[TCP]: TCP_CONG_YEAH requires TCP_CONG_VEGAS
[linux-2.6/verdex.git] / drivers / net / s2io.c
blobe3e6d410d72cdeef0d27bf10de6dce155bb6f201
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.23.1"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
93 static int rxd_size[4] = {32,48,48,64};
94 static int rxd_count[4] = {127,85,85,63};
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
98 int ret;
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
103 return ret;
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC 1
120 #define LOW 2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
123 struct mac_info *mac_control;
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
142 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
143 {"tmac_frms"},
144 {"tmac_data_octets"},
145 {"tmac_drop_frms"},
146 {"tmac_mcst_frms"},
147 {"tmac_bcst_frms"},
148 {"tmac_pause_ctrl_frms"},
149 {"tmac_ttl_octets"},
150 {"tmac_ucst_frms"},
151 {"tmac_nucst_frms"},
152 {"tmac_any_err_frms"},
153 {"tmac_ttl_less_fb_octets"},
154 {"tmac_vld_ip_octets"},
155 {"tmac_vld_ip"},
156 {"tmac_drop_ip"},
157 {"tmac_icmp"},
158 {"tmac_rst_tcp"},
159 {"tmac_tcp"},
160 {"tmac_udp"},
161 {"rmac_vld_frms"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
164 {"rmac_drop_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
168 {"rmac_out_rng_len_err_frms"},
169 {"rmac_long_frms"},
170 {"rmac_pause_ctrl_frms"},
171 {"rmac_unsup_ctrl_frms"},
172 {"rmac_ttl_octets"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
175 {"rmac_discarded_frms"},
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
178 {"rmac_ttl_frms"},
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
181 {"rmac_frag_frms"},
182 {"rmac_jabber_frms"},
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_ip"},
190 {"rmac_ip_octets"},
191 {"rmac_hdr_err_ip"},
192 {"rmac_drop_ip"},
193 {"rmac_icmp"},
194 {"rmac_tcp"},
195 {"rmac_udp"},
196 {"rmac_err_drp_udp"},
197 {"rmac_xgmii_err_sym"},
198 {"rmac_frms_q0"},
199 {"rmac_frms_q1"},
200 {"rmac_frms_q2"},
201 {"rmac_frms_q3"},
202 {"rmac_frms_q4"},
203 {"rmac_frms_q5"},
204 {"rmac_frms_q6"},
205 {"rmac_frms_q7"},
206 {"rmac_full_q0"},
207 {"rmac_full_q1"},
208 {"rmac_full_q2"},
209 {"rmac_full_q3"},
210 {"rmac_full_q4"},
211 {"rmac_full_q5"},
212 {"rmac_full_q6"},
213 {"rmac_full_q7"},
214 {"rmac_pause_cnt"},
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
217 {"rmac_accepted_ip"},
218 {"rmac_err_tcp"},
219 {"rd_req_cnt"},
220 {"new_rd_req_cnt"},
221 {"new_rd_req_rtry_cnt"},
222 {"rd_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
224 {"wr_req_cnt"},
225 {"new_wr_req_cnt"},
226 {"new_wr_req_rtry_cnt"},
227 {"wr_rtry_cnt"},
228 {"wr_disc_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
230 {"txp_wr_cnt"},
231 {"txd_rd_cnt"},
232 {"txd_wr_cnt"},
233 {"rxd_rd_cnt"},
234 {"rxd_wr_cnt"},
235 {"txf_rd_cnt"},
236 {"rxf_wr_cnt"}
239 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
247 {"rmac_vlan_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
250 {"rmac_pf_discard"},
251 {"rmac_da_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
255 {"link_fault_cnt"}
258 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
262 {"parity_err_cnt"},
263 {"serious_err_cnt"},
264 {"soft_reset_cnt"},
265 {"fifo_full_cnt"},
266 {"ring_full_cnt"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
284 ("mem_alloc_fail_cnt"),
285 ("watchdog_timer_cnt"),
286 ("mem_allocated"),
287 ("mem_freed"),
288 ("link_up_cnt"),
289 ("link_down_cnt"),
290 ("link_up_time"),
291 ("link_down_time"),
292 ("tx_tcode_buf_abort_cnt"),
293 ("tx_tcode_desc_abort_cnt"),
294 ("tx_tcode_parity_err_cnt"),
295 ("tx_tcode_link_loss_cnt"),
296 ("tx_tcode_list_proc_err_cnt"),
297 ("rx_tcode_parity_err_cnt"),
298 ("rx_tcode_abort_cnt"),
299 ("rx_tcode_parity_abort_cnt"),
300 ("rx_tcode_rda_fail_cnt"),
301 ("rx_tcode_unkn_prot_cnt"),
302 ("rx_tcode_fcs_err_cnt"),
303 ("rx_tcode_buf_size_err_cnt"),
304 ("rx_tcode_rxd_corrupt_cnt"),
305 ("rx_tcode_unkn_err_cnt")
308 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
309 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
310 ETH_GSTRING_LEN
311 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
313 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
314 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
316 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
317 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
319 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
320 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
322 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
323 init_timer(&timer); \
324 timer.function = handle; \
325 timer.data = (unsigned long) arg; \
326 mod_timer(&timer, (jiffies + exp)) \
328 /* Add the vlan */
329 static void s2io_vlan_rx_register(struct net_device *dev,
330 struct vlan_group *grp)
332 struct s2io_nic *nic = dev->priv;
333 unsigned long flags;
335 spin_lock_irqsave(&nic->tx_lock, flags);
336 nic->vlgrp = grp;
337 spin_unlock_irqrestore(&nic->tx_lock, flags);
340 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
341 static int vlan_strip_flag;
343 /* Unregister the vlan */
344 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
346 struct s2io_nic *nic = dev->priv;
347 unsigned long flags;
349 spin_lock_irqsave(&nic->tx_lock, flags);
350 vlan_group_set_device(nic->vlgrp, vid, NULL);
351 spin_unlock_irqrestore(&nic->tx_lock, flags);
355 * Constants to be programmed into the Xena's registers, to configure
356 * the XAUI.
359 #define END_SIGN 0x0
360 static const u64 herc_act_dtx_cfg[] = {
361 /* Set address */
362 0x8000051536750000ULL, 0x80000515367500E0ULL,
363 /* Write data */
364 0x8000051536750004ULL, 0x80000515367500E4ULL,
365 /* Set address */
366 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
367 /* Write data */
368 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
369 /* Set address */
370 0x801205150D440000ULL, 0x801205150D4400E0ULL,
371 /* Write data */
372 0x801205150D440004ULL, 0x801205150D4400E4ULL,
373 /* Set address */
374 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
375 /* Write data */
376 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
377 /* Done */
378 END_SIGN
381 static const u64 xena_dtx_cfg[] = {
382 /* Set address */
383 0x8000051500000000ULL, 0x80000515000000E0ULL,
384 /* Write data */
385 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
386 /* Set address */
387 0x8001051500000000ULL, 0x80010515000000E0ULL,
388 /* Write data */
389 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
390 /* Set address */
391 0x8002051500000000ULL, 0x80020515000000E0ULL,
392 /* Write data */
393 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
394 END_SIGN
398 * Constants for Fixing the MacAddress problem seen mostly on
399 * Alpha machines.
401 static const u64 fix_mac[] = {
402 0x0060000000000000ULL, 0x0060600000000000ULL,
403 0x0040600000000000ULL, 0x0000600000000000ULL,
404 0x0020600000000000ULL, 0x0060600000000000ULL,
405 0x0020600000000000ULL, 0x0060600000000000ULL,
406 0x0020600000000000ULL, 0x0060600000000000ULL,
407 0x0020600000000000ULL, 0x0060600000000000ULL,
408 0x0020600000000000ULL, 0x0060600000000000ULL,
409 0x0020600000000000ULL, 0x0060600000000000ULL,
410 0x0020600000000000ULL, 0x0060600000000000ULL,
411 0x0020600000000000ULL, 0x0060600000000000ULL,
412 0x0020600000000000ULL, 0x0060600000000000ULL,
413 0x0020600000000000ULL, 0x0060600000000000ULL,
414 0x0020600000000000ULL, 0x0000600000000000ULL,
415 0x0040600000000000ULL, 0x0060600000000000ULL,
416 END_SIGN
419 MODULE_LICENSE("GPL");
420 MODULE_VERSION(DRV_VERSION);
423 /* Module Loadable parameters. */
424 S2IO_PARM_INT(tx_fifo_num, 1);
425 S2IO_PARM_INT(rx_ring_num, 1);
428 S2IO_PARM_INT(rx_ring_mode, 1);
429 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
430 S2IO_PARM_INT(rmac_pause_time, 0x100);
431 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
432 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
433 S2IO_PARM_INT(shared_splits, 0);
434 S2IO_PARM_INT(tmac_util_period, 5);
435 S2IO_PARM_INT(rmac_util_period, 5);
436 S2IO_PARM_INT(bimodal, 0);
437 S2IO_PARM_INT(l3l4hdr_size, 128);
438 /* Frequency of Rx desc syncs expressed as power of 2 */
439 S2IO_PARM_INT(rxsync_frequency, 3);
440 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
441 S2IO_PARM_INT(intr_type, 0);
442 /* Large receive offload feature */
443 S2IO_PARM_INT(lro, 0);
444 /* Max pkts to be aggregated by LRO at one time. If not specified,
445 * aggregation happens until we hit max IP pkt size(64K)
447 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
448 S2IO_PARM_INT(indicate_max_pkts, 0);
450 S2IO_PARM_INT(napi, 1);
451 S2IO_PARM_INT(ufo, 0);
452 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
454 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
455 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
456 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
457 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
458 static unsigned int rts_frm_len[MAX_RX_RINGS] =
459 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
461 module_param_array(tx_fifo_len, uint, NULL, 0);
462 module_param_array(rx_ring_sz, uint, NULL, 0);
463 module_param_array(rts_frm_len, uint, NULL, 0);
466 * S2IO device table.
467 * This table lists all the devices that this driver supports.
469 static struct pci_device_id s2io_tbl[] __devinitdata = {
470 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
471 PCI_ANY_ID, PCI_ANY_ID},
472 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
473 PCI_ANY_ID, PCI_ANY_ID},
474 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
475 PCI_ANY_ID, PCI_ANY_ID},
476 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
477 PCI_ANY_ID, PCI_ANY_ID},
478 {0,}
481 MODULE_DEVICE_TABLE(pci, s2io_tbl);
483 static struct pci_driver s2io_driver = {
484 .name = "S2IO",
485 .id_table = s2io_tbl,
486 .probe = s2io_init_nic,
487 .remove = __devexit_p(s2io_rem_nic),
490 /* A simplifier macro used both by init and free shared_mem Fns(). */
491 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
494 * init_shared_mem - Allocation and Initialization of Memory
495 * @nic: Device private variable.
496 * Description: The function allocates all the memory areas shared
497 * between the NIC and the driver. This includes Tx descriptors,
498 * Rx descriptors and the statistics block.
501 static int init_shared_mem(struct s2io_nic *nic)
503 u32 size;
504 void *tmp_v_addr, *tmp_v_addr_next;
505 dma_addr_t tmp_p_addr, tmp_p_addr_next;
506 struct RxD_block *pre_rxd_blk = NULL;
507 int i, j, blk_cnt;
508 int lst_size, lst_per_page;
509 struct net_device *dev = nic->dev;
510 unsigned long tmp;
511 struct buffAdd *ba;
513 struct mac_info *mac_control;
514 struct config_param *config;
515 unsigned long long mem_allocated = 0;
517 mac_control = &nic->mac_control;
518 config = &nic->config;
521 /* Allocation and initialization of TXDLs in FIOFs */
522 size = 0;
523 for (i = 0; i < config->tx_fifo_num; i++) {
524 size += config->tx_cfg[i].fifo_len;
526 if (size > MAX_AVAILABLE_TXDS) {
527 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
528 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
529 return -EINVAL;
532 lst_size = (sizeof(struct TxD) * config->max_txds);
533 lst_per_page = PAGE_SIZE / lst_size;
535 for (i = 0; i < config->tx_fifo_num; i++) {
536 int fifo_len = config->tx_cfg[i].fifo_len;
537 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
538 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
539 GFP_KERNEL);
540 if (!mac_control->fifos[i].list_info) {
541 DBG_PRINT(INFO_DBG,
542 "Malloc failed for list_info\n");
543 return -ENOMEM;
545 mem_allocated += list_holder_size;
546 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
548 for (i = 0; i < config->tx_fifo_num; i++) {
549 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
550 lst_per_page);
551 mac_control->fifos[i].tx_curr_put_info.offset = 0;
552 mac_control->fifos[i].tx_curr_put_info.fifo_len =
553 config->tx_cfg[i].fifo_len - 1;
554 mac_control->fifos[i].tx_curr_get_info.offset = 0;
555 mac_control->fifos[i].tx_curr_get_info.fifo_len =
556 config->tx_cfg[i].fifo_len - 1;
557 mac_control->fifos[i].fifo_no = i;
558 mac_control->fifos[i].nic = nic;
559 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
561 for (j = 0; j < page_num; j++) {
562 int k = 0;
563 dma_addr_t tmp_p;
564 void *tmp_v;
565 tmp_v = pci_alloc_consistent(nic->pdev,
566 PAGE_SIZE, &tmp_p);
567 if (!tmp_v) {
568 DBG_PRINT(INFO_DBG,
569 "pci_alloc_consistent ");
570 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
571 return -ENOMEM;
573 /* If we got a zero DMA address(can happen on
574 * certain platforms like PPC), reallocate.
575 * Store virtual address of page we don't want,
576 * to be freed later.
578 if (!tmp_p) {
579 mac_control->zerodma_virt_addr = tmp_v;
580 DBG_PRINT(INIT_DBG,
581 "%s: Zero DMA address for TxDL. ", dev->name);
582 DBG_PRINT(INIT_DBG,
583 "Virtual address %p\n", tmp_v);
584 tmp_v = pci_alloc_consistent(nic->pdev,
585 PAGE_SIZE, &tmp_p);
586 if (!tmp_v) {
587 DBG_PRINT(INFO_DBG,
588 "pci_alloc_consistent ");
589 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
590 return -ENOMEM;
592 mem_allocated += PAGE_SIZE;
594 while (k < lst_per_page) {
595 int l = (j * lst_per_page) + k;
596 if (l == config->tx_cfg[i].fifo_len)
597 break;
598 mac_control->fifos[i].list_info[l].list_virt_addr =
599 tmp_v + (k * lst_size);
600 mac_control->fifos[i].list_info[l].list_phy_addr =
601 tmp_p + (k * lst_size);
602 k++;
607 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
608 if (!nic->ufo_in_band_v)
609 return -ENOMEM;
610 mem_allocated += (size * sizeof(u64));
612 /* Allocation and initialization of RXDs in Rings */
613 size = 0;
614 for (i = 0; i < config->rx_ring_num; i++) {
615 if (config->rx_cfg[i].num_rxd %
616 (rxd_count[nic->rxd_mode] + 1)) {
617 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
618 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
620 DBG_PRINT(ERR_DBG, "RxDs per Block");
621 return FAILURE;
623 size += config->rx_cfg[i].num_rxd;
624 mac_control->rings[i].block_count =
625 config->rx_cfg[i].num_rxd /
626 (rxd_count[nic->rxd_mode] + 1 );
627 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
628 mac_control->rings[i].block_count;
630 if (nic->rxd_mode == RXD_MODE_1)
631 size = (size * (sizeof(struct RxD1)));
632 else
633 size = (size * (sizeof(struct RxD3)));
635 for (i = 0; i < config->rx_ring_num; i++) {
636 mac_control->rings[i].rx_curr_get_info.block_index = 0;
637 mac_control->rings[i].rx_curr_get_info.offset = 0;
638 mac_control->rings[i].rx_curr_get_info.ring_len =
639 config->rx_cfg[i].num_rxd - 1;
640 mac_control->rings[i].rx_curr_put_info.block_index = 0;
641 mac_control->rings[i].rx_curr_put_info.offset = 0;
642 mac_control->rings[i].rx_curr_put_info.ring_len =
643 config->rx_cfg[i].num_rxd - 1;
644 mac_control->rings[i].nic = nic;
645 mac_control->rings[i].ring_no = i;
647 blk_cnt = config->rx_cfg[i].num_rxd /
648 (rxd_count[nic->rxd_mode] + 1);
649 /* Allocating all the Rx blocks */
650 for (j = 0; j < blk_cnt; j++) {
651 struct rx_block_info *rx_blocks;
652 int l;
654 rx_blocks = &mac_control->rings[i].rx_blocks[j];
655 size = SIZE_OF_BLOCK; //size is always page size
656 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
657 &tmp_p_addr);
658 if (tmp_v_addr == NULL) {
660 * In case of failure, free_shared_mem()
661 * is called, which should free any
662 * memory that was alloced till the
663 * failure happened.
665 rx_blocks->block_virt_addr = tmp_v_addr;
666 return -ENOMEM;
668 mem_allocated += size;
669 memset(tmp_v_addr, 0, size);
670 rx_blocks->block_virt_addr = tmp_v_addr;
671 rx_blocks->block_dma_addr = tmp_p_addr;
672 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
673 rxd_count[nic->rxd_mode],
674 GFP_KERNEL);
675 if (!rx_blocks->rxds)
676 return -ENOMEM;
677 mem_allocated +=
678 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
679 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
680 rx_blocks->rxds[l].virt_addr =
681 rx_blocks->block_virt_addr +
682 (rxd_size[nic->rxd_mode] * l);
683 rx_blocks->rxds[l].dma_addr =
684 rx_blocks->block_dma_addr +
685 (rxd_size[nic->rxd_mode] * l);
688 /* Interlinking all Rx Blocks */
689 for (j = 0; j < blk_cnt; j++) {
690 tmp_v_addr =
691 mac_control->rings[i].rx_blocks[j].block_virt_addr;
692 tmp_v_addr_next =
693 mac_control->rings[i].rx_blocks[(j + 1) %
694 blk_cnt].block_virt_addr;
695 tmp_p_addr =
696 mac_control->rings[i].rx_blocks[j].block_dma_addr;
697 tmp_p_addr_next =
698 mac_control->rings[i].rx_blocks[(j + 1) %
699 blk_cnt].block_dma_addr;
701 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
702 pre_rxd_blk->reserved_2_pNext_RxD_block =
703 (unsigned long) tmp_v_addr_next;
704 pre_rxd_blk->pNext_RxD_Blk_physical =
705 (u64) tmp_p_addr_next;
708 if (nic->rxd_mode >= RXD_MODE_3A) {
710 * Allocation of Storages for buffer addresses in 2BUFF mode
711 * and the buffers as well.
713 for (i = 0; i < config->rx_ring_num; i++) {
714 blk_cnt = config->rx_cfg[i].num_rxd /
715 (rxd_count[nic->rxd_mode]+ 1);
716 mac_control->rings[i].ba =
717 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
718 GFP_KERNEL);
719 if (!mac_control->rings[i].ba)
720 return -ENOMEM;
721 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
722 for (j = 0; j < blk_cnt; j++) {
723 int k = 0;
724 mac_control->rings[i].ba[j] =
725 kmalloc((sizeof(struct buffAdd) *
726 (rxd_count[nic->rxd_mode] + 1)),
727 GFP_KERNEL);
728 if (!mac_control->rings[i].ba[j])
729 return -ENOMEM;
730 mem_allocated += (sizeof(struct buffAdd) * \
731 (rxd_count[nic->rxd_mode] + 1));
732 while (k != rxd_count[nic->rxd_mode]) {
733 ba = &mac_control->rings[i].ba[j][k];
735 ba->ba_0_org = (void *) kmalloc
736 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
737 if (!ba->ba_0_org)
738 return -ENOMEM;
739 mem_allocated +=
740 (BUF0_LEN + ALIGN_SIZE);
741 tmp = (unsigned long)ba->ba_0_org;
742 tmp += ALIGN_SIZE;
743 tmp &= ~((unsigned long) ALIGN_SIZE);
744 ba->ba_0 = (void *) tmp;
746 ba->ba_1_org = (void *) kmalloc
747 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
748 if (!ba->ba_1_org)
749 return -ENOMEM;
750 mem_allocated
751 += (BUF1_LEN + ALIGN_SIZE);
752 tmp = (unsigned long) ba->ba_1_org;
753 tmp += ALIGN_SIZE;
754 tmp &= ~((unsigned long) ALIGN_SIZE);
755 ba->ba_1 = (void *) tmp;
756 k++;
762 /* Allocation and initialization of Statistics block */
763 size = sizeof(struct stat_block);
764 mac_control->stats_mem = pci_alloc_consistent
765 (nic->pdev, size, &mac_control->stats_mem_phy);
767 if (!mac_control->stats_mem) {
769 * In case of failure, free_shared_mem() is called, which
770 * should free any memory that was alloced till the
771 * failure happened.
773 return -ENOMEM;
775 mem_allocated += size;
776 mac_control->stats_mem_sz = size;
778 tmp_v_addr = mac_control->stats_mem;
779 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
780 memset(tmp_v_addr, 0, size);
781 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
782 (unsigned long long) tmp_p_addr);
783 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
784 return SUCCESS;
788 * free_shared_mem - Free the allocated Memory
789 * @nic: Device private variable.
790 * Description: This function is to free all memory locations allocated by
791 * the init_shared_mem() function and return it to the kernel.
794 static void free_shared_mem(struct s2io_nic *nic)
796 int i, j, blk_cnt, size;
797 u32 ufo_size = 0;
798 void *tmp_v_addr;
799 dma_addr_t tmp_p_addr;
800 struct mac_info *mac_control;
801 struct config_param *config;
802 int lst_size, lst_per_page;
803 struct net_device *dev = nic->dev;
804 int page_num = 0;
806 if (!nic)
807 return;
809 mac_control = &nic->mac_control;
810 config = &nic->config;
812 lst_size = (sizeof(struct TxD) * config->max_txds);
813 lst_per_page = PAGE_SIZE / lst_size;
815 for (i = 0; i < config->tx_fifo_num; i++) {
816 ufo_size += config->tx_cfg[i].fifo_len;
817 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
818 lst_per_page);
819 for (j = 0; j < page_num; j++) {
820 int mem_blks = (j * lst_per_page);
821 if (!mac_control->fifos[i].list_info)
822 return;
823 if (!mac_control->fifos[i].list_info[mem_blks].
824 list_virt_addr)
825 break;
826 pci_free_consistent(nic->pdev, PAGE_SIZE,
827 mac_control->fifos[i].
828 list_info[mem_blks].
829 list_virt_addr,
830 mac_control->fifos[i].
831 list_info[mem_blks].
832 list_phy_addr);
833 nic->mac_control.stats_info->sw_stat.mem_freed
834 += PAGE_SIZE;
836 /* If we got a zero DMA address during allocation,
837 * free the page now
839 if (mac_control->zerodma_virt_addr) {
840 pci_free_consistent(nic->pdev, PAGE_SIZE,
841 mac_control->zerodma_virt_addr,
842 (dma_addr_t)0);
843 DBG_PRINT(INIT_DBG,
844 "%s: Freeing TxDL with zero DMA addr. ",
845 dev->name);
846 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
847 mac_control->zerodma_virt_addr);
848 nic->mac_control.stats_info->sw_stat.mem_freed
849 += PAGE_SIZE;
851 kfree(mac_control->fifos[i].list_info);
852 nic->mac_control.stats_info->sw_stat.mem_freed +=
853 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
856 size = SIZE_OF_BLOCK;
857 for (i = 0; i < config->rx_ring_num; i++) {
858 blk_cnt = mac_control->rings[i].block_count;
859 for (j = 0; j < blk_cnt; j++) {
860 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
861 block_virt_addr;
862 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
863 block_dma_addr;
864 if (tmp_v_addr == NULL)
865 break;
866 pci_free_consistent(nic->pdev, size,
867 tmp_v_addr, tmp_p_addr);
868 nic->mac_control.stats_info->sw_stat.mem_freed += size;
869 kfree(mac_control->rings[i].rx_blocks[j].rxds);
870 nic->mac_control.stats_info->sw_stat.mem_freed +=
871 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
875 if (nic->rxd_mode >= RXD_MODE_3A) {
876 /* Freeing buffer storage addresses in 2BUFF mode. */
877 for (i = 0; i < config->rx_ring_num; i++) {
878 blk_cnt = config->rx_cfg[i].num_rxd /
879 (rxd_count[nic->rxd_mode] + 1);
880 for (j = 0; j < blk_cnt; j++) {
881 int k = 0;
882 if (!mac_control->rings[i].ba[j])
883 continue;
884 while (k != rxd_count[nic->rxd_mode]) {
885 struct buffAdd *ba =
886 &mac_control->rings[i].ba[j][k];
887 kfree(ba->ba_0_org);
888 nic->mac_control.stats_info->sw_stat.\
889 mem_freed += (BUF0_LEN + ALIGN_SIZE);
890 kfree(ba->ba_1_org);
891 nic->mac_control.stats_info->sw_stat.\
892 mem_freed += (BUF1_LEN + ALIGN_SIZE);
893 k++;
895 kfree(mac_control->rings[i].ba[j]);
896 nic->mac_control.stats_info->sw_stat.mem_freed += (sizeof(struct buffAdd) *
897 (rxd_count[nic->rxd_mode] + 1));
899 kfree(mac_control->rings[i].ba);
900 nic->mac_control.stats_info->sw_stat.mem_freed +=
901 (sizeof(struct buffAdd *) * blk_cnt);
905 if (mac_control->stats_mem) {
906 pci_free_consistent(nic->pdev,
907 mac_control->stats_mem_sz,
908 mac_control->stats_mem,
909 mac_control->stats_mem_phy);
910 nic->mac_control.stats_info->sw_stat.mem_freed +=
911 mac_control->stats_mem_sz;
913 if (nic->ufo_in_band_v) {
914 kfree(nic->ufo_in_band_v);
915 nic->mac_control.stats_info->sw_stat.mem_freed
916 += (ufo_size * sizeof(u64));
921 * s2io_verify_pci_mode -
924 static int s2io_verify_pci_mode(struct s2io_nic *nic)
926 struct XENA_dev_config __iomem *bar0 = nic->bar0;
927 register u64 val64 = 0;
928 int mode;
930 val64 = readq(&bar0->pci_mode);
931 mode = (u8)GET_PCI_MODE(val64);
933 if ( val64 & PCI_MODE_UNKNOWN_MODE)
934 return -1; /* Unknown PCI mode */
935 return mode;
938 #define NEC_VENID 0x1033
939 #define NEC_DEVID 0x0125
940 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
942 struct pci_dev *tdev = NULL;
943 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
944 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
945 if (tdev->bus == s2io_pdev->bus->parent)
946 pci_dev_put(tdev);
947 return 1;
950 return 0;
953 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
955 * s2io_print_pci_mode -
957 static int s2io_print_pci_mode(struct s2io_nic *nic)
959 struct XENA_dev_config __iomem *bar0 = nic->bar0;
960 register u64 val64 = 0;
961 int mode;
962 struct config_param *config = &nic->config;
964 val64 = readq(&bar0->pci_mode);
965 mode = (u8)GET_PCI_MODE(val64);
967 if ( val64 & PCI_MODE_UNKNOWN_MODE)
968 return -1; /* Unknown PCI mode */
970 config->bus_speed = bus_speed[mode];
972 if (s2io_on_nec_bridge(nic->pdev)) {
973 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
974 nic->dev->name);
975 return mode;
978 if (val64 & PCI_MODE_32_BITS) {
979 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
980 } else {
981 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
984 switch(mode) {
985 case PCI_MODE_PCI_33:
986 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
987 break;
988 case PCI_MODE_PCI_66:
989 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
990 break;
991 case PCI_MODE_PCIX_M1_66:
992 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
993 break;
994 case PCI_MODE_PCIX_M1_100:
995 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
996 break;
997 case PCI_MODE_PCIX_M1_133:
998 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
999 break;
1000 case PCI_MODE_PCIX_M2_66:
1001 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1002 break;
1003 case PCI_MODE_PCIX_M2_100:
1004 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1005 break;
1006 case PCI_MODE_PCIX_M2_133:
1007 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1008 break;
1009 default:
1010 return -1; /* Unsupported bus speed */
1013 return mode;
1017 * init_nic - Initialization of hardware
1018 * @nic: device peivate variable
1019 * Description: The function sequentially configures every block
1020 * of the H/W from their reset values.
1021 * Return Value: SUCCESS on success and
1022 * '-1' on failure (endian settings incorrect).
1025 static int init_nic(struct s2io_nic *nic)
1027 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1028 struct net_device *dev = nic->dev;
1029 register u64 val64 = 0;
1030 void __iomem *add;
1031 u32 time;
1032 int i, j;
1033 struct mac_info *mac_control;
1034 struct config_param *config;
1035 int dtx_cnt = 0;
1036 unsigned long long mem_share;
1037 int mem_size;
1039 mac_control = &nic->mac_control;
1040 config = &nic->config;
1042 /* to set the swapper controle on the card */
1043 if(s2io_set_swapper(nic)) {
1044 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1045 return -1;
1049 * Herc requires EOI to be removed from reset before XGXS, so..
1051 if (nic->device_type & XFRAME_II_DEVICE) {
1052 val64 = 0xA500000000ULL;
1053 writeq(val64, &bar0->sw_reset);
1054 msleep(500);
1055 val64 = readq(&bar0->sw_reset);
1058 /* Remove XGXS from reset state */
1059 val64 = 0;
1060 writeq(val64, &bar0->sw_reset);
1061 msleep(500);
1062 val64 = readq(&bar0->sw_reset);
1064 /* Enable Receiving broadcasts */
1065 add = &bar0->mac_cfg;
1066 val64 = readq(&bar0->mac_cfg);
1067 val64 |= MAC_RMAC_BCAST_ENABLE;
1068 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1069 writel((u32) val64, add);
1070 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1071 writel((u32) (val64 >> 32), (add + 4));
1073 /* Read registers in all blocks */
1074 val64 = readq(&bar0->mac_int_mask);
1075 val64 = readq(&bar0->mc_int_mask);
1076 val64 = readq(&bar0->xgxs_int_mask);
1078 /* Set MTU */
1079 val64 = dev->mtu;
1080 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1082 if (nic->device_type & XFRAME_II_DEVICE) {
1083 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1084 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1085 &bar0->dtx_control, UF);
1086 if (dtx_cnt & 0x1)
1087 msleep(1); /* Necessary!! */
1088 dtx_cnt++;
1090 } else {
1091 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1092 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1093 &bar0->dtx_control, UF);
1094 val64 = readq(&bar0->dtx_control);
1095 dtx_cnt++;
1099 /* Tx DMA Initialization */
1100 val64 = 0;
1101 writeq(val64, &bar0->tx_fifo_partition_0);
1102 writeq(val64, &bar0->tx_fifo_partition_1);
1103 writeq(val64, &bar0->tx_fifo_partition_2);
1104 writeq(val64, &bar0->tx_fifo_partition_3);
1107 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1108 val64 |=
1109 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1110 13) | vBIT(config->tx_cfg[i].fifo_priority,
1111 ((i * 32) + 5), 3);
1113 if (i == (config->tx_fifo_num - 1)) {
1114 if (i % 2 == 0)
1115 i++;
1118 switch (i) {
1119 case 1:
1120 writeq(val64, &bar0->tx_fifo_partition_0);
1121 val64 = 0;
1122 break;
1123 case 3:
1124 writeq(val64, &bar0->tx_fifo_partition_1);
1125 val64 = 0;
1126 break;
1127 case 5:
1128 writeq(val64, &bar0->tx_fifo_partition_2);
1129 val64 = 0;
1130 break;
1131 case 7:
1132 writeq(val64, &bar0->tx_fifo_partition_3);
1133 break;
1138 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1139 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1141 if ((nic->device_type == XFRAME_I_DEVICE) &&
1142 (get_xena_rev_id(nic->pdev) < 4))
1143 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1145 val64 = readq(&bar0->tx_fifo_partition_0);
1146 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1147 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1150 * Initialization of Tx_PA_CONFIG register to ignore packet
1151 * integrity checking.
1153 val64 = readq(&bar0->tx_pa_cfg);
1154 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1155 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1156 writeq(val64, &bar0->tx_pa_cfg);
1158 /* Rx DMA intialization. */
1159 val64 = 0;
1160 for (i = 0; i < config->rx_ring_num; i++) {
1161 val64 |=
1162 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1165 writeq(val64, &bar0->rx_queue_priority);
1168 * Allocating equal share of memory to all the
1169 * configured Rings.
1171 val64 = 0;
1172 if (nic->device_type & XFRAME_II_DEVICE)
1173 mem_size = 32;
1174 else
1175 mem_size = 64;
1177 for (i = 0; i < config->rx_ring_num; i++) {
1178 switch (i) {
1179 case 0:
1180 mem_share = (mem_size / config->rx_ring_num +
1181 mem_size % config->rx_ring_num);
1182 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1183 continue;
1184 case 1:
1185 mem_share = (mem_size / config->rx_ring_num);
1186 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1187 continue;
1188 case 2:
1189 mem_share = (mem_size / config->rx_ring_num);
1190 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1191 continue;
1192 case 3:
1193 mem_share = (mem_size / config->rx_ring_num);
1194 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1195 continue;
1196 case 4:
1197 mem_share = (mem_size / config->rx_ring_num);
1198 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1199 continue;
1200 case 5:
1201 mem_share = (mem_size / config->rx_ring_num);
1202 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1203 continue;
1204 case 6:
1205 mem_share = (mem_size / config->rx_ring_num);
1206 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1207 continue;
1208 case 7:
1209 mem_share = (mem_size / config->rx_ring_num);
1210 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1211 continue;
1214 writeq(val64, &bar0->rx_queue_cfg);
1217 * Filling Tx round robin registers
1218 * as per the number of FIFOs
1220 switch (config->tx_fifo_num) {
1221 case 1:
1222 val64 = 0x0000000000000000ULL;
1223 writeq(val64, &bar0->tx_w_round_robin_0);
1224 writeq(val64, &bar0->tx_w_round_robin_1);
1225 writeq(val64, &bar0->tx_w_round_robin_2);
1226 writeq(val64, &bar0->tx_w_round_robin_3);
1227 writeq(val64, &bar0->tx_w_round_robin_4);
1228 break;
1229 case 2:
1230 val64 = 0x0000010000010000ULL;
1231 writeq(val64, &bar0->tx_w_round_robin_0);
1232 val64 = 0x0100000100000100ULL;
1233 writeq(val64, &bar0->tx_w_round_robin_1);
1234 val64 = 0x0001000001000001ULL;
1235 writeq(val64, &bar0->tx_w_round_robin_2);
1236 val64 = 0x0000010000010000ULL;
1237 writeq(val64, &bar0->tx_w_round_robin_3);
1238 val64 = 0x0100000000000000ULL;
1239 writeq(val64, &bar0->tx_w_round_robin_4);
1240 break;
1241 case 3:
1242 val64 = 0x0001000102000001ULL;
1243 writeq(val64, &bar0->tx_w_round_robin_0);
1244 val64 = 0x0001020000010001ULL;
1245 writeq(val64, &bar0->tx_w_round_robin_1);
1246 val64 = 0x0200000100010200ULL;
1247 writeq(val64, &bar0->tx_w_round_robin_2);
1248 val64 = 0x0001000102000001ULL;
1249 writeq(val64, &bar0->tx_w_round_robin_3);
1250 val64 = 0x0001020000000000ULL;
1251 writeq(val64, &bar0->tx_w_round_robin_4);
1252 break;
1253 case 4:
1254 val64 = 0x0001020300010200ULL;
1255 writeq(val64, &bar0->tx_w_round_robin_0);
1256 val64 = 0x0100000102030001ULL;
1257 writeq(val64, &bar0->tx_w_round_robin_1);
1258 val64 = 0x0200010000010203ULL;
1259 writeq(val64, &bar0->tx_w_round_robin_2);
1260 val64 = 0x0001020001000001ULL;
1261 writeq(val64, &bar0->tx_w_round_robin_3);
1262 val64 = 0x0203000100000000ULL;
1263 writeq(val64, &bar0->tx_w_round_robin_4);
1264 break;
1265 case 5:
1266 val64 = 0x0001000203000102ULL;
1267 writeq(val64, &bar0->tx_w_round_robin_0);
1268 val64 = 0x0001020001030004ULL;
1269 writeq(val64, &bar0->tx_w_round_robin_1);
1270 val64 = 0x0001000203000102ULL;
1271 writeq(val64, &bar0->tx_w_round_robin_2);
1272 val64 = 0x0001020001030004ULL;
1273 writeq(val64, &bar0->tx_w_round_robin_3);
1274 val64 = 0x0001000000000000ULL;
1275 writeq(val64, &bar0->tx_w_round_robin_4);
1276 break;
1277 case 6:
1278 val64 = 0x0001020304000102ULL;
1279 writeq(val64, &bar0->tx_w_round_robin_0);
1280 val64 = 0x0304050001020001ULL;
1281 writeq(val64, &bar0->tx_w_round_robin_1);
1282 val64 = 0x0203000100000102ULL;
1283 writeq(val64, &bar0->tx_w_round_robin_2);
1284 val64 = 0x0304000102030405ULL;
1285 writeq(val64, &bar0->tx_w_round_robin_3);
1286 val64 = 0x0001000200000000ULL;
1287 writeq(val64, &bar0->tx_w_round_robin_4);
1288 break;
1289 case 7:
1290 val64 = 0x0001020001020300ULL;
1291 writeq(val64, &bar0->tx_w_round_robin_0);
1292 val64 = 0x0102030400010203ULL;
1293 writeq(val64, &bar0->tx_w_round_robin_1);
1294 val64 = 0x0405060001020001ULL;
1295 writeq(val64, &bar0->tx_w_round_robin_2);
1296 val64 = 0x0304050000010200ULL;
1297 writeq(val64, &bar0->tx_w_round_robin_3);
1298 val64 = 0x0102030000000000ULL;
1299 writeq(val64, &bar0->tx_w_round_robin_4);
1300 break;
1301 case 8:
1302 val64 = 0x0001020300040105ULL;
1303 writeq(val64, &bar0->tx_w_round_robin_0);
1304 val64 = 0x0200030106000204ULL;
1305 writeq(val64, &bar0->tx_w_round_robin_1);
1306 val64 = 0x0103000502010007ULL;
1307 writeq(val64, &bar0->tx_w_round_robin_2);
1308 val64 = 0x0304010002060500ULL;
1309 writeq(val64, &bar0->tx_w_round_robin_3);
1310 val64 = 0x0103020400000000ULL;
1311 writeq(val64, &bar0->tx_w_round_robin_4);
1312 break;
1315 /* Enable all configured Tx FIFO partitions */
1316 val64 = readq(&bar0->tx_fifo_partition_0);
1317 val64 |= (TX_FIFO_PARTITION_EN);
1318 writeq(val64, &bar0->tx_fifo_partition_0);
1320 /* Filling the Rx round robin registers as per the
1321 * number of Rings and steering based on QoS.
1323 switch (config->rx_ring_num) {
1324 case 1:
1325 val64 = 0x8080808080808080ULL;
1326 writeq(val64, &bar0->rts_qos_steering);
1327 break;
1328 case 2:
1329 val64 = 0x0000010000010000ULL;
1330 writeq(val64, &bar0->rx_w_round_robin_0);
1331 val64 = 0x0100000100000100ULL;
1332 writeq(val64, &bar0->rx_w_round_robin_1);
1333 val64 = 0x0001000001000001ULL;
1334 writeq(val64, &bar0->rx_w_round_robin_2);
1335 val64 = 0x0000010000010000ULL;
1336 writeq(val64, &bar0->rx_w_round_robin_3);
1337 val64 = 0x0100000000000000ULL;
1338 writeq(val64, &bar0->rx_w_round_robin_4);
1340 val64 = 0x8080808040404040ULL;
1341 writeq(val64, &bar0->rts_qos_steering);
1342 break;
1343 case 3:
1344 val64 = 0x0001000102000001ULL;
1345 writeq(val64, &bar0->rx_w_round_robin_0);
1346 val64 = 0x0001020000010001ULL;
1347 writeq(val64, &bar0->rx_w_round_robin_1);
1348 val64 = 0x0200000100010200ULL;
1349 writeq(val64, &bar0->rx_w_round_robin_2);
1350 val64 = 0x0001000102000001ULL;
1351 writeq(val64, &bar0->rx_w_round_robin_3);
1352 val64 = 0x0001020000000000ULL;
1353 writeq(val64, &bar0->rx_w_round_robin_4);
1355 val64 = 0x8080804040402020ULL;
1356 writeq(val64, &bar0->rts_qos_steering);
1357 break;
1358 case 4:
1359 val64 = 0x0001020300010200ULL;
1360 writeq(val64, &bar0->rx_w_round_robin_0);
1361 val64 = 0x0100000102030001ULL;
1362 writeq(val64, &bar0->rx_w_round_robin_1);
1363 val64 = 0x0200010000010203ULL;
1364 writeq(val64, &bar0->rx_w_round_robin_2);
1365 val64 = 0x0001020001000001ULL;
1366 writeq(val64, &bar0->rx_w_round_robin_3);
1367 val64 = 0x0203000100000000ULL;
1368 writeq(val64, &bar0->rx_w_round_robin_4);
1370 val64 = 0x8080404020201010ULL;
1371 writeq(val64, &bar0->rts_qos_steering);
1372 break;
1373 case 5:
1374 val64 = 0x0001000203000102ULL;
1375 writeq(val64, &bar0->rx_w_round_robin_0);
1376 val64 = 0x0001020001030004ULL;
1377 writeq(val64, &bar0->rx_w_round_robin_1);
1378 val64 = 0x0001000203000102ULL;
1379 writeq(val64, &bar0->rx_w_round_robin_2);
1380 val64 = 0x0001020001030004ULL;
1381 writeq(val64, &bar0->rx_w_round_robin_3);
1382 val64 = 0x0001000000000000ULL;
1383 writeq(val64, &bar0->rx_w_round_robin_4);
1385 val64 = 0x8080404020201008ULL;
1386 writeq(val64, &bar0->rts_qos_steering);
1387 break;
1388 case 6:
1389 val64 = 0x0001020304000102ULL;
1390 writeq(val64, &bar0->rx_w_round_robin_0);
1391 val64 = 0x0304050001020001ULL;
1392 writeq(val64, &bar0->rx_w_round_robin_1);
1393 val64 = 0x0203000100000102ULL;
1394 writeq(val64, &bar0->rx_w_round_robin_2);
1395 val64 = 0x0304000102030405ULL;
1396 writeq(val64, &bar0->rx_w_round_robin_3);
1397 val64 = 0x0001000200000000ULL;
1398 writeq(val64, &bar0->rx_w_round_robin_4);
1400 val64 = 0x8080404020100804ULL;
1401 writeq(val64, &bar0->rts_qos_steering);
1402 break;
1403 case 7:
1404 val64 = 0x0001020001020300ULL;
1405 writeq(val64, &bar0->rx_w_round_robin_0);
1406 val64 = 0x0102030400010203ULL;
1407 writeq(val64, &bar0->rx_w_round_robin_1);
1408 val64 = 0x0405060001020001ULL;
1409 writeq(val64, &bar0->rx_w_round_robin_2);
1410 val64 = 0x0304050000010200ULL;
1411 writeq(val64, &bar0->rx_w_round_robin_3);
1412 val64 = 0x0102030000000000ULL;
1413 writeq(val64, &bar0->rx_w_round_robin_4);
1415 val64 = 0x8080402010080402ULL;
1416 writeq(val64, &bar0->rts_qos_steering);
1417 break;
1418 case 8:
1419 val64 = 0x0001020300040105ULL;
1420 writeq(val64, &bar0->rx_w_round_robin_0);
1421 val64 = 0x0200030106000204ULL;
1422 writeq(val64, &bar0->rx_w_round_robin_1);
1423 val64 = 0x0103000502010007ULL;
1424 writeq(val64, &bar0->rx_w_round_robin_2);
1425 val64 = 0x0304010002060500ULL;
1426 writeq(val64, &bar0->rx_w_round_robin_3);
1427 val64 = 0x0103020400000000ULL;
1428 writeq(val64, &bar0->rx_w_round_robin_4);
1430 val64 = 0x8040201008040201ULL;
1431 writeq(val64, &bar0->rts_qos_steering);
1432 break;
1435 /* UDP Fix */
1436 val64 = 0;
1437 for (i = 0; i < 8; i++)
1438 writeq(val64, &bar0->rts_frm_len_n[i]);
1440 /* Set the default rts frame length for the rings configured */
1441 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1442 for (i = 0 ; i < config->rx_ring_num ; i++)
1443 writeq(val64, &bar0->rts_frm_len_n[i]);
1445 /* Set the frame length for the configured rings
1446 * desired by the user
1448 for (i = 0; i < config->rx_ring_num; i++) {
1449 /* If rts_frm_len[i] == 0 then it is assumed that user not
1450 * specified frame length steering.
1451 * If the user provides the frame length then program
1452 * the rts_frm_len register for those values or else
1453 * leave it as it is.
1455 if (rts_frm_len[i] != 0) {
1456 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1457 &bar0->rts_frm_len_n[i]);
1461 /* Disable differentiated services steering logic */
1462 for (i = 0; i < 64; i++) {
1463 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1464 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1465 dev->name);
1466 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1467 return FAILURE;
1471 /* Program statistics memory */
1472 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1474 if (nic->device_type == XFRAME_II_DEVICE) {
1475 val64 = STAT_BC(0x320);
1476 writeq(val64, &bar0->stat_byte_cnt);
1480 * Initializing the sampling rate for the device to calculate the
1481 * bandwidth utilization.
1483 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1484 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1485 writeq(val64, &bar0->mac_link_util);
1489 * Initializing the Transmit and Receive Traffic Interrupt
1490 * Scheme.
1493 * TTI Initialization. Default Tx timer gets us about
1494 * 250 interrupts per sec. Continuous interrupts are enabled
1495 * by default.
1497 if (nic->device_type == XFRAME_II_DEVICE) {
1498 int count = (nic->config.bus_speed * 125)/2;
1499 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1500 } else {
1502 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1504 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1505 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1506 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1507 if (use_continuous_tx_intrs)
1508 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1509 writeq(val64, &bar0->tti_data1_mem);
1511 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1512 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1513 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1514 writeq(val64, &bar0->tti_data2_mem);
1516 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1517 writeq(val64, &bar0->tti_command_mem);
1520 * Once the operation completes, the Strobe bit of the command
1521 * register will be reset. We poll for this particular condition
1522 * We wait for a maximum of 500ms for the operation to complete,
1523 * if it's not complete by then we return error.
1525 time = 0;
1526 while (TRUE) {
1527 val64 = readq(&bar0->tti_command_mem);
1528 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1529 break;
1531 if (time > 10) {
1532 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1533 dev->name);
1534 return -1;
1536 msleep(50);
1537 time++;
1540 if (nic->config.bimodal) {
1541 int k = 0;
1542 for (k = 0; k < config->rx_ring_num; k++) {
1543 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1544 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1545 writeq(val64, &bar0->tti_command_mem);
1548 * Once the operation completes, the Strobe bit of the command
1549 * register will be reset. We poll for this particular condition
1550 * We wait for a maximum of 500ms for the operation to complete,
1551 * if it's not complete by then we return error.
1553 time = 0;
1554 while (TRUE) {
1555 val64 = readq(&bar0->tti_command_mem);
1556 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1557 break;
1559 if (time > 10) {
1560 DBG_PRINT(ERR_DBG,
1561 "%s: TTI init Failed\n",
1562 dev->name);
1563 return -1;
1565 time++;
1566 msleep(50);
1569 } else {
1571 /* RTI Initialization */
1572 if (nic->device_type == XFRAME_II_DEVICE) {
1574 * Programmed to generate Apprx 500 Intrs per
1575 * second
1577 int count = (nic->config.bus_speed * 125)/4;
1578 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1579 } else {
1580 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1582 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1583 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1584 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1586 writeq(val64, &bar0->rti_data1_mem);
1588 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1589 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1590 if (nic->intr_type == MSI_X)
1591 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1592 RTI_DATA2_MEM_RX_UFC_D(0x40));
1593 else
1594 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1595 RTI_DATA2_MEM_RX_UFC_D(0x80));
1596 writeq(val64, &bar0->rti_data2_mem);
1598 for (i = 0; i < config->rx_ring_num; i++) {
1599 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1600 | RTI_CMD_MEM_OFFSET(i);
1601 writeq(val64, &bar0->rti_command_mem);
1604 * Once the operation completes, the Strobe bit of the
1605 * command register will be reset. We poll for this
1606 * particular condition. We wait for a maximum of 500ms
1607 * for the operation to complete, if it's not complete
1608 * by then we return error.
1610 time = 0;
1611 while (TRUE) {
1612 val64 = readq(&bar0->rti_command_mem);
1613 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1614 break;
1616 if (time > 10) {
1617 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1618 dev->name);
1619 return -1;
1621 time++;
1622 msleep(50);
1628 * Initializing proper values as Pause threshold into all
1629 * the 8 Queues on Rx side.
1631 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1632 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1634 /* Disable RMAC PAD STRIPPING */
1635 add = &bar0->mac_cfg;
1636 val64 = readq(&bar0->mac_cfg);
1637 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1638 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1639 writel((u32) (val64), add);
1640 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1641 writel((u32) (val64 >> 32), (add + 4));
1642 val64 = readq(&bar0->mac_cfg);
1644 /* Enable FCS stripping by adapter */
1645 add = &bar0->mac_cfg;
1646 val64 = readq(&bar0->mac_cfg);
1647 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1648 if (nic->device_type == XFRAME_II_DEVICE)
1649 writeq(val64, &bar0->mac_cfg);
1650 else {
1651 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1652 writel((u32) (val64), add);
1653 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1654 writel((u32) (val64 >> 32), (add + 4));
1658 * Set the time value to be inserted in the pause frame
1659 * generated by xena.
1661 val64 = readq(&bar0->rmac_pause_cfg);
1662 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1663 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1664 writeq(val64, &bar0->rmac_pause_cfg);
1667 * Set the Threshold Limit for Generating the pause frame
1668 * If the amount of data in any Queue exceeds ratio of
1669 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1670 * pause frame is generated
1672 val64 = 0;
1673 for (i = 0; i < 4; i++) {
1674 val64 |=
1675 (((u64) 0xFF00 | nic->mac_control.
1676 mc_pause_threshold_q0q3)
1677 << (i * 2 * 8));
1679 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1681 val64 = 0;
1682 for (i = 0; i < 4; i++) {
1683 val64 |=
1684 (((u64) 0xFF00 | nic->mac_control.
1685 mc_pause_threshold_q4q7)
1686 << (i * 2 * 8));
1688 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1691 * TxDMA will stop Read request if the number of read split has
1692 * exceeded the limit pointed by shared_splits
1694 val64 = readq(&bar0->pic_control);
1695 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1696 writeq(val64, &bar0->pic_control);
1698 if (nic->config.bus_speed == 266) {
1699 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1700 writeq(0x0, &bar0->read_retry_delay);
1701 writeq(0x0, &bar0->write_retry_delay);
1705 * Programming the Herc to split every write transaction
1706 * that does not start on an ADB to reduce disconnects.
1708 if (nic->device_type == XFRAME_II_DEVICE) {
1709 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1710 MISC_LINK_STABILITY_PRD(3);
1711 writeq(val64, &bar0->misc_control);
1712 val64 = readq(&bar0->pic_control2);
1713 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1714 writeq(val64, &bar0->pic_control2);
1716 if (strstr(nic->product_name, "CX4")) {
1717 val64 = TMAC_AVG_IPG(0x17);
1718 writeq(val64, &bar0->tmac_avg_ipg);
1721 return SUCCESS;
1723 #define LINK_UP_DOWN_INTERRUPT 1
1724 #define MAC_RMAC_ERR_TIMER 2
1726 static int s2io_link_fault_indication(struct s2io_nic *nic)
1728 if (nic->intr_type != INTA)
1729 return MAC_RMAC_ERR_TIMER;
1730 if (nic->device_type == XFRAME_II_DEVICE)
1731 return LINK_UP_DOWN_INTERRUPT;
1732 else
1733 return MAC_RMAC_ERR_TIMER;
1737 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1738 * @nic: device private variable,
1739 * @mask: A mask indicating which Intr block must be modified and,
1740 * @flag: A flag indicating whether to enable or disable the Intrs.
1741 * Description: This function will either disable or enable the interrupts
1742 * depending on the flag argument. The mask argument can be used to
1743 * enable/disable any Intr block.
1744 * Return Value: NONE.
1747 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1749 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1750 register u64 val64 = 0, temp64 = 0;
1752 /* Top level interrupt classification */
1753 /* PIC Interrupts */
1754 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1755 /* Enable PIC Intrs in the general intr mask register */
1756 val64 = TXPIC_INT_M;
1757 if (flag == ENABLE_INTRS) {
1758 temp64 = readq(&bar0->general_int_mask);
1759 temp64 &= ~((u64) val64);
1760 writeq(temp64, &bar0->general_int_mask);
1762 * If Hercules adapter enable GPIO otherwise
1763 * disable all PCIX, Flash, MDIO, IIC and GPIO
1764 * interrupts for now.
1765 * TODO
1767 if (s2io_link_fault_indication(nic) ==
1768 LINK_UP_DOWN_INTERRUPT ) {
1769 temp64 = readq(&bar0->pic_int_mask);
1770 temp64 &= ~((u64) PIC_INT_GPIO);
1771 writeq(temp64, &bar0->pic_int_mask);
1772 temp64 = readq(&bar0->gpio_int_mask);
1773 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1774 writeq(temp64, &bar0->gpio_int_mask);
1775 } else {
1776 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1779 * No MSI Support is available presently, so TTI and
1780 * RTI interrupts are also disabled.
1782 } else if (flag == DISABLE_INTRS) {
1784 * Disable PIC Intrs in the general
1785 * intr mask register
1787 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1788 temp64 = readq(&bar0->general_int_mask);
1789 val64 |= temp64;
1790 writeq(val64, &bar0->general_int_mask);
1794 /* MAC Interrupts */
1795 /* Enabling/Disabling MAC interrupts */
1796 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1797 val64 = TXMAC_INT_M | RXMAC_INT_M;
1798 if (flag == ENABLE_INTRS) {
1799 temp64 = readq(&bar0->general_int_mask);
1800 temp64 &= ~((u64) val64);
1801 writeq(temp64, &bar0->general_int_mask);
1803 * All MAC block error interrupts are disabled for now
1804 * TODO
1806 } else if (flag == DISABLE_INTRS) {
1808 * Disable MAC Intrs in the general intr mask register
1810 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1811 writeq(DISABLE_ALL_INTRS,
1812 &bar0->mac_rmac_err_mask);
1814 temp64 = readq(&bar0->general_int_mask);
1815 val64 |= temp64;
1816 writeq(val64, &bar0->general_int_mask);
1820 /* Tx traffic interrupts */
1821 if (mask & TX_TRAFFIC_INTR) {
1822 val64 = TXTRAFFIC_INT_M;
1823 if (flag == ENABLE_INTRS) {
1824 temp64 = readq(&bar0->general_int_mask);
1825 temp64 &= ~((u64) val64);
1826 writeq(temp64, &bar0->general_int_mask);
1828 * Enable all the Tx side interrupts
1829 * writing 0 Enables all 64 TX interrupt levels
1831 writeq(0x0, &bar0->tx_traffic_mask);
1832 } else if (flag == DISABLE_INTRS) {
1834 * Disable Tx Traffic Intrs in the general intr mask
1835 * register.
1837 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1838 temp64 = readq(&bar0->general_int_mask);
1839 val64 |= temp64;
1840 writeq(val64, &bar0->general_int_mask);
1844 /* Rx traffic interrupts */
1845 if (mask & RX_TRAFFIC_INTR) {
1846 val64 = RXTRAFFIC_INT_M;
1847 if (flag == ENABLE_INTRS) {
1848 temp64 = readq(&bar0->general_int_mask);
1849 temp64 &= ~((u64) val64);
1850 writeq(temp64, &bar0->general_int_mask);
1851 /* writing 0 Enables all 8 RX interrupt levels */
1852 writeq(0x0, &bar0->rx_traffic_mask);
1853 } else if (flag == DISABLE_INTRS) {
1855 * Disable Rx Traffic Intrs in the general intr mask
1856 * register.
1858 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1859 temp64 = readq(&bar0->general_int_mask);
1860 val64 |= temp64;
1861 writeq(val64, &bar0->general_int_mask);
1867 * verify_pcc_quiescent- Checks for PCC quiescent state
1868 * Return: 1 If PCC is quiescence
1869 * 0 If PCC is not quiescence
1871 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1873 int ret = 0, herc;
1874 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1875 u64 val64 = readq(&bar0->adapter_status);
1877 herc = (sp->device_type == XFRAME_II_DEVICE);
1879 if (flag == FALSE) {
1880 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1881 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1882 ret = 1;
1883 } else {
1884 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1885 ret = 1;
1887 } else {
1888 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1889 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1890 ADAPTER_STATUS_RMAC_PCC_IDLE))
1891 ret = 1;
1892 } else {
1893 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1894 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1895 ret = 1;
1899 return ret;
1902 * verify_xena_quiescence - Checks whether the H/W is ready
1903 * Description: Returns whether the H/W is ready to go or not. Depending
1904 * on whether adapter enable bit was written or not the comparison
1905 * differs and the calling function passes the input argument flag to
1906 * indicate this.
1907 * Return: 1 If xena is quiescence
1908 * 0 If Xena is not quiescence
1911 static int verify_xena_quiescence(struct s2io_nic *sp)
1913 int mode;
1914 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1915 u64 val64 = readq(&bar0->adapter_status);
1916 mode = s2io_verify_pci_mode(sp);
1918 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1919 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1920 return 0;
1922 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1923 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1924 return 0;
1926 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1927 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1928 return 0;
1930 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1931 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1932 return 0;
1934 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1935 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1936 return 0;
1938 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1939 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1940 return 0;
1942 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1943 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1944 return 0;
1946 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1947 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1948 return 0;
1952 * In PCI 33 mode, the P_PLL is not used, and therefore,
1953 * the the P_PLL_LOCK bit in the adapter_status register will
1954 * not be asserted.
1956 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1957 sp->device_type == XFRAME_II_DEVICE && mode !=
1958 PCI_MODE_PCI_33) {
1959 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1960 return 0;
1962 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1963 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1964 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1965 return 0;
1967 return 1;
1971 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1972 * @sp: Pointer to device specifc structure
1973 * Description :
1974 * New procedure to clear mac address reading problems on Alpha platforms
1978 static void fix_mac_address(struct s2io_nic * sp)
1980 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1981 u64 val64;
1982 int i = 0;
1984 while (fix_mac[i] != END_SIGN) {
1985 writeq(fix_mac[i++], &bar0->gpio_control);
1986 udelay(10);
1987 val64 = readq(&bar0->gpio_control);
1992 * start_nic - Turns the device on
1993 * @nic : device private variable.
1994 * Description:
1995 * This function actually turns the device on. Before this function is
1996 * called,all Registers are configured from their reset states
1997 * and shared memory is allocated but the NIC is still quiescent. On
1998 * calling this function, the device interrupts are cleared and the NIC is
1999 * literally switched on by writing into the adapter control register.
2000 * Return Value:
2001 * SUCCESS on success and -1 on failure.
2004 static int start_nic(struct s2io_nic *nic)
2006 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2007 struct net_device *dev = nic->dev;
2008 register u64 val64 = 0;
2009 u16 subid, i;
2010 struct mac_info *mac_control;
2011 struct config_param *config;
2013 mac_control = &nic->mac_control;
2014 config = &nic->config;
2016 /* PRC Initialization and configuration */
2017 for (i = 0; i < config->rx_ring_num; i++) {
2018 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2019 &bar0->prc_rxd0_n[i]);
2021 val64 = readq(&bar0->prc_ctrl_n[i]);
2022 if (nic->config.bimodal)
2023 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2024 if (nic->rxd_mode == RXD_MODE_1)
2025 val64 |= PRC_CTRL_RC_ENABLED;
2026 else
2027 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2028 if (nic->device_type == XFRAME_II_DEVICE)
2029 val64 |= PRC_CTRL_GROUP_READS;
2030 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2031 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2032 writeq(val64, &bar0->prc_ctrl_n[i]);
2035 if (nic->rxd_mode == RXD_MODE_3B) {
2036 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2037 val64 = readq(&bar0->rx_pa_cfg);
2038 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2039 writeq(val64, &bar0->rx_pa_cfg);
2042 if (vlan_tag_strip == 0) {
2043 val64 = readq(&bar0->rx_pa_cfg);
2044 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2045 writeq(val64, &bar0->rx_pa_cfg);
2046 vlan_strip_flag = 0;
2050 * Enabling MC-RLDRAM. After enabling the device, we timeout
2051 * for around 100ms, which is approximately the time required
2052 * for the device to be ready for operation.
2054 val64 = readq(&bar0->mc_rldram_mrs);
2055 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2056 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2057 val64 = readq(&bar0->mc_rldram_mrs);
2059 msleep(100); /* Delay by around 100 ms. */
2061 /* Enabling ECC Protection. */
2062 val64 = readq(&bar0->adapter_control);
2063 val64 &= ~ADAPTER_ECC_EN;
2064 writeq(val64, &bar0->adapter_control);
2067 * Clearing any possible Link state change interrupts that
2068 * could have popped up just before Enabling the card.
2070 val64 = readq(&bar0->mac_rmac_err_reg);
2071 if (val64)
2072 writeq(val64, &bar0->mac_rmac_err_reg);
2075 * Verify if the device is ready to be enabled, if so enable
2076 * it.
2078 val64 = readq(&bar0->adapter_status);
2079 if (!verify_xena_quiescence(nic)) {
2080 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2081 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2082 (unsigned long long) val64);
2083 return FAILURE;
2087 * With some switches, link might be already up at this point.
2088 * Because of this weird behavior, when we enable laser,
2089 * we may not get link. We need to handle this. We cannot
2090 * figure out which switch is misbehaving. So we are forced to
2091 * make a global change.
2094 /* Enabling Laser. */
2095 val64 = readq(&bar0->adapter_control);
2096 val64 |= ADAPTER_EOI_TX_ON;
2097 writeq(val64, &bar0->adapter_control);
2099 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2101 * Dont see link state interrupts initally on some switches,
2102 * so directly scheduling the link state task here.
2104 schedule_work(&nic->set_link_task);
2106 /* SXE-002: Initialize link and activity LED */
2107 subid = nic->pdev->subsystem_device;
2108 if (((subid & 0xFF) >= 0x07) &&
2109 (nic->device_type == XFRAME_I_DEVICE)) {
2110 val64 = readq(&bar0->gpio_control);
2111 val64 |= 0x0000800000000000ULL;
2112 writeq(val64, &bar0->gpio_control);
2113 val64 = 0x0411040400000000ULL;
2114 writeq(val64, (void __iomem *)bar0 + 0x2700);
2117 return SUCCESS;
2120 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2122 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2123 TxD *txdlp, int get_off)
2125 struct s2io_nic *nic = fifo_data->nic;
2126 struct sk_buff *skb;
2127 struct TxD *txds;
2128 u16 j, frg_cnt;
2130 txds = txdlp;
2131 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2132 pci_unmap_single(nic->pdev, (dma_addr_t)
2133 txds->Buffer_Pointer, sizeof(u64),
2134 PCI_DMA_TODEVICE);
2135 txds++;
2138 skb = (struct sk_buff *) ((unsigned long)
2139 txds->Host_Control);
2140 if (!skb) {
2141 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2142 return NULL;
2144 pci_unmap_single(nic->pdev, (dma_addr_t)
2145 txds->Buffer_Pointer,
2146 skb->len - skb->data_len,
2147 PCI_DMA_TODEVICE);
2148 frg_cnt = skb_shinfo(skb)->nr_frags;
2149 if (frg_cnt) {
2150 txds++;
2151 for (j = 0; j < frg_cnt; j++, txds++) {
2152 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2153 if (!txds->Buffer_Pointer)
2154 break;
2155 pci_unmap_page(nic->pdev, (dma_addr_t)
2156 txds->Buffer_Pointer,
2157 frag->size, PCI_DMA_TODEVICE);
2160 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2161 return(skb);
2165 * free_tx_buffers - Free all queued Tx buffers
2166 * @nic : device private variable.
2167 * Description:
2168 * Free all queued Tx buffers.
2169 * Return Value: void
2172 static void free_tx_buffers(struct s2io_nic *nic)
2174 struct net_device *dev = nic->dev;
2175 struct sk_buff *skb;
2176 struct TxD *txdp;
2177 int i, j;
2178 struct mac_info *mac_control;
2179 struct config_param *config;
2180 int cnt = 0;
2182 mac_control = &nic->mac_control;
2183 config = &nic->config;
2185 for (i = 0; i < config->tx_fifo_num; i++) {
2186 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2187 txdp = (struct TxD *) \
2188 mac_control->fifos[i].list_info[j].list_virt_addr;
2189 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2190 if (skb) {
2191 nic->mac_control.stats_info->sw_stat.mem_freed
2192 += skb->truesize;
2193 dev_kfree_skb(skb);
2194 cnt++;
2197 DBG_PRINT(INTR_DBG,
2198 "%s:forcibly freeing %d skbs on FIFO%d\n",
2199 dev->name, cnt, i);
2200 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2201 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2206 * stop_nic - To stop the nic
2207 * @nic ; device private variable.
2208 * Description:
2209 * This function does exactly the opposite of what the start_nic()
2210 * function does. This function is called to stop the device.
2211 * Return Value:
2212 * void.
2215 static void stop_nic(struct s2io_nic *nic)
2217 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2218 register u64 val64 = 0;
2219 u16 interruptible;
2220 struct mac_info *mac_control;
2221 struct config_param *config;
2223 mac_control = &nic->mac_control;
2224 config = &nic->config;
2226 /* Disable all interrupts */
2227 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2228 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2229 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2230 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2232 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2233 val64 = readq(&bar0->adapter_control);
2234 val64 &= ~(ADAPTER_CNTL_EN);
2235 writeq(val64, &bar0->adapter_control);
2238 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2239 sk_buff *skb)
2241 struct net_device *dev = nic->dev;
2242 struct sk_buff *frag_list;
2243 void *tmp;
2245 /* Buffer-1 receives L3/L4 headers */
2246 ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2247 (nic->pdev, skb->data, l3l4hdr_size + 4,
2248 PCI_DMA_FROMDEVICE);
2250 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2251 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2252 if (skb_shinfo(skb)->frag_list == NULL) {
2253 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
2254 DBG_PRINT(INFO_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2255 return -ENOMEM ;
2257 frag_list = skb_shinfo(skb)->frag_list;
2258 skb->truesize += frag_list->truesize;
2259 nic->mac_control.stats_info->sw_stat.mem_allocated
2260 += frag_list->truesize;
2261 frag_list->next = NULL;
2262 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2263 frag_list->data = tmp;
2264 skb_reset_tail_pointer(frag_list);
2266 /* Buffer-2 receives L4 data payload */
2267 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2268 frag_list->data, dev->mtu,
2269 PCI_DMA_FROMDEVICE);
2270 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2271 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2273 return SUCCESS;
2277 * fill_rx_buffers - Allocates the Rx side skbs
2278 * @nic: device private variable
2279 * @ring_no: ring number
2280 * Description:
2281 * The function allocates Rx side skbs and puts the physical
2282 * address of these buffers into the RxD buffer pointers, so that the NIC
2283 * can DMA the received frame into these locations.
2284 * The NIC supports 3 receive modes, viz
2285 * 1. single buffer,
2286 * 2. three buffer and
2287 * 3. Five buffer modes.
2288 * Each mode defines how many fragments the received frame will be split
2289 * up into by the NIC. The frame is split into L3 header, L4 Header,
2290 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2291 * is split into 3 fragments. As of now only single buffer mode is
2292 * supported.
2293 * Return Value:
2294 * SUCCESS on success or an appropriate -ve value on failure.
2297 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2299 struct net_device *dev = nic->dev;
2300 struct sk_buff *skb;
2301 struct RxD_t *rxdp;
2302 int off, off1, size, block_no, block_no1;
2303 u32 alloc_tab = 0;
2304 u32 alloc_cnt;
2305 struct mac_info *mac_control;
2306 struct config_param *config;
2307 u64 tmp;
2308 struct buffAdd *ba;
2309 unsigned long flags;
2310 struct RxD_t *first_rxdp = NULL;
2311 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2313 mac_control = &nic->mac_control;
2314 config = &nic->config;
2315 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2316 atomic_read(&nic->rx_bufs_left[ring_no]);
2318 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2319 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2320 while (alloc_tab < alloc_cnt) {
2321 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2322 block_index;
2323 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2325 rxdp = mac_control->rings[ring_no].
2326 rx_blocks[block_no].rxds[off].virt_addr;
2328 if ((block_no == block_no1) && (off == off1) &&
2329 (rxdp->Host_Control)) {
2330 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2331 dev->name);
2332 DBG_PRINT(INTR_DBG, " info equated\n");
2333 goto end;
2335 if (off && (off == rxd_count[nic->rxd_mode])) {
2336 mac_control->rings[ring_no].rx_curr_put_info.
2337 block_index++;
2338 if (mac_control->rings[ring_no].rx_curr_put_info.
2339 block_index == mac_control->rings[ring_no].
2340 block_count)
2341 mac_control->rings[ring_no].rx_curr_put_info.
2342 block_index = 0;
2343 block_no = mac_control->rings[ring_no].
2344 rx_curr_put_info.block_index;
2345 if (off == rxd_count[nic->rxd_mode])
2346 off = 0;
2347 mac_control->rings[ring_no].rx_curr_put_info.
2348 offset = off;
2349 rxdp = mac_control->rings[ring_no].
2350 rx_blocks[block_no].block_virt_addr;
2351 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2352 dev->name, rxdp);
2354 if(!napi) {
2355 spin_lock_irqsave(&nic->put_lock, flags);
2356 mac_control->rings[ring_no].put_pos =
2357 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2358 spin_unlock_irqrestore(&nic->put_lock, flags);
2359 } else {
2360 mac_control->rings[ring_no].put_pos =
2361 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2363 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2364 ((nic->rxd_mode >= RXD_MODE_3A) &&
2365 (rxdp->Control_2 & BIT(0)))) {
2366 mac_control->rings[ring_no].rx_curr_put_info.
2367 offset = off;
2368 goto end;
2370 /* calculate size of skb based on ring mode */
2371 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2372 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2373 if (nic->rxd_mode == RXD_MODE_1)
2374 size += NET_IP_ALIGN;
2375 else if (nic->rxd_mode == RXD_MODE_3B)
2376 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2377 else
2378 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2380 /* allocate skb */
2381 skb = dev_alloc_skb(size);
2382 if(!skb) {
2383 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2384 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2385 if (first_rxdp) {
2386 wmb();
2387 first_rxdp->Control_1 |= RXD_OWN_XENA;
2389 nic->mac_control.stats_info->sw_stat. \
2390 mem_alloc_fail_cnt++;
2391 return -ENOMEM ;
2393 nic->mac_control.stats_info->sw_stat.mem_allocated
2394 += skb->truesize;
2395 if (nic->rxd_mode == RXD_MODE_1) {
2396 /* 1 buffer mode - normal operation mode */
2397 memset(rxdp, 0, sizeof(struct RxD1));
2398 skb_reserve(skb, NET_IP_ALIGN);
2399 ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2400 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2401 PCI_DMA_FROMDEVICE);
2402 rxdp->Control_2 =
2403 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2405 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2407 * 2 or 3 buffer mode -
2408 * Both 2 buffer mode and 3 buffer mode provides 128
2409 * byte aligned receive buffers.
2411 * 3 buffer mode provides header separation where in
2412 * skb->data will have L3/L4 headers where as
2413 * skb_shinfo(skb)->frag_list will have the L4 data
2414 * payload
2417 /* save buffer pointers to avoid frequent dma mapping */
2418 Buffer0_ptr = ((struct RxD3*)rxdp)->Buffer0_ptr;
2419 Buffer1_ptr = ((struct RxD3*)rxdp)->Buffer1_ptr;
2420 memset(rxdp, 0, sizeof(struct RxD3));
2421 /* restore the buffer pointers for dma sync*/
2422 ((struct RxD3*)rxdp)->Buffer0_ptr = Buffer0_ptr;
2423 ((struct RxD3*)rxdp)->Buffer1_ptr = Buffer1_ptr;
2425 ba = &mac_control->rings[ring_no].ba[block_no][off];
2426 skb_reserve(skb, BUF0_LEN);
2427 tmp = (u64)(unsigned long) skb->data;
2428 tmp += ALIGN_SIZE;
2429 tmp &= ~ALIGN_SIZE;
2430 skb->data = (void *) (unsigned long)tmp;
2431 skb_reset_tail_pointer(skb);
2433 if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2434 ((struct RxD3*)rxdp)->Buffer0_ptr =
2435 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2436 PCI_DMA_FROMDEVICE);
2437 else
2438 pci_dma_sync_single_for_device(nic->pdev,
2439 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2440 BUF0_LEN, PCI_DMA_FROMDEVICE);
2441 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2442 if (nic->rxd_mode == RXD_MODE_3B) {
2443 /* Two buffer mode */
2446 * Buffer2 will have L3/L4 header plus
2447 * L4 payload
2449 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2450 (nic->pdev, skb->data, dev->mtu + 4,
2451 PCI_DMA_FROMDEVICE);
2453 /* Buffer-1 will be dummy buffer. Not used */
2454 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2455 ((struct RxD3*)rxdp)->Buffer1_ptr =
2456 pci_map_single(nic->pdev,
2457 ba->ba_1, BUF1_LEN,
2458 PCI_DMA_FROMDEVICE);
2460 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2461 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2462 (dev->mtu + 4);
2463 } else {
2464 /* 3 buffer mode */
2465 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2466 nic->mac_control.stats_info->sw_stat.\
2467 mem_freed += skb->truesize;
2468 dev_kfree_skb_irq(skb);
2469 if (first_rxdp) {
2470 wmb();
2471 first_rxdp->Control_1 |=
2472 RXD_OWN_XENA;
2474 return -ENOMEM ;
2477 rxdp->Control_2 |= BIT(0);
2479 rxdp->Host_Control = (unsigned long) (skb);
2480 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2481 rxdp->Control_1 |= RXD_OWN_XENA;
2482 off++;
2483 if (off == (rxd_count[nic->rxd_mode] + 1))
2484 off = 0;
2485 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2487 rxdp->Control_2 |= SET_RXD_MARKER;
2488 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2489 if (first_rxdp) {
2490 wmb();
2491 first_rxdp->Control_1 |= RXD_OWN_XENA;
2493 first_rxdp = rxdp;
2495 atomic_inc(&nic->rx_bufs_left[ring_no]);
2496 alloc_tab++;
2499 end:
2500 /* Transfer ownership of first descriptor to adapter just before
2501 * exiting. Before that, use memory barrier so that ownership
2502 * and other fields are seen by adapter correctly.
2504 if (first_rxdp) {
2505 wmb();
2506 first_rxdp->Control_1 |= RXD_OWN_XENA;
2509 return SUCCESS;
2512 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2514 struct net_device *dev = sp->dev;
2515 int j;
2516 struct sk_buff *skb;
2517 struct RxD_t *rxdp;
2518 struct mac_info *mac_control;
2519 struct buffAdd *ba;
2521 mac_control = &sp->mac_control;
2522 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2523 rxdp = mac_control->rings[ring_no].
2524 rx_blocks[blk].rxds[j].virt_addr;
2525 skb = (struct sk_buff *)
2526 ((unsigned long) rxdp->Host_Control);
2527 if (!skb) {
2528 continue;
2530 if (sp->rxd_mode == RXD_MODE_1) {
2531 pci_unmap_single(sp->pdev, (dma_addr_t)
2532 ((struct RxD1*)rxdp)->Buffer0_ptr,
2533 dev->mtu +
2534 HEADER_ETHERNET_II_802_3_SIZE
2535 + HEADER_802_2_SIZE +
2536 HEADER_SNAP_SIZE,
2537 PCI_DMA_FROMDEVICE);
2538 memset(rxdp, 0, sizeof(struct RxD1));
2539 } else if(sp->rxd_mode == RXD_MODE_3B) {
2540 ba = &mac_control->rings[ring_no].
2541 ba[blk][j];
2542 pci_unmap_single(sp->pdev, (dma_addr_t)
2543 ((struct RxD3*)rxdp)->Buffer0_ptr,
2544 BUF0_LEN,
2545 PCI_DMA_FROMDEVICE);
2546 pci_unmap_single(sp->pdev, (dma_addr_t)
2547 ((struct RxD3*)rxdp)->Buffer1_ptr,
2548 BUF1_LEN,
2549 PCI_DMA_FROMDEVICE);
2550 pci_unmap_single(sp->pdev, (dma_addr_t)
2551 ((struct RxD3*)rxdp)->Buffer2_ptr,
2552 dev->mtu + 4,
2553 PCI_DMA_FROMDEVICE);
2554 memset(rxdp, 0, sizeof(struct RxD3));
2555 } else {
2556 pci_unmap_single(sp->pdev, (dma_addr_t)
2557 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2558 PCI_DMA_FROMDEVICE);
2559 pci_unmap_single(sp->pdev, (dma_addr_t)
2560 ((struct RxD3*)rxdp)->Buffer1_ptr,
2561 l3l4hdr_size + 4,
2562 PCI_DMA_FROMDEVICE);
2563 pci_unmap_single(sp->pdev, (dma_addr_t)
2564 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2565 PCI_DMA_FROMDEVICE);
2566 memset(rxdp, 0, sizeof(struct RxD3));
2568 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2569 dev_kfree_skb(skb);
2570 atomic_dec(&sp->rx_bufs_left[ring_no]);
2575 * free_rx_buffers - Frees all Rx buffers
2576 * @sp: device private variable.
2577 * Description:
2578 * This function will free all Rx buffers allocated by host.
2579 * Return Value:
2580 * NONE.
2583 static void free_rx_buffers(struct s2io_nic *sp)
2585 struct net_device *dev = sp->dev;
2586 int i, blk = 0, buf_cnt = 0;
2587 struct mac_info *mac_control;
2588 struct config_param *config;
2590 mac_control = &sp->mac_control;
2591 config = &sp->config;
2593 for (i = 0; i < config->rx_ring_num; i++) {
2594 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2595 free_rxd_blk(sp,i,blk);
2597 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2598 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2599 mac_control->rings[i].rx_curr_put_info.offset = 0;
2600 mac_control->rings[i].rx_curr_get_info.offset = 0;
2601 atomic_set(&sp->rx_bufs_left[i], 0);
2602 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2603 dev->name, buf_cnt, i);
2608 * s2io_poll - Rx interrupt handler for NAPI support
2609 * @dev : pointer to the device structure.
2610 * @budget : The number of packets that were budgeted to be processed
2611 * during one pass through the 'Poll" function.
2612 * Description:
2613 * Comes into picture only if NAPI support has been incorporated. It does
2614 * the same thing that rx_intr_handler does, but not in a interrupt context
2615 * also It will process only a given number of packets.
2616 * Return value:
2617 * 0 on success and 1 if there are No Rx packets to be processed.
2620 static int s2io_poll(struct net_device *dev, int *budget)
2622 struct s2io_nic *nic = dev->priv;
2623 int pkt_cnt = 0, org_pkts_to_process;
2624 struct mac_info *mac_control;
2625 struct config_param *config;
2626 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2627 int i;
2629 atomic_inc(&nic->isr_cnt);
2630 mac_control = &nic->mac_control;
2631 config = &nic->config;
2633 nic->pkts_to_process = *budget;
2634 if (nic->pkts_to_process > dev->quota)
2635 nic->pkts_to_process = dev->quota;
2636 org_pkts_to_process = nic->pkts_to_process;
2638 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2639 readl(&bar0->rx_traffic_int);
2641 for (i = 0; i < config->rx_ring_num; i++) {
2642 rx_intr_handler(&mac_control->rings[i]);
2643 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2644 if (!nic->pkts_to_process) {
2645 /* Quota for the current iteration has been met */
2646 goto no_rx;
2649 if (!pkt_cnt)
2650 pkt_cnt = 1;
2652 dev->quota -= pkt_cnt;
2653 *budget -= pkt_cnt;
2654 netif_rx_complete(dev);
2656 for (i = 0; i < config->rx_ring_num; i++) {
2657 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2658 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2659 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2660 break;
2663 /* Re enable the Rx interrupts. */
2664 writeq(0x0, &bar0->rx_traffic_mask);
2665 readl(&bar0->rx_traffic_mask);
2666 atomic_dec(&nic->isr_cnt);
2667 return 0;
2669 no_rx:
2670 dev->quota -= pkt_cnt;
2671 *budget -= pkt_cnt;
2673 for (i = 0; i < config->rx_ring_num; i++) {
2674 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2675 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2676 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2677 break;
2680 atomic_dec(&nic->isr_cnt);
2681 return 1;
2684 #ifdef CONFIG_NET_POLL_CONTROLLER
2686 * s2io_netpoll - netpoll event handler entry point
2687 * @dev : pointer to the device structure.
2688 * Description:
2689 * This function will be called by upper layer to check for events on the
2690 * interface in situations where interrupts are disabled. It is used for
2691 * specific in-kernel networking tasks, such as remote consoles and kernel
2692 * debugging over the network (example netdump in RedHat).
2694 static void s2io_netpoll(struct net_device *dev)
2696 struct s2io_nic *nic = dev->priv;
2697 struct mac_info *mac_control;
2698 struct config_param *config;
2699 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2700 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2701 int i;
2703 disable_irq(dev->irq);
2705 atomic_inc(&nic->isr_cnt);
2706 mac_control = &nic->mac_control;
2707 config = &nic->config;
2709 writeq(val64, &bar0->rx_traffic_int);
2710 writeq(val64, &bar0->tx_traffic_int);
2712 /* we need to free up the transmitted skbufs or else netpoll will
2713 * run out of skbs and will fail and eventually netpoll application such
2714 * as netdump will fail.
2716 for (i = 0; i < config->tx_fifo_num; i++)
2717 tx_intr_handler(&mac_control->fifos[i]);
2719 /* check for received packet and indicate up to network */
2720 for (i = 0; i < config->rx_ring_num; i++)
2721 rx_intr_handler(&mac_control->rings[i]);
2723 for (i = 0; i < config->rx_ring_num; i++) {
2724 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2725 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2726 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2727 break;
2730 atomic_dec(&nic->isr_cnt);
2731 enable_irq(dev->irq);
2732 return;
2734 #endif
2737 * rx_intr_handler - Rx interrupt handler
2738 * @nic: device private variable.
2739 * Description:
2740 * If the interrupt is because of a received frame or if the
2741 * receive ring contains fresh as yet un-processed frames,this function is
2742 * called. It picks out the RxD at which place the last Rx processing had
2743 * stopped and sends the skb to the OSM's Rx handler and then increments
2744 * the offset.
2745 * Return Value:
2746 * NONE.
2748 static void rx_intr_handler(struct ring_info *ring_data)
2750 struct s2io_nic *nic = ring_data->nic;
2751 struct net_device *dev = (struct net_device *) nic->dev;
2752 int get_block, put_block, put_offset;
2753 struct rx_curr_get_info get_info, put_info;
2754 struct RxD_t *rxdp;
2755 struct sk_buff *skb;
2756 int pkt_cnt = 0;
2757 int i;
2759 spin_lock(&nic->rx_lock);
2760 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2761 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2762 __FUNCTION__, dev->name);
2763 spin_unlock(&nic->rx_lock);
2764 return;
2767 get_info = ring_data->rx_curr_get_info;
2768 get_block = get_info.block_index;
2769 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2770 put_block = put_info.block_index;
2771 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2772 if (!napi) {
2773 spin_lock(&nic->put_lock);
2774 put_offset = ring_data->put_pos;
2775 spin_unlock(&nic->put_lock);
2776 } else
2777 put_offset = ring_data->put_pos;
2779 while (RXD_IS_UP2DT(rxdp)) {
2781 * If your are next to put index then it's
2782 * FIFO full condition
2784 if ((get_block == put_block) &&
2785 (get_info.offset + 1) == put_info.offset) {
2786 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2787 break;
2789 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2790 if (skb == NULL) {
2791 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2792 dev->name);
2793 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2794 spin_unlock(&nic->rx_lock);
2795 return;
2797 if (nic->rxd_mode == RXD_MODE_1) {
2798 pci_unmap_single(nic->pdev, (dma_addr_t)
2799 ((struct RxD1*)rxdp)->Buffer0_ptr,
2800 dev->mtu +
2801 HEADER_ETHERNET_II_802_3_SIZE +
2802 HEADER_802_2_SIZE +
2803 HEADER_SNAP_SIZE,
2804 PCI_DMA_FROMDEVICE);
2805 } else if (nic->rxd_mode == RXD_MODE_3B) {
2806 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2807 ((struct RxD3*)rxdp)->Buffer0_ptr,
2808 BUF0_LEN, PCI_DMA_FROMDEVICE);
2809 pci_unmap_single(nic->pdev, (dma_addr_t)
2810 ((struct RxD3*)rxdp)->Buffer2_ptr,
2811 dev->mtu + 4,
2812 PCI_DMA_FROMDEVICE);
2813 } else {
2814 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2815 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2816 PCI_DMA_FROMDEVICE);
2817 pci_unmap_single(nic->pdev, (dma_addr_t)
2818 ((struct RxD3*)rxdp)->Buffer1_ptr,
2819 l3l4hdr_size + 4,
2820 PCI_DMA_FROMDEVICE);
2821 pci_unmap_single(nic->pdev, (dma_addr_t)
2822 ((struct RxD3*)rxdp)->Buffer2_ptr,
2823 dev->mtu, PCI_DMA_FROMDEVICE);
2825 prefetch(skb->data);
2826 rx_osm_handler(ring_data, rxdp);
2827 get_info.offset++;
2828 ring_data->rx_curr_get_info.offset = get_info.offset;
2829 rxdp = ring_data->rx_blocks[get_block].
2830 rxds[get_info.offset].virt_addr;
2831 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2832 get_info.offset = 0;
2833 ring_data->rx_curr_get_info.offset = get_info.offset;
2834 get_block++;
2835 if (get_block == ring_data->block_count)
2836 get_block = 0;
2837 ring_data->rx_curr_get_info.block_index = get_block;
2838 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2841 nic->pkts_to_process -= 1;
2842 if ((napi) && (!nic->pkts_to_process))
2843 break;
2844 pkt_cnt++;
2845 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2846 break;
2848 if (nic->lro) {
2849 /* Clear all LRO sessions before exiting */
2850 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2851 struct lro *lro = &nic->lro0_n[i];
2852 if (lro->in_use) {
2853 update_L3L4_header(nic, lro);
2854 queue_rx_frame(lro->parent);
2855 clear_lro_session(lro);
2860 spin_unlock(&nic->rx_lock);
2864 * tx_intr_handler - Transmit interrupt handler
2865 * @nic : device private variable
2866 * Description:
2867 * If an interrupt was raised to indicate DMA complete of the
2868 * Tx packet, this function is called. It identifies the last TxD
2869 * whose buffer was freed and frees all skbs whose data have already
2870 * DMA'ed into the NICs internal memory.
2871 * Return Value:
2872 * NONE
2875 static void tx_intr_handler(struct fifo_info *fifo_data)
2877 struct s2io_nic *nic = fifo_data->nic;
2878 struct net_device *dev = (struct net_device *) nic->dev;
2879 struct tx_curr_get_info get_info, put_info;
2880 struct sk_buff *skb;
2881 struct TxD *txdlp;
2883 get_info = fifo_data->tx_curr_get_info;
2884 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2885 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2886 list_virt_addr;
2887 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2888 (get_info.offset != put_info.offset) &&
2889 (txdlp->Host_Control)) {
2890 /* Check for TxD errors */
2891 if (txdlp->Control_1 & TXD_T_CODE) {
2892 unsigned long long err;
2893 err = txdlp->Control_1 & TXD_T_CODE;
2894 if (err & 0x1) {
2895 nic->mac_control.stats_info->sw_stat.
2896 parity_err_cnt++;
2899 /* update t_code statistics */
2900 err >>= 48;
2901 switch(err) {
2902 case 2:
2903 nic->mac_control.stats_info->sw_stat.
2904 tx_buf_abort_cnt++;
2905 break;
2907 case 3:
2908 nic->mac_control.stats_info->sw_stat.
2909 tx_desc_abort_cnt++;
2910 break;
2912 case 7:
2913 nic->mac_control.stats_info->sw_stat.
2914 tx_parity_err_cnt++;
2915 break;
2917 case 10:
2918 nic->mac_control.stats_info->sw_stat.
2919 tx_link_loss_cnt++;
2920 break;
2922 case 15:
2923 nic->mac_control.stats_info->sw_stat.
2924 tx_list_proc_err_cnt++;
2925 break;
2929 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2930 if (skb == NULL) {
2931 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2932 __FUNCTION__);
2933 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2934 return;
2937 /* Updating the statistics block */
2938 nic->stats.tx_bytes += skb->len;
2939 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2940 dev_kfree_skb_irq(skb);
2942 get_info.offset++;
2943 if (get_info.offset == get_info.fifo_len + 1)
2944 get_info.offset = 0;
2945 txdlp = (struct TxD *) fifo_data->list_info
2946 [get_info.offset].list_virt_addr;
2947 fifo_data->tx_curr_get_info.offset =
2948 get_info.offset;
2951 spin_lock(&nic->tx_lock);
2952 if (netif_queue_stopped(dev))
2953 netif_wake_queue(dev);
2954 spin_unlock(&nic->tx_lock);
2958 * s2io_mdio_write - Function to write in to MDIO registers
2959 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2960 * @addr : address value
2961 * @value : data value
2962 * @dev : pointer to net_device structure
2963 * Description:
2964 * This function is used to write values to the MDIO registers
2965 * NONE
2967 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2969 u64 val64 = 0x0;
2970 struct s2io_nic *sp = dev->priv;
2971 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2973 //address transaction
2974 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2975 | MDIO_MMD_DEV_ADDR(mmd_type)
2976 | MDIO_MMS_PRT_ADDR(0x0);
2977 writeq(val64, &bar0->mdio_control);
2978 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2979 writeq(val64, &bar0->mdio_control);
2980 udelay(100);
2982 //Data transaction
2983 val64 = 0x0;
2984 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2985 | MDIO_MMD_DEV_ADDR(mmd_type)
2986 | MDIO_MMS_PRT_ADDR(0x0)
2987 | MDIO_MDIO_DATA(value)
2988 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2989 writeq(val64, &bar0->mdio_control);
2990 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2991 writeq(val64, &bar0->mdio_control);
2992 udelay(100);
2994 val64 = 0x0;
2995 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2996 | MDIO_MMD_DEV_ADDR(mmd_type)
2997 | MDIO_MMS_PRT_ADDR(0x0)
2998 | MDIO_OP(MDIO_OP_READ_TRANS);
2999 writeq(val64, &bar0->mdio_control);
3000 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3001 writeq(val64, &bar0->mdio_control);
3002 udelay(100);
3007 * s2io_mdio_read - Function to write in to MDIO registers
3008 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3009 * @addr : address value
3010 * @dev : pointer to net_device structure
3011 * Description:
3012 * This function is used to read values to the MDIO registers
3013 * NONE
3015 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3017 u64 val64 = 0x0;
3018 u64 rval64 = 0x0;
3019 struct s2io_nic *sp = dev->priv;
3020 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3022 /* address transaction */
3023 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3024 | MDIO_MMD_DEV_ADDR(mmd_type)
3025 | MDIO_MMS_PRT_ADDR(0x0);
3026 writeq(val64, &bar0->mdio_control);
3027 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3028 writeq(val64, &bar0->mdio_control);
3029 udelay(100);
3031 /* Data transaction */
3032 val64 = 0x0;
3033 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3034 | MDIO_MMD_DEV_ADDR(mmd_type)
3035 | MDIO_MMS_PRT_ADDR(0x0)
3036 | MDIO_OP(MDIO_OP_READ_TRANS);
3037 writeq(val64, &bar0->mdio_control);
3038 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3039 writeq(val64, &bar0->mdio_control);
3040 udelay(100);
3042 /* Read the value from regs */
3043 rval64 = readq(&bar0->mdio_control);
3044 rval64 = rval64 & 0xFFFF0000;
3045 rval64 = rval64 >> 16;
3046 return rval64;
3049 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3050 * @counter : couter value to be updated
3051 * @flag : flag to indicate the status
3052 * @type : counter type
3053 * Description:
3054 * This function is to check the status of the xpak counters value
3055 * NONE
3058 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3060 u64 mask = 0x3;
3061 u64 val64;
3062 int i;
3063 for(i = 0; i <index; i++)
3064 mask = mask << 0x2;
3066 if(flag > 0)
3068 *counter = *counter + 1;
3069 val64 = *regs_stat & mask;
3070 val64 = val64 >> (index * 0x2);
3071 val64 = val64 + 1;
3072 if(val64 == 3)
3074 switch(type)
3076 case 1:
3077 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3078 "service. Excessive temperatures may "
3079 "result in premature transceiver "
3080 "failure \n");
3081 break;
3082 case 2:
3083 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3084 "service Excessive bias currents may "
3085 "indicate imminent laser diode "
3086 "failure \n");
3087 break;
3088 case 3:
3089 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3090 "service Excessive laser output "
3091 "power may saturate far-end "
3092 "receiver\n");
3093 break;
3094 default:
3095 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3096 "type \n");
3098 val64 = 0x0;
3100 val64 = val64 << (index * 0x2);
3101 *regs_stat = (*regs_stat & (~mask)) | (val64);
3103 } else {
3104 *regs_stat = *regs_stat & (~mask);
3109 * s2io_updt_xpak_counter - Function to update the xpak counters
3110 * @dev : pointer to net_device struct
3111 * Description:
3112 * This function is to upate the status of the xpak counters value
3113 * NONE
3115 static void s2io_updt_xpak_counter(struct net_device *dev)
3117 u16 flag = 0x0;
3118 u16 type = 0x0;
3119 u16 val16 = 0x0;
3120 u64 val64 = 0x0;
3121 u64 addr = 0x0;
3123 struct s2io_nic *sp = dev->priv;
3124 struct stat_block *stat_info = sp->mac_control.stats_info;
3126 /* Check the communication with the MDIO slave */
3127 addr = 0x0000;
3128 val64 = 0x0;
3129 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3130 if((val64 == 0xFFFF) || (val64 == 0x0000))
3132 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3133 "Returned %llx\n", (unsigned long long)val64);
3134 return;
3137 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3138 if(val64 != 0x2040)
3140 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3141 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3142 (unsigned long long)val64);
3143 return;
3146 /* Loading the DOM register to MDIO register */
3147 addr = 0xA100;
3148 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3149 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3151 /* Reading the Alarm flags */
3152 addr = 0xA070;
3153 val64 = 0x0;
3154 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3156 flag = CHECKBIT(val64, 0x7);
3157 type = 1;
3158 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3159 &stat_info->xpak_stat.xpak_regs_stat,
3160 0x0, flag, type);
3162 if(CHECKBIT(val64, 0x6))
3163 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3165 flag = CHECKBIT(val64, 0x3);
3166 type = 2;
3167 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3168 &stat_info->xpak_stat.xpak_regs_stat,
3169 0x2, flag, type);
3171 if(CHECKBIT(val64, 0x2))
3172 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3174 flag = CHECKBIT(val64, 0x1);
3175 type = 3;
3176 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3177 &stat_info->xpak_stat.xpak_regs_stat,
3178 0x4, flag, type);
3180 if(CHECKBIT(val64, 0x0))
3181 stat_info->xpak_stat.alarm_laser_output_power_low++;
3183 /* Reading the Warning flags */
3184 addr = 0xA074;
3185 val64 = 0x0;
3186 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3188 if(CHECKBIT(val64, 0x7))
3189 stat_info->xpak_stat.warn_transceiver_temp_high++;
3191 if(CHECKBIT(val64, 0x6))
3192 stat_info->xpak_stat.warn_transceiver_temp_low++;
3194 if(CHECKBIT(val64, 0x3))
3195 stat_info->xpak_stat.warn_laser_bias_current_high++;
3197 if(CHECKBIT(val64, 0x2))
3198 stat_info->xpak_stat.warn_laser_bias_current_low++;
3200 if(CHECKBIT(val64, 0x1))
3201 stat_info->xpak_stat.warn_laser_output_power_high++;
3203 if(CHECKBIT(val64, 0x0))
3204 stat_info->xpak_stat.warn_laser_output_power_low++;
3208 * alarm_intr_handler - Alarm Interrrupt handler
3209 * @nic: device private variable
3210 * Description: If the interrupt was neither because of Rx packet or Tx
3211 * complete, this function is called. If the interrupt was to indicate
3212 * a loss of link, the OSM link status handler is invoked for any other
3213 * alarm interrupt the block that raised the interrupt is displayed
3214 * and a H/W reset is issued.
3215 * Return Value:
3216 * NONE
3219 static void alarm_intr_handler(struct s2io_nic *nic)
3221 struct net_device *dev = (struct net_device *) nic->dev;
3222 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3223 register u64 val64 = 0, err_reg = 0;
3224 u64 cnt;
3225 int i;
3226 if (atomic_read(&nic->card_state) == CARD_DOWN)
3227 return;
3228 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3229 /* Handling the XPAK counters update */
3230 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3231 /* waiting for an hour */
3232 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3233 } else {
3234 s2io_updt_xpak_counter(dev);
3235 /* reset the count to zero */
3236 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3239 /* Handling link status change error Intr */
3240 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3241 err_reg = readq(&bar0->mac_rmac_err_reg);
3242 writeq(err_reg, &bar0->mac_rmac_err_reg);
3243 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3244 schedule_work(&nic->set_link_task);
3248 /* Handling Ecc errors */
3249 val64 = readq(&bar0->mc_err_reg);
3250 writeq(val64, &bar0->mc_err_reg);
3251 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3252 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3253 nic->mac_control.stats_info->sw_stat.
3254 double_ecc_errs++;
3255 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3256 dev->name);
3257 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3258 if (nic->device_type != XFRAME_II_DEVICE) {
3259 /* Reset XframeI only if critical error */
3260 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3261 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3262 netif_stop_queue(dev);
3263 schedule_work(&nic->rst_timer_task);
3264 nic->mac_control.stats_info->sw_stat.
3265 soft_reset_cnt++;
3268 } else {
3269 nic->mac_control.stats_info->sw_stat.
3270 single_ecc_errs++;
3274 /* In case of a serious error, the device will be Reset. */
3275 val64 = readq(&bar0->serr_source);
3276 if (val64 & SERR_SOURCE_ANY) {
3277 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3278 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3279 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3280 (unsigned long long)val64);
3281 netif_stop_queue(dev);
3282 schedule_work(&nic->rst_timer_task);
3283 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3287 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3288 * Error occurs, the adapter will be recycled by disabling the
3289 * adapter enable bit and enabling it again after the device
3290 * becomes Quiescent.
3292 val64 = readq(&bar0->pcc_err_reg);
3293 writeq(val64, &bar0->pcc_err_reg);
3294 if (val64 & PCC_FB_ECC_DB_ERR) {
3295 u64 ac = readq(&bar0->adapter_control);
3296 ac &= ~(ADAPTER_CNTL_EN);
3297 writeq(ac, &bar0->adapter_control);
3298 ac = readq(&bar0->adapter_control);
3299 schedule_work(&nic->set_link_task);
3301 /* Check for data parity error */
3302 val64 = readq(&bar0->pic_int_status);
3303 if (val64 & PIC_INT_GPIO) {
3304 val64 = readq(&bar0->gpio_int_reg);
3305 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3306 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3307 schedule_work(&nic->rst_timer_task);
3308 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3312 /* Check for ring full counter */
3313 if (nic->device_type & XFRAME_II_DEVICE) {
3314 val64 = readq(&bar0->ring_bump_counter1);
3315 for (i=0; i<4; i++) {
3316 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3317 cnt >>= 64 - ((i+1)*16);
3318 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3319 += cnt;
3322 val64 = readq(&bar0->ring_bump_counter2);
3323 for (i=0; i<4; i++) {
3324 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3325 cnt >>= 64 - ((i+1)*16);
3326 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3327 += cnt;
3331 /* Other type of interrupts are not being handled now, TODO */
3335 * wait_for_cmd_complete - waits for a command to complete.
3336 * @sp : private member of the device structure, which is a pointer to the
3337 * s2io_nic structure.
3338 * Description: Function that waits for a command to Write into RMAC
3339 * ADDR DATA registers to be completed and returns either success or
3340 * error depending on whether the command was complete or not.
3341 * Return value:
3342 * SUCCESS on success and FAILURE on failure.
3345 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3346 int bit_state)
3348 int ret = FAILURE, cnt = 0, delay = 1;
3349 u64 val64;
3351 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3352 return FAILURE;
3354 do {
3355 val64 = readq(addr);
3356 if (bit_state == S2IO_BIT_RESET) {
3357 if (!(val64 & busy_bit)) {
3358 ret = SUCCESS;
3359 break;
3361 } else {
3362 if (!(val64 & busy_bit)) {
3363 ret = SUCCESS;
3364 break;
3368 if(in_interrupt())
3369 mdelay(delay);
3370 else
3371 msleep(delay);
3373 if (++cnt >= 10)
3374 delay = 50;
3375 } while (cnt < 20);
3376 return ret;
3379 * check_pci_device_id - Checks if the device id is supported
3380 * @id : device id
3381 * Description: Function to check if the pci device id is supported by driver.
3382 * Return value: Actual device id if supported else PCI_ANY_ID
3384 static u16 check_pci_device_id(u16 id)
3386 switch (id) {
3387 case PCI_DEVICE_ID_HERC_WIN:
3388 case PCI_DEVICE_ID_HERC_UNI:
3389 return XFRAME_II_DEVICE;
3390 case PCI_DEVICE_ID_S2IO_UNI:
3391 case PCI_DEVICE_ID_S2IO_WIN:
3392 return XFRAME_I_DEVICE;
3393 default:
3394 return PCI_ANY_ID;
3399 * s2io_reset - Resets the card.
3400 * @sp : private member of the device structure.
3401 * Description: Function to Reset the card. This function then also
3402 * restores the previously saved PCI configuration space registers as
3403 * the card reset also resets the configuration space.
3404 * Return value:
3405 * void.
3408 static void s2io_reset(struct s2io_nic * sp)
3410 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3411 u64 val64;
3412 u16 subid, pci_cmd;
3413 int i;
3414 u16 val16;
3415 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3416 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3418 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3419 __FUNCTION__, sp->dev->name);
3421 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3422 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3424 if (sp->device_type == XFRAME_II_DEVICE) {
3425 int ret;
3426 ret = pci_set_power_state(sp->pdev, 3);
3427 if (!ret)
3428 ret = pci_set_power_state(sp->pdev, 0);
3429 else {
3430 DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3431 __FUNCTION__);
3432 goto old_way;
3434 msleep(20);
3435 goto new_way;
3437 old_way:
3438 val64 = SW_RESET_ALL;
3439 writeq(val64, &bar0->sw_reset);
3440 new_way:
3441 if (strstr(sp->product_name, "CX4")) {
3442 msleep(750);
3444 msleep(250);
3445 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3447 /* Restore the PCI state saved during initialization. */
3448 pci_restore_state(sp->pdev);
3449 pci_read_config_word(sp->pdev, 0x2, &val16);
3450 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3451 break;
3452 msleep(200);
3455 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3456 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3459 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3461 s2io_init_pci(sp);
3463 /* Set swapper to enable I/O register access */
3464 s2io_set_swapper(sp);
3466 /* Restore the MSIX table entries from local variables */
3467 restore_xmsi_data(sp);
3469 /* Clear certain PCI/PCI-X fields after reset */
3470 if (sp->device_type == XFRAME_II_DEVICE) {
3471 /* Clear "detected parity error" bit */
3472 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3474 /* Clearing PCIX Ecc status register */
3475 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3477 /* Clearing PCI_STATUS error reflected here */
3478 writeq(BIT(62), &bar0->txpic_int_reg);
3481 /* Reset device statistics maintained by OS */
3482 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3484 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3485 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3486 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3487 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3488 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3489 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3490 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3491 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3492 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3493 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3494 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3495 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3496 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3497 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3498 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3499 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3500 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3501 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3502 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3504 /* SXE-002: Configure link and activity LED to turn it off */
3505 subid = sp->pdev->subsystem_device;
3506 if (((subid & 0xFF) >= 0x07) &&
3507 (sp->device_type == XFRAME_I_DEVICE)) {
3508 val64 = readq(&bar0->gpio_control);
3509 val64 |= 0x0000800000000000ULL;
3510 writeq(val64, &bar0->gpio_control);
3511 val64 = 0x0411040400000000ULL;
3512 writeq(val64, (void __iomem *)bar0 + 0x2700);
3516 * Clear spurious ECC interrupts that would have occured on
3517 * XFRAME II cards after reset.
3519 if (sp->device_type == XFRAME_II_DEVICE) {
3520 val64 = readq(&bar0->pcc_err_reg);
3521 writeq(val64, &bar0->pcc_err_reg);
3524 /* restore the previously assigned mac address */
3525 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3527 sp->device_enabled_once = FALSE;
3531 * s2io_set_swapper - to set the swapper controle on the card
3532 * @sp : private member of the device structure,
3533 * pointer to the s2io_nic structure.
3534 * Description: Function to set the swapper control on the card
3535 * correctly depending on the 'endianness' of the system.
3536 * Return value:
3537 * SUCCESS on success and FAILURE on failure.
3540 static int s2io_set_swapper(struct s2io_nic * sp)
3542 struct net_device *dev = sp->dev;
3543 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3544 u64 val64, valt, valr;
3547 * Set proper endian settings and verify the same by reading
3548 * the PIF Feed-back register.
3551 val64 = readq(&bar0->pif_rd_swapper_fb);
3552 if (val64 != 0x0123456789ABCDEFULL) {
3553 int i = 0;
3554 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3555 0x8100008181000081ULL, /* FE=1, SE=0 */
3556 0x4200004242000042ULL, /* FE=0, SE=1 */
3557 0}; /* FE=0, SE=0 */
3559 while(i<4) {
3560 writeq(value[i], &bar0->swapper_ctrl);
3561 val64 = readq(&bar0->pif_rd_swapper_fb);
3562 if (val64 == 0x0123456789ABCDEFULL)
3563 break;
3564 i++;
3566 if (i == 4) {
3567 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3568 dev->name);
3569 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3570 (unsigned long long) val64);
3571 return FAILURE;
3573 valr = value[i];
3574 } else {
3575 valr = readq(&bar0->swapper_ctrl);
3578 valt = 0x0123456789ABCDEFULL;
3579 writeq(valt, &bar0->xmsi_address);
3580 val64 = readq(&bar0->xmsi_address);
3582 if(val64 != valt) {
3583 int i = 0;
3584 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3585 0x0081810000818100ULL, /* FE=1, SE=0 */
3586 0x0042420000424200ULL, /* FE=0, SE=1 */
3587 0}; /* FE=0, SE=0 */
3589 while(i<4) {
3590 writeq((value[i] | valr), &bar0->swapper_ctrl);
3591 writeq(valt, &bar0->xmsi_address);
3592 val64 = readq(&bar0->xmsi_address);
3593 if(val64 == valt)
3594 break;
3595 i++;
3597 if(i == 4) {
3598 unsigned long long x = val64;
3599 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3600 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3601 return FAILURE;
3604 val64 = readq(&bar0->swapper_ctrl);
3605 val64 &= 0xFFFF000000000000ULL;
3607 #ifdef __BIG_ENDIAN
3609 * The device by default set to a big endian format, so a
3610 * big endian driver need not set anything.
3612 val64 |= (SWAPPER_CTRL_TXP_FE |
3613 SWAPPER_CTRL_TXP_SE |
3614 SWAPPER_CTRL_TXD_R_FE |
3615 SWAPPER_CTRL_TXD_W_FE |
3616 SWAPPER_CTRL_TXF_R_FE |
3617 SWAPPER_CTRL_RXD_R_FE |
3618 SWAPPER_CTRL_RXD_W_FE |
3619 SWAPPER_CTRL_RXF_W_FE |
3620 SWAPPER_CTRL_XMSI_FE |
3621 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3622 if (sp->intr_type == INTA)
3623 val64 |= SWAPPER_CTRL_XMSI_SE;
3624 writeq(val64, &bar0->swapper_ctrl);
3625 #else
3627 * Initially we enable all bits to make it accessible by the
3628 * driver, then we selectively enable only those bits that
3629 * we want to set.
3631 val64 |= (SWAPPER_CTRL_TXP_FE |
3632 SWAPPER_CTRL_TXP_SE |
3633 SWAPPER_CTRL_TXD_R_FE |
3634 SWAPPER_CTRL_TXD_R_SE |
3635 SWAPPER_CTRL_TXD_W_FE |
3636 SWAPPER_CTRL_TXD_W_SE |
3637 SWAPPER_CTRL_TXF_R_FE |
3638 SWAPPER_CTRL_RXD_R_FE |
3639 SWAPPER_CTRL_RXD_R_SE |
3640 SWAPPER_CTRL_RXD_W_FE |
3641 SWAPPER_CTRL_RXD_W_SE |
3642 SWAPPER_CTRL_RXF_W_FE |
3643 SWAPPER_CTRL_XMSI_FE |
3644 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3645 if (sp->intr_type == INTA)
3646 val64 |= SWAPPER_CTRL_XMSI_SE;
3647 writeq(val64, &bar0->swapper_ctrl);
3648 #endif
3649 val64 = readq(&bar0->swapper_ctrl);
3652 * Verifying if endian settings are accurate by reading a
3653 * feedback register.
3655 val64 = readq(&bar0->pif_rd_swapper_fb);
3656 if (val64 != 0x0123456789ABCDEFULL) {
3657 /* Endian settings are incorrect, calls for another dekko. */
3658 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3659 dev->name);
3660 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3661 (unsigned long long) val64);
3662 return FAILURE;
3665 return SUCCESS;
3668 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3670 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3671 u64 val64;
3672 int ret = 0, cnt = 0;
3674 do {
3675 val64 = readq(&bar0->xmsi_access);
3676 if (!(val64 & BIT(15)))
3677 break;
3678 mdelay(1);
3679 cnt++;
3680 } while(cnt < 5);
3681 if (cnt == 5) {
3682 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3683 ret = 1;
3686 return ret;
3689 static void restore_xmsi_data(struct s2io_nic *nic)
3691 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3692 u64 val64;
3693 int i;
3695 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3696 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3697 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3698 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3699 writeq(val64, &bar0->xmsi_access);
3700 if (wait_for_msix_trans(nic, i)) {
3701 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3702 continue;
3707 static void store_xmsi_data(struct s2io_nic *nic)
3709 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3710 u64 val64, addr, data;
3711 int i;
3713 /* Store and display */
3714 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3715 val64 = (BIT(15) | vBIT(i, 26, 6));
3716 writeq(val64, &bar0->xmsi_access);
3717 if (wait_for_msix_trans(nic, i)) {
3718 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3719 continue;
3721 addr = readq(&bar0->xmsi_address);
3722 data = readq(&bar0->xmsi_data);
3723 if (addr && data) {
3724 nic->msix_info[i].addr = addr;
3725 nic->msix_info[i].data = data;
3730 int s2io_enable_msi(struct s2io_nic *nic)
3732 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3733 u16 msi_ctrl, msg_val;
3734 struct config_param *config = &nic->config;
3735 struct net_device *dev = nic->dev;
3736 u64 val64, tx_mat, rx_mat;
3737 int i, err;
3739 val64 = readq(&bar0->pic_control);
3740 val64 &= ~BIT(1);
3741 writeq(val64, &bar0->pic_control);
3743 err = pci_enable_msi(nic->pdev);
3744 if (err) {
3745 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3746 nic->dev->name);
3747 return err;
3751 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3752 * for interrupt handling.
3754 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3755 msg_val ^= 0x1;
3756 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3757 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3759 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3760 msi_ctrl |= 0x10;
3761 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3763 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3764 tx_mat = readq(&bar0->tx_mat0_n[0]);
3765 for (i=0; i<config->tx_fifo_num; i++) {
3766 tx_mat |= TX_MAT_SET(i, 1);
3768 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3770 rx_mat = readq(&bar0->rx_mat);
3771 for (i=0; i<config->rx_ring_num; i++) {
3772 rx_mat |= RX_MAT_SET(i, 1);
3774 writeq(rx_mat, &bar0->rx_mat);
3776 dev->irq = nic->pdev->irq;
3777 return 0;
3780 static int s2io_enable_msi_x(struct s2io_nic *nic)
3782 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3783 u64 tx_mat, rx_mat;
3784 u16 msi_control; /* Temp variable */
3785 int ret, i, j, msix_indx = 1;
3787 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3788 GFP_KERNEL);
3789 if (nic->entries == NULL) {
3790 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3791 __FUNCTION__);
3792 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3793 return -ENOMEM;
3795 nic->mac_control.stats_info->sw_stat.mem_allocated
3796 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3797 memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3799 nic->s2io_entries =
3800 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3801 GFP_KERNEL);
3802 if (nic->s2io_entries == NULL) {
3803 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3804 __FUNCTION__);
3805 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3806 kfree(nic->entries);
3807 nic->mac_control.stats_info->sw_stat.mem_freed
3808 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3809 return -ENOMEM;
3811 nic->mac_control.stats_info->sw_stat.mem_allocated
3812 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3813 memset(nic->s2io_entries, 0,
3814 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3816 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3817 nic->entries[i].entry = i;
3818 nic->s2io_entries[i].entry = i;
3819 nic->s2io_entries[i].arg = NULL;
3820 nic->s2io_entries[i].in_use = 0;
3823 tx_mat = readq(&bar0->tx_mat0_n[0]);
3824 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3825 tx_mat |= TX_MAT_SET(i, msix_indx);
3826 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3827 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3828 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3830 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3832 if (!nic->config.bimodal) {
3833 rx_mat = readq(&bar0->rx_mat);
3834 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3835 rx_mat |= RX_MAT_SET(j, msix_indx);
3836 nic->s2io_entries[msix_indx].arg
3837 = &nic->mac_control.rings[j];
3838 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3839 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3841 writeq(rx_mat, &bar0->rx_mat);
3842 } else {
3843 tx_mat = readq(&bar0->tx_mat0_n[7]);
3844 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3845 tx_mat |= TX_MAT_SET(i, msix_indx);
3846 nic->s2io_entries[msix_indx].arg
3847 = &nic->mac_control.rings[j];
3848 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3849 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3851 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3854 nic->avail_msix_vectors = 0;
3855 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3856 /* We fail init if error or we get less vectors than min required */
3857 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3858 nic->avail_msix_vectors = ret;
3859 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3861 if (ret) {
3862 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3863 kfree(nic->entries);
3864 nic->mac_control.stats_info->sw_stat.mem_freed
3865 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3866 kfree(nic->s2io_entries);
3867 nic->mac_control.stats_info->sw_stat.mem_freed
3868 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3869 nic->entries = NULL;
3870 nic->s2io_entries = NULL;
3871 nic->avail_msix_vectors = 0;
3872 return -ENOMEM;
3874 if (!nic->avail_msix_vectors)
3875 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3878 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3879 * in the herc NIC. (Temp change, needs to be removed later)
3881 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3882 msi_control |= 0x1; /* Enable MSI */
3883 pci_write_config_word(nic->pdev, 0x42, msi_control);
3885 return 0;
3888 /* ********************************************************* *
3889 * Functions defined below concern the OS part of the driver *
3890 * ********************************************************* */
3893 * s2io_open - open entry point of the driver
3894 * @dev : pointer to the device structure.
3895 * Description:
3896 * This function is the open entry point of the driver. It mainly calls a
3897 * function to allocate Rx buffers and inserts them into the buffer
3898 * descriptors and then enables the Rx part of the NIC.
3899 * Return value:
3900 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3901 * file on failure.
3904 static int s2io_open(struct net_device *dev)
3906 struct s2io_nic *sp = dev->priv;
3907 int err = 0;
3910 * Make sure you have link off by default every time
3911 * Nic is initialized
3913 netif_carrier_off(dev);
3914 sp->last_link_state = 0;
3916 /* Initialize H/W and enable interrupts */
3917 err = s2io_card_up(sp);
3918 if (err) {
3919 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3920 dev->name);
3921 goto hw_init_failed;
3924 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3925 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3926 s2io_card_down(sp);
3927 err = -ENODEV;
3928 goto hw_init_failed;
3931 netif_start_queue(dev);
3932 return 0;
3934 hw_init_failed:
3935 if (sp->intr_type == MSI_X) {
3936 if (sp->entries) {
3937 kfree(sp->entries);
3938 sp->mac_control.stats_info->sw_stat.mem_freed
3939 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3941 if (sp->s2io_entries) {
3942 kfree(sp->s2io_entries);
3943 sp->mac_control.stats_info->sw_stat.mem_freed
3944 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3947 return err;
3951 * s2io_close -close entry point of the driver
3952 * @dev : device pointer.
3953 * Description:
3954 * This is the stop entry point of the driver. It needs to undo exactly
3955 * whatever was done by the open entry point,thus it's usually referred to
3956 * as the close function.Among other things this function mainly stops the
3957 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3958 * Return value:
3959 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3960 * file on failure.
3963 static int s2io_close(struct net_device *dev)
3965 struct s2io_nic *sp = dev->priv;
3967 netif_stop_queue(dev);
3968 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3969 s2io_card_down(sp);
3971 sp->device_close_flag = TRUE; /* Device is shut down. */
3972 return 0;
3976 * s2io_xmit - Tx entry point of te driver
3977 * @skb : the socket buffer containing the Tx data.
3978 * @dev : device pointer.
3979 * Description :
3980 * This function is the Tx entry point of the driver. S2IO NIC supports
3981 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3982 * NOTE: when device cant queue the pkt,just the trans_start variable will
3983 * not be upadted.
3984 * Return value:
3985 * 0 on success & 1 on failure.
3988 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3990 struct s2io_nic *sp = dev->priv;
3991 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3992 register u64 val64;
3993 struct TxD *txdp;
3994 struct TxFIFO_element __iomem *tx_fifo;
3995 unsigned long flags;
3996 u16 vlan_tag = 0;
3997 int vlan_priority = 0;
3998 struct mac_info *mac_control;
3999 struct config_param *config;
4000 int offload_type;
4002 mac_control = &sp->mac_control;
4003 config = &sp->config;
4005 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4007 if (unlikely(skb->len <= 0)) {
4008 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4009 dev_kfree_skb_any(skb);
4010 return 0;
4013 spin_lock_irqsave(&sp->tx_lock, flags);
4014 if (atomic_read(&sp->card_state) == CARD_DOWN) {
4015 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4016 dev->name);
4017 spin_unlock_irqrestore(&sp->tx_lock, flags);
4018 dev_kfree_skb(skb);
4019 return 0;
4022 queue = 0;
4023 /* Get Fifo number to Transmit based on vlan priority */
4024 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4025 vlan_tag = vlan_tx_tag_get(skb);
4026 vlan_priority = vlan_tag >> 13;
4027 queue = config->fifo_mapping[vlan_priority];
4030 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4031 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
4032 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
4033 list_virt_addr;
4035 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
4036 /* Avoid "put" pointer going beyond "get" pointer */
4037 if (txdp->Host_Control ||
4038 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4039 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4040 netif_stop_queue(dev);
4041 dev_kfree_skb(skb);
4042 spin_unlock_irqrestore(&sp->tx_lock, flags);
4043 return 0;
4046 offload_type = s2io_offload_type(skb);
4047 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4048 txdp->Control_1 |= TXD_TCP_LSO_EN;
4049 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4051 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4052 txdp->Control_2 |=
4053 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4054 TXD_TX_CKO_UDP_EN);
4056 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4057 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4058 txdp->Control_2 |= config->tx_intr_type;
4060 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4061 txdp->Control_2 |= TXD_VLAN_ENABLE;
4062 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4065 frg_len = skb->len - skb->data_len;
4066 if (offload_type == SKB_GSO_UDP) {
4067 int ufo_size;
4069 ufo_size = s2io_udp_mss(skb);
4070 ufo_size &= ~7;
4071 txdp->Control_1 |= TXD_UFO_EN;
4072 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4073 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4074 #ifdef __BIG_ENDIAN
4075 sp->ufo_in_band_v[put_off] =
4076 (u64)skb_shinfo(skb)->ip6_frag_id;
4077 #else
4078 sp->ufo_in_band_v[put_off] =
4079 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4080 #endif
4081 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4082 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4083 sp->ufo_in_band_v,
4084 sizeof(u64), PCI_DMA_TODEVICE);
4085 txdp++;
4088 txdp->Buffer_Pointer = pci_map_single
4089 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4090 txdp->Host_Control = (unsigned long) skb;
4091 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4092 if (offload_type == SKB_GSO_UDP)
4093 txdp->Control_1 |= TXD_UFO_EN;
4095 frg_cnt = skb_shinfo(skb)->nr_frags;
4096 /* For fragmented SKB. */
4097 for (i = 0; i < frg_cnt; i++) {
4098 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4099 /* A '0' length fragment will be ignored */
4100 if (!frag->size)
4101 continue;
4102 txdp++;
4103 txdp->Buffer_Pointer = (u64) pci_map_page
4104 (sp->pdev, frag->page, frag->page_offset,
4105 frag->size, PCI_DMA_TODEVICE);
4106 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4107 if (offload_type == SKB_GSO_UDP)
4108 txdp->Control_1 |= TXD_UFO_EN;
4110 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4112 if (offload_type == SKB_GSO_UDP)
4113 frg_cnt++; /* as Txd0 was used for inband header */
4115 tx_fifo = mac_control->tx_FIFO_start[queue];
4116 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4117 writeq(val64, &tx_fifo->TxDL_Pointer);
4119 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4120 TX_FIFO_LAST_LIST);
4121 if (offload_type)
4122 val64 |= TX_FIFO_SPECIAL_FUNC;
4124 writeq(val64, &tx_fifo->List_Control);
4126 mmiowb();
4128 put_off++;
4129 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4130 put_off = 0;
4131 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4133 /* Avoid "put" pointer going beyond "get" pointer */
4134 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4135 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4136 DBG_PRINT(TX_DBG,
4137 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4138 put_off, get_off);
4139 netif_stop_queue(dev);
4141 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4142 dev->trans_start = jiffies;
4143 spin_unlock_irqrestore(&sp->tx_lock, flags);
4145 return 0;
4148 static void
4149 s2io_alarm_handle(unsigned long data)
4151 struct s2io_nic *sp = (struct s2io_nic *)data;
4153 alarm_intr_handler(sp);
4154 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4157 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4159 int rxb_size, level;
4161 if (!sp->lro) {
4162 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4163 level = rx_buffer_level(sp, rxb_size, rng_n);
4165 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4166 int ret;
4167 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4168 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4169 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4170 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4171 __FUNCTION__);
4172 clear_bit(0, (&sp->tasklet_status));
4173 return -1;
4175 clear_bit(0, (&sp->tasklet_status));
4176 } else if (level == LOW)
4177 tasklet_schedule(&sp->task);
4179 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4180 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4181 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4183 return 0;
4186 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4188 struct net_device *dev = (struct net_device *) dev_id;
4189 struct s2io_nic *sp = dev->priv;
4190 int i;
4191 struct mac_info *mac_control;
4192 struct config_param *config;
4194 atomic_inc(&sp->isr_cnt);
4195 mac_control = &sp->mac_control;
4196 config = &sp->config;
4197 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4199 /* If Intr is because of Rx Traffic */
4200 for (i = 0; i < config->rx_ring_num; i++)
4201 rx_intr_handler(&mac_control->rings[i]);
4203 /* If Intr is because of Tx Traffic */
4204 for (i = 0; i < config->tx_fifo_num; i++)
4205 tx_intr_handler(&mac_control->fifos[i]);
4208 * If the Rx buffer count is below the panic threshold then
4209 * reallocate the buffers from the interrupt handler itself,
4210 * else schedule a tasklet to reallocate the buffers.
4212 for (i = 0; i < config->rx_ring_num; i++)
4213 s2io_chk_rx_buffers(sp, i);
4215 atomic_dec(&sp->isr_cnt);
4216 return IRQ_HANDLED;
4219 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4221 struct ring_info *ring = (struct ring_info *)dev_id;
4222 struct s2io_nic *sp = ring->nic;
4224 atomic_inc(&sp->isr_cnt);
4226 rx_intr_handler(ring);
4227 s2io_chk_rx_buffers(sp, ring->ring_no);
4229 atomic_dec(&sp->isr_cnt);
4230 return IRQ_HANDLED;
4233 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4235 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4236 struct s2io_nic *sp = fifo->nic;
4238 atomic_inc(&sp->isr_cnt);
4239 tx_intr_handler(fifo);
4240 atomic_dec(&sp->isr_cnt);
4241 return IRQ_HANDLED;
4243 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4245 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4246 u64 val64;
4248 val64 = readq(&bar0->pic_int_status);
4249 if (val64 & PIC_INT_GPIO) {
4250 val64 = readq(&bar0->gpio_int_reg);
4251 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4252 (val64 & GPIO_INT_REG_LINK_UP)) {
4254 * This is unstable state so clear both up/down
4255 * interrupt and adapter to re-evaluate the link state.
4257 val64 |= GPIO_INT_REG_LINK_DOWN;
4258 val64 |= GPIO_INT_REG_LINK_UP;
4259 writeq(val64, &bar0->gpio_int_reg);
4260 val64 = readq(&bar0->gpio_int_mask);
4261 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4262 GPIO_INT_MASK_LINK_DOWN);
4263 writeq(val64, &bar0->gpio_int_mask);
4265 else if (val64 & GPIO_INT_REG_LINK_UP) {
4266 val64 = readq(&bar0->adapter_status);
4267 /* Enable Adapter */
4268 val64 = readq(&bar0->adapter_control);
4269 val64 |= ADAPTER_CNTL_EN;
4270 writeq(val64, &bar0->adapter_control);
4271 val64 |= ADAPTER_LED_ON;
4272 writeq(val64, &bar0->adapter_control);
4273 if (!sp->device_enabled_once)
4274 sp->device_enabled_once = 1;
4276 s2io_link(sp, LINK_UP);
4278 * unmask link down interrupt and mask link-up
4279 * intr
4281 val64 = readq(&bar0->gpio_int_mask);
4282 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4283 val64 |= GPIO_INT_MASK_LINK_UP;
4284 writeq(val64, &bar0->gpio_int_mask);
4286 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4287 val64 = readq(&bar0->adapter_status);
4288 s2io_link(sp, LINK_DOWN);
4289 /* Link is down so unmaks link up interrupt */
4290 val64 = readq(&bar0->gpio_int_mask);
4291 val64 &= ~GPIO_INT_MASK_LINK_UP;
4292 val64 |= GPIO_INT_MASK_LINK_DOWN;
4293 writeq(val64, &bar0->gpio_int_mask);
4295 /* turn off LED */
4296 val64 = readq(&bar0->adapter_control);
4297 val64 = val64 &(~ADAPTER_LED_ON);
4298 writeq(val64, &bar0->adapter_control);
4301 val64 = readq(&bar0->gpio_int_mask);
4305 * s2io_isr - ISR handler of the device .
4306 * @irq: the irq of the device.
4307 * @dev_id: a void pointer to the dev structure of the NIC.
4308 * Description: This function is the ISR handler of the device. It
4309 * identifies the reason for the interrupt and calls the relevant
4310 * service routines. As a contongency measure, this ISR allocates the
4311 * recv buffers, if their numbers are below the panic value which is
4312 * presently set to 25% of the original number of rcv buffers allocated.
4313 * Return value:
4314 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4315 * IRQ_NONE: will be returned if interrupt is not from our device
4317 static irqreturn_t s2io_isr(int irq, void *dev_id)
4319 struct net_device *dev = (struct net_device *) dev_id;
4320 struct s2io_nic *sp = dev->priv;
4321 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4322 int i;
4323 u64 reason = 0;
4324 struct mac_info *mac_control;
4325 struct config_param *config;
4327 atomic_inc(&sp->isr_cnt);
4328 mac_control = &sp->mac_control;
4329 config = &sp->config;
4332 * Identify the cause for interrupt and call the appropriate
4333 * interrupt handler. Causes for the interrupt could be;
4334 * 1. Rx of packet.
4335 * 2. Tx complete.
4336 * 3. Link down.
4337 * 4. Error in any functional blocks of the NIC.
4339 reason = readq(&bar0->general_int_status);
4341 if (!reason) {
4342 /* The interrupt was not raised by us. */
4343 atomic_dec(&sp->isr_cnt);
4344 return IRQ_NONE;
4346 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4347 /* Disable device and get out */
4348 atomic_dec(&sp->isr_cnt);
4349 return IRQ_NONE;
4352 if (napi) {
4353 if (reason & GEN_INTR_RXTRAFFIC) {
4354 if ( likely ( netif_rx_schedule_prep(dev)) ) {
4355 __netif_rx_schedule(dev);
4356 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4358 else
4359 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4361 } else {
4363 * Rx handler is called by default, without checking for the
4364 * cause of interrupt.
4365 * rx_traffic_int reg is an R1 register, writing all 1's
4366 * will ensure that the actual interrupt causing bit get's
4367 * cleared and hence a read can be avoided.
4369 if (reason & GEN_INTR_RXTRAFFIC)
4370 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4372 for (i = 0; i < config->rx_ring_num; i++) {
4373 rx_intr_handler(&mac_control->rings[i]);
4378 * tx_traffic_int reg is an R1 register, writing all 1's
4379 * will ensure that the actual interrupt causing bit get's
4380 * cleared and hence a read can be avoided.
4382 if (reason & GEN_INTR_TXTRAFFIC)
4383 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4385 for (i = 0; i < config->tx_fifo_num; i++)
4386 tx_intr_handler(&mac_control->fifos[i]);
4388 if (reason & GEN_INTR_TXPIC)
4389 s2io_txpic_intr_handle(sp);
4391 * If the Rx buffer count is below the panic threshold then
4392 * reallocate the buffers from the interrupt handler itself,
4393 * else schedule a tasklet to reallocate the buffers.
4395 if (!napi) {
4396 for (i = 0; i < config->rx_ring_num; i++)
4397 s2io_chk_rx_buffers(sp, i);
4400 writeq(0, &bar0->general_int_mask);
4401 readl(&bar0->general_int_status);
4403 atomic_dec(&sp->isr_cnt);
4404 return IRQ_HANDLED;
4408 * s2io_updt_stats -
4410 static void s2io_updt_stats(struct s2io_nic *sp)
4412 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4413 u64 val64;
4414 int cnt = 0;
4416 if (atomic_read(&sp->card_state) == CARD_UP) {
4417 /* Apprx 30us on a 133 MHz bus */
4418 val64 = SET_UPDT_CLICKS(10) |
4419 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4420 writeq(val64, &bar0->stat_cfg);
4421 do {
4422 udelay(100);
4423 val64 = readq(&bar0->stat_cfg);
4424 if (!(val64 & BIT(0)))
4425 break;
4426 cnt++;
4427 if (cnt == 5)
4428 break; /* Updt failed */
4429 } while(1);
4434 * s2io_get_stats - Updates the device statistics structure.
4435 * @dev : pointer to the device structure.
4436 * Description:
4437 * This function updates the device statistics structure in the s2io_nic
4438 * structure and returns a pointer to the same.
4439 * Return value:
4440 * pointer to the updated net_device_stats structure.
4443 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4445 struct s2io_nic *sp = dev->priv;
4446 struct mac_info *mac_control;
4447 struct config_param *config;
4450 mac_control = &sp->mac_control;
4451 config = &sp->config;
4453 /* Configure Stats for immediate updt */
4454 s2io_updt_stats(sp);
4456 sp->stats.tx_packets =
4457 le32_to_cpu(mac_control->stats_info->tmac_frms);
4458 sp->stats.tx_errors =
4459 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4460 sp->stats.rx_errors =
4461 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4462 sp->stats.multicast =
4463 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4464 sp->stats.rx_length_errors =
4465 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4467 return (&sp->stats);
4471 * s2io_set_multicast - entry point for multicast address enable/disable.
4472 * @dev : pointer to the device structure
4473 * Description:
4474 * This function is a driver entry point which gets called by the kernel
4475 * whenever multicast addresses must be enabled/disabled. This also gets
4476 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4477 * determine, if multicast address must be enabled or if promiscuous mode
4478 * is to be disabled etc.
4479 * Return value:
4480 * void.
4483 static void s2io_set_multicast(struct net_device *dev)
4485 int i, j, prev_cnt;
4486 struct dev_mc_list *mclist;
4487 struct s2io_nic *sp = dev->priv;
4488 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4489 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4490 0xfeffffffffffULL;
4491 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4492 void __iomem *add;
4494 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4495 /* Enable all Multicast addresses */
4496 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4497 &bar0->rmac_addr_data0_mem);
4498 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4499 &bar0->rmac_addr_data1_mem);
4500 val64 = RMAC_ADDR_CMD_MEM_WE |
4501 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4502 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4503 writeq(val64, &bar0->rmac_addr_cmd_mem);
4504 /* Wait till command completes */
4505 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4506 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4507 S2IO_BIT_RESET);
4509 sp->m_cast_flg = 1;
4510 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4511 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4512 /* Disable all Multicast addresses */
4513 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4514 &bar0->rmac_addr_data0_mem);
4515 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4516 &bar0->rmac_addr_data1_mem);
4517 val64 = RMAC_ADDR_CMD_MEM_WE |
4518 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4519 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4520 writeq(val64, &bar0->rmac_addr_cmd_mem);
4521 /* Wait till command completes */
4522 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4523 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4524 S2IO_BIT_RESET);
4526 sp->m_cast_flg = 0;
4527 sp->all_multi_pos = 0;
4530 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4531 /* Put the NIC into promiscuous mode */
4532 add = &bar0->mac_cfg;
4533 val64 = readq(&bar0->mac_cfg);
4534 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4536 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4537 writel((u32) val64, add);
4538 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4539 writel((u32) (val64 >> 32), (add + 4));
4541 if (vlan_tag_strip != 1) {
4542 val64 = readq(&bar0->rx_pa_cfg);
4543 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4544 writeq(val64, &bar0->rx_pa_cfg);
4545 vlan_strip_flag = 0;
4548 val64 = readq(&bar0->mac_cfg);
4549 sp->promisc_flg = 1;
4550 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4551 dev->name);
4552 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4553 /* Remove the NIC from promiscuous mode */
4554 add = &bar0->mac_cfg;
4555 val64 = readq(&bar0->mac_cfg);
4556 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4558 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4559 writel((u32) val64, add);
4560 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4561 writel((u32) (val64 >> 32), (add + 4));
4563 if (vlan_tag_strip != 0) {
4564 val64 = readq(&bar0->rx_pa_cfg);
4565 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4566 writeq(val64, &bar0->rx_pa_cfg);
4567 vlan_strip_flag = 1;
4570 val64 = readq(&bar0->mac_cfg);
4571 sp->promisc_flg = 0;
4572 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4573 dev->name);
4576 /* Update individual M_CAST address list */
4577 if ((!sp->m_cast_flg) && dev->mc_count) {
4578 if (dev->mc_count >
4579 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4580 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4581 dev->name);
4582 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4583 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4584 return;
4587 prev_cnt = sp->mc_addr_count;
4588 sp->mc_addr_count = dev->mc_count;
4590 /* Clear out the previous list of Mc in the H/W. */
4591 for (i = 0; i < prev_cnt; i++) {
4592 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4593 &bar0->rmac_addr_data0_mem);
4594 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4595 &bar0->rmac_addr_data1_mem);
4596 val64 = RMAC_ADDR_CMD_MEM_WE |
4597 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4598 RMAC_ADDR_CMD_MEM_OFFSET
4599 (MAC_MC_ADDR_START_OFFSET + i);
4600 writeq(val64, &bar0->rmac_addr_cmd_mem);
4602 /* Wait for command completes */
4603 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4604 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4605 S2IO_BIT_RESET)) {
4606 DBG_PRINT(ERR_DBG, "%s: Adding ",
4607 dev->name);
4608 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4609 return;
4613 /* Create the new Rx filter list and update the same in H/W. */
4614 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4615 i++, mclist = mclist->next) {
4616 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4617 ETH_ALEN);
4618 mac_addr = 0;
4619 for (j = 0; j < ETH_ALEN; j++) {
4620 mac_addr |= mclist->dmi_addr[j];
4621 mac_addr <<= 8;
4623 mac_addr >>= 8;
4624 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4625 &bar0->rmac_addr_data0_mem);
4626 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4627 &bar0->rmac_addr_data1_mem);
4628 val64 = RMAC_ADDR_CMD_MEM_WE |
4629 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4630 RMAC_ADDR_CMD_MEM_OFFSET
4631 (i + MAC_MC_ADDR_START_OFFSET);
4632 writeq(val64, &bar0->rmac_addr_cmd_mem);
4634 /* Wait for command completes */
4635 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4636 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4637 S2IO_BIT_RESET)) {
4638 DBG_PRINT(ERR_DBG, "%s: Adding ",
4639 dev->name);
4640 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4641 return;
4648 * s2io_set_mac_addr - Programs the Xframe mac address
4649 * @dev : pointer to the device structure.
4650 * @addr: a uchar pointer to the new mac address which is to be set.
4651 * Description : This procedure will program the Xframe to receive
4652 * frames with new Mac Address
4653 * Return value: SUCCESS on success and an appropriate (-)ve integer
4654 * as defined in errno.h file on failure.
4657 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4659 struct s2io_nic *sp = dev->priv;
4660 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4661 register u64 val64, mac_addr = 0;
4662 int i;
4663 u64 old_mac_addr = 0;
4666 * Set the new MAC address as the new unicast filter and reflect this
4667 * change on the device address registered with the OS. It will be
4668 * at offset 0.
4670 for (i = 0; i < ETH_ALEN; i++) {
4671 mac_addr <<= 8;
4672 mac_addr |= addr[i];
4673 old_mac_addr <<= 8;
4674 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4677 if(0 == mac_addr)
4678 return SUCCESS;
4680 /* Update the internal structure with this new mac address */
4681 if(mac_addr != old_mac_addr) {
4682 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4683 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4684 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4685 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4686 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4687 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4688 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
4691 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4692 &bar0->rmac_addr_data0_mem);
4694 val64 =
4695 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4696 RMAC_ADDR_CMD_MEM_OFFSET(0);
4697 writeq(val64, &bar0->rmac_addr_cmd_mem);
4698 /* Wait till command completes */
4699 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4700 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4701 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4702 return FAILURE;
4705 return SUCCESS;
4709 * s2io_ethtool_sset - Sets different link parameters.
4710 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4711 * @info: pointer to the structure with parameters given by ethtool to set
4712 * link information.
4713 * Description:
4714 * The function sets different link parameters provided by the user onto
4715 * the NIC.
4716 * Return value:
4717 * 0 on success.
4720 static int s2io_ethtool_sset(struct net_device *dev,
4721 struct ethtool_cmd *info)
4723 struct s2io_nic *sp = dev->priv;
4724 if ((info->autoneg == AUTONEG_ENABLE) ||
4725 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4726 return -EINVAL;
4727 else {
4728 s2io_close(sp->dev);
4729 s2io_open(sp->dev);
4732 return 0;
4736 * s2io_ethtol_gset - Return link specific information.
4737 * @sp : private member of the device structure, pointer to the
4738 * s2io_nic structure.
4739 * @info : pointer to the structure with parameters given by ethtool
4740 * to return link information.
4741 * Description:
4742 * Returns link specific information like speed, duplex etc.. to ethtool.
4743 * Return value :
4744 * return 0 on success.
4747 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4749 struct s2io_nic *sp = dev->priv;
4750 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4751 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4752 info->port = PORT_FIBRE;
4753 /* info->transceiver?? TODO */
4755 if (netif_carrier_ok(sp->dev)) {
4756 info->speed = 10000;
4757 info->duplex = DUPLEX_FULL;
4758 } else {
4759 info->speed = -1;
4760 info->duplex = -1;
4763 info->autoneg = AUTONEG_DISABLE;
4764 return 0;
4768 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4769 * @sp : private member of the device structure, which is a pointer to the
4770 * s2io_nic structure.
4771 * @info : pointer to the structure with parameters given by ethtool to
4772 * return driver information.
4773 * Description:
4774 * Returns driver specefic information like name, version etc.. to ethtool.
4775 * Return value:
4776 * void
4779 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4780 struct ethtool_drvinfo *info)
4782 struct s2io_nic *sp = dev->priv;
4784 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4785 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4786 strncpy(info->fw_version, "", sizeof(info->fw_version));
4787 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4788 info->regdump_len = XENA_REG_SPACE;
4789 info->eedump_len = XENA_EEPROM_SPACE;
4790 info->testinfo_len = S2IO_TEST_LEN;
4792 if (sp->device_type == XFRAME_I_DEVICE)
4793 info->n_stats = XFRAME_I_STAT_LEN;
4794 else
4795 info->n_stats = XFRAME_II_STAT_LEN;
4799 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4800 * @sp: private member of the device structure, which is a pointer to the
4801 * s2io_nic structure.
4802 * @regs : pointer to the structure with parameters given by ethtool for
4803 * dumping the registers.
4804 * @reg_space: The input argumnet into which all the registers are dumped.
4805 * Description:
4806 * Dumps the entire register space of xFrame NIC into the user given
4807 * buffer area.
4808 * Return value :
4809 * void .
4812 static void s2io_ethtool_gregs(struct net_device *dev,
4813 struct ethtool_regs *regs, void *space)
4815 int i;
4816 u64 reg;
4817 u8 *reg_space = (u8 *) space;
4818 struct s2io_nic *sp = dev->priv;
4820 regs->len = XENA_REG_SPACE;
4821 regs->version = sp->pdev->subsystem_device;
4823 for (i = 0; i < regs->len; i += 8) {
4824 reg = readq(sp->bar0 + i);
4825 memcpy((reg_space + i), &reg, 8);
4830 * s2io_phy_id - timer function that alternates adapter LED.
4831 * @data : address of the private member of the device structure, which
4832 * is a pointer to the s2io_nic structure, provided as an u32.
4833 * Description: This is actually the timer function that alternates the
4834 * adapter LED bit of the adapter control bit to set/reset every time on
4835 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4836 * once every second.
4838 static void s2io_phy_id(unsigned long data)
4840 struct s2io_nic *sp = (struct s2io_nic *) data;
4841 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4842 u64 val64 = 0;
4843 u16 subid;
4845 subid = sp->pdev->subsystem_device;
4846 if ((sp->device_type == XFRAME_II_DEVICE) ||
4847 ((subid & 0xFF) >= 0x07)) {
4848 val64 = readq(&bar0->gpio_control);
4849 val64 ^= GPIO_CTRL_GPIO_0;
4850 writeq(val64, &bar0->gpio_control);
4851 } else {
4852 val64 = readq(&bar0->adapter_control);
4853 val64 ^= ADAPTER_LED_ON;
4854 writeq(val64, &bar0->adapter_control);
4857 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4861 * s2io_ethtool_idnic - To physically identify the nic on the system.
4862 * @sp : private member of the device structure, which is a pointer to the
4863 * s2io_nic structure.
4864 * @id : pointer to the structure with identification parameters given by
4865 * ethtool.
4866 * Description: Used to physically identify the NIC on the system.
4867 * The Link LED will blink for a time specified by the user for
4868 * identification.
4869 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4870 * identification is possible only if it's link is up.
4871 * Return value:
4872 * int , returns 0 on success
4875 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4877 u64 val64 = 0, last_gpio_ctrl_val;
4878 struct s2io_nic *sp = dev->priv;
4879 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4880 u16 subid;
4882 subid = sp->pdev->subsystem_device;
4883 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4884 if ((sp->device_type == XFRAME_I_DEVICE) &&
4885 ((subid & 0xFF) < 0x07)) {
4886 val64 = readq(&bar0->adapter_control);
4887 if (!(val64 & ADAPTER_CNTL_EN)) {
4888 printk(KERN_ERR
4889 "Adapter Link down, cannot blink LED\n");
4890 return -EFAULT;
4893 if (sp->id_timer.function == NULL) {
4894 init_timer(&sp->id_timer);
4895 sp->id_timer.function = s2io_phy_id;
4896 sp->id_timer.data = (unsigned long) sp;
4898 mod_timer(&sp->id_timer, jiffies);
4899 if (data)
4900 msleep_interruptible(data * HZ);
4901 else
4902 msleep_interruptible(MAX_FLICKER_TIME);
4903 del_timer_sync(&sp->id_timer);
4905 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4906 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4907 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4910 return 0;
4913 static void s2io_ethtool_gringparam(struct net_device *dev,
4914 struct ethtool_ringparam *ering)
4916 struct s2io_nic *sp = dev->priv;
4917 int i,tx_desc_count=0,rx_desc_count=0;
4919 if (sp->rxd_mode == RXD_MODE_1)
4920 ering->rx_max_pending = MAX_RX_DESC_1;
4921 else if (sp->rxd_mode == RXD_MODE_3B)
4922 ering->rx_max_pending = MAX_RX_DESC_2;
4923 else if (sp->rxd_mode == RXD_MODE_3A)
4924 ering->rx_max_pending = MAX_RX_DESC_3;
4926 ering->tx_max_pending = MAX_TX_DESC;
4927 for (i = 0 ; i < sp->config.tx_fifo_num ; i++) {
4928 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
4930 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4931 ering->tx_pending = tx_desc_count;
4932 rx_desc_count = 0;
4933 for (i = 0 ; i < sp->config.rx_ring_num ; i++) {
4934 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
4936 ering->rx_pending = rx_desc_count;
4938 ering->rx_mini_max_pending = 0;
4939 ering->rx_mini_pending = 0;
4940 if(sp->rxd_mode == RXD_MODE_1)
4941 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4942 else if (sp->rxd_mode == RXD_MODE_3B)
4943 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4944 ering->rx_jumbo_pending = rx_desc_count;
4948 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4949 * @sp : private member of the device structure, which is a pointer to the
4950 * s2io_nic structure.
4951 * @ep : pointer to the structure with pause parameters given by ethtool.
4952 * Description:
4953 * Returns the Pause frame generation and reception capability of the NIC.
4954 * Return value:
4955 * void
4957 static void s2io_ethtool_getpause_data(struct net_device *dev,
4958 struct ethtool_pauseparam *ep)
4960 u64 val64;
4961 struct s2io_nic *sp = dev->priv;
4962 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4964 val64 = readq(&bar0->rmac_pause_cfg);
4965 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4966 ep->tx_pause = TRUE;
4967 if (val64 & RMAC_PAUSE_RX_ENABLE)
4968 ep->rx_pause = TRUE;
4969 ep->autoneg = FALSE;
4973 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4974 * @sp : private member of the device structure, which is a pointer to the
4975 * s2io_nic structure.
4976 * @ep : pointer to the structure with pause parameters given by ethtool.
4977 * Description:
4978 * It can be used to set or reset Pause frame generation or reception
4979 * support of the NIC.
4980 * Return value:
4981 * int, returns 0 on Success
4984 static int s2io_ethtool_setpause_data(struct net_device *dev,
4985 struct ethtool_pauseparam *ep)
4987 u64 val64;
4988 struct s2io_nic *sp = dev->priv;
4989 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4991 val64 = readq(&bar0->rmac_pause_cfg);
4992 if (ep->tx_pause)
4993 val64 |= RMAC_PAUSE_GEN_ENABLE;
4994 else
4995 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4996 if (ep->rx_pause)
4997 val64 |= RMAC_PAUSE_RX_ENABLE;
4998 else
4999 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5000 writeq(val64, &bar0->rmac_pause_cfg);
5001 return 0;
5005 * read_eeprom - reads 4 bytes of data from user given offset.
5006 * @sp : private member of the device structure, which is a pointer to the
5007 * s2io_nic structure.
5008 * @off : offset at which the data must be written
5009 * @data : Its an output parameter where the data read at the given
5010 * offset is stored.
5011 * Description:
5012 * Will read 4 bytes of data from the user given offset and return the
5013 * read data.
5014 * NOTE: Will allow to read only part of the EEPROM visible through the
5015 * I2C bus.
5016 * Return value:
5017 * -1 on failure and 0 on success.
5020 #define S2IO_DEV_ID 5
5021 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5023 int ret = -1;
5024 u32 exit_cnt = 0;
5025 u64 val64;
5026 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5028 if (sp->device_type == XFRAME_I_DEVICE) {
5029 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5030 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5031 I2C_CONTROL_CNTL_START;
5032 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5034 while (exit_cnt < 5) {
5035 val64 = readq(&bar0->i2c_control);
5036 if (I2C_CONTROL_CNTL_END(val64)) {
5037 *data = I2C_CONTROL_GET_DATA(val64);
5038 ret = 0;
5039 break;
5041 msleep(50);
5042 exit_cnt++;
5046 if (sp->device_type == XFRAME_II_DEVICE) {
5047 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5048 SPI_CONTROL_BYTECNT(0x3) |
5049 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5050 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5051 val64 |= SPI_CONTROL_REQ;
5052 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5053 while (exit_cnt < 5) {
5054 val64 = readq(&bar0->spi_control);
5055 if (val64 & SPI_CONTROL_NACK) {
5056 ret = 1;
5057 break;
5058 } else if (val64 & SPI_CONTROL_DONE) {
5059 *data = readq(&bar0->spi_data);
5060 *data &= 0xffffff;
5061 ret = 0;
5062 break;
5064 msleep(50);
5065 exit_cnt++;
5068 return ret;
5072 * write_eeprom - actually writes the relevant part of the data value.
5073 * @sp : private member of the device structure, which is a pointer to the
5074 * s2io_nic structure.
5075 * @off : offset at which the data must be written
5076 * @data : The data that is to be written
5077 * @cnt : Number of bytes of the data that are actually to be written into
5078 * the Eeprom. (max of 3)
5079 * Description:
5080 * Actually writes the relevant part of the data value into the Eeprom
5081 * through the I2C bus.
5082 * Return value:
5083 * 0 on success, -1 on failure.
5086 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5088 int exit_cnt = 0, ret = -1;
5089 u64 val64;
5090 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5092 if (sp->device_type == XFRAME_I_DEVICE) {
5093 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5094 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5095 I2C_CONTROL_CNTL_START;
5096 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5098 while (exit_cnt < 5) {
5099 val64 = readq(&bar0->i2c_control);
5100 if (I2C_CONTROL_CNTL_END(val64)) {
5101 if (!(val64 & I2C_CONTROL_NACK))
5102 ret = 0;
5103 break;
5105 msleep(50);
5106 exit_cnt++;
5110 if (sp->device_type == XFRAME_II_DEVICE) {
5111 int write_cnt = (cnt == 8) ? 0 : cnt;
5112 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5114 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5115 SPI_CONTROL_BYTECNT(write_cnt) |
5116 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5117 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5118 val64 |= SPI_CONTROL_REQ;
5119 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5120 while (exit_cnt < 5) {
5121 val64 = readq(&bar0->spi_control);
5122 if (val64 & SPI_CONTROL_NACK) {
5123 ret = 1;
5124 break;
5125 } else if (val64 & SPI_CONTROL_DONE) {
5126 ret = 0;
5127 break;
5129 msleep(50);
5130 exit_cnt++;
5133 return ret;
5135 static void s2io_vpd_read(struct s2io_nic *nic)
5137 u8 *vpd_data;
5138 u8 data;
5139 int i=0, cnt, fail = 0;
5140 int vpd_addr = 0x80;
5142 if (nic->device_type == XFRAME_II_DEVICE) {
5143 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5144 vpd_addr = 0x80;
5146 else {
5147 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5148 vpd_addr = 0x50;
5150 strcpy(nic->serial_num, "NOT AVAILABLE");
5152 vpd_data = kmalloc(256, GFP_KERNEL);
5153 if (!vpd_data) {
5154 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5155 return;
5157 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5159 for (i = 0; i < 256; i +=4 ) {
5160 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5161 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5162 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5163 for (cnt = 0; cnt <5; cnt++) {
5164 msleep(2);
5165 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5166 if (data == 0x80)
5167 break;
5169 if (cnt >= 5) {
5170 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5171 fail = 1;
5172 break;
5174 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5175 (u32 *)&vpd_data[i]);
5178 if(!fail) {
5179 /* read serial number of adapter */
5180 for (cnt = 0; cnt < 256; cnt++) {
5181 if ((vpd_data[cnt] == 'S') &&
5182 (vpd_data[cnt+1] == 'N') &&
5183 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5184 memset(nic->serial_num, 0, VPD_STRING_LEN);
5185 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5186 vpd_data[cnt+2]);
5187 break;
5192 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5193 memset(nic->product_name, 0, vpd_data[1]);
5194 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5196 kfree(vpd_data);
5197 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5201 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5202 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5203 * @eeprom : pointer to the user level structure provided by ethtool,
5204 * containing all relevant information.
5205 * @data_buf : user defined value to be written into Eeprom.
5206 * Description: Reads the values stored in the Eeprom at given offset
5207 * for a given length. Stores these values int the input argument data
5208 * buffer 'data_buf' and returns these to the caller (ethtool.)
5209 * Return value:
5210 * int 0 on success
5213 static int s2io_ethtool_geeprom(struct net_device *dev,
5214 struct ethtool_eeprom *eeprom, u8 * data_buf)
5216 u32 i, valid;
5217 u64 data;
5218 struct s2io_nic *sp = dev->priv;
5220 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5222 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5223 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5225 for (i = 0; i < eeprom->len; i += 4) {
5226 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5227 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5228 return -EFAULT;
5230 valid = INV(data);
5231 memcpy((data_buf + i), &valid, 4);
5233 return 0;
5237 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5238 * @sp : private member of the device structure, which is a pointer to the
5239 * s2io_nic structure.
5240 * @eeprom : pointer to the user level structure provided by ethtool,
5241 * containing all relevant information.
5242 * @data_buf ; user defined value to be written into Eeprom.
5243 * Description:
5244 * Tries to write the user provided value in the Eeprom, at the offset
5245 * given by the user.
5246 * Return value:
5247 * 0 on success, -EFAULT on failure.
5250 static int s2io_ethtool_seeprom(struct net_device *dev,
5251 struct ethtool_eeprom *eeprom,
5252 u8 * data_buf)
5254 int len = eeprom->len, cnt = 0;
5255 u64 valid = 0, data;
5256 struct s2io_nic *sp = dev->priv;
5258 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5259 DBG_PRINT(ERR_DBG,
5260 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5261 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5262 eeprom->magic);
5263 return -EFAULT;
5266 while (len) {
5267 data = (u32) data_buf[cnt] & 0x000000FF;
5268 if (data) {
5269 valid = (u32) (data << 24);
5270 } else
5271 valid = data;
5273 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5274 DBG_PRINT(ERR_DBG,
5275 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5276 DBG_PRINT(ERR_DBG,
5277 "write into the specified offset\n");
5278 return -EFAULT;
5280 cnt++;
5281 len--;
5284 return 0;
5288 * s2io_register_test - reads and writes into all clock domains.
5289 * @sp : private member of the device structure, which is a pointer to the
5290 * s2io_nic structure.
5291 * @data : variable that returns the result of each of the test conducted b
5292 * by the driver.
5293 * Description:
5294 * Read and write into all clock domains. The NIC has 3 clock domains,
5295 * see that registers in all the three regions are accessible.
5296 * Return value:
5297 * 0 on success.
5300 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5302 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5303 u64 val64 = 0, exp_val;
5304 int fail = 0;
5306 val64 = readq(&bar0->pif_rd_swapper_fb);
5307 if (val64 != 0x123456789abcdefULL) {
5308 fail = 1;
5309 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5312 val64 = readq(&bar0->rmac_pause_cfg);
5313 if (val64 != 0xc000ffff00000000ULL) {
5314 fail = 1;
5315 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5318 val64 = readq(&bar0->rx_queue_cfg);
5319 if (sp->device_type == XFRAME_II_DEVICE)
5320 exp_val = 0x0404040404040404ULL;
5321 else
5322 exp_val = 0x0808080808080808ULL;
5323 if (val64 != exp_val) {
5324 fail = 1;
5325 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5328 val64 = readq(&bar0->xgxs_efifo_cfg);
5329 if (val64 != 0x000000001923141EULL) {
5330 fail = 1;
5331 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5334 val64 = 0x5A5A5A5A5A5A5A5AULL;
5335 writeq(val64, &bar0->xmsi_data);
5336 val64 = readq(&bar0->xmsi_data);
5337 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5338 fail = 1;
5339 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5342 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5343 writeq(val64, &bar0->xmsi_data);
5344 val64 = readq(&bar0->xmsi_data);
5345 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5346 fail = 1;
5347 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5350 *data = fail;
5351 return fail;
5355 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5356 * @sp : private member of the device structure, which is a pointer to the
5357 * s2io_nic structure.
5358 * @data:variable that returns the result of each of the test conducted by
5359 * the driver.
5360 * Description:
5361 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5362 * register.
5363 * Return value:
5364 * 0 on success.
5367 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5369 int fail = 0;
5370 u64 ret_data, org_4F0, org_7F0;
5371 u8 saved_4F0 = 0, saved_7F0 = 0;
5372 struct net_device *dev = sp->dev;
5374 /* Test Write Error at offset 0 */
5375 /* Note that SPI interface allows write access to all areas
5376 * of EEPROM. Hence doing all negative testing only for Xframe I.
5378 if (sp->device_type == XFRAME_I_DEVICE)
5379 if (!write_eeprom(sp, 0, 0, 3))
5380 fail = 1;
5382 /* Save current values at offsets 0x4F0 and 0x7F0 */
5383 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5384 saved_4F0 = 1;
5385 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5386 saved_7F0 = 1;
5388 /* Test Write at offset 4f0 */
5389 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5390 fail = 1;
5391 if (read_eeprom(sp, 0x4F0, &ret_data))
5392 fail = 1;
5394 if (ret_data != 0x012345) {
5395 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5396 "Data written %llx Data read %llx\n",
5397 dev->name, (unsigned long long)0x12345,
5398 (unsigned long long)ret_data);
5399 fail = 1;
5402 /* Reset the EEPROM data go FFFF */
5403 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5405 /* Test Write Request Error at offset 0x7c */
5406 if (sp->device_type == XFRAME_I_DEVICE)
5407 if (!write_eeprom(sp, 0x07C, 0, 3))
5408 fail = 1;
5410 /* Test Write Request at offset 0x7f0 */
5411 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5412 fail = 1;
5413 if (read_eeprom(sp, 0x7F0, &ret_data))
5414 fail = 1;
5416 if (ret_data != 0x012345) {
5417 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5418 "Data written %llx Data read %llx\n",
5419 dev->name, (unsigned long long)0x12345,
5420 (unsigned long long)ret_data);
5421 fail = 1;
5424 /* Reset the EEPROM data go FFFF */
5425 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5427 if (sp->device_type == XFRAME_I_DEVICE) {
5428 /* Test Write Error at offset 0x80 */
5429 if (!write_eeprom(sp, 0x080, 0, 3))
5430 fail = 1;
5432 /* Test Write Error at offset 0xfc */
5433 if (!write_eeprom(sp, 0x0FC, 0, 3))
5434 fail = 1;
5436 /* Test Write Error at offset 0x100 */
5437 if (!write_eeprom(sp, 0x100, 0, 3))
5438 fail = 1;
5440 /* Test Write Error at offset 4ec */
5441 if (!write_eeprom(sp, 0x4EC, 0, 3))
5442 fail = 1;
5445 /* Restore values at offsets 0x4F0 and 0x7F0 */
5446 if (saved_4F0)
5447 write_eeprom(sp, 0x4F0, org_4F0, 3);
5448 if (saved_7F0)
5449 write_eeprom(sp, 0x7F0, org_7F0, 3);
5451 *data = fail;
5452 return fail;
5456 * s2io_bist_test - invokes the MemBist test of the card .
5457 * @sp : private member of the device structure, which is a pointer to the
5458 * s2io_nic structure.
5459 * @data:variable that returns the result of each of the test conducted by
5460 * the driver.
5461 * Description:
5462 * This invokes the MemBist test of the card. We give around
5463 * 2 secs time for the Test to complete. If it's still not complete
5464 * within this peiod, we consider that the test failed.
5465 * Return value:
5466 * 0 on success and -1 on failure.
5469 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5471 u8 bist = 0;
5472 int cnt = 0, ret = -1;
5474 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5475 bist |= PCI_BIST_START;
5476 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5478 while (cnt < 20) {
5479 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5480 if (!(bist & PCI_BIST_START)) {
5481 *data = (bist & PCI_BIST_CODE_MASK);
5482 ret = 0;
5483 break;
5485 msleep(100);
5486 cnt++;
5489 return ret;
5493 * s2io-link_test - verifies the link state of the nic
5494 * @sp ; private member of the device structure, which is a pointer to the
5495 * s2io_nic structure.
5496 * @data: variable that returns the result of each of the test conducted by
5497 * the driver.
5498 * Description:
5499 * The function verifies the link state of the NIC and updates the input
5500 * argument 'data' appropriately.
5501 * Return value:
5502 * 0 on success.
5505 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5507 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5508 u64 val64;
5510 val64 = readq(&bar0->adapter_status);
5511 if(!(LINK_IS_UP(val64)))
5512 *data = 1;
5513 else
5514 *data = 0;
5516 return *data;
5520 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5521 * @sp - private member of the device structure, which is a pointer to the
5522 * s2io_nic structure.
5523 * @data - variable that returns the result of each of the test
5524 * conducted by the driver.
5525 * Description:
5526 * This is one of the offline test that tests the read and write
5527 * access to the RldRam chip on the NIC.
5528 * Return value:
5529 * 0 on success.
5532 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5534 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5535 u64 val64;
5536 int cnt, iteration = 0, test_fail = 0;
5538 val64 = readq(&bar0->adapter_control);
5539 val64 &= ~ADAPTER_ECC_EN;
5540 writeq(val64, &bar0->adapter_control);
5542 val64 = readq(&bar0->mc_rldram_test_ctrl);
5543 val64 |= MC_RLDRAM_TEST_MODE;
5544 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5546 val64 = readq(&bar0->mc_rldram_mrs);
5547 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5548 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5550 val64 |= MC_RLDRAM_MRS_ENABLE;
5551 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5553 while (iteration < 2) {
5554 val64 = 0x55555555aaaa0000ULL;
5555 if (iteration == 1) {
5556 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5558 writeq(val64, &bar0->mc_rldram_test_d0);
5560 val64 = 0xaaaa5a5555550000ULL;
5561 if (iteration == 1) {
5562 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5564 writeq(val64, &bar0->mc_rldram_test_d1);
5566 val64 = 0x55aaaaaaaa5a0000ULL;
5567 if (iteration == 1) {
5568 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5570 writeq(val64, &bar0->mc_rldram_test_d2);
5572 val64 = (u64) (0x0000003ffffe0100ULL);
5573 writeq(val64, &bar0->mc_rldram_test_add);
5575 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5576 MC_RLDRAM_TEST_GO;
5577 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5579 for (cnt = 0; cnt < 5; cnt++) {
5580 val64 = readq(&bar0->mc_rldram_test_ctrl);
5581 if (val64 & MC_RLDRAM_TEST_DONE)
5582 break;
5583 msleep(200);
5586 if (cnt == 5)
5587 break;
5589 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5590 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5592 for (cnt = 0; cnt < 5; cnt++) {
5593 val64 = readq(&bar0->mc_rldram_test_ctrl);
5594 if (val64 & MC_RLDRAM_TEST_DONE)
5595 break;
5596 msleep(500);
5599 if (cnt == 5)
5600 break;
5602 val64 = readq(&bar0->mc_rldram_test_ctrl);
5603 if (!(val64 & MC_RLDRAM_TEST_PASS))
5604 test_fail = 1;
5606 iteration++;
5609 *data = test_fail;
5611 /* Bring the adapter out of test mode */
5612 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5614 return test_fail;
5618 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5619 * @sp : private member of the device structure, which is a pointer to the
5620 * s2io_nic structure.
5621 * @ethtest : pointer to a ethtool command specific structure that will be
5622 * returned to the user.
5623 * @data : variable that returns the result of each of the test
5624 * conducted by the driver.
5625 * Description:
5626 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5627 * the health of the card.
5628 * Return value:
5629 * void
5632 static void s2io_ethtool_test(struct net_device *dev,
5633 struct ethtool_test *ethtest,
5634 uint64_t * data)
5636 struct s2io_nic *sp = dev->priv;
5637 int orig_state = netif_running(sp->dev);
5639 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5640 /* Offline Tests. */
5641 if (orig_state)
5642 s2io_close(sp->dev);
5644 if (s2io_register_test(sp, &data[0]))
5645 ethtest->flags |= ETH_TEST_FL_FAILED;
5647 s2io_reset(sp);
5649 if (s2io_rldram_test(sp, &data[3]))
5650 ethtest->flags |= ETH_TEST_FL_FAILED;
5652 s2io_reset(sp);
5654 if (s2io_eeprom_test(sp, &data[1]))
5655 ethtest->flags |= ETH_TEST_FL_FAILED;
5657 if (s2io_bist_test(sp, &data[4]))
5658 ethtest->flags |= ETH_TEST_FL_FAILED;
5660 if (orig_state)
5661 s2io_open(sp->dev);
5663 data[2] = 0;
5664 } else {
5665 /* Online Tests. */
5666 if (!orig_state) {
5667 DBG_PRINT(ERR_DBG,
5668 "%s: is not up, cannot run test\n",
5669 dev->name);
5670 data[0] = -1;
5671 data[1] = -1;
5672 data[2] = -1;
5673 data[3] = -1;
5674 data[4] = -1;
5677 if (s2io_link_test(sp, &data[2]))
5678 ethtest->flags |= ETH_TEST_FL_FAILED;
5680 data[0] = 0;
5681 data[1] = 0;
5682 data[3] = 0;
5683 data[4] = 0;
5687 static void s2io_get_ethtool_stats(struct net_device *dev,
5688 struct ethtool_stats *estats,
5689 u64 * tmp_stats)
5691 int i = 0;
5692 struct s2io_nic *sp = dev->priv;
5693 struct stat_block *stat_info = sp->mac_control.stats_info;
5695 s2io_updt_stats(sp);
5696 tmp_stats[i++] =
5697 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5698 le32_to_cpu(stat_info->tmac_frms);
5699 tmp_stats[i++] =
5700 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5701 le32_to_cpu(stat_info->tmac_data_octets);
5702 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5703 tmp_stats[i++] =
5704 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5705 le32_to_cpu(stat_info->tmac_mcst_frms);
5706 tmp_stats[i++] =
5707 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5708 le32_to_cpu(stat_info->tmac_bcst_frms);
5709 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5710 tmp_stats[i++] =
5711 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5712 le32_to_cpu(stat_info->tmac_ttl_octets);
5713 tmp_stats[i++] =
5714 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5715 le32_to_cpu(stat_info->tmac_ucst_frms);
5716 tmp_stats[i++] =
5717 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5718 le32_to_cpu(stat_info->tmac_nucst_frms);
5719 tmp_stats[i++] =
5720 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5721 le32_to_cpu(stat_info->tmac_any_err_frms);
5722 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5723 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5724 tmp_stats[i++] =
5725 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5726 le32_to_cpu(stat_info->tmac_vld_ip);
5727 tmp_stats[i++] =
5728 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5729 le32_to_cpu(stat_info->tmac_drop_ip);
5730 tmp_stats[i++] =
5731 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5732 le32_to_cpu(stat_info->tmac_icmp);
5733 tmp_stats[i++] =
5734 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5735 le32_to_cpu(stat_info->tmac_rst_tcp);
5736 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5737 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5738 le32_to_cpu(stat_info->tmac_udp);
5739 tmp_stats[i++] =
5740 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5741 le32_to_cpu(stat_info->rmac_vld_frms);
5742 tmp_stats[i++] =
5743 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5744 le32_to_cpu(stat_info->rmac_data_octets);
5745 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5746 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5747 tmp_stats[i++] =
5748 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5749 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5750 tmp_stats[i++] =
5751 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5752 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5753 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5754 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5755 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5756 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5757 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5758 tmp_stats[i++] =
5759 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5760 le32_to_cpu(stat_info->rmac_ttl_octets);
5761 tmp_stats[i++] =
5762 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5763 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5764 tmp_stats[i++] =
5765 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5766 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5767 tmp_stats[i++] =
5768 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5769 le32_to_cpu(stat_info->rmac_discarded_frms);
5770 tmp_stats[i++] =
5771 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5772 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5773 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5774 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5775 tmp_stats[i++] =
5776 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5777 le32_to_cpu(stat_info->rmac_usized_frms);
5778 tmp_stats[i++] =
5779 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5780 le32_to_cpu(stat_info->rmac_osized_frms);
5781 tmp_stats[i++] =
5782 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5783 le32_to_cpu(stat_info->rmac_frag_frms);
5784 tmp_stats[i++] =
5785 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5786 le32_to_cpu(stat_info->rmac_jabber_frms);
5787 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5788 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5789 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5790 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5791 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5792 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5793 tmp_stats[i++] =
5794 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5795 le32_to_cpu(stat_info->rmac_ip);
5796 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5797 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5798 tmp_stats[i++] =
5799 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5800 le32_to_cpu(stat_info->rmac_drop_ip);
5801 tmp_stats[i++] =
5802 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5803 le32_to_cpu(stat_info->rmac_icmp);
5804 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5805 tmp_stats[i++] =
5806 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5807 le32_to_cpu(stat_info->rmac_udp);
5808 tmp_stats[i++] =
5809 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5810 le32_to_cpu(stat_info->rmac_err_drp_udp);
5811 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5812 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5813 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5814 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5815 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5816 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5817 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5818 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5819 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5820 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5821 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5822 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5823 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5824 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5825 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5826 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5827 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5828 tmp_stats[i++] =
5829 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5830 le32_to_cpu(stat_info->rmac_pause_cnt);
5831 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5832 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5833 tmp_stats[i++] =
5834 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5835 le32_to_cpu(stat_info->rmac_accepted_ip);
5836 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5837 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5838 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5839 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5840 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5841 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5842 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5843 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5844 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5845 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5846 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5847 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5848 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5849 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5850 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5851 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5852 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5853 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5854 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5856 /* Enhanced statistics exist only for Hercules */
5857 if(sp->device_type == XFRAME_II_DEVICE) {
5858 tmp_stats[i++] =
5859 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5860 tmp_stats[i++] =
5861 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5862 tmp_stats[i++] =
5863 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5864 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5865 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5866 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5867 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5868 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5869 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5870 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5871 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5872 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5873 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5874 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5875 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5876 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5879 tmp_stats[i++] = 0;
5880 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5881 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5882 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5883 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5884 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5885 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5886 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5887 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5888 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5889 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5890 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5891 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5892 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5893 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5894 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5895 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5896 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5897 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5898 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5899 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5900 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5901 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5902 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5903 if (stat_info->sw_stat.num_aggregations) {
5904 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5905 int count = 0;
5907 * Since 64-bit divide does not work on all platforms,
5908 * do repeated subtraction.
5910 while (tmp >= stat_info->sw_stat.num_aggregations) {
5911 tmp -= stat_info->sw_stat.num_aggregations;
5912 count++;
5914 tmp_stats[i++] = count;
5916 else
5917 tmp_stats[i++] = 0;
5918 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
5919 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
5920 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
5921 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
5922 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
5923 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
5924 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
5925 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
5927 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
5928 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
5929 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
5930 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
5931 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
5933 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
5934 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
5935 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
5936 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
5937 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
5938 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
5939 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
5940 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
5941 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
5944 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5946 return (XENA_REG_SPACE);
5950 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5952 struct s2io_nic *sp = dev->priv;
5954 return (sp->rx_csum);
5957 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5959 struct s2io_nic *sp = dev->priv;
5961 if (data)
5962 sp->rx_csum = 1;
5963 else
5964 sp->rx_csum = 0;
5966 return 0;
5969 static int s2io_get_eeprom_len(struct net_device *dev)
5971 return (XENA_EEPROM_SPACE);
5974 static int s2io_ethtool_self_test_count(struct net_device *dev)
5976 return (S2IO_TEST_LEN);
5979 static void s2io_ethtool_get_strings(struct net_device *dev,
5980 u32 stringset, u8 * data)
5982 int stat_size = 0;
5983 struct s2io_nic *sp = dev->priv;
5985 switch (stringset) {
5986 case ETH_SS_TEST:
5987 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5988 break;
5989 case ETH_SS_STATS:
5990 stat_size = sizeof(ethtool_xena_stats_keys);
5991 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5992 if(sp->device_type == XFRAME_II_DEVICE) {
5993 memcpy(data + stat_size,
5994 &ethtool_enhanced_stats_keys,
5995 sizeof(ethtool_enhanced_stats_keys));
5996 stat_size += sizeof(ethtool_enhanced_stats_keys);
5999 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6000 sizeof(ethtool_driver_stats_keys));
6003 static int s2io_ethtool_get_stats_count(struct net_device *dev)
6005 struct s2io_nic *sp = dev->priv;
6006 int stat_count = 0;
6007 switch(sp->device_type) {
6008 case XFRAME_I_DEVICE:
6009 stat_count = XFRAME_I_STAT_LEN;
6010 break;
6012 case XFRAME_II_DEVICE:
6013 stat_count = XFRAME_II_STAT_LEN;
6014 break;
6017 return stat_count;
6020 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6022 if (data)
6023 dev->features |= NETIF_F_IP_CSUM;
6024 else
6025 dev->features &= ~NETIF_F_IP_CSUM;
6027 return 0;
6030 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6032 return (dev->features & NETIF_F_TSO) != 0;
6034 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6036 if (data)
6037 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6038 else
6039 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6041 return 0;
6044 static const struct ethtool_ops netdev_ethtool_ops = {
6045 .get_settings = s2io_ethtool_gset,
6046 .set_settings = s2io_ethtool_sset,
6047 .get_drvinfo = s2io_ethtool_gdrvinfo,
6048 .get_regs_len = s2io_ethtool_get_regs_len,
6049 .get_regs = s2io_ethtool_gregs,
6050 .get_link = ethtool_op_get_link,
6051 .get_eeprom_len = s2io_get_eeprom_len,
6052 .get_eeprom = s2io_ethtool_geeprom,
6053 .set_eeprom = s2io_ethtool_seeprom,
6054 .get_ringparam = s2io_ethtool_gringparam,
6055 .get_pauseparam = s2io_ethtool_getpause_data,
6056 .set_pauseparam = s2io_ethtool_setpause_data,
6057 .get_rx_csum = s2io_ethtool_get_rx_csum,
6058 .set_rx_csum = s2io_ethtool_set_rx_csum,
6059 .get_tx_csum = ethtool_op_get_tx_csum,
6060 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6061 .get_sg = ethtool_op_get_sg,
6062 .set_sg = ethtool_op_set_sg,
6063 .get_tso = s2io_ethtool_op_get_tso,
6064 .set_tso = s2io_ethtool_op_set_tso,
6065 .get_ufo = ethtool_op_get_ufo,
6066 .set_ufo = ethtool_op_set_ufo,
6067 .self_test_count = s2io_ethtool_self_test_count,
6068 .self_test = s2io_ethtool_test,
6069 .get_strings = s2io_ethtool_get_strings,
6070 .phys_id = s2io_ethtool_idnic,
6071 .get_stats_count = s2io_ethtool_get_stats_count,
6072 .get_ethtool_stats = s2io_get_ethtool_stats
6076 * s2io_ioctl - Entry point for the Ioctl
6077 * @dev : Device pointer.
6078 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6079 * a proprietary structure used to pass information to the driver.
6080 * @cmd : This is used to distinguish between the different commands that
6081 * can be passed to the IOCTL functions.
6082 * Description:
6083 * Currently there are no special functionality supported in IOCTL, hence
6084 * function always return EOPNOTSUPPORTED
6087 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6089 return -EOPNOTSUPP;
6093 * s2io_change_mtu - entry point to change MTU size for the device.
6094 * @dev : device pointer.
6095 * @new_mtu : the new MTU size for the device.
6096 * Description: A driver entry point to change MTU size for the device.
6097 * Before changing the MTU the device must be stopped.
6098 * Return value:
6099 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6100 * file on failure.
6103 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6105 struct s2io_nic *sp = dev->priv;
6107 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6108 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6109 dev->name);
6110 return -EPERM;
6113 dev->mtu = new_mtu;
6114 if (netif_running(dev)) {
6115 s2io_card_down(sp);
6116 netif_stop_queue(dev);
6117 if (s2io_card_up(sp)) {
6118 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6119 __FUNCTION__);
6121 if (netif_queue_stopped(dev))
6122 netif_wake_queue(dev);
6123 } else { /* Device is down */
6124 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6125 u64 val64 = new_mtu;
6127 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6130 return 0;
6134 * s2io_tasklet - Bottom half of the ISR.
6135 * @dev_adr : address of the device structure in dma_addr_t format.
6136 * Description:
6137 * This is the tasklet or the bottom half of the ISR. This is
6138 * an extension of the ISR which is scheduled by the scheduler to be run
6139 * when the load on the CPU is low. All low priority tasks of the ISR can
6140 * be pushed into the tasklet. For now the tasklet is used only to
6141 * replenish the Rx buffers in the Rx buffer descriptors.
6142 * Return value:
6143 * void.
6146 static void s2io_tasklet(unsigned long dev_addr)
6148 struct net_device *dev = (struct net_device *) dev_addr;
6149 struct s2io_nic *sp = dev->priv;
6150 int i, ret;
6151 struct mac_info *mac_control;
6152 struct config_param *config;
6154 mac_control = &sp->mac_control;
6155 config = &sp->config;
6157 if (!TASKLET_IN_USE) {
6158 for (i = 0; i < config->rx_ring_num; i++) {
6159 ret = fill_rx_buffers(sp, i);
6160 if (ret == -ENOMEM) {
6161 DBG_PRINT(INFO_DBG, "%s: Out of ",
6162 dev->name);
6163 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6164 break;
6165 } else if (ret == -EFILL) {
6166 DBG_PRINT(INFO_DBG,
6167 "%s: Rx Ring %d is full\n",
6168 dev->name, i);
6169 break;
6172 clear_bit(0, (&sp->tasklet_status));
6177 * s2io_set_link - Set the LInk status
6178 * @data: long pointer to device private structue
6179 * Description: Sets the link status for the adapter
6182 static void s2io_set_link(struct work_struct *work)
6184 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6185 struct net_device *dev = nic->dev;
6186 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6187 register u64 val64;
6188 u16 subid;
6190 rtnl_lock();
6192 if (!netif_running(dev))
6193 goto out_unlock;
6195 if (test_and_set_bit(0, &(nic->link_state))) {
6196 /* The card is being reset, no point doing anything */
6197 goto out_unlock;
6200 subid = nic->pdev->subsystem_device;
6201 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6203 * Allow a small delay for the NICs self initiated
6204 * cleanup to complete.
6206 msleep(100);
6209 val64 = readq(&bar0->adapter_status);
6210 if (LINK_IS_UP(val64)) {
6211 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6212 if (verify_xena_quiescence(nic)) {
6213 val64 = readq(&bar0->adapter_control);
6214 val64 |= ADAPTER_CNTL_EN;
6215 writeq(val64, &bar0->adapter_control);
6216 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6217 nic->device_type, subid)) {
6218 val64 = readq(&bar0->gpio_control);
6219 val64 |= GPIO_CTRL_GPIO_0;
6220 writeq(val64, &bar0->gpio_control);
6221 val64 = readq(&bar0->gpio_control);
6222 } else {
6223 val64 |= ADAPTER_LED_ON;
6224 writeq(val64, &bar0->adapter_control);
6226 nic->device_enabled_once = TRUE;
6227 } else {
6228 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6229 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6230 netif_stop_queue(dev);
6233 val64 = readq(&bar0->adapter_status);
6234 if (!LINK_IS_UP(val64)) {
6235 DBG_PRINT(ERR_DBG, "%s:", dev->name);
6236 DBG_PRINT(ERR_DBG, " Link down after enabling ");
6237 DBG_PRINT(ERR_DBG, "device \n");
6238 } else
6239 s2io_link(nic, LINK_UP);
6240 } else {
6241 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6242 subid)) {
6243 val64 = readq(&bar0->gpio_control);
6244 val64 &= ~GPIO_CTRL_GPIO_0;
6245 writeq(val64, &bar0->gpio_control);
6246 val64 = readq(&bar0->gpio_control);
6248 s2io_link(nic, LINK_DOWN);
6250 clear_bit(0, &(nic->link_state));
6252 out_unlock:
6253 rtnl_unlock();
6256 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6257 struct buffAdd *ba,
6258 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6259 u64 *temp2, int size)
6261 struct net_device *dev = sp->dev;
6262 struct sk_buff *frag_list;
6264 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6265 /* allocate skb */
6266 if (*skb) {
6267 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6269 * As Rx frame are not going to be processed,
6270 * using same mapped address for the Rxd
6271 * buffer pointer
6273 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
6274 } else {
6275 *skb = dev_alloc_skb(size);
6276 if (!(*skb)) {
6277 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6278 DBG_PRINT(INFO_DBG, "memory to allocate ");
6279 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6280 sp->mac_control.stats_info->sw_stat. \
6281 mem_alloc_fail_cnt++;
6282 return -ENOMEM ;
6284 sp->mac_control.stats_info->sw_stat.mem_allocated
6285 += (*skb)->truesize;
6286 /* storing the mapped addr in a temp variable
6287 * such it will be used for next rxd whose
6288 * Host Control is NULL
6290 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
6291 pci_map_single( sp->pdev, (*skb)->data,
6292 size - NET_IP_ALIGN,
6293 PCI_DMA_FROMDEVICE);
6294 rxdp->Host_Control = (unsigned long) (*skb);
6296 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6297 /* Two buffer Mode */
6298 if (*skb) {
6299 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6300 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6301 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6302 } else {
6303 *skb = dev_alloc_skb(size);
6304 if (!(*skb)) {
6305 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6306 DBG_PRINT(INFO_DBG, "memory to allocate ");
6307 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6308 sp->mac_control.stats_info->sw_stat. \
6309 mem_alloc_fail_cnt++;
6310 return -ENOMEM;
6312 sp->mac_control.stats_info->sw_stat.mem_allocated
6313 += (*skb)->truesize;
6314 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6315 pci_map_single(sp->pdev, (*skb)->data,
6316 dev->mtu + 4,
6317 PCI_DMA_FROMDEVICE);
6318 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6319 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6320 PCI_DMA_FROMDEVICE);
6321 rxdp->Host_Control = (unsigned long) (*skb);
6323 /* Buffer-1 will be dummy buffer not used */
6324 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6325 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6326 PCI_DMA_FROMDEVICE);
6328 } else if ((rxdp->Host_Control == 0)) {
6329 /* Three buffer mode */
6330 if (*skb) {
6331 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6332 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6333 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6334 } else {
6335 *skb = dev_alloc_skb(size);
6336 if (!(*skb)) {
6337 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6338 DBG_PRINT(INFO_DBG, "memory to allocate ");
6339 DBG_PRINT(INFO_DBG, "3 buf mode SKBs\n");
6340 sp->mac_control.stats_info->sw_stat. \
6341 mem_alloc_fail_cnt++;
6342 return -ENOMEM;
6344 sp->mac_control.stats_info->sw_stat.mem_allocated
6345 += (*skb)->truesize;
6346 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6347 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6348 PCI_DMA_FROMDEVICE);
6349 /* Buffer-1 receives L3/L4 headers */
6350 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6351 pci_map_single( sp->pdev, (*skb)->data,
6352 l3l4hdr_size + 4,
6353 PCI_DMA_FROMDEVICE);
6355 * skb_shinfo(skb)->frag_list will have L4
6356 * data payload
6358 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6359 ALIGN_SIZE);
6360 if (skb_shinfo(*skb)->frag_list == NULL) {
6361 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6362 failed\n ", dev->name);
6363 sp->mac_control.stats_info->sw_stat. \
6364 mem_alloc_fail_cnt++;
6365 return -ENOMEM ;
6367 frag_list = skb_shinfo(*skb)->frag_list;
6368 frag_list->next = NULL;
6369 sp->mac_control.stats_info->sw_stat.mem_allocated
6370 += frag_list->truesize;
6372 * Buffer-2 receives L4 data payload
6374 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6375 pci_map_single( sp->pdev, frag_list->data,
6376 dev->mtu, PCI_DMA_FROMDEVICE);
6379 return 0;
6381 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6382 int size)
6384 struct net_device *dev = sp->dev;
6385 if (sp->rxd_mode == RXD_MODE_1) {
6386 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6387 } else if (sp->rxd_mode == RXD_MODE_3B) {
6388 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6389 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6390 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6391 } else {
6392 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6393 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6394 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6398 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6400 int i, j, k, blk_cnt = 0, size;
6401 struct mac_info * mac_control = &sp->mac_control;
6402 struct config_param *config = &sp->config;
6403 struct net_device *dev = sp->dev;
6404 struct RxD_t *rxdp = NULL;
6405 struct sk_buff *skb = NULL;
6406 struct buffAdd *ba = NULL;
6407 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6409 /* Calculate the size based on ring mode */
6410 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6411 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6412 if (sp->rxd_mode == RXD_MODE_1)
6413 size += NET_IP_ALIGN;
6414 else if (sp->rxd_mode == RXD_MODE_3B)
6415 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6416 else
6417 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6419 for (i = 0; i < config->rx_ring_num; i++) {
6420 blk_cnt = config->rx_cfg[i].num_rxd /
6421 (rxd_count[sp->rxd_mode] +1);
6423 for (j = 0; j < blk_cnt; j++) {
6424 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6425 rxdp = mac_control->rings[i].
6426 rx_blocks[j].rxds[k].virt_addr;
6427 if(sp->rxd_mode >= RXD_MODE_3A)
6428 ba = &mac_control->rings[i].ba[j][k];
6429 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6430 &skb,(u64 *)&temp0_64,
6431 (u64 *)&temp1_64,
6432 (u64 *)&temp2_64,
6433 size) == ENOMEM) {
6434 return 0;
6437 set_rxd_buffer_size(sp, rxdp, size);
6438 wmb();
6439 /* flip the Ownership bit to Hardware */
6440 rxdp->Control_1 |= RXD_OWN_XENA;
6444 return 0;
6448 static int s2io_add_isr(struct s2io_nic * sp)
6450 int ret = 0;
6451 struct net_device *dev = sp->dev;
6452 int err = 0;
6454 if (sp->intr_type == MSI)
6455 ret = s2io_enable_msi(sp);
6456 else if (sp->intr_type == MSI_X)
6457 ret = s2io_enable_msi_x(sp);
6458 if (ret) {
6459 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6460 sp->intr_type = INTA;
6463 /* Store the values of the MSIX table in the struct s2io_nic structure */
6464 store_xmsi_data(sp);
6466 /* After proper initialization of H/W, register ISR */
6467 if (sp->intr_type == MSI) {
6468 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6469 IRQF_SHARED, sp->name, dev);
6470 if (err) {
6471 pci_disable_msi(sp->pdev);
6472 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6473 dev->name);
6474 return -1;
6477 if (sp->intr_type == MSI_X) {
6478 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6480 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6481 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6482 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6483 dev->name, i);
6484 err = request_irq(sp->entries[i].vector,
6485 s2io_msix_fifo_handle, 0, sp->desc[i],
6486 sp->s2io_entries[i].arg);
6487 /* If either data or addr is zero print it */
6488 if(!(sp->msix_info[i].addr &&
6489 sp->msix_info[i].data)) {
6490 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6491 "Data:0x%lx\n",sp->desc[i],
6492 (unsigned long long)
6493 sp->msix_info[i].addr,
6494 (unsigned long)
6495 ntohl(sp->msix_info[i].data));
6496 } else {
6497 msix_tx_cnt++;
6499 } else {
6500 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6501 dev->name, i);
6502 err = request_irq(sp->entries[i].vector,
6503 s2io_msix_ring_handle, 0, sp->desc[i],
6504 sp->s2io_entries[i].arg);
6505 /* If either data or addr is zero print it */
6506 if(!(sp->msix_info[i].addr &&
6507 sp->msix_info[i].data)) {
6508 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6509 "Data:0x%lx\n",sp->desc[i],
6510 (unsigned long long)
6511 sp->msix_info[i].addr,
6512 (unsigned long)
6513 ntohl(sp->msix_info[i].data));
6514 } else {
6515 msix_rx_cnt++;
6518 if (err) {
6519 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6520 "failed\n", dev->name, i);
6521 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6522 return -1;
6524 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6526 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6527 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6529 if (sp->intr_type == INTA) {
6530 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6531 sp->name, dev);
6532 if (err) {
6533 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6534 dev->name);
6535 return -1;
6538 return 0;
6540 static void s2io_rem_isr(struct s2io_nic * sp)
6542 int cnt = 0;
6543 struct net_device *dev = sp->dev;
6545 if (sp->intr_type == MSI_X) {
6546 int i;
6547 u16 msi_control;
6549 for (i=1; (sp->s2io_entries[i].in_use ==
6550 MSIX_REGISTERED_SUCCESS); i++) {
6551 int vector = sp->entries[i].vector;
6552 void *arg = sp->s2io_entries[i].arg;
6554 free_irq(vector, arg);
6556 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6557 msi_control &= 0xFFFE; /* Disable MSI */
6558 pci_write_config_word(sp->pdev, 0x42, msi_control);
6560 pci_disable_msix(sp->pdev);
6561 } else {
6562 free_irq(sp->pdev->irq, dev);
6563 if (sp->intr_type == MSI) {
6564 u16 val;
6566 pci_disable_msi(sp->pdev);
6567 pci_read_config_word(sp->pdev, 0x4c, &val);
6568 val ^= 0x1;
6569 pci_write_config_word(sp->pdev, 0x4c, val);
6572 /* Waiting till all Interrupt handlers are complete */
6573 cnt = 0;
6574 do {
6575 msleep(10);
6576 if (!atomic_read(&sp->isr_cnt))
6577 break;
6578 cnt++;
6579 } while(cnt < 5);
6582 static void s2io_card_down(struct s2io_nic * sp)
6584 int cnt = 0;
6585 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6586 unsigned long flags;
6587 register u64 val64 = 0;
6589 del_timer_sync(&sp->alarm_timer);
6590 /* If s2io_set_link task is executing, wait till it completes. */
6591 while (test_and_set_bit(0, &(sp->link_state))) {
6592 msleep(50);
6594 atomic_set(&sp->card_state, CARD_DOWN);
6596 /* disable Tx and Rx traffic on the NIC */
6597 stop_nic(sp);
6599 s2io_rem_isr(sp);
6601 /* Kill tasklet. */
6602 tasklet_kill(&sp->task);
6604 /* Check if the device is Quiescent and then Reset the NIC */
6605 do {
6606 /* As per the HW requirement we need to replenish the
6607 * receive buffer to avoid the ring bump. Since there is
6608 * no intention of processing the Rx frame at this pointwe are
6609 * just settting the ownership bit of rxd in Each Rx
6610 * ring to HW and set the appropriate buffer size
6611 * based on the ring mode
6613 rxd_owner_bit_reset(sp);
6615 val64 = readq(&bar0->adapter_status);
6616 if (verify_xena_quiescence(sp)) {
6617 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6618 break;
6621 msleep(50);
6622 cnt++;
6623 if (cnt == 10) {
6624 DBG_PRINT(ERR_DBG,
6625 "s2io_close:Device not Quiescent ");
6626 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6627 (unsigned long long) val64);
6628 break;
6630 } while (1);
6631 s2io_reset(sp);
6633 spin_lock_irqsave(&sp->tx_lock, flags);
6634 /* Free all Tx buffers */
6635 free_tx_buffers(sp);
6636 spin_unlock_irqrestore(&sp->tx_lock, flags);
6638 /* Free all Rx buffers */
6639 spin_lock_irqsave(&sp->rx_lock, flags);
6640 free_rx_buffers(sp);
6641 spin_unlock_irqrestore(&sp->rx_lock, flags);
6643 clear_bit(0, &(sp->link_state));
6646 static int s2io_card_up(struct s2io_nic * sp)
6648 int i, ret = 0;
6649 struct mac_info *mac_control;
6650 struct config_param *config;
6651 struct net_device *dev = (struct net_device *) sp->dev;
6652 u16 interruptible;
6654 /* Initialize the H/W I/O registers */
6655 if (init_nic(sp) != 0) {
6656 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6657 dev->name);
6658 s2io_reset(sp);
6659 return -ENODEV;
6663 * Initializing the Rx buffers. For now we are considering only 1
6664 * Rx ring and initializing buffers into 30 Rx blocks
6666 mac_control = &sp->mac_control;
6667 config = &sp->config;
6669 for (i = 0; i < config->rx_ring_num; i++) {
6670 if ((ret = fill_rx_buffers(sp, i))) {
6671 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6672 dev->name);
6673 s2io_reset(sp);
6674 free_rx_buffers(sp);
6675 return -ENOMEM;
6677 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6678 atomic_read(&sp->rx_bufs_left[i]));
6680 /* Maintain the state prior to the open */
6681 if (sp->promisc_flg)
6682 sp->promisc_flg = 0;
6683 if (sp->m_cast_flg) {
6684 sp->m_cast_flg = 0;
6685 sp->all_multi_pos= 0;
6688 /* Setting its receive mode */
6689 s2io_set_multicast(dev);
6691 if (sp->lro) {
6692 /* Initialize max aggregatable pkts per session based on MTU */
6693 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6694 /* Check if we can use(if specified) user provided value */
6695 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6696 sp->lro_max_aggr_per_sess = lro_max_pkts;
6699 /* Enable Rx Traffic and interrupts on the NIC */
6700 if (start_nic(sp)) {
6701 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6702 s2io_reset(sp);
6703 free_rx_buffers(sp);
6704 return -ENODEV;
6707 /* Add interrupt service routine */
6708 if (s2io_add_isr(sp) != 0) {
6709 if (sp->intr_type == MSI_X)
6710 s2io_rem_isr(sp);
6711 s2io_reset(sp);
6712 free_rx_buffers(sp);
6713 return -ENODEV;
6716 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6718 /* Enable tasklet for the device */
6719 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6721 /* Enable select interrupts */
6722 if (sp->intr_type != INTA)
6723 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6724 else {
6725 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6726 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6727 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6728 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6732 atomic_set(&sp->card_state, CARD_UP);
6733 return 0;
6737 * s2io_restart_nic - Resets the NIC.
6738 * @data : long pointer to the device private structure
6739 * Description:
6740 * This function is scheduled to be run by the s2io_tx_watchdog
6741 * function after 0.5 secs to reset the NIC. The idea is to reduce
6742 * the run time of the watch dog routine which is run holding a
6743 * spin lock.
6746 static void s2io_restart_nic(struct work_struct *work)
6748 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6749 struct net_device *dev = sp->dev;
6751 rtnl_lock();
6753 if (!netif_running(dev))
6754 goto out_unlock;
6756 s2io_card_down(sp);
6757 if (s2io_card_up(sp)) {
6758 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6759 dev->name);
6761 netif_wake_queue(dev);
6762 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6763 dev->name);
6764 out_unlock:
6765 rtnl_unlock();
6769 * s2io_tx_watchdog - Watchdog for transmit side.
6770 * @dev : Pointer to net device structure
6771 * Description:
6772 * This function is triggered if the Tx Queue is stopped
6773 * for a pre-defined amount of time when the Interface is still up.
6774 * If the Interface is jammed in such a situation, the hardware is
6775 * reset (by s2io_close) and restarted again (by s2io_open) to
6776 * overcome any problem that might have been caused in the hardware.
6777 * Return value:
6778 * void
6781 static void s2io_tx_watchdog(struct net_device *dev)
6783 struct s2io_nic *sp = dev->priv;
6785 if (netif_carrier_ok(dev)) {
6786 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6787 schedule_work(&sp->rst_timer_task);
6788 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6793 * rx_osm_handler - To perform some OS related operations on SKB.
6794 * @sp: private member of the device structure,pointer to s2io_nic structure.
6795 * @skb : the socket buffer pointer.
6796 * @len : length of the packet
6797 * @cksum : FCS checksum of the frame.
6798 * @ring_no : the ring from which this RxD was extracted.
6799 * Description:
6800 * This function is called by the Rx interrupt serivce routine to perform
6801 * some OS related operations on the SKB before passing it to the upper
6802 * layers. It mainly checks if the checksum is OK, if so adds it to the
6803 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6804 * to the upper layer. If the checksum is wrong, it increments the Rx
6805 * packet error count, frees the SKB and returns error.
6806 * Return value:
6807 * SUCCESS on success and -1 on failure.
6809 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6811 struct s2io_nic *sp = ring_data->nic;
6812 struct net_device *dev = (struct net_device *) sp->dev;
6813 struct sk_buff *skb = (struct sk_buff *)
6814 ((unsigned long) rxdp->Host_Control);
6815 int ring_no = ring_data->ring_no;
6816 u16 l3_csum, l4_csum;
6817 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6818 struct lro *lro;
6820 skb->dev = dev;
6822 if (err) {
6823 /* Check for parity error */
6824 if (err & 0x1) {
6825 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6827 err >>= 48;
6828 switch(err) {
6829 case 1:
6830 sp->mac_control.stats_info->sw_stat.
6831 rx_parity_err_cnt++;
6832 break;
6834 case 2:
6835 sp->mac_control.stats_info->sw_stat.
6836 rx_abort_cnt++;
6837 break;
6839 case 3:
6840 sp->mac_control.stats_info->sw_stat.
6841 rx_parity_abort_cnt++;
6842 break;
6844 case 4:
6845 sp->mac_control.stats_info->sw_stat.
6846 rx_rda_fail_cnt++;
6847 break;
6849 case 5:
6850 sp->mac_control.stats_info->sw_stat.
6851 rx_unkn_prot_cnt++;
6852 break;
6854 case 6:
6855 sp->mac_control.stats_info->sw_stat.
6856 rx_fcs_err_cnt++;
6857 break;
6859 case 7:
6860 sp->mac_control.stats_info->sw_stat.
6861 rx_buf_size_err_cnt++;
6862 break;
6864 case 8:
6865 sp->mac_control.stats_info->sw_stat.
6866 rx_rxd_corrupt_cnt++;
6867 break;
6869 case 15:
6870 sp->mac_control.stats_info->sw_stat.
6871 rx_unkn_err_cnt++;
6872 break;
6875 * Drop the packet if bad transfer code. Exception being
6876 * 0x5, which could be due to unsupported IPv6 extension header.
6877 * In this case, we let stack handle the packet.
6878 * Note that in this case, since checksum will be incorrect,
6879 * stack will validate the same.
6881 if (err != 0x5) {
6882 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6883 dev->name, err);
6884 sp->stats.rx_crc_errors++;
6885 sp->mac_control.stats_info->sw_stat.mem_freed
6886 += skb->truesize;
6887 dev_kfree_skb(skb);
6888 atomic_dec(&sp->rx_bufs_left[ring_no]);
6889 rxdp->Host_Control = 0;
6890 return 0;
6894 /* Updating statistics */
6895 rxdp->Host_Control = 0;
6896 if (sp->rxd_mode == RXD_MODE_1) {
6897 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6899 sp->stats.rx_bytes += len;
6900 skb_put(skb, len);
6902 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6903 int get_block = ring_data->rx_curr_get_info.block_index;
6904 int get_off = ring_data->rx_curr_get_info.offset;
6905 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6906 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6907 unsigned char *buff = skb_push(skb, buf0_len);
6909 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6910 sp->stats.rx_bytes += buf0_len + buf2_len;
6911 memcpy(buff, ba->ba_0, buf0_len);
6913 if (sp->rxd_mode == RXD_MODE_3A) {
6914 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6916 skb_put(skb, buf1_len);
6917 skb->len += buf2_len;
6918 skb->data_len += buf2_len;
6919 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6920 sp->stats.rx_bytes += buf1_len;
6922 } else
6923 skb_put(skb, buf2_len);
6926 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6927 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6928 (sp->rx_csum)) {
6929 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6930 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6931 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6933 * NIC verifies if the Checksum of the received
6934 * frame is Ok or not and accordingly returns
6935 * a flag in the RxD.
6937 skb->ip_summed = CHECKSUM_UNNECESSARY;
6938 if (sp->lro) {
6939 u32 tcp_len;
6940 u8 *tcp;
6941 int ret = 0;
6943 ret = s2io_club_tcp_session(skb->data, &tcp,
6944 &tcp_len, &lro, rxdp, sp);
6945 switch (ret) {
6946 case 3: /* Begin anew */
6947 lro->parent = skb;
6948 goto aggregate;
6949 case 1: /* Aggregate */
6951 lro_append_pkt(sp, lro,
6952 skb, tcp_len);
6953 goto aggregate;
6955 case 4: /* Flush session */
6957 lro_append_pkt(sp, lro,
6958 skb, tcp_len);
6959 queue_rx_frame(lro->parent);
6960 clear_lro_session(lro);
6961 sp->mac_control.stats_info->
6962 sw_stat.flush_max_pkts++;
6963 goto aggregate;
6965 case 2: /* Flush both */
6966 lro->parent->data_len =
6967 lro->frags_len;
6968 sp->mac_control.stats_info->
6969 sw_stat.sending_both++;
6970 queue_rx_frame(lro->parent);
6971 clear_lro_session(lro);
6972 goto send_up;
6973 case 0: /* sessions exceeded */
6974 case -1: /* non-TCP or not
6975 * L2 aggregatable
6977 case 5: /*
6978 * First pkt in session not
6979 * L3/L4 aggregatable
6981 break;
6982 default:
6983 DBG_PRINT(ERR_DBG,
6984 "%s: Samadhana!!\n",
6985 __FUNCTION__);
6986 BUG();
6989 } else {
6991 * Packet with erroneous checksum, let the
6992 * upper layers deal with it.
6994 skb->ip_summed = CHECKSUM_NONE;
6996 } else {
6997 skb->ip_summed = CHECKSUM_NONE;
6999 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7000 if (!sp->lro) {
7001 skb->protocol = eth_type_trans(skb, dev);
7002 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7003 vlan_strip_flag)) {
7004 /* Queueing the vlan frame to the upper layer */
7005 if (napi)
7006 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7007 RXD_GET_VLAN_TAG(rxdp->Control_2));
7008 else
7009 vlan_hwaccel_rx(skb, sp->vlgrp,
7010 RXD_GET_VLAN_TAG(rxdp->Control_2));
7011 } else {
7012 if (napi)
7013 netif_receive_skb(skb);
7014 else
7015 netif_rx(skb);
7017 } else {
7018 send_up:
7019 queue_rx_frame(skb);
7021 dev->last_rx = jiffies;
7022 aggregate:
7023 atomic_dec(&sp->rx_bufs_left[ring_no]);
7024 return SUCCESS;
7028 * s2io_link - stops/starts the Tx queue.
7029 * @sp : private member of the device structure, which is a pointer to the
7030 * s2io_nic structure.
7031 * @link : inidicates whether link is UP/DOWN.
7032 * Description:
7033 * This function stops/starts the Tx queue depending on whether the link
7034 * status of the NIC is is down or up. This is called by the Alarm
7035 * interrupt handler whenever a link change interrupt comes up.
7036 * Return value:
7037 * void.
7040 static void s2io_link(struct s2io_nic * sp, int link)
7042 struct net_device *dev = (struct net_device *) sp->dev;
7044 if (link != sp->last_link_state) {
7045 if (link == LINK_DOWN) {
7046 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7047 netif_carrier_off(dev);
7048 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7049 sp->mac_control.stats_info->sw_stat.link_up_time =
7050 jiffies - sp->start_time;
7051 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7052 } else {
7053 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7054 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7055 sp->mac_control.stats_info->sw_stat.link_down_time =
7056 jiffies - sp->start_time;
7057 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7058 netif_carrier_on(dev);
7061 sp->last_link_state = link;
7062 sp->start_time = jiffies;
7066 * get_xena_rev_id - to identify revision ID of xena.
7067 * @pdev : PCI Dev structure
7068 * Description:
7069 * Function to identify the Revision ID of xena.
7070 * Return value:
7071 * returns the revision ID of the device.
7074 static int get_xena_rev_id(struct pci_dev *pdev)
7076 u8 id = 0;
7077 int ret;
7078 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
7079 return id;
7083 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7084 * @sp : private member of the device structure, which is a pointer to the
7085 * s2io_nic structure.
7086 * Description:
7087 * This function initializes a few of the PCI and PCI-X configuration registers
7088 * with recommended values.
7089 * Return value:
7090 * void
7093 static void s2io_init_pci(struct s2io_nic * sp)
7095 u16 pci_cmd = 0, pcix_cmd = 0;
7097 /* Enable Data Parity Error Recovery in PCI-X command register. */
7098 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7099 &(pcix_cmd));
7100 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7101 (pcix_cmd | 1));
7102 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7103 &(pcix_cmd));
7105 /* Set the PErr Response bit in PCI command register. */
7106 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7107 pci_write_config_word(sp->pdev, PCI_COMMAND,
7108 (pci_cmd | PCI_COMMAND_PARITY));
7109 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7112 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7114 if ( tx_fifo_num > 8) {
7115 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7116 "supported\n");
7117 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7118 tx_fifo_num = 8;
7120 if ( rx_ring_num > 8) {
7121 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7122 "supported\n");
7123 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7124 rx_ring_num = 8;
7126 if (*dev_intr_type != INTA)
7127 napi = 0;
7129 #ifndef CONFIG_PCI_MSI
7130 if (*dev_intr_type != INTA) {
7131 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
7132 "MSI/MSI-X. Defaulting to INTA\n");
7133 *dev_intr_type = INTA;
7135 #else
7136 if (*dev_intr_type > MSI_X) {
7137 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7138 "Defaulting to INTA\n");
7139 *dev_intr_type = INTA;
7141 #endif
7142 if ((*dev_intr_type == MSI_X) &&
7143 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7144 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7145 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7146 "Defaulting to INTA\n");
7147 *dev_intr_type = INTA;
7150 if (rx_ring_mode > 3) {
7151 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7152 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
7153 rx_ring_mode = 3;
7155 return SUCCESS;
7159 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7160 * or Traffic class respectively.
7161 * @nic: device peivate variable
7162 * Description: The function configures the receive steering to
7163 * desired receive ring.
7164 * Return Value: SUCCESS on success and
7165 * '-1' on failure (endian settings incorrect).
7167 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7169 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7170 register u64 val64 = 0;
7172 if (ds_codepoint > 63)
7173 return FAILURE;
7175 val64 = RTS_DS_MEM_DATA(ring);
7176 writeq(val64, &bar0->rts_ds_mem_data);
7178 val64 = RTS_DS_MEM_CTRL_WE |
7179 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7180 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7182 writeq(val64, &bar0->rts_ds_mem_ctrl);
7184 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7185 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7186 S2IO_BIT_RESET);
7190 * s2io_init_nic - Initialization of the adapter .
7191 * @pdev : structure containing the PCI related information of the device.
7192 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7193 * Description:
7194 * The function initializes an adapter identified by the pci_dec structure.
7195 * All OS related initialization including memory and device structure and
7196 * initlaization of the device private variable is done. Also the swapper
7197 * control register is initialized to enable read and write into the I/O
7198 * registers of the device.
7199 * Return value:
7200 * returns 0 on success and negative on failure.
7203 static int __devinit
7204 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7206 struct s2io_nic *sp;
7207 struct net_device *dev;
7208 int i, j, ret;
7209 int dma_flag = FALSE;
7210 u32 mac_up, mac_down;
7211 u64 val64 = 0, tmp64 = 0;
7212 struct XENA_dev_config __iomem *bar0 = NULL;
7213 u16 subid;
7214 struct mac_info *mac_control;
7215 struct config_param *config;
7216 int mode;
7217 u8 dev_intr_type = intr_type;
7219 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7220 return ret;
7222 if ((ret = pci_enable_device(pdev))) {
7223 DBG_PRINT(ERR_DBG,
7224 "s2io_init_nic: pci_enable_device failed\n");
7225 return ret;
7228 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7229 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7230 dma_flag = TRUE;
7231 if (pci_set_consistent_dma_mask
7232 (pdev, DMA_64BIT_MASK)) {
7233 DBG_PRINT(ERR_DBG,
7234 "Unable to obtain 64bit DMA for \
7235 consistent allocations\n");
7236 pci_disable_device(pdev);
7237 return -ENOMEM;
7239 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7240 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7241 } else {
7242 pci_disable_device(pdev);
7243 return -ENOMEM;
7245 if (dev_intr_type != MSI_X) {
7246 if (pci_request_regions(pdev, s2io_driver_name)) {
7247 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
7248 pci_disable_device(pdev);
7249 return -ENODEV;
7252 else {
7253 if (!(request_mem_region(pci_resource_start(pdev, 0),
7254 pci_resource_len(pdev, 0), s2io_driver_name))) {
7255 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
7256 pci_disable_device(pdev);
7257 return -ENODEV;
7259 if (!(request_mem_region(pci_resource_start(pdev, 2),
7260 pci_resource_len(pdev, 2), s2io_driver_name))) {
7261 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
7262 release_mem_region(pci_resource_start(pdev, 0),
7263 pci_resource_len(pdev, 0));
7264 pci_disable_device(pdev);
7265 return -ENODEV;
7269 dev = alloc_etherdev(sizeof(struct s2io_nic));
7270 if (dev == NULL) {
7271 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7272 pci_disable_device(pdev);
7273 pci_release_regions(pdev);
7274 return -ENODEV;
7277 pci_set_master(pdev);
7278 pci_set_drvdata(pdev, dev);
7279 SET_MODULE_OWNER(dev);
7280 SET_NETDEV_DEV(dev, &pdev->dev);
7282 /* Private member variable initialized to s2io NIC structure */
7283 sp = dev->priv;
7284 memset(sp, 0, sizeof(struct s2io_nic));
7285 sp->dev = dev;
7286 sp->pdev = pdev;
7287 sp->high_dma_flag = dma_flag;
7288 sp->device_enabled_once = FALSE;
7289 if (rx_ring_mode == 1)
7290 sp->rxd_mode = RXD_MODE_1;
7291 if (rx_ring_mode == 2)
7292 sp->rxd_mode = RXD_MODE_3B;
7293 if (rx_ring_mode == 3)
7294 sp->rxd_mode = RXD_MODE_3A;
7296 sp->intr_type = dev_intr_type;
7298 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7299 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7300 sp->device_type = XFRAME_II_DEVICE;
7301 else
7302 sp->device_type = XFRAME_I_DEVICE;
7304 sp->lro = lro;
7306 /* Initialize some PCI/PCI-X fields of the NIC. */
7307 s2io_init_pci(sp);
7310 * Setting the device configuration parameters.
7311 * Most of these parameters can be specified by the user during
7312 * module insertion as they are module loadable parameters. If
7313 * these parameters are not not specified during load time, they
7314 * are initialized with default values.
7316 mac_control = &sp->mac_control;
7317 config = &sp->config;
7319 /* Tx side parameters. */
7320 config->tx_fifo_num = tx_fifo_num;
7321 for (i = 0; i < MAX_TX_FIFOS; i++) {
7322 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7323 config->tx_cfg[i].fifo_priority = i;
7326 /* mapping the QoS priority to the configured fifos */
7327 for (i = 0; i < MAX_TX_FIFOS; i++)
7328 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7330 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7331 for (i = 0; i < config->tx_fifo_num; i++) {
7332 config->tx_cfg[i].f_no_snoop =
7333 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7334 if (config->tx_cfg[i].fifo_len < 65) {
7335 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7336 break;
7339 /* + 2 because one Txd for skb->data and one Txd for UFO */
7340 config->max_txds = MAX_SKB_FRAGS + 2;
7342 /* Rx side parameters. */
7343 config->rx_ring_num = rx_ring_num;
7344 for (i = 0; i < MAX_RX_RINGS; i++) {
7345 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7346 (rxd_count[sp->rxd_mode] + 1);
7347 config->rx_cfg[i].ring_priority = i;
7350 for (i = 0; i < rx_ring_num; i++) {
7351 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7352 config->rx_cfg[i].f_no_snoop =
7353 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7356 /* Setting Mac Control parameters */
7357 mac_control->rmac_pause_time = rmac_pause_time;
7358 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7359 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7362 /* Initialize Ring buffer parameters. */
7363 for (i = 0; i < config->rx_ring_num; i++)
7364 atomic_set(&sp->rx_bufs_left[i], 0);
7366 /* Initialize the number of ISRs currently running */
7367 atomic_set(&sp->isr_cnt, 0);
7369 /* initialize the shared memory used by the NIC and the host */
7370 if (init_shared_mem(sp)) {
7371 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7372 dev->name);
7373 ret = -ENOMEM;
7374 goto mem_alloc_failed;
7377 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7378 pci_resource_len(pdev, 0));
7379 if (!sp->bar0) {
7380 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7381 dev->name);
7382 ret = -ENOMEM;
7383 goto bar0_remap_failed;
7386 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7387 pci_resource_len(pdev, 2));
7388 if (!sp->bar1) {
7389 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7390 dev->name);
7391 ret = -ENOMEM;
7392 goto bar1_remap_failed;
7395 dev->irq = pdev->irq;
7396 dev->base_addr = (unsigned long) sp->bar0;
7398 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7399 for (j = 0; j < MAX_TX_FIFOS; j++) {
7400 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7401 (sp->bar1 + (j * 0x00020000));
7404 /* Driver entry points */
7405 dev->open = &s2io_open;
7406 dev->stop = &s2io_close;
7407 dev->hard_start_xmit = &s2io_xmit;
7408 dev->get_stats = &s2io_get_stats;
7409 dev->set_multicast_list = &s2io_set_multicast;
7410 dev->do_ioctl = &s2io_ioctl;
7411 dev->change_mtu = &s2io_change_mtu;
7412 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7413 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7414 dev->vlan_rx_register = s2io_vlan_rx_register;
7415 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7418 * will use eth_mac_addr() for dev->set_mac_address
7419 * mac address will be set every time dev->open() is called
7421 dev->poll = s2io_poll;
7422 dev->weight = 32;
7424 #ifdef CONFIG_NET_POLL_CONTROLLER
7425 dev->poll_controller = s2io_netpoll;
7426 #endif
7428 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7429 if (sp->high_dma_flag == TRUE)
7430 dev->features |= NETIF_F_HIGHDMA;
7431 dev->features |= NETIF_F_TSO;
7432 dev->features |= NETIF_F_TSO6;
7433 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7434 dev->features |= NETIF_F_UFO;
7435 dev->features |= NETIF_F_HW_CSUM;
7438 dev->tx_timeout = &s2io_tx_watchdog;
7439 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7440 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7441 INIT_WORK(&sp->set_link_task, s2io_set_link);
7443 pci_save_state(sp->pdev);
7445 /* Setting swapper control on the NIC, for proper reset operation */
7446 if (s2io_set_swapper(sp)) {
7447 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7448 dev->name);
7449 ret = -EAGAIN;
7450 goto set_swap_failed;
7453 /* Verify if the Herc works on the slot its placed into */
7454 if (sp->device_type & XFRAME_II_DEVICE) {
7455 mode = s2io_verify_pci_mode(sp);
7456 if (mode < 0) {
7457 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7458 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7459 ret = -EBADSLT;
7460 goto set_swap_failed;
7464 /* Not needed for Herc */
7465 if (sp->device_type & XFRAME_I_DEVICE) {
7467 * Fix for all "FFs" MAC address problems observed on
7468 * Alpha platforms
7470 fix_mac_address(sp);
7471 s2io_reset(sp);
7475 * MAC address initialization.
7476 * For now only one mac address will be read and used.
7478 bar0 = sp->bar0;
7479 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7480 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7481 writeq(val64, &bar0->rmac_addr_cmd_mem);
7482 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7483 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7484 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7485 mac_down = (u32) tmp64;
7486 mac_up = (u32) (tmp64 >> 32);
7488 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7489 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7490 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7491 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7492 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7493 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7495 /* Set the factory defined MAC address initially */
7496 dev->addr_len = ETH_ALEN;
7497 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7499 /* reset Nic and bring it to known state */
7500 s2io_reset(sp);
7503 * Initialize the tasklet status and link state flags
7504 * and the card state parameter
7506 atomic_set(&(sp->card_state), 0);
7507 sp->tasklet_status = 0;
7508 sp->link_state = 0;
7510 /* Initialize spinlocks */
7511 spin_lock_init(&sp->tx_lock);
7513 if (!napi)
7514 spin_lock_init(&sp->put_lock);
7515 spin_lock_init(&sp->rx_lock);
7518 * SXE-002: Configure link and activity LED to init state
7519 * on driver load.
7521 subid = sp->pdev->subsystem_device;
7522 if ((subid & 0xFF) >= 0x07) {
7523 val64 = readq(&bar0->gpio_control);
7524 val64 |= 0x0000800000000000ULL;
7525 writeq(val64, &bar0->gpio_control);
7526 val64 = 0x0411040400000000ULL;
7527 writeq(val64, (void __iomem *) bar0 + 0x2700);
7528 val64 = readq(&bar0->gpio_control);
7531 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7533 if (register_netdev(dev)) {
7534 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7535 ret = -ENODEV;
7536 goto register_failed;
7538 s2io_vpd_read(sp);
7539 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7540 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7541 sp->product_name, get_xena_rev_id(sp->pdev));
7542 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7543 s2io_driver_version);
7544 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7545 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7546 sp->def_mac_addr[0].mac_addr[0],
7547 sp->def_mac_addr[0].mac_addr[1],
7548 sp->def_mac_addr[0].mac_addr[2],
7549 sp->def_mac_addr[0].mac_addr[3],
7550 sp->def_mac_addr[0].mac_addr[4],
7551 sp->def_mac_addr[0].mac_addr[5]);
7552 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7553 if (sp->device_type & XFRAME_II_DEVICE) {
7554 mode = s2io_print_pci_mode(sp);
7555 if (mode < 0) {
7556 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7557 ret = -EBADSLT;
7558 unregister_netdev(dev);
7559 goto set_swap_failed;
7562 switch(sp->rxd_mode) {
7563 case RXD_MODE_1:
7564 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7565 dev->name);
7566 break;
7567 case RXD_MODE_3B:
7568 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7569 dev->name);
7570 break;
7571 case RXD_MODE_3A:
7572 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7573 dev->name);
7574 break;
7577 if (napi)
7578 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7579 switch(sp->intr_type) {
7580 case INTA:
7581 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7582 break;
7583 case MSI:
7584 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7585 break;
7586 case MSI_X:
7587 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7588 break;
7590 if (sp->lro)
7591 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7592 dev->name);
7593 if (ufo)
7594 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7595 " enabled\n", dev->name);
7596 /* Initialize device name */
7597 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7599 /* Initialize bimodal Interrupts */
7600 sp->config.bimodal = bimodal;
7601 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7602 sp->config.bimodal = 0;
7603 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7604 dev->name);
7608 * Make Link state as off at this point, when the Link change
7609 * interrupt comes the state will be automatically changed to
7610 * the right state.
7612 netif_carrier_off(dev);
7614 return 0;
7616 register_failed:
7617 set_swap_failed:
7618 iounmap(sp->bar1);
7619 bar1_remap_failed:
7620 iounmap(sp->bar0);
7621 bar0_remap_failed:
7622 mem_alloc_failed:
7623 free_shared_mem(sp);
7624 pci_disable_device(pdev);
7625 if (dev_intr_type != MSI_X)
7626 pci_release_regions(pdev);
7627 else {
7628 release_mem_region(pci_resource_start(pdev, 0),
7629 pci_resource_len(pdev, 0));
7630 release_mem_region(pci_resource_start(pdev, 2),
7631 pci_resource_len(pdev, 2));
7633 pci_set_drvdata(pdev, NULL);
7634 free_netdev(dev);
7636 return ret;
7640 * s2io_rem_nic - Free the PCI device
7641 * @pdev: structure containing the PCI related information of the device.
7642 * Description: This function is called by the Pci subsystem to release a
7643 * PCI device and free up all resource held up by the device. This could
7644 * be in response to a Hot plug event or when the driver is to be removed
7645 * from memory.
7648 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7650 struct net_device *dev =
7651 (struct net_device *) pci_get_drvdata(pdev);
7652 struct s2io_nic *sp;
7654 if (dev == NULL) {
7655 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7656 return;
7659 flush_scheduled_work();
7661 sp = dev->priv;
7662 unregister_netdev(dev);
7664 free_shared_mem(sp);
7665 iounmap(sp->bar0);
7666 iounmap(sp->bar1);
7667 if (sp->intr_type != MSI_X)
7668 pci_release_regions(pdev);
7669 else {
7670 release_mem_region(pci_resource_start(pdev, 0),
7671 pci_resource_len(pdev, 0));
7672 release_mem_region(pci_resource_start(pdev, 2),
7673 pci_resource_len(pdev, 2));
7675 pci_set_drvdata(pdev, NULL);
7676 free_netdev(dev);
7677 pci_disable_device(pdev);
7681 * s2io_starter - Entry point for the driver
7682 * Description: This function is the entry point for the driver. It verifies
7683 * the module loadable parameters and initializes PCI configuration space.
7686 int __init s2io_starter(void)
7688 return pci_register_driver(&s2io_driver);
7692 * s2io_closer - Cleanup routine for the driver
7693 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7696 static __exit void s2io_closer(void)
7698 pci_unregister_driver(&s2io_driver);
7699 DBG_PRINT(INIT_DBG, "cleanup done\n");
7702 module_init(s2io_starter);
7703 module_exit(s2io_closer);
7705 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7706 struct tcphdr **tcp, struct RxD_t *rxdp)
7708 int ip_off;
7709 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7711 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7712 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7713 __FUNCTION__);
7714 return -1;
7717 /* TODO:
7718 * By default the VLAN field in the MAC is stripped by the card, if this
7719 * feature is turned off in rx_pa_cfg register, then the ip_off field
7720 * has to be shifted by a further 2 bytes
7722 switch (l2_type) {
7723 case 0: /* DIX type */
7724 case 4: /* DIX type with VLAN */
7725 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7726 break;
7727 /* LLC, SNAP etc are considered non-mergeable */
7728 default:
7729 return -1;
7732 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7733 ip_len = (u8)((*ip)->ihl);
7734 ip_len <<= 2;
7735 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7737 return 0;
7740 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7741 struct tcphdr *tcp)
7743 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7744 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7745 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7746 return -1;
7747 return 0;
7750 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7752 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7755 static void initiate_new_session(struct lro *lro, u8 *l2h,
7756 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7758 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7759 lro->l2h = l2h;
7760 lro->iph = ip;
7761 lro->tcph = tcp;
7762 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7763 lro->tcp_ack = ntohl(tcp->ack_seq);
7764 lro->sg_num = 1;
7765 lro->total_len = ntohs(ip->tot_len);
7766 lro->frags_len = 0;
7768 * check if we saw TCP timestamp. Other consistency checks have
7769 * already been done.
7771 if (tcp->doff == 8) {
7772 u32 *ptr;
7773 ptr = (u32 *)(tcp+1);
7774 lro->saw_ts = 1;
7775 lro->cur_tsval = *(ptr+1);
7776 lro->cur_tsecr = *(ptr+2);
7778 lro->in_use = 1;
7781 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7783 struct iphdr *ip = lro->iph;
7784 struct tcphdr *tcp = lro->tcph;
7785 __sum16 nchk;
7786 struct stat_block *statinfo = sp->mac_control.stats_info;
7787 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7789 /* Update L3 header */
7790 ip->tot_len = htons(lro->total_len);
7791 ip->check = 0;
7792 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7793 ip->check = nchk;
7795 /* Update L4 header */
7796 tcp->ack_seq = lro->tcp_ack;
7797 tcp->window = lro->window;
7799 /* Update tsecr field if this session has timestamps enabled */
7800 if (lro->saw_ts) {
7801 u32 *ptr = (u32 *)(tcp + 1);
7802 *(ptr+2) = lro->cur_tsecr;
7805 /* Update counters required for calculation of
7806 * average no. of packets aggregated.
7808 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7809 statinfo->sw_stat.num_aggregations++;
7812 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7813 struct tcphdr *tcp, u32 l4_pyld)
7815 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7816 lro->total_len += l4_pyld;
7817 lro->frags_len += l4_pyld;
7818 lro->tcp_next_seq += l4_pyld;
7819 lro->sg_num++;
7821 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7822 lro->tcp_ack = tcp->ack_seq;
7823 lro->window = tcp->window;
7825 if (lro->saw_ts) {
7826 u32 *ptr;
7827 /* Update tsecr and tsval from this packet */
7828 ptr = (u32 *) (tcp + 1);
7829 lro->cur_tsval = *(ptr + 1);
7830 lro->cur_tsecr = *(ptr + 2);
7834 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7835 struct tcphdr *tcp, u32 tcp_pyld_len)
7837 u8 *ptr;
7839 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7841 if (!tcp_pyld_len) {
7842 /* Runt frame or a pure ack */
7843 return -1;
7846 if (ip->ihl != 5) /* IP has options */
7847 return -1;
7849 /* If we see CE codepoint in IP header, packet is not mergeable */
7850 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7851 return -1;
7853 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7854 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7855 tcp->ece || tcp->cwr || !tcp->ack) {
7857 * Currently recognize only the ack control word and
7858 * any other control field being set would result in
7859 * flushing the LRO session
7861 return -1;
7865 * Allow only one TCP timestamp option. Don't aggregate if
7866 * any other options are detected.
7868 if (tcp->doff != 5 && tcp->doff != 8)
7869 return -1;
7871 if (tcp->doff == 8) {
7872 ptr = (u8 *)(tcp + 1);
7873 while (*ptr == TCPOPT_NOP)
7874 ptr++;
7875 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7876 return -1;
7878 /* Ensure timestamp value increases monotonically */
7879 if (l_lro)
7880 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7881 return -1;
7883 /* timestamp echo reply should be non-zero */
7884 if (*((u32 *)(ptr+6)) == 0)
7885 return -1;
7888 return 0;
7891 static int
7892 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7893 struct RxD_t *rxdp, struct s2io_nic *sp)
7895 struct iphdr *ip;
7896 struct tcphdr *tcph;
7897 int ret = 0, i;
7899 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7900 rxdp))) {
7901 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7902 ip->saddr, ip->daddr);
7903 } else {
7904 return ret;
7907 tcph = (struct tcphdr *)*tcp;
7908 *tcp_len = get_l4_pyld_length(ip, tcph);
7909 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7910 struct lro *l_lro = &sp->lro0_n[i];
7911 if (l_lro->in_use) {
7912 if (check_for_socket_match(l_lro, ip, tcph))
7913 continue;
7914 /* Sock pair matched */
7915 *lro = l_lro;
7917 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7918 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7919 "0x%x, actual 0x%x\n", __FUNCTION__,
7920 (*lro)->tcp_next_seq,
7921 ntohl(tcph->seq));
7923 sp->mac_control.stats_info->
7924 sw_stat.outof_sequence_pkts++;
7925 ret = 2;
7926 break;
7929 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7930 ret = 1; /* Aggregate */
7931 else
7932 ret = 2; /* Flush both */
7933 break;
7937 if (ret == 0) {
7938 /* Before searching for available LRO objects,
7939 * check if the pkt is L3/L4 aggregatable. If not
7940 * don't create new LRO session. Just send this
7941 * packet up.
7943 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7944 return 5;
7947 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7948 struct lro *l_lro = &sp->lro0_n[i];
7949 if (!(l_lro->in_use)) {
7950 *lro = l_lro;
7951 ret = 3; /* Begin anew */
7952 break;
7957 if (ret == 0) { /* sessions exceeded */
7958 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7959 __FUNCTION__);
7960 *lro = NULL;
7961 return ret;
7964 switch (ret) {
7965 case 3:
7966 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7967 break;
7968 case 2:
7969 update_L3L4_header(sp, *lro);
7970 break;
7971 case 1:
7972 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7973 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7974 update_L3L4_header(sp, *lro);
7975 ret = 4; /* Flush the LRO */
7977 break;
7978 default:
7979 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7980 __FUNCTION__);
7981 break;
7984 return ret;
7987 static void clear_lro_session(struct lro *lro)
7989 static u16 lro_struct_size = sizeof(struct lro);
7991 memset(lro, 0, lro_struct_size);
7994 static void queue_rx_frame(struct sk_buff *skb)
7996 struct net_device *dev = skb->dev;
7998 skb->protocol = eth_type_trans(skb, dev);
7999 if (napi)
8000 netif_receive_skb(skb);
8001 else
8002 netif_rx(skb);
8005 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8006 struct sk_buff *skb,
8007 u32 tcp_len)
8009 struct sk_buff *first = lro->parent;
8011 first->len += tcp_len;
8012 first->data_len = lro->frags_len;
8013 skb_pull(skb, (skb->len - tcp_len));
8014 if (skb_shinfo(first)->frag_list)
8015 lro->last_frag->next = skb;
8016 else
8017 skb_shinfo(first)->frag_list = skb;
8018 first->truesize += skb->truesize;
8019 lro->last_frag = skb;
8020 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8021 return;