= 0;
7510 /* Initialize spinlocks */
7511 spin_lock_init(&sp
->tx_lock
);
7514 spin_lock_init(&sp
->put_lock
);
7515 spin_lock_init(&sp
->rx_lock
);
7518 * SXE-002: Configure link and activity LED to init state
7521 subid
= sp
->pdev
->subsystem_device
;
7522 if ((subid
& 0xFF) >= 0x07) {
7523 val64
= readq(&bar0
->gpio_control
);
7524 val64
|= 0x0000800000000000ULL
;
7525 writeq(val64
, &bar0
->gpio_control
);
7526 val64
= 0x0411040400000000ULL
;
7527 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
7528 val64
= readq(&bar0
->gpio_control
);
7531 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
7533 if (register_netdev(dev
)) {
7534 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
7536 goto register_failed
;
7539 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
7540 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
7541 sp
->product_name
, get_xena_rev_id(sp
->pdev
));
7542 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
7543 s2io_driver_version
);
7544 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: "
7545 "%02x:%02x:%02x:%02x:%02x:%02x", dev
->name
,
7546 sp
->def_mac_addr
[0].mac_addr
[0],
7547 sp
->def_mac_addr
[0].mac_addr
[1],
7548 sp
->def_mac_addr
[0].mac_addr
[2],
7549 sp
->def_mac_addr
[0].mac_addr
[3],
7550 sp
->def_mac_addr
[0].mac_addr
[4],
7551 sp
->def_mac_addr
[0].mac_addr
[5]);
7552 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
7553 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7554 mode
= s2io_print_pci_mode(sp
);
7556 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7558 unregister_netdev(dev
);
7559 goto set_swap_failed
;
7562 switch(sp
->rxd_mode
) {
7564 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
7568 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
7572 DBG_PRINT(ERR_DBG
, "%s: 3-Buffer receive mode enabled\n",
7578 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
7579 switch(sp
->intr_type
) {
7581 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
7584 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI\n", dev
->name
);
7587 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
7591 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
7594 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
7595 " enabled\n", dev
->name
);
7596 /* Initialize device name */
7597 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
7599 /* Initialize bimodal Interrupts */
7600 sp
->config
.bimodal
= bimodal
;
7601 if (!(sp
->device_type
& XFRAME_II_DEVICE
) && bimodal
) {
7602 sp
->config
.bimodal
= 0;
7603 DBG_PRINT(ERR_DBG
,"%s:Bimodal intr not supported by Xframe I\n",
7608 * Make Link state as off at this point, when the Link change
7609 * interrupt comes the state will be automatically changed to
7612 netif_carrier_off(dev
);
7623 free_shared_mem(sp
);
7624 pci_disable_device(pdev
);
7625 if (dev_intr_type
!= MSI_X
)
7626 pci_release_regions(pdev
);
7628 release_mem_region(pci_resource_start(pdev
, 0),
7629 pci_resource_len(pdev
, 0));
7630 release_mem_region(pci_resource_start(pdev
, 2),
7631 pci_resource_len(pdev
, 2));
7633 pci_set_drvdata(pdev
, NULL
);
7640 * s2io_rem_nic - Free the PCI device
7641 * @pdev: structure containing the PCI related information of the device.
7642 * Description: This function is called by the Pci subsystem to release a
7643 * PCI device and free up all resource held up by the device. This could
7644 * be in response to a Hot plug event or when the driver is to be removed
7648 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
7650 struct net_device
*dev
=
7651 (struct net_device
*) pci_get_drvdata(pdev
);
7652 struct s2io_nic
*sp
;
7655 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
7659 flush_scheduled_work();
7662 unregister_netdev(dev
);
7664 free_shared_mem(sp
);
7667 if (sp
->intr_type
!= MSI_X
)
7668 pci_release_regions(pdev
);
7670 release_mem_region(pci_resource_start(pdev
, 0),
7671 pci_resource_len(pdev
, 0));
7672 release_mem_region(pci_resource_start(pdev
, 2),
7673 pci_resource_len(pdev
, 2));
7675 pci_set_drvdata(pdev
, NULL
);
7677 pci_disable_device(pdev
);
7681 * s2io_starter - Entry point for the driver
7682 * Description: This function is the entry point for the driver. It verifies
7683 * the module loadable parameters and initializes PCI configuration space.
7686 int __init
s2io_starter(void)
7688 return pci_register_driver(&s2io_driver
);
7692 * s2io_closer - Cleanup routine for the driver
7693 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7696 static __exit
void s2io_closer(void)
7698 pci_unregister_driver(&s2io_driver
);
7699 DBG_PRINT(INIT_DBG
, "cleanup done\n");
7702 module_init(s2io_starter
);
7703 module_exit(s2io_closer
);
7705 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
7706 struct tcphdr
**tcp
, struct RxD_t
*rxdp
)
7709 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
7711 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
7712 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
7718 * By default the VLAN field in the MAC is stripped by the card, if this
7719 * feature is turned off in rx_pa_cfg register, then the ip_off field
7720 * has to be shifted by a further 2 bytes
7723 case 0: /* DIX type */
7724 case 4: /* DIX type with VLAN */
7725 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
7727 /* LLC, SNAP etc are considered non-mergeable */
7732 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
7733 ip_len
= (u8
)((*ip
)->ihl
);
7735 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
7740 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
7743 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7744 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
7745 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
7750 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
7752 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
7755 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
7756 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
)
7758 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7762 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
7763 lro
->tcp_ack
= ntohl(tcp
->ack_seq
);
7765 lro
->total_len
= ntohs(ip
->tot_len
);
7768 * check if we saw TCP timestamp. Other consistency checks have
7769 * already been done.
7771 if (tcp
->doff
== 8) {
7773 ptr
= (u32
*)(tcp
+1);
7775 lro
->cur_tsval
= *(ptr
+1);
7776 lro
->cur_tsecr
= *(ptr
+2);
7781 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
7783 struct iphdr
*ip
= lro
->iph
;
7784 struct tcphdr
*tcp
= lro
->tcph
;
7786 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
7787 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7789 /* Update L3 header */
7790 ip
->tot_len
= htons(lro
->total_len
);
7792 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
7795 /* Update L4 header */
7796 tcp
->ack_seq
= lro
->tcp_ack
;
7797 tcp
->window
= lro
->window
;
7799 /* Update tsecr field if this session has timestamps enabled */
7801 u32
*ptr
= (u32
*)(tcp
+ 1);
7802 *(ptr
+2) = lro
->cur_tsecr
;
7805 /* Update counters required for calculation of
7806 * average no. of packets aggregated.
7808 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
7809 statinfo
->sw_stat
.num_aggregations
++;
7812 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
7813 struct tcphdr
*tcp
, u32 l4_pyld
)
7815 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7816 lro
->total_len
+= l4_pyld
;
7817 lro
->frags_len
+= l4_pyld
;
7818 lro
->tcp_next_seq
+= l4_pyld
;
7821 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7822 lro
->tcp_ack
= tcp
->ack_seq
;
7823 lro
->window
= tcp
->window
;
7827 /* Update tsecr and tsval from this packet */
7828 ptr
= (u32
*) (tcp
+ 1);
7829 lro
->cur_tsval
= *(ptr
+ 1);
7830 lro
->cur_tsecr
= *(ptr
+ 2);
7834 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
7835 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
7839 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7841 if (!tcp_pyld_len
) {
7842 /* Runt frame or a pure ack */
7846 if (ip
->ihl
!= 5) /* IP has options */
7849 /* If we see CE codepoint in IP header, packet is not mergeable */
7850 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
7853 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7854 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
7855 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
7857 * Currently recognize only the ack control word and
7858 * any other control field being set would result in
7859 * flushing the LRO session
7865 * Allow only one TCP timestamp option. Don't aggregate if
7866 * any other options are detected.
7868 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
7871 if (tcp
->doff
== 8) {
7872 ptr
= (u8
*)(tcp
+ 1);
7873 while (*ptr
== TCPOPT_NOP
)
7875 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
7878 /* Ensure timestamp value increases monotonically */
7880 if (l_lro
->cur_tsval
> *((u32
*)(ptr
+2)))
7883 /* timestamp echo reply should be non-zero */
7884 if (*((u32
*)(ptr
+6)) == 0)
7892 s2io_club_tcp_session(u8
*buffer
, u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
7893 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
7896 struct tcphdr
*tcph
;
7899 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
7901 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
7902 ip
->saddr
, ip
->daddr
);
7907 tcph
= (struct tcphdr
*)*tcp
;
7908 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
7909 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
7910 struct lro
*l_lro
= &sp
->lro0_n
[i
];
7911 if (l_lro
->in_use
) {
7912 if (check_for_socket_match(l_lro
, ip
, tcph
))
7914 /* Sock pair matched */
7917 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
7918 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
7919 "0x%x, actual 0x%x\n", __FUNCTION__
,
7920 (*lro
)->tcp_next_seq
,
7923 sp
->mac_control
.stats_info
->
7924 sw_stat
.outof_sequence_pkts
++;
7929 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
7930 ret
= 1; /* Aggregate */
7932 ret
= 2; /* Flush both */
7938 /* Before searching for available LRO objects,
7939 * check if the pkt is L3/L4 aggregatable. If not
7940 * don't create new LRO session. Just send this
7943 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
7947 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
7948 struct lro
*l_lro
= &sp
->lro0_n
[i
];
7949 if (!(l_lro
->in_use
)) {
7951 ret
= 3; /* Begin anew */
7957 if (ret
== 0) { /* sessions exceeded */
7958 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
7966 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
);
7969 update_L3L4_header(sp
, *lro
);
7972 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
7973 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
7974 update_L3L4_header(sp
, *lro
);
7975 ret
= 4; /* Flush the LRO */
7979 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
7987 static void clear_lro_session(struct lro
*lro
)
7989 static u16 lro_struct_size
= sizeof(struct lro
);
7991 memset(lro
, 0, lro_struct_size
);
7994 static void queue_rx_frame(struct sk_buff
*skb
)
7996 struct net_device
*dev
= skb
->dev
;
7998 skb
->protocol
= eth_type_trans(skb
, dev
);
8000 netif_receive_skb(skb
);
8005 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8006 struct sk_buff
*skb
,
8009 struct sk_buff
*first
= lro
->parent
;
8011 first
->len
+= tcp_len
;
8012 first
->data_len
= lro
->frags_len
;
8013 skb_pull(skb
, (skb
->len
- tcp_len
));
8014 if (skb_shinfo(first
)->frag_list
)
8015 lro
->last_frag
->next
= skb
;
8017 skb_shinfo(first
)->frag_list
= skb
;
8018 first
->truesize
+= skb
->truesize
;
8019 lro
->last_frag
= skb
;
8020 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;