[TCP]: TCP_CONG_YEAH requires TCP_CONG_VEGAS
[linux-2.6/verdex.git] / drivers / net / sb1250-mac.c
blob132e2148b21c6d5095ef1bd498df470d7fbdc936
1 /*
2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * This driver is designed for the Broadcom SiByte SOC built-in
20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/init.h>
34 #include <linux/bitops.h>
35 #include <asm/processor.h> /* Processor type for cache alignment. */
36 #include <asm/io.h>
37 #include <asm/cache.h>
39 /* This is only here until the firmware is ready. In that case,
40 the firmware leaves the ethernet address in the register for us. */
41 #ifdef CONFIG_SIBYTE_STANDALONE
42 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
43 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
44 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
45 #define SBMAC_ETH3_HWADDR "40:00:00:00:01:03"
46 #endif
49 /* These identify the driver base version and may not be removed. */
50 #if 0
51 static char version1[] __devinitdata =
52 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
53 #endif
56 /* Operational parameters that usually are not changed. */
58 #define CONFIG_SBMAC_COALESCE
60 #define MAX_UNITS 4 /* More are supported, limit only on options */
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT (2*HZ)
66 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
67 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
69 /* A few user-configurable values which may be modified when a driver
70 module is loaded. */
72 /* 1 normal messages, 0 quiet .. 7 verbose. */
73 static int debug = 1;
74 module_param(debug, int, S_IRUGO);
75 MODULE_PARM_DESC(debug, "Debug messages");
77 /* mii status msgs */
78 static int noisy_mii = 1;
79 module_param(noisy_mii, int, S_IRUGO);
80 MODULE_PARM_DESC(noisy_mii, "MII status messages");
82 /* Used to pass the media type, etc.
83 Both 'options[]' and 'full_duplex[]' should exist for driver
84 interoperability.
85 The media type is usually passed in 'options[]'.
87 #ifdef MODULE
88 static int options[MAX_UNITS] = {-1, -1, -1, -1};
89 module_param_array(options, int, NULL, S_IRUGO);
90 MODULE_PARM_DESC(options, "1-" __MODULE_STRING(MAX_UNITS));
92 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1};
93 module_param_array(full_duplex, int, NULL, S_IRUGO);
94 MODULE_PARM_DESC(full_duplex, "1-" __MODULE_STRING(MAX_UNITS));
95 #endif
97 #ifdef CONFIG_SBMAC_COALESCE
98 static int int_pktcnt_tx = 255;
99 module_param(int_pktcnt_tx, int, S_IRUGO);
100 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
102 static int int_timeout_tx = 255;
103 module_param(int_timeout_tx, int, S_IRUGO);
104 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
106 static int int_pktcnt_rx = 64;
107 module_param(int_pktcnt_rx, int, S_IRUGO);
108 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
110 static int int_timeout_rx = 64;
111 module_param(int_timeout_rx, int, S_IRUGO);
112 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
113 #endif
115 #include <asm/sibyte/sb1250.h>
116 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
117 #include <asm/sibyte/bcm1480_regs.h>
118 #include <asm/sibyte/bcm1480_int.h>
119 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
120 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
121 #include <asm/sibyte/sb1250_regs.h>
122 #include <asm/sibyte/sb1250_int.h>
123 #else
124 #error invalid SiByte MAC configuation
125 #endif
126 #include <asm/sibyte/sb1250_scd.h>
127 #include <asm/sibyte/sb1250_mac.h>
128 #include <asm/sibyte/sb1250_dma.h>
130 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
131 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
132 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
133 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
134 #else
135 #error invalid SiByte MAC configuation
136 #endif
138 /**********************************************************************
139 * Simple types
140 ********************************************************************* */
143 typedef enum { sbmac_speed_auto, sbmac_speed_10,
144 sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
146 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
147 sbmac_duplex_full } sbmac_duplex_t;
149 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
150 sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
152 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
153 sbmac_state_broken } sbmac_state_t;
156 /**********************************************************************
157 * Macros
158 ********************************************************************* */
161 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
162 (d)->sbdma_dscrtable : (d)->f+1)
165 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
167 #define SBMAC_MAX_TXDESCR 256
168 #define SBMAC_MAX_RXDESCR 256
170 #define ETHER_ALIGN 2
171 #define ETHER_ADDR_LEN 6
172 #define ENET_PACKET_SIZE 1518
173 /*#define ENET_PACKET_SIZE 9216 */
175 /**********************************************************************
176 * DMA Descriptor structure
177 ********************************************************************* */
179 typedef struct sbdmadscr_s {
180 uint64_t dscr_a;
181 uint64_t dscr_b;
182 } sbdmadscr_t;
184 typedef unsigned long paddr_t;
186 /**********************************************************************
187 * DMA Controller structure
188 ********************************************************************* */
190 typedef struct sbmacdma_s {
193 * This stuff is used to identify the channel and the registers
194 * associated with it.
197 struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
198 int sbdma_channel; /* channel number */
199 int sbdma_txdir; /* direction (1=transmit) */
200 int sbdma_maxdescr; /* total # of descriptors in ring */
201 #ifdef CONFIG_SBMAC_COALESCE
202 int sbdma_int_pktcnt; /* # descriptors rx/tx before interrupt*/
203 int sbdma_int_timeout; /* # usec rx/tx interrupt */
204 #endif
206 volatile void __iomem *sbdma_config0; /* DMA config register 0 */
207 volatile void __iomem *sbdma_config1; /* DMA config register 1 */
208 volatile void __iomem *sbdma_dscrbase; /* Descriptor base address */
209 volatile void __iomem *sbdma_dscrcnt; /* Descriptor count register */
210 volatile void __iomem *sbdma_curdscr; /* current descriptor address */
211 volatile void __iomem *sbdma_oodpktlost;/* pkt drop (rx only) */
215 * This stuff is for maintenance of the ring
218 sbdmadscr_t *sbdma_dscrtable_unaligned;
219 sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
220 sbdmadscr_t *sbdma_dscrtable_end; /* end of descriptor table */
222 struct sk_buff **sbdma_ctxtable; /* context table, one per descr */
224 paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
225 sbdmadscr_t *sbdma_addptr; /* next dscr for sw to add */
226 sbdmadscr_t *sbdma_remptr; /* next dscr for sw to remove */
227 } sbmacdma_t;
230 /**********************************************************************
231 * Ethernet softc structure
232 ********************************************************************* */
234 struct sbmac_softc {
237 * Linux-specific things
240 struct net_device *sbm_dev; /* pointer to linux device */
241 spinlock_t sbm_lock; /* spin lock */
242 struct timer_list sbm_timer; /* for monitoring MII */
243 struct net_device_stats sbm_stats;
244 int sbm_devflags; /* current device flags */
246 int sbm_phy_oldbmsr;
247 int sbm_phy_oldanlpar;
248 int sbm_phy_oldk1stsr;
249 int sbm_phy_oldlinkstat;
250 int sbm_buffersize;
252 unsigned char sbm_phys[2];
255 * Controller-specific things
258 void __iomem *sbm_base; /* MAC's base address */
259 sbmac_state_t sbm_state; /* current state */
261 volatile void __iomem *sbm_macenable; /* MAC Enable Register */
262 volatile void __iomem *sbm_maccfg; /* MAC Configuration Register */
263 volatile void __iomem *sbm_fifocfg; /* FIFO configuration register */
264 volatile void __iomem *sbm_framecfg; /* Frame configuration register */
265 volatile void __iomem *sbm_rxfilter; /* receive filter register */
266 volatile void __iomem *sbm_isr; /* Interrupt status register */
267 volatile void __iomem *sbm_imr; /* Interrupt mask register */
268 volatile void __iomem *sbm_mdio; /* MDIO register */
270 sbmac_speed_t sbm_speed; /* current speed */
271 sbmac_duplex_t sbm_duplex; /* current duplex */
272 sbmac_fc_t sbm_fc; /* current flow control setting */
274 unsigned char sbm_hwaddr[ETHER_ADDR_LEN];
276 sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
277 sbmacdma_t sbm_rxdma;
278 int rx_hw_checksum;
279 int sbe_idx;
283 /**********************************************************************
284 * Externs
285 ********************************************************************* */
287 /**********************************************************************
288 * Prototypes
289 ********************************************************************* */
291 static void sbdma_initctx(sbmacdma_t *d,
292 struct sbmac_softc *s,
293 int chan,
294 int txrx,
295 int maxdescr);
296 static void sbdma_channel_start(sbmacdma_t *d, int rxtx);
297 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *m);
298 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *m);
299 static void sbdma_emptyring(sbmacdma_t *d);
300 static void sbdma_fillring(sbmacdma_t *d);
301 static int sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d, int work_to_do, int poll);
302 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d, int poll);
303 static int sbmac_initctx(struct sbmac_softc *s);
304 static void sbmac_channel_start(struct sbmac_softc *s);
305 static void sbmac_channel_stop(struct sbmac_softc *s);
306 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,sbmac_state_t);
307 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff);
308 static uint64_t sbmac_addr2reg(unsigned char *ptr);
309 static irqreturn_t sbmac_intr(int irq,void *dev_instance);
310 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
311 static void sbmac_setmulti(struct sbmac_softc *sc);
312 static int sbmac_init(struct net_device *dev, int idx);
313 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed);
314 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc);
316 static int sbmac_open(struct net_device *dev);
317 static void sbmac_timer(unsigned long data);
318 static void sbmac_tx_timeout (struct net_device *dev);
319 static struct net_device_stats *sbmac_get_stats(struct net_device *dev);
320 static void sbmac_set_rx_mode(struct net_device *dev);
321 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
322 static int sbmac_close(struct net_device *dev);
323 static int sbmac_poll(struct net_device *poll_dev, int *budget);
325 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy);
326 static int sbmac_mii_probe(struct net_device *dev);
328 static void sbmac_mii_sync(struct sbmac_softc *s);
329 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt);
330 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx);
331 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
332 unsigned int regval);
335 /**********************************************************************
336 * Globals
337 ********************************************************************* */
339 static uint64_t sbmac_orig_hwaddr[MAX_UNITS];
342 /**********************************************************************
343 * MDIO constants
344 ********************************************************************* */
346 #define MII_COMMAND_START 0x01
347 #define MII_COMMAND_READ 0x02
348 #define MII_COMMAND_WRITE 0x01
349 #define MII_COMMAND_ACK 0x02
351 #define BMCR_RESET 0x8000
352 #define BMCR_LOOPBACK 0x4000
353 #define BMCR_SPEED0 0x2000
354 #define BMCR_ANENABLE 0x1000
355 #define BMCR_POWERDOWN 0x0800
356 #define BMCR_ISOLATE 0x0400
357 #define BMCR_RESTARTAN 0x0200
358 #define BMCR_DUPLEX 0x0100
359 #define BMCR_COLTEST 0x0080
360 #define BMCR_SPEED1 0x0040
361 #define BMCR_SPEED1000 BMCR_SPEED1
362 #define BMCR_SPEED100 BMCR_SPEED0
363 #define BMCR_SPEED10 0
365 #define BMSR_100BT4 0x8000
366 #define BMSR_100BT_FDX 0x4000
367 #define BMSR_100BT_HDX 0x2000
368 #define BMSR_10BT_FDX 0x1000
369 #define BMSR_10BT_HDX 0x0800
370 #define BMSR_100BT2_FDX 0x0400
371 #define BMSR_100BT2_HDX 0x0200
372 #define BMSR_1000BT_XSR 0x0100
373 #define BMSR_PRESUP 0x0040
374 #define BMSR_ANCOMPLT 0x0020
375 #define BMSR_REMFAULT 0x0010
376 #define BMSR_AUTONEG 0x0008
377 #define BMSR_LINKSTAT 0x0004
378 #define BMSR_JABDETECT 0x0002
379 #define BMSR_EXTCAPAB 0x0001
381 #define PHYIDR1 0x2000
382 #define PHYIDR2 0x5C60
384 #define ANAR_NP 0x8000
385 #define ANAR_RF 0x2000
386 #define ANAR_ASYPAUSE 0x0800
387 #define ANAR_PAUSE 0x0400
388 #define ANAR_T4 0x0200
389 #define ANAR_TXFD 0x0100
390 #define ANAR_TXHD 0x0080
391 #define ANAR_10FD 0x0040
392 #define ANAR_10HD 0x0020
393 #define ANAR_PSB 0x0001
395 #define ANLPAR_NP 0x8000
396 #define ANLPAR_ACK 0x4000
397 #define ANLPAR_RF 0x2000
398 #define ANLPAR_ASYPAUSE 0x0800
399 #define ANLPAR_PAUSE 0x0400
400 #define ANLPAR_T4 0x0200
401 #define ANLPAR_TXFD 0x0100
402 #define ANLPAR_TXHD 0x0080
403 #define ANLPAR_10FD 0x0040
404 #define ANLPAR_10HD 0x0020
405 #define ANLPAR_PSB 0x0001 /* 802.3 */
407 #define ANER_PDF 0x0010
408 #define ANER_LPNPABLE 0x0008
409 #define ANER_NPABLE 0x0004
410 #define ANER_PAGERX 0x0002
411 #define ANER_LPANABLE 0x0001
413 #define ANNPTR_NP 0x8000
414 #define ANNPTR_MP 0x2000
415 #define ANNPTR_ACK2 0x1000
416 #define ANNPTR_TOGTX 0x0800
417 #define ANNPTR_CODE 0x0008
419 #define ANNPRR_NP 0x8000
420 #define ANNPRR_MP 0x2000
421 #define ANNPRR_ACK3 0x1000
422 #define ANNPRR_TOGTX 0x0800
423 #define ANNPRR_CODE 0x0008
425 #define K1TCR_TESTMODE 0x0000
426 #define K1TCR_MSMCE 0x1000
427 #define K1TCR_MSCV 0x0800
428 #define K1TCR_RPTR 0x0400
429 #define K1TCR_1000BT_FDX 0x200
430 #define K1TCR_1000BT_HDX 0x100
432 #define K1STSR_MSMCFLT 0x8000
433 #define K1STSR_MSCFGRES 0x4000
434 #define K1STSR_LRSTAT 0x2000
435 #define K1STSR_RRSTAT 0x1000
436 #define K1STSR_LP1KFD 0x0800
437 #define K1STSR_LP1KHD 0x0400
438 #define K1STSR_LPASMDIR 0x0200
440 #define K1SCR_1KX_FDX 0x8000
441 #define K1SCR_1KX_HDX 0x4000
442 #define K1SCR_1KT_FDX 0x2000
443 #define K1SCR_1KT_HDX 0x1000
445 #define STRAP_PHY1 0x0800
446 #define STRAP_NCMODE 0x0400
447 #define STRAP_MANMSCFG 0x0200
448 #define STRAP_ANENABLE 0x0100
449 #define STRAP_MSVAL 0x0080
450 #define STRAP_1KHDXADV 0x0010
451 #define STRAP_1KFDXADV 0x0008
452 #define STRAP_100ADV 0x0004
453 #define STRAP_SPEEDSEL 0x0000
454 #define STRAP_SPEED100 0x0001
456 #define PHYSUP_SPEED1000 0x10
457 #define PHYSUP_SPEED100 0x08
458 #define PHYSUP_SPEED10 0x00
459 #define PHYSUP_LINKUP 0x04
460 #define PHYSUP_FDX 0x02
462 #define MII_BMCR 0x00 /* Basic mode control register (rw) */
463 #define MII_BMSR 0x01 /* Basic mode status register (ro) */
464 #define MII_PHYIDR1 0x02
465 #define MII_PHYIDR2 0x03
467 #define MII_K1STSR 0x0A /* 1K Status Register (ro) */
468 #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
471 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
473 #define ENABLE 1
474 #define DISABLE 0
476 /**********************************************************************
477 * SBMAC_MII_SYNC(s)
479 * Synchronize with the MII - send a pattern of bits to the MII
480 * that will guarantee that it is ready to accept a command.
482 * Input parameters:
483 * s - sbmac structure
485 * Return value:
486 * nothing
487 ********************************************************************* */
489 static void sbmac_mii_sync(struct sbmac_softc *s)
491 int cnt;
492 uint64_t bits;
493 int mac_mdio_genc;
495 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
497 bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
499 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
501 for (cnt = 0; cnt < 32; cnt++) {
502 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
503 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
507 /**********************************************************************
508 * SBMAC_MII_SENDDATA(s,data,bitcnt)
510 * Send some bits to the MII. The bits to be sent are right-
511 * justified in the 'data' parameter.
513 * Input parameters:
514 * s - sbmac structure
515 * data - data to send
516 * bitcnt - number of bits to send
517 ********************************************************************* */
519 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt)
521 int i;
522 uint64_t bits;
523 unsigned int curmask;
524 int mac_mdio_genc;
526 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
528 bits = M_MAC_MDIO_DIR_OUTPUT;
529 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
531 curmask = 1 << (bitcnt - 1);
533 for (i = 0; i < bitcnt; i++) {
534 if (data & curmask)
535 bits |= M_MAC_MDIO_OUT;
536 else bits &= ~M_MAC_MDIO_OUT;
537 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
538 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
539 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
540 curmask >>= 1;
546 /**********************************************************************
547 * SBMAC_MII_READ(s,phyaddr,regidx)
549 * Read a PHY register.
551 * Input parameters:
552 * s - sbmac structure
553 * phyaddr - PHY's address
554 * regidx = index of register to read
556 * Return value:
557 * value read, or 0 if an error occurred.
558 ********************************************************************* */
560 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
562 int idx;
563 int error;
564 int regval;
565 int mac_mdio_genc;
568 * Synchronize ourselves so that the PHY knows the next
569 * thing coming down is a command
572 sbmac_mii_sync(s);
575 * Send the data to the PHY. The sequence is
576 * a "start" command (2 bits)
577 * a "read" command (2 bits)
578 * the PHY addr (5 bits)
579 * the register index (5 bits)
582 sbmac_mii_senddata(s,MII_COMMAND_START, 2);
583 sbmac_mii_senddata(s,MII_COMMAND_READ, 2);
584 sbmac_mii_senddata(s,phyaddr, 5);
585 sbmac_mii_senddata(s,regidx, 5);
587 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
590 * Switch the port around without a clock transition.
592 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
595 * Send out a clock pulse to signal we want the status
598 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
599 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
602 * If an error occurred, the PHY will signal '1' back
604 error = __raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN;
607 * Issue an 'idle' clock pulse, but keep the direction
608 * the same.
610 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
611 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
613 regval = 0;
615 for (idx = 0; idx < 16; idx++) {
616 regval <<= 1;
618 if (error == 0) {
619 if (__raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN)
620 regval |= 1;
623 __raw_writeq(M_MAC_MDIO_DIR_INPUT|M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
624 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
627 /* Switch back to output */
628 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
630 if (error == 0)
631 return regval;
632 return 0;
636 /**********************************************************************
637 * SBMAC_MII_WRITE(s,phyaddr,regidx,regval)
639 * Write a value to a PHY register.
641 * Input parameters:
642 * s - sbmac structure
643 * phyaddr - PHY to use
644 * regidx - register within the PHY
645 * regval - data to write to register
647 * Return value:
648 * nothing
649 ********************************************************************* */
651 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
652 unsigned int regval)
654 int mac_mdio_genc;
656 sbmac_mii_sync(s);
658 sbmac_mii_senddata(s,MII_COMMAND_START,2);
659 sbmac_mii_senddata(s,MII_COMMAND_WRITE,2);
660 sbmac_mii_senddata(s,phyaddr, 5);
661 sbmac_mii_senddata(s,regidx, 5);
662 sbmac_mii_senddata(s,MII_COMMAND_ACK,2);
663 sbmac_mii_senddata(s,regval,16);
665 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
667 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
672 /**********************************************************************
673 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
675 * Initialize a DMA channel context. Since there are potentially
676 * eight DMA channels per MAC, it's nice to do this in a standard
677 * way.
679 * Input parameters:
680 * d - sbmacdma_t structure (DMA channel context)
681 * s - sbmac_softc structure (pointer to a MAC)
682 * chan - channel number (0..1 right now)
683 * txrx - Identifies DMA_TX or DMA_RX for channel direction
684 * maxdescr - number of descriptors
686 * Return value:
687 * nothing
688 ********************************************************************* */
690 static void sbdma_initctx(sbmacdma_t *d,
691 struct sbmac_softc *s,
692 int chan,
693 int txrx,
694 int maxdescr)
696 #ifdef CONFIG_SBMAC_COALESCE
697 int int_pktcnt, int_timeout;
698 #endif
701 * Save away interesting stuff in the structure
704 d->sbdma_eth = s;
705 d->sbdma_channel = chan;
706 d->sbdma_txdir = txrx;
708 #if 0
709 /* RMON clearing */
710 s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
711 #endif
713 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BYTES)));
714 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_COLLISIONS)));
715 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_LATE_COL)));
716 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_EX_COL)));
717 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_FCS_ERROR)));
718 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_ABORT)));
719 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BAD)));
720 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_GOOD)));
721 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_RUNT)));
722 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_OVERSIZE)));
723 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BYTES)));
724 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_MCAST)));
725 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BCAST)));
726 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BAD)));
727 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_GOOD)));
728 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_RUNT)));
729 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_OVERSIZE)));
730 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_FCS_ERROR)));
731 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_LENGTH_ERROR)));
732 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_CODE_ERROR)));
733 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_ALIGN_ERROR)));
736 * initialize register pointers
739 d->sbdma_config0 =
740 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
741 d->sbdma_config1 =
742 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
743 d->sbdma_dscrbase =
744 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
745 d->sbdma_dscrcnt =
746 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
747 d->sbdma_curdscr =
748 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
749 if (d->sbdma_txdir)
750 d->sbdma_oodpktlost = NULL;
751 else
752 d->sbdma_oodpktlost =
753 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
756 * Allocate memory for the ring
759 d->sbdma_maxdescr = maxdescr;
761 d->sbdma_dscrtable_unaligned =
762 d->sbdma_dscrtable = (sbdmadscr_t *)
763 kmalloc((d->sbdma_maxdescr+1)*sizeof(sbdmadscr_t), GFP_KERNEL);
766 * The descriptor table must be aligned to at least 16 bytes or the
767 * MAC will corrupt it.
769 d->sbdma_dscrtable = (sbdmadscr_t *)
770 ALIGN((unsigned long)d->sbdma_dscrtable, sizeof(sbdmadscr_t));
772 memset(d->sbdma_dscrtable,0,d->sbdma_maxdescr*sizeof(sbdmadscr_t));
774 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
776 d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
779 * And context table
782 d->sbdma_ctxtable = (struct sk_buff **)
783 kmalloc(d->sbdma_maxdescr*sizeof(struct sk_buff *), GFP_KERNEL);
785 memset(d->sbdma_ctxtable,0,d->sbdma_maxdescr*sizeof(struct sk_buff *));
787 #ifdef CONFIG_SBMAC_COALESCE
789 * Setup Rx/Tx DMA coalescing defaults
792 int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
793 if ( int_pktcnt ) {
794 d->sbdma_int_pktcnt = int_pktcnt;
795 } else {
796 d->sbdma_int_pktcnt = 1;
799 int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
800 if ( int_timeout ) {
801 d->sbdma_int_timeout = int_timeout;
802 } else {
803 d->sbdma_int_timeout = 0;
805 #endif
809 /**********************************************************************
810 * SBDMA_CHANNEL_START(d)
812 * Initialize the hardware registers for a DMA channel.
814 * Input parameters:
815 * d - DMA channel to init (context must be previously init'd
816 * rxtx - DMA_RX or DMA_TX depending on what type of channel
818 * Return value:
819 * nothing
820 ********************************************************************* */
822 static void sbdma_channel_start(sbmacdma_t *d, int rxtx )
825 * Turn on the DMA channel
828 #ifdef CONFIG_SBMAC_COALESCE
829 __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
830 0, d->sbdma_config1);
831 __raw_writeq(M_DMA_EOP_INT_EN |
832 V_DMA_RINGSZ(d->sbdma_maxdescr) |
833 V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
834 0, d->sbdma_config0);
835 #else
836 __raw_writeq(0, d->sbdma_config1);
837 __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
838 0, d->sbdma_config0);
839 #endif
841 __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
844 * Initialize ring pointers
847 d->sbdma_addptr = d->sbdma_dscrtable;
848 d->sbdma_remptr = d->sbdma_dscrtable;
851 /**********************************************************************
852 * SBDMA_CHANNEL_STOP(d)
854 * Initialize the hardware registers for a DMA channel.
856 * Input parameters:
857 * d - DMA channel to init (context must be previously init'd
859 * Return value:
860 * nothing
861 ********************************************************************* */
863 static void sbdma_channel_stop(sbmacdma_t *d)
866 * Turn off the DMA channel
869 __raw_writeq(0, d->sbdma_config1);
871 __raw_writeq(0, d->sbdma_dscrbase);
873 __raw_writeq(0, d->sbdma_config0);
876 * Zero ring pointers
879 d->sbdma_addptr = NULL;
880 d->sbdma_remptr = NULL;
883 static void sbdma_align_skb(struct sk_buff *skb,int power2,int offset)
885 unsigned long addr;
886 unsigned long newaddr;
888 addr = (unsigned long) skb->data;
890 newaddr = (addr + power2 - 1) & ~(power2 - 1);
892 skb_reserve(skb,newaddr-addr+offset);
896 /**********************************************************************
897 * SBDMA_ADD_RCVBUFFER(d,sb)
899 * Add a buffer to the specified DMA channel. For receive channels,
900 * this queues a buffer for inbound packets.
902 * Input parameters:
903 * d - DMA channel descriptor
904 * sb - sk_buff to add, or NULL if we should allocate one
906 * Return value:
907 * 0 if buffer could not be added (ring is full)
908 * 1 if buffer added successfully
909 ********************************************************************* */
912 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *sb)
914 sbdmadscr_t *dsc;
915 sbdmadscr_t *nextdsc;
916 struct sk_buff *sb_new = NULL;
917 int pktsize = ENET_PACKET_SIZE;
919 /* get pointer to our current place in the ring */
921 dsc = d->sbdma_addptr;
922 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
925 * figure out if the ring is full - if the next descriptor
926 * is the same as the one that we're going to remove from
927 * the ring, the ring is full
930 if (nextdsc == d->sbdma_remptr) {
931 return -ENOSPC;
935 * Allocate a sk_buff if we don't already have one.
936 * If we do have an sk_buff, reset it so that it's empty.
938 * Note: sk_buffs don't seem to be guaranteed to have any sort
939 * of alignment when they are allocated. Therefore, allocate enough
940 * extra space to make sure that:
942 * 1. the data does not start in the middle of a cache line.
943 * 2. The data does not end in the middle of a cache line
944 * 3. The buffer can be aligned such that the IP addresses are
945 * naturally aligned.
947 * Remember, the SOCs MAC writes whole cache lines at a time,
948 * without reading the old contents first. So, if the sk_buff's
949 * data portion starts in the middle of a cache line, the SOC
950 * DMA will trash the beginning (and ending) portions.
953 if (sb == NULL) {
954 sb_new = dev_alloc_skb(ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN);
955 if (sb_new == NULL) {
956 printk(KERN_INFO "%s: sk_buff allocation failed\n",
957 d->sbdma_eth->sbm_dev->name);
958 return -ENOBUFS;
961 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, ETHER_ALIGN);
963 else {
964 sb_new = sb;
966 * nothing special to reinit buffer, it's already aligned
967 * and sb->data already points to a good place.
972 * fill in the descriptor
975 #ifdef CONFIG_SBMAC_COALESCE
977 * Do not interrupt per DMA transfer.
979 dsc->dscr_a = virt_to_phys(sb_new->data) |
980 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) | 0;
981 #else
982 dsc->dscr_a = virt_to_phys(sb_new->data) |
983 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) |
984 M_DMA_DSCRA_INTERRUPT;
985 #endif
987 /* receiving: no options */
988 dsc->dscr_b = 0;
991 * fill in the context
994 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
997 * point at next packet
1000 d->sbdma_addptr = nextdsc;
1003 * Give the buffer to the DMA engine.
1006 __raw_writeq(1, d->sbdma_dscrcnt);
1008 return 0; /* we did it */
1011 /**********************************************************************
1012 * SBDMA_ADD_TXBUFFER(d,sb)
1014 * Add a transmit buffer to the specified DMA channel, causing a
1015 * transmit to start.
1017 * Input parameters:
1018 * d - DMA channel descriptor
1019 * sb - sk_buff to add
1021 * Return value:
1022 * 0 transmit queued successfully
1023 * otherwise error code
1024 ********************************************************************* */
1027 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *sb)
1029 sbdmadscr_t *dsc;
1030 sbdmadscr_t *nextdsc;
1031 uint64_t phys;
1032 uint64_t ncb;
1033 int length;
1035 /* get pointer to our current place in the ring */
1037 dsc = d->sbdma_addptr;
1038 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
1041 * figure out if the ring is full - if the next descriptor
1042 * is the same as the one that we're going to remove from
1043 * the ring, the ring is full
1046 if (nextdsc == d->sbdma_remptr) {
1047 return -ENOSPC;
1051 * Under Linux, it's not necessary to copy/coalesce buffers
1052 * like it is on NetBSD. We think they're all contiguous,
1053 * but that may not be true for GBE.
1056 length = sb->len;
1059 * fill in the descriptor. Note that the number of cache
1060 * blocks in the descriptor is the number of blocks
1061 * *spanned*, so we need to add in the offset (if any)
1062 * while doing the calculation.
1065 phys = virt_to_phys(sb->data);
1066 ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
1068 dsc->dscr_a = phys |
1069 V_DMA_DSCRA_A_SIZE(ncb) |
1070 #ifndef CONFIG_SBMAC_COALESCE
1071 M_DMA_DSCRA_INTERRUPT |
1072 #endif
1073 M_DMA_ETHTX_SOP;
1075 /* transmitting: set outbound options and length */
1077 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
1078 V_DMA_DSCRB_PKT_SIZE(length);
1081 * fill in the context
1084 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
1087 * point at next packet
1090 d->sbdma_addptr = nextdsc;
1093 * Give the buffer to the DMA engine.
1096 __raw_writeq(1, d->sbdma_dscrcnt);
1098 return 0; /* we did it */
1104 /**********************************************************************
1105 * SBDMA_EMPTYRING(d)
1107 * Free all allocated sk_buffs on the specified DMA channel;
1109 * Input parameters:
1110 * d - DMA channel
1112 * Return value:
1113 * nothing
1114 ********************************************************************* */
1116 static void sbdma_emptyring(sbmacdma_t *d)
1118 int idx;
1119 struct sk_buff *sb;
1121 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1122 sb = d->sbdma_ctxtable[idx];
1123 if (sb) {
1124 dev_kfree_skb(sb);
1125 d->sbdma_ctxtable[idx] = NULL;
1131 /**********************************************************************
1132 * SBDMA_FILLRING(d)
1134 * Fill the specified DMA channel (must be receive channel)
1135 * with sk_buffs
1137 * Input parameters:
1138 * d - DMA channel
1140 * Return value:
1141 * nothing
1142 ********************************************************************* */
1144 static void sbdma_fillring(sbmacdma_t *d)
1146 int idx;
1148 for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++) {
1149 if (sbdma_add_rcvbuffer(d,NULL) != 0)
1150 break;
1154 #ifdef CONFIG_NET_POLL_CONTROLLER
1155 static void sbmac_netpoll(struct net_device *netdev)
1157 struct sbmac_softc *sc = netdev_priv(netdev);
1158 int irq = sc->sbm_dev->irq;
1160 __raw_writeq(0, sc->sbm_imr);
1162 sbmac_intr(irq, netdev, NULL);
1164 #ifdef CONFIG_SBMAC_COALESCE
1165 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1166 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1167 sc->sbm_imr);
1168 #else
1169 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1170 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1171 #endif
1173 #endif
1175 /**********************************************************************
1176 * SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1178 * Process "completed" receive buffers on the specified DMA channel.
1180 * Input parameters:
1181 * sc - softc structure
1182 * d - DMA channel context
1183 * work_to_do - no. of packets to process before enabling interrupt
1184 * again (for NAPI)
1185 * poll - 1: using polling (for NAPI)
1187 * Return value:
1188 * nothing
1189 ********************************************************************* */
1191 static int sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d,
1192 int work_to_do, int poll)
1194 int curidx;
1195 int hwidx;
1196 sbdmadscr_t *dsc;
1197 struct sk_buff *sb;
1198 int len;
1199 int work_done = 0;
1200 int dropped = 0;
1202 prefetch(d);
1204 again:
1205 /* Check if the HW dropped any frames */
1206 sc->sbm_stats.rx_fifo_errors
1207 += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1208 __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1210 while (work_to_do-- > 0) {
1212 * figure out where we are (as an index) and where
1213 * the hardware is (also as an index)
1215 * This could be done faster if (for example) the
1216 * descriptor table was page-aligned and contiguous in
1217 * both virtual and physical memory -- you could then
1218 * just compare the low-order bits of the virtual address
1219 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1222 dsc = d->sbdma_remptr;
1223 curidx = dsc - d->sbdma_dscrtable;
1225 prefetch(dsc);
1226 prefetch(&d->sbdma_ctxtable[curidx]);
1228 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1229 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1232 * If they're the same, that means we've processed all
1233 * of the descriptors up to (but not including) the one that
1234 * the hardware is working on right now.
1237 if (curidx == hwidx)
1238 goto done;
1241 * Otherwise, get the packet's sk_buff ptr back
1244 sb = d->sbdma_ctxtable[curidx];
1245 d->sbdma_ctxtable[curidx] = NULL;
1247 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1250 * Check packet status. If good, process it.
1251 * If not, silently drop it and put it back on the
1252 * receive ring.
1255 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1258 * Add a new buffer to replace the old one. If we fail
1259 * to allocate a buffer, we're going to drop this
1260 * packet and put it right back on the receive ring.
1263 if (unlikely (sbdma_add_rcvbuffer(d,NULL) ==
1264 -ENOBUFS)) {
1265 sc->sbm_stats.rx_dropped++;
1266 sbdma_add_rcvbuffer(d,sb); /* re-add old buffer */
1267 /* No point in continuing at the moment */
1268 printk(KERN_ERR "dropped packet (1)\n");
1269 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1270 goto done;
1271 } else {
1273 * Set length into the packet
1275 skb_put(sb,len);
1278 * Buffer has been replaced on the
1279 * receive ring. Pass the buffer to
1280 * the kernel
1282 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1283 /* Check hw IPv4/TCP checksum if supported */
1284 if (sc->rx_hw_checksum == ENABLE) {
1285 if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1286 !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1287 sb->ip_summed = CHECKSUM_UNNECESSARY;
1288 /* don't need to set sb->csum */
1289 } else {
1290 sb->ip_summed = CHECKSUM_NONE;
1293 prefetch(sb->data);
1294 prefetch((const void *)(((char *)sb->data)+32));
1295 if (poll)
1296 dropped = netif_receive_skb(sb);
1297 else
1298 dropped = netif_rx(sb);
1300 if (dropped == NET_RX_DROP) {
1301 sc->sbm_stats.rx_dropped++;
1302 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1303 goto done;
1305 else {
1306 sc->sbm_stats.rx_bytes += len;
1307 sc->sbm_stats.rx_packets++;
1310 } else {
1312 * Packet was mangled somehow. Just drop it and
1313 * put it back on the receive ring.
1315 sc->sbm_stats.rx_errors++;
1316 sbdma_add_rcvbuffer(d,sb);
1321 * .. and advance to the next buffer.
1324 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1325 work_done++;
1327 if (!poll) {
1328 work_to_do = 32;
1329 goto again; /* collect fifo drop statistics again */
1331 done:
1332 return work_done;
1335 /**********************************************************************
1336 * SBDMA_TX_PROCESS(sc,d)
1338 * Process "completed" transmit buffers on the specified DMA channel.
1339 * This is normally called within the interrupt service routine.
1340 * Note that this isn't really ideal for priority channels, since
1341 * it processes all of the packets on a given channel before
1342 * returning.
1344 * Input parameters:
1345 * sc - softc structure
1346 * d - DMA channel context
1347 * poll - 1: using polling (for NAPI)
1349 * Return value:
1350 * nothing
1351 ********************************************************************* */
1353 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d, int poll)
1355 int curidx;
1356 int hwidx;
1357 sbdmadscr_t *dsc;
1358 struct sk_buff *sb;
1359 unsigned long flags;
1360 int packets_handled = 0;
1362 spin_lock_irqsave(&(sc->sbm_lock), flags);
1364 if (d->sbdma_remptr == d->sbdma_addptr)
1365 goto end_unlock;
1367 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1368 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1370 for (;;) {
1372 * figure out where we are (as an index) and where
1373 * the hardware is (also as an index)
1375 * This could be done faster if (for example) the
1376 * descriptor table was page-aligned and contiguous in
1377 * both virtual and physical memory -- you could then
1378 * just compare the low-order bits of the virtual address
1379 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1382 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1385 * If they're the same, that means we've processed all
1386 * of the descriptors up to (but not including) the one that
1387 * the hardware is working on right now.
1390 if (curidx == hwidx)
1391 break;
1394 * Otherwise, get the packet's sk_buff ptr back
1397 dsc = &(d->sbdma_dscrtable[curidx]);
1398 sb = d->sbdma_ctxtable[curidx];
1399 d->sbdma_ctxtable[curidx] = NULL;
1402 * Stats
1405 sc->sbm_stats.tx_bytes += sb->len;
1406 sc->sbm_stats.tx_packets++;
1409 * for transmits, we just free buffers.
1412 dev_kfree_skb_irq(sb);
1415 * .. and advance to the next buffer.
1418 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1420 packets_handled++;
1425 * Decide if we should wake up the protocol or not.
1426 * Other drivers seem to do this when we reach a low
1427 * watermark on the transmit queue.
1430 if (packets_handled)
1431 netif_wake_queue(d->sbdma_eth->sbm_dev);
1433 end_unlock:
1434 spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1440 /**********************************************************************
1441 * SBMAC_INITCTX(s)
1443 * Initialize an Ethernet context structure - this is called
1444 * once per MAC on the 1250. Memory is allocated here, so don't
1445 * call it again from inside the ioctl routines that bring the
1446 * interface up/down
1448 * Input parameters:
1449 * s - sbmac context structure
1451 * Return value:
1453 ********************************************************************* */
1455 static int sbmac_initctx(struct sbmac_softc *s)
1459 * figure out the addresses of some ports
1462 s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1463 s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
1464 s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
1465 s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
1466 s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
1467 s->sbm_isr = s->sbm_base + R_MAC_STATUS;
1468 s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
1469 s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
1471 s->sbm_phys[0] = 1;
1472 s->sbm_phys[1] = 0;
1474 s->sbm_phy_oldbmsr = 0;
1475 s->sbm_phy_oldanlpar = 0;
1476 s->sbm_phy_oldk1stsr = 0;
1477 s->sbm_phy_oldlinkstat = 0;
1480 * Initialize the DMA channels. Right now, only one per MAC is used
1481 * Note: Only do this _once_, as it allocates memory from the kernel!
1484 sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1485 sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1488 * initial state is OFF
1491 s->sbm_state = sbmac_state_off;
1494 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1497 s->sbm_speed = sbmac_speed_10;
1498 s->sbm_duplex = sbmac_duplex_half;
1499 s->sbm_fc = sbmac_fc_disabled;
1501 return 0;
1505 static void sbdma_uninitctx(struct sbmacdma_s *d)
1507 if (d->sbdma_dscrtable_unaligned) {
1508 kfree(d->sbdma_dscrtable_unaligned);
1509 d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1512 if (d->sbdma_ctxtable) {
1513 kfree(d->sbdma_ctxtable);
1514 d->sbdma_ctxtable = NULL;
1519 static void sbmac_uninitctx(struct sbmac_softc *sc)
1521 sbdma_uninitctx(&(sc->sbm_txdma));
1522 sbdma_uninitctx(&(sc->sbm_rxdma));
1526 /**********************************************************************
1527 * SBMAC_CHANNEL_START(s)
1529 * Start packet processing on this MAC.
1531 * Input parameters:
1532 * s - sbmac structure
1534 * Return value:
1535 * nothing
1536 ********************************************************************* */
1538 static void sbmac_channel_start(struct sbmac_softc *s)
1540 uint64_t reg;
1541 volatile void __iomem *port;
1542 uint64_t cfg,fifo,framecfg;
1543 int idx, th_value;
1546 * Don't do this if running
1549 if (s->sbm_state == sbmac_state_on)
1550 return;
1553 * Bring the controller out of reset, but leave it off.
1556 __raw_writeq(0, s->sbm_macenable);
1559 * Ignore all received packets
1562 __raw_writeq(0, s->sbm_rxfilter);
1565 * Calculate values for various control registers.
1568 cfg = M_MAC_RETRY_EN |
1569 M_MAC_TX_HOLD_SOP_EN |
1570 V_MAC_TX_PAUSE_CNT_16K |
1571 M_MAC_AP_STAT_EN |
1572 M_MAC_FAST_SYNC |
1573 M_MAC_SS_EN |
1577 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1578 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1579 * Use a larger RD_THRSH for gigabit
1581 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1582 th_value = 28;
1583 else
1584 th_value = 64;
1586 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1587 ((s->sbm_speed == sbmac_speed_1000)
1588 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1589 V_MAC_TX_RL_THRSH(4) |
1590 V_MAC_RX_PL_THRSH(4) |
1591 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1592 V_MAC_RX_PL_THRSH(4) |
1593 V_MAC_RX_RL_THRSH(8) |
1596 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1597 V_MAC_MAX_FRAMESZ_DEFAULT |
1598 V_MAC_BACKOFF_SEL(1);
1601 * Clear out the hash address map
1604 port = s->sbm_base + R_MAC_HASH_BASE;
1605 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1606 __raw_writeq(0, port);
1607 port += sizeof(uint64_t);
1611 * Clear out the exact-match table
1614 port = s->sbm_base + R_MAC_ADDR_BASE;
1615 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1616 __raw_writeq(0, port);
1617 port += sizeof(uint64_t);
1621 * Clear out the DMA Channel mapping table registers
1624 port = s->sbm_base + R_MAC_CHUP0_BASE;
1625 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1626 __raw_writeq(0, port);
1627 port += sizeof(uint64_t);
1631 port = s->sbm_base + R_MAC_CHLO0_BASE;
1632 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1633 __raw_writeq(0, port);
1634 port += sizeof(uint64_t);
1638 * Program the hardware address. It goes into the hardware-address
1639 * register as well as the first filter register.
1642 reg = sbmac_addr2reg(s->sbm_hwaddr);
1644 port = s->sbm_base + R_MAC_ADDR_BASE;
1645 __raw_writeq(reg, port);
1646 port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1648 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1650 * Pass1 SOCs do not receive packets addressed to the
1651 * destination address in the R_MAC_ETHERNET_ADDR register.
1652 * Set the value to zero.
1654 __raw_writeq(0, port);
1655 #else
1656 __raw_writeq(reg, port);
1657 #endif
1660 * Set the receive filter for no packets, and write values
1661 * to the various config registers
1664 __raw_writeq(0, s->sbm_rxfilter);
1665 __raw_writeq(0, s->sbm_imr);
1666 __raw_writeq(framecfg, s->sbm_framecfg);
1667 __raw_writeq(fifo, s->sbm_fifocfg);
1668 __raw_writeq(cfg, s->sbm_maccfg);
1671 * Initialize DMA channels (rings should be ok now)
1674 sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1675 sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1678 * Configure the speed, duplex, and flow control
1681 sbmac_set_speed(s,s->sbm_speed);
1682 sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1685 * Fill the receive ring
1688 sbdma_fillring(&(s->sbm_rxdma));
1691 * Turn on the rest of the bits in the enable register
1694 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1695 __raw_writeq(M_MAC_RXDMA_EN0 |
1696 M_MAC_TXDMA_EN0, s->sbm_macenable);
1697 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1698 __raw_writeq(M_MAC_RXDMA_EN0 |
1699 M_MAC_TXDMA_EN0 |
1700 M_MAC_RX_ENABLE |
1701 M_MAC_TX_ENABLE, s->sbm_macenable);
1702 #else
1703 #error invalid SiByte MAC configuation
1704 #endif
1706 #ifdef CONFIG_SBMAC_COALESCE
1707 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1708 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1709 #else
1710 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1711 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1712 #endif
1715 * Enable receiving unicasts and broadcasts
1718 __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1721 * we're running now.
1724 s->sbm_state = sbmac_state_on;
1727 * Program multicast addresses
1730 sbmac_setmulti(s);
1733 * If channel was in promiscuous mode before, turn that on
1736 if (s->sbm_devflags & IFF_PROMISC) {
1737 sbmac_promiscuous_mode(s,1);
1743 /**********************************************************************
1744 * SBMAC_CHANNEL_STOP(s)
1746 * Stop packet processing on this MAC.
1748 * Input parameters:
1749 * s - sbmac structure
1751 * Return value:
1752 * nothing
1753 ********************************************************************* */
1755 static void sbmac_channel_stop(struct sbmac_softc *s)
1757 /* don't do this if already stopped */
1759 if (s->sbm_state == sbmac_state_off)
1760 return;
1762 /* don't accept any packets, disable all interrupts */
1764 __raw_writeq(0, s->sbm_rxfilter);
1765 __raw_writeq(0, s->sbm_imr);
1767 /* Turn off ticker */
1769 /* XXX */
1771 /* turn off receiver and transmitter */
1773 __raw_writeq(0, s->sbm_macenable);
1775 /* We're stopped now. */
1777 s->sbm_state = sbmac_state_off;
1780 * Stop DMA channels (rings should be ok now)
1783 sbdma_channel_stop(&(s->sbm_rxdma));
1784 sbdma_channel_stop(&(s->sbm_txdma));
1786 /* Empty the receive and transmit rings */
1788 sbdma_emptyring(&(s->sbm_rxdma));
1789 sbdma_emptyring(&(s->sbm_txdma));
1793 /**********************************************************************
1794 * SBMAC_SET_CHANNEL_STATE(state)
1796 * Set the channel's state ON or OFF
1798 * Input parameters:
1799 * state - new state
1801 * Return value:
1802 * old state
1803 ********************************************************************* */
1804 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *sc,
1805 sbmac_state_t state)
1807 sbmac_state_t oldstate = sc->sbm_state;
1810 * If same as previous state, return
1813 if (state == oldstate) {
1814 return oldstate;
1818 * If new state is ON, turn channel on
1821 if (state == sbmac_state_on) {
1822 sbmac_channel_start(sc);
1824 else {
1825 sbmac_channel_stop(sc);
1829 * Return previous state
1832 return oldstate;
1836 /**********************************************************************
1837 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1839 * Turn on or off promiscuous mode
1841 * Input parameters:
1842 * sc - softc
1843 * onoff - 1 to turn on, 0 to turn off
1845 * Return value:
1846 * nothing
1847 ********************************************************************* */
1849 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1851 uint64_t reg;
1853 if (sc->sbm_state != sbmac_state_on)
1854 return;
1856 if (onoff) {
1857 reg = __raw_readq(sc->sbm_rxfilter);
1858 reg |= M_MAC_ALLPKT_EN;
1859 __raw_writeq(reg, sc->sbm_rxfilter);
1861 else {
1862 reg = __raw_readq(sc->sbm_rxfilter);
1863 reg &= ~M_MAC_ALLPKT_EN;
1864 __raw_writeq(reg, sc->sbm_rxfilter);
1868 /**********************************************************************
1869 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1871 * Set the iphdr offset as 15 assuming ethernet encapsulation
1873 * Input parameters:
1874 * sc - softc
1876 * Return value:
1877 * nothing
1878 ********************************************************************* */
1880 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1882 uint64_t reg;
1884 /* Hard code the off set to 15 for now */
1885 reg = __raw_readq(sc->sbm_rxfilter);
1886 reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1887 __raw_writeq(reg, sc->sbm_rxfilter);
1889 /* BCM1250 pass1 didn't have hardware checksum. Everything
1890 later does. */
1891 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1892 sc->rx_hw_checksum = DISABLE;
1893 } else {
1894 sc->rx_hw_checksum = ENABLE;
1899 /**********************************************************************
1900 * SBMAC_ADDR2REG(ptr)
1902 * Convert six bytes into the 64-bit register value that
1903 * we typically write into the SBMAC's address/mcast registers
1905 * Input parameters:
1906 * ptr - pointer to 6 bytes
1908 * Return value:
1909 * register value
1910 ********************************************************************* */
1912 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1914 uint64_t reg = 0;
1916 ptr += 6;
1918 reg |= (uint64_t) *(--ptr);
1919 reg <<= 8;
1920 reg |= (uint64_t) *(--ptr);
1921 reg <<= 8;
1922 reg |= (uint64_t) *(--ptr);
1923 reg <<= 8;
1924 reg |= (uint64_t) *(--ptr);
1925 reg <<= 8;
1926 reg |= (uint64_t) *(--ptr);
1927 reg <<= 8;
1928 reg |= (uint64_t) *(--ptr);
1930 return reg;
1934 /**********************************************************************
1935 * SBMAC_SET_SPEED(s,speed)
1937 * Configure LAN speed for the specified MAC.
1938 * Warning: must be called when MAC is off!
1940 * Input parameters:
1941 * s - sbmac structure
1942 * speed - speed to set MAC to (see sbmac_speed_t enum)
1944 * Return value:
1945 * 1 if successful
1946 * 0 indicates invalid parameters
1947 ********************************************************************* */
1949 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed)
1951 uint64_t cfg;
1952 uint64_t framecfg;
1955 * Save new current values
1958 s->sbm_speed = speed;
1960 if (s->sbm_state == sbmac_state_on)
1961 return 0; /* save for next restart */
1964 * Read current register values
1967 cfg = __raw_readq(s->sbm_maccfg);
1968 framecfg = __raw_readq(s->sbm_framecfg);
1971 * Mask out the stuff we want to change
1974 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1975 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1976 M_MAC_SLOT_SIZE);
1979 * Now add in the new bits
1982 switch (speed) {
1983 case sbmac_speed_10:
1984 framecfg |= V_MAC_IFG_RX_10 |
1985 V_MAC_IFG_TX_10 |
1986 K_MAC_IFG_THRSH_10 |
1987 V_MAC_SLOT_SIZE_10;
1988 cfg |= V_MAC_SPEED_SEL_10MBPS;
1989 break;
1991 case sbmac_speed_100:
1992 framecfg |= V_MAC_IFG_RX_100 |
1993 V_MAC_IFG_TX_100 |
1994 V_MAC_IFG_THRSH_100 |
1995 V_MAC_SLOT_SIZE_100;
1996 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1997 break;
1999 case sbmac_speed_1000:
2000 framecfg |= V_MAC_IFG_RX_1000 |
2001 V_MAC_IFG_TX_1000 |
2002 V_MAC_IFG_THRSH_1000 |
2003 V_MAC_SLOT_SIZE_1000;
2004 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
2005 break;
2007 case sbmac_speed_auto: /* XXX not implemented */
2008 /* fall through */
2009 default:
2010 return 0;
2014 * Send the bits back to the hardware
2017 __raw_writeq(framecfg, s->sbm_framecfg);
2018 __raw_writeq(cfg, s->sbm_maccfg);
2020 return 1;
2023 /**********************************************************************
2024 * SBMAC_SET_DUPLEX(s,duplex,fc)
2026 * Set Ethernet duplex and flow control options for this MAC
2027 * Warning: must be called when MAC is off!
2029 * Input parameters:
2030 * s - sbmac structure
2031 * duplex - duplex setting (see sbmac_duplex_t)
2032 * fc - flow control setting (see sbmac_fc_t)
2034 * Return value:
2035 * 1 if ok
2036 * 0 if an invalid parameter combination was specified
2037 ********************************************************************* */
2039 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc)
2041 uint64_t cfg;
2044 * Save new current values
2047 s->sbm_duplex = duplex;
2048 s->sbm_fc = fc;
2050 if (s->sbm_state == sbmac_state_on)
2051 return 0; /* save for next restart */
2054 * Read current register values
2057 cfg = __raw_readq(s->sbm_maccfg);
2060 * Mask off the stuff we're about to change
2063 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
2066 switch (duplex) {
2067 case sbmac_duplex_half:
2068 switch (fc) {
2069 case sbmac_fc_disabled:
2070 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
2071 break;
2073 case sbmac_fc_collision:
2074 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
2075 break;
2077 case sbmac_fc_carrier:
2078 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
2079 break;
2081 case sbmac_fc_auto: /* XXX not implemented */
2082 /* fall through */
2083 case sbmac_fc_frame: /* not valid in half duplex */
2084 default: /* invalid selection */
2085 return 0;
2087 break;
2089 case sbmac_duplex_full:
2090 switch (fc) {
2091 case sbmac_fc_disabled:
2092 cfg |= V_MAC_FC_CMD_DISABLED;
2093 break;
2095 case sbmac_fc_frame:
2096 cfg |= V_MAC_FC_CMD_ENABLED;
2097 break;
2099 case sbmac_fc_collision: /* not valid in full duplex */
2100 case sbmac_fc_carrier: /* not valid in full duplex */
2101 case sbmac_fc_auto: /* XXX not implemented */
2102 /* fall through */
2103 default:
2104 return 0;
2106 break;
2107 case sbmac_duplex_auto:
2108 /* XXX not implemented */
2109 break;
2113 * Send the bits back to the hardware
2116 __raw_writeq(cfg, s->sbm_maccfg);
2118 return 1;
2124 /**********************************************************************
2125 * SBMAC_INTR()
2127 * Interrupt handler for MAC interrupts
2129 * Input parameters:
2130 * MAC structure
2132 * Return value:
2133 * nothing
2134 ********************************************************************* */
2135 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
2137 struct net_device *dev = (struct net_device *) dev_instance;
2138 struct sbmac_softc *sc = netdev_priv(dev);
2139 uint64_t isr;
2140 int handled = 0;
2143 * Read the ISR (this clears the bits in the real
2144 * register, except for counter addr)
2147 isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2149 if (isr == 0)
2150 return IRQ_RETVAL(0);
2151 handled = 1;
2154 * Transmits on channel 0
2157 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
2158 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2159 #ifdef CONFIG_NETPOLL_TRAP
2160 if (netpoll_trap()) {
2161 if (test_and_clear_bit(__LINK_STATE_XOFF, &dev->state))
2162 __netif_schedule(dev);
2164 #endif
2167 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2168 if (netif_rx_schedule_prep(dev)) {
2169 __raw_writeq(0, sc->sbm_imr);
2170 __netif_rx_schedule(dev);
2171 /* Depend on the exit from poll to reenable intr */
2173 else {
2174 /* may leave some packets behind */
2175 sbdma_rx_process(sc,&(sc->sbm_rxdma),
2176 SBMAC_MAX_RXDESCR * 2, 0);
2179 return IRQ_RETVAL(handled);
2182 /**********************************************************************
2183 * SBMAC_START_TX(skb,dev)
2185 * Start output on the specified interface. Basically, we
2186 * queue as many buffers as we can until the ring fills up, or
2187 * we run off the end of the queue, whichever comes first.
2189 * Input parameters:
2192 * Return value:
2193 * nothing
2194 ********************************************************************* */
2195 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2197 struct sbmac_softc *sc = netdev_priv(dev);
2199 /* lock eth irq */
2200 spin_lock_irq (&sc->sbm_lock);
2203 * Put the buffer on the transmit ring. If we
2204 * don't have room, stop the queue.
2207 if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2208 /* XXX save skb that we could not send */
2209 netif_stop_queue(dev);
2210 spin_unlock_irq(&sc->sbm_lock);
2212 return 1;
2215 dev->trans_start = jiffies;
2217 spin_unlock_irq (&sc->sbm_lock);
2219 return 0;
2222 /**********************************************************************
2223 * SBMAC_SETMULTI(sc)
2225 * Reprogram the multicast table into the hardware, given
2226 * the list of multicasts associated with the interface
2227 * structure.
2229 * Input parameters:
2230 * sc - softc
2232 * Return value:
2233 * nothing
2234 ********************************************************************* */
2236 static void sbmac_setmulti(struct sbmac_softc *sc)
2238 uint64_t reg;
2239 volatile void __iomem *port;
2240 int idx;
2241 struct dev_mc_list *mclist;
2242 struct net_device *dev = sc->sbm_dev;
2245 * Clear out entire multicast table. We do this by nuking
2246 * the entire hash table and all the direct matches except
2247 * the first one, which is used for our station address
2250 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2251 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2252 __raw_writeq(0, port);
2255 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2256 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2257 __raw_writeq(0, port);
2261 * Clear the filter to say we don't want any multicasts.
2264 reg = __raw_readq(sc->sbm_rxfilter);
2265 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2266 __raw_writeq(reg, sc->sbm_rxfilter);
2268 if (dev->flags & IFF_ALLMULTI) {
2270 * Enable ALL multicasts. Do this by inverting the
2271 * multicast enable bit.
2273 reg = __raw_readq(sc->sbm_rxfilter);
2274 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2275 __raw_writeq(reg, sc->sbm_rxfilter);
2276 return;
2281 * Progam new multicast entries. For now, only use the
2282 * perfect filter. In the future we'll need to use the
2283 * hash filter if the perfect filter overflows
2286 /* XXX only using perfect filter for now, need to use hash
2287 * XXX if the table overflows */
2289 idx = 1; /* skip station address */
2290 mclist = dev->mc_list;
2291 while (mclist && (idx < MAC_ADDR_COUNT)) {
2292 reg = sbmac_addr2reg(mclist->dmi_addr);
2293 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2294 __raw_writeq(reg, port);
2295 idx++;
2296 mclist = mclist->next;
2300 * Enable the "accept multicast bits" if we programmed at least one
2301 * multicast.
2304 if (idx > 1) {
2305 reg = __raw_readq(sc->sbm_rxfilter);
2306 reg |= M_MAC_MCAST_EN;
2307 __raw_writeq(reg, sc->sbm_rxfilter);
2311 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2312 /**********************************************************************
2313 * SBMAC_PARSE_XDIGIT(str)
2315 * Parse a hex digit, returning its value
2317 * Input parameters:
2318 * str - character
2320 * Return value:
2321 * hex value, or -1 if invalid
2322 ********************************************************************* */
2324 static int sbmac_parse_xdigit(char str)
2326 int digit;
2328 if ((str >= '0') && (str <= '9'))
2329 digit = str - '0';
2330 else if ((str >= 'a') && (str <= 'f'))
2331 digit = str - 'a' + 10;
2332 else if ((str >= 'A') && (str <= 'F'))
2333 digit = str - 'A' + 10;
2334 else
2335 return -1;
2337 return digit;
2340 /**********************************************************************
2341 * SBMAC_PARSE_HWADDR(str,hwaddr)
2343 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2344 * Ethernet address.
2346 * Input parameters:
2347 * str - string
2348 * hwaddr - pointer to hardware address
2350 * Return value:
2351 * 0 if ok, else -1
2352 ********************************************************************* */
2354 static int sbmac_parse_hwaddr(char *str, unsigned char *hwaddr)
2356 int digit1,digit2;
2357 int idx = 6;
2359 while (*str && (idx > 0)) {
2360 digit1 = sbmac_parse_xdigit(*str);
2361 if (digit1 < 0)
2362 return -1;
2363 str++;
2364 if (!*str)
2365 return -1;
2367 if ((*str == ':') || (*str == '-')) {
2368 digit2 = digit1;
2369 digit1 = 0;
2371 else {
2372 digit2 = sbmac_parse_xdigit(*str);
2373 if (digit2 < 0)
2374 return -1;
2375 str++;
2378 *hwaddr++ = (digit1 << 4) | digit2;
2379 idx--;
2381 if (*str == '-')
2382 str++;
2383 if (*str == ':')
2384 str++;
2386 return 0;
2388 #endif
2390 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2392 if (new_mtu > ENET_PACKET_SIZE)
2393 return -EINVAL;
2394 _dev->mtu = new_mtu;
2395 printk(KERN_INFO "changing the mtu to %d\n", new_mtu);
2396 return 0;
2399 /**********************************************************************
2400 * SBMAC_INIT(dev)
2402 * Attach routine - init hardware and hook ourselves into linux
2404 * Input parameters:
2405 * dev - net_device structure
2407 * Return value:
2408 * status
2409 ********************************************************************* */
2411 static int sbmac_init(struct net_device *dev, int idx)
2413 struct sbmac_softc *sc;
2414 unsigned char *eaddr;
2415 uint64_t ea_reg;
2416 int i;
2417 int err;
2419 sc = netdev_priv(dev);
2421 /* Determine controller base address */
2423 sc->sbm_base = IOADDR(dev->base_addr);
2424 sc->sbm_dev = dev;
2425 sc->sbe_idx = idx;
2427 eaddr = sc->sbm_hwaddr;
2430 * Read the ethernet address. The firwmare left this programmed
2431 * for us in the ethernet address register for each mac.
2434 ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2435 __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2436 for (i = 0; i < 6; i++) {
2437 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2438 ea_reg >>= 8;
2441 for (i = 0; i < 6; i++) {
2442 dev->dev_addr[i] = eaddr[i];
2447 * Init packet size
2450 sc->sbm_buffersize = ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN;
2453 * Initialize context (get pointers to registers and stuff), then
2454 * allocate the memory for the descriptor tables.
2457 sbmac_initctx(sc);
2460 * Set up Linux device callins
2463 spin_lock_init(&(sc->sbm_lock));
2465 dev->open = sbmac_open;
2466 dev->hard_start_xmit = sbmac_start_tx;
2467 dev->stop = sbmac_close;
2468 dev->get_stats = sbmac_get_stats;
2469 dev->set_multicast_list = sbmac_set_rx_mode;
2470 dev->do_ioctl = sbmac_mii_ioctl;
2471 dev->tx_timeout = sbmac_tx_timeout;
2472 dev->watchdog_timeo = TX_TIMEOUT;
2473 dev->poll = sbmac_poll;
2474 dev->weight = 16;
2476 dev->change_mtu = sb1250_change_mtu;
2477 #ifdef CONFIG_NET_POLL_CONTROLLER
2478 dev->poll_controller = sbmac_netpoll;
2479 #endif
2481 /* This is needed for PASS2 for Rx H/W checksum feature */
2482 sbmac_set_iphdr_offset(sc);
2484 err = register_netdev(dev);
2485 if (err)
2486 goto out_uninit;
2488 if (sc->rx_hw_checksum == ENABLE) {
2489 printk(KERN_INFO "%s: enabling TCP rcv checksum\n",
2490 sc->sbm_dev->name);
2494 * Display Ethernet address (this is called during the config
2495 * process so we need to finish off the config message that
2496 * was being displayed)
2498 printk(KERN_INFO
2499 "%s: SiByte Ethernet at 0x%08lX, address: %02X:%02X:%02X:%02X:%02X:%02X\n",
2500 dev->name, dev->base_addr,
2501 eaddr[0],eaddr[1],eaddr[2],eaddr[3],eaddr[4],eaddr[5]);
2504 return 0;
2506 out_uninit:
2507 sbmac_uninitctx(sc);
2509 return err;
2513 static int sbmac_open(struct net_device *dev)
2515 struct sbmac_softc *sc = netdev_priv(dev);
2517 if (debug > 1) {
2518 printk(KERN_DEBUG "%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2522 * map/route interrupt (clear status first, in case something
2523 * weird is pending; we haven't initialized the mac registers
2524 * yet)
2527 __raw_readq(sc->sbm_isr);
2528 if (request_irq(dev->irq, &sbmac_intr, IRQF_SHARED, dev->name, dev))
2529 return -EBUSY;
2532 * Probe phy address
2535 if(sbmac_mii_probe(dev) == -1) {
2536 printk("%s: failed to probe PHY.\n", dev->name);
2537 return -EINVAL;
2541 * Configure default speed
2544 sbmac_mii_poll(sc,noisy_mii);
2547 * Turn on the channel
2550 sbmac_set_channel_state(sc,sbmac_state_on);
2553 * XXX Station address is in dev->dev_addr
2556 if (dev->if_port == 0)
2557 dev->if_port = 0;
2559 netif_start_queue(dev);
2561 sbmac_set_rx_mode(dev);
2563 /* Set the timer to check for link beat. */
2564 init_timer(&sc->sbm_timer);
2565 sc->sbm_timer.expires = jiffies + 2 * HZ/100;
2566 sc->sbm_timer.data = (unsigned long)dev;
2567 sc->sbm_timer.function = &sbmac_timer;
2568 add_timer(&sc->sbm_timer);
2570 return 0;
2573 static int sbmac_mii_probe(struct net_device *dev)
2575 int i;
2576 struct sbmac_softc *s = netdev_priv(dev);
2577 u16 bmsr, id1, id2;
2578 u32 vendor, device;
2580 for (i=1; i<31; i++) {
2581 bmsr = sbmac_mii_read(s, i, MII_BMSR);
2582 if (bmsr != 0) {
2583 s->sbm_phys[0] = i;
2584 id1 = sbmac_mii_read(s, i, MII_PHYIDR1);
2585 id2 = sbmac_mii_read(s, i, MII_PHYIDR2);
2586 vendor = ((u32)id1 << 6) | ((id2 >> 10) & 0x3f);
2587 device = (id2 >> 4) & 0x3f;
2589 printk(KERN_INFO "%s: found phy %d, vendor %06x part %02x\n",
2590 dev->name, i, vendor, device);
2591 return i;
2594 return -1;
2598 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy)
2600 int bmsr,bmcr,k1stsr,anlpar;
2601 int chg;
2602 char buffer[100];
2603 char *p = buffer;
2605 /* Read the mode status and mode control registers. */
2606 bmsr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMSR);
2607 bmcr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMCR);
2609 /* get the link partner status */
2610 anlpar = sbmac_mii_read(s,s->sbm_phys[0],MII_ANLPAR);
2612 /* if supported, read the 1000baseT register */
2613 if (bmsr & BMSR_1000BT_XSR) {
2614 k1stsr = sbmac_mii_read(s,s->sbm_phys[0],MII_K1STSR);
2616 else {
2617 k1stsr = 0;
2620 chg = 0;
2622 if ((bmsr & BMSR_LINKSTAT) == 0) {
2624 * If link status is down, clear out old info so that when
2625 * it comes back up it will force us to reconfigure speed
2627 s->sbm_phy_oldbmsr = 0;
2628 s->sbm_phy_oldanlpar = 0;
2629 s->sbm_phy_oldk1stsr = 0;
2630 return 0;
2633 if ((s->sbm_phy_oldbmsr != bmsr) ||
2634 (s->sbm_phy_oldanlpar != anlpar) ||
2635 (s->sbm_phy_oldk1stsr != k1stsr)) {
2636 if (debug > 1) {
2637 printk(KERN_DEBUG "%s: bmsr:%x/%x anlpar:%x/%x k1stsr:%x/%x\n",
2638 s->sbm_dev->name,
2639 s->sbm_phy_oldbmsr,bmsr,
2640 s->sbm_phy_oldanlpar,anlpar,
2641 s->sbm_phy_oldk1stsr,k1stsr);
2643 s->sbm_phy_oldbmsr = bmsr;
2644 s->sbm_phy_oldanlpar = anlpar;
2645 s->sbm_phy_oldk1stsr = k1stsr;
2646 chg = 1;
2649 if (chg == 0)
2650 return 0;
2652 p += sprintf(p,"Link speed: ");
2654 if (k1stsr & K1STSR_LP1KFD) {
2655 s->sbm_speed = sbmac_speed_1000;
2656 s->sbm_duplex = sbmac_duplex_full;
2657 s->sbm_fc = sbmac_fc_frame;
2658 p += sprintf(p,"1000BaseT FDX");
2660 else if (k1stsr & K1STSR_LP1KHD) {
2661 s->sbm_speed = sbmac_speed_1000;
2662 s->sbm_duplex = sbmac_duplex_half;
2663 s->sbm_fc = sbmac_fc_disabled;
2664 p += sprintf(p,"1000BaseT HDX");
2666 else if (anlpar & ANLPAR_TXFD) {
2667 s->sbm_speed = sbmac_speed_100;
2668 s->sbm_duplex = sbmac_duplex_full;
2669 s->sbm_fc = (anlpar & ANLPAR_PAUSE) ? sbmac_fc_frame : sbmac_fc_disabled;
2670 p += sprintf(p,"100BaseT FDX");
2672 else if (anlpar & ANLPAR_TXHD) {
2673 s->sbm_speed = sbmac_speed_100;
2674 s->sbm_duplex = sbmac_duplex_half;
2675 s->sbm_fc = sbmac_fc_disabled;
2676 p += sprintf(p,"100BaseT HDX");
2678 else if (anlpar & ANLPAR_10FD) {
2679 s->sbm_speed = sbmac_speed_10;
2680 s->sbm_duplex = sbmac_duplex_full;
2681 s->sbm_fc = sbmac_fc_frame;
2682 p += sprintf(p,"10BaseT FDX");
2684 else if (anlpar & ANLPAR_10HD) {
2685 s->sbm_speed = sbmac_speed_10;
2686 s->sbm_duplex = sbmac_duplex_half;
2687 s->sbm_fc = sbmac_fc_collision;
2688 p += sprintf(p,"10BaseT HDX");
2690 else {
2691 p += sprintf(p,"Unknown");
2694 if (noisy) {
2695 printk(KERN_INFO "%s: %s\n",s->sbm_dev->name,buffer);
2698 return 1;
2702 static void sbmac_timer(unsigned long data)
2704 struct net_device *dev = (struct net_device *)data;
2705 struct sbmac_softc *sc = netdev_priv(dev);
2706 int next_tick = HZ;
2707 int mii_status;
2709 spin_lock_irq (&sc->sbm_lock);
2711 /* make IFF_RUNNING follow the MII status bit "Link established" */
2712 mii_status = sbmac_mii_read(sc, sc->sbm_phys[0], MII_BMSR);
2714 if ( (mii_status & BMSR_LINKSTAT) != (sc->sbm_phy_oldlinkstat) ) {
2715 sc->sbm_phy_oldlinkstat = mii_status & BMSR_LINKSTAT;
2716 if (mii_status & BMSR_LINKSTAT) {
2717 netif_carrier_on(dev);
2719 else {
2720 netif_carrier_off(dev);
2725 * Poll the PHY to see what speed we should be running at
2728 if (sbmac_mii_poll(sc,noisy_mii)) {
2729 if (sc->sbm_state != sbmac_state_off) {
2731 * something changed, restart the channel
2733 if (debug > 1) {
2734 printk("%s: restarting channel because speed changed\n",
2735 sc->sbm_dev->name);
2737 sbmac_channel_stop(sc);
2738 sbmac_channel_start(sc);
2742 spin_unlock_irq (&sc->sbm_lock);
2744 sc->sbm_timer.expires = jiffies + next_tick;
2745 add_timer(&sc->sbm_timer);
2749 static void sbmac_tx_timeout (struct net_device *dev)
2751 struct sbmac_softc *sc = netdev_priv(dev);
2753 spin_lock_irq (&sc->sbm_lock);
2756 dev->trans_start = jiffies;
2757 sc->sbm_stats.tx_errors++;
2759 spin_unlock_irq (&sc->sbm_lock);
2761 printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2767 static struct net_device_stats *sbmac_get_stats(struct net_device *dev)
2769 struct sbmac_softc *sc = netdev_priv(dev);
2770 unsigned long flags;
2772 spin_lock_irqsave(&sc->sbm_lock, flags);
2774 /* XXX update other stats here */
2776 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2778 return &sc->sbm_stats;
2783 static void sbmac_set_rx_mode(struct net_device *dev)
2785 unsigned long flags;
2786 struct sbmac_softc *sc = netdev_priv(dev);
2788 spin_lock_irqsave(&sc->sbm_lock, flags);
2789 if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2791 * Promiscuous changed.
2794 if (dev->flags & IFF_PROMISC) {
2795 sbmac_promiscuous_mode(sc,1);
2797 else {
2798 sbmac_promiscuous_mode(sc,0);
2801 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2804 * Program the multicasts. Do this every time.
2807 sbmac_setmulti(sc);
2811 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2813 struct sbmac_softc *sc = netdev_priv(dev);
2814 u16 *data = (u16 *)&rq->ifr_ifru;
2815 unsigned long flags;
2816 int retval;
2818 spin_lock_irqsave(&sc->sbm_lock, flags);
2819 retval = 0;
2821 switch(cmd) {
2822 case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */
2823 data[0] = sc->sbm_phys[0] & 0x1f;
2824 /* Fall Through */
2825 case SIOCDEVPRIVATE+1: /* Read the specified MII register. */
2826 data[3] = sbmac_mii_read(sc, data[0] & 0x1f, data[1] & 0x1f);
2827 break;
2828 case SIOCDEVPRIVATE+2: /* Write the specified MII register */
2829 if (!capable(CAP_NET_ADMIN)) {
2830 retval = -EPERM;
2831 break;
2833 if (debug > 1) {
2834 printk(KERN_DEBUG "%s: sbmac_mii_ioctl: write %02X %02X %02X\n",dev->name,
2835 data[0],data[1],data[2]);
2837 sbmac_mii_write(sc, data[0] & 0x1f, data[1] & 0x1f, data[2]);
2838 break;
2839 default:
2840 retval = -EOPNOTSUPP;
2843 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2844 return retval;
2847 static int sbmac_close(struct net_device *dev)
2849 struct sbmac_softc *sc = netdev_priv(dev);
2850 unsigned long flags;
2851 int irq;
2853 sbmac_set_channel_state(sc,sbmac_state_off);
2855 del_timer_sync(&sc->sbm_timer);
2857 spin_lock_irqsave(&sc->sbm_lock, flags);
2859 netif_stop_queue(dev);
2861 if (debug > 1) {
2862 printk(KERN_DEBUG "%s: Shutting down ethercard\n",dev->name);
2865 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2867 irq = dev->irq;
2868 synchronize_irq(irq);
2869 free_irq(irq, dev);
2871 sbdma_emptyring(&(sc->sbm_txdma));
2872 sbdma_emptyring(&(sc->sbm_rxdma));
2874 return 0;
2877 static int sbmac_poll(struct net_device *dev, int *budget)
2879 int work_to_do;
2880 int work_done;
2881 struct sbmac_softc *sc = netdev_priv(dev);
2883 work_to_do = min(*budget, dev->quota);
2884 work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), work_to_do, 1);
2886 if (work_done > work_to_do)
2887 printk(KERN_ERR "%s exceeded work_to_do budget=%d quota=%d work-done=%d\n",
2888 sc->sbm_dev->name, *budget, dev->quota, work_done);
2890 sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2892 *budget -= work_done;
2893 dev->quota -= work_done;
2895 if (work_done < work_to_do) {
2896 netif_rx_complete(dev);
2898 #ifdef CONFIG_SBMAC_COALESCE
2899 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2900 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2901 sc->sbm_imr);
2902 #else
2903 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2904 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2905 #endif
2908 return (work_done >= work_to_do);
2911 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2912 static void
2913 sbmac_setup_hwaddr(int chan,char *addr)
2915 uint8_t eaddr[6];
2916 uint64_t val;
2917 unsigned long port;
2919 port = A_MAC_CHANNEL_BASE(chan);
2920 sbmac_parse_hwaddr(addr,eaddr);
2921 val = sbmac_addr2reg(eaddr);
2922 __raw_writeq(val, IOADDR(port+R_MAC_ETHERNET_ADDR));
2923 val = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2925 #endif
2927 static struct net_device *dev_sbmac[MAX_UNITS];
2929 static int __init
2930 sbmac_init_module(void)
2932 int idx;
2933 struct net_device *dev;
2934 unsigned long port;
2935 int chip_max_units;
2937 /* Set the number of available units based on the SOC type. */
2938 switch (soc_type) {
2939 case K_SYS_SOC_TYPE_BCM1250:
2940 case K_SYS_SOC_TYPE_BCM1250_ALT:
2941 chip_max_units = 3;
2942 break;
2943 case K_SYS_SOC_TYPE_BCM1120:
2944 case K_SYS_SOC_TYPE_BCM1125:
2945 case K_SYS_SOC_TYPE_BCM1125H:
2946 case K_SYS_SOC_TYPE_BCM1250_ALT2: /* Hybrid */
2947 chip_max_units = 2;
2948 break;
2949 case K_SYS_SOC_TYPE_BCM1x55:
2950 case K_SYS_SOC_TYPE_BCM1x80:
2951 chip_max_units = 4;
2952 break;
2953 default:
2954 chip_max_units = 0;
2955 break;
2957 if (chip_max_units > MAX_UNITS)
2958 chip_max_units = MAX_UNITS;
2961 * For bringup when not using the firmware, we can pre-fill
2962 * the MAC addresses using the environment variables
2963 * specified in this file (or maybe from the config file?)
2965 #ifdef SBMAC_ETH0_HWADDR
2966 if (chip_max_units > 0)
2967 sbmac_setup_hwaddr(0,SBMAC_ETH0_HWADDR);
2968 #endif
2969 #ifdef SBMAC_ETH1_HWADDR
2970 if (chip_max_units > 1)
2971 sbmac_setup_hwaddr(1,SBMAC_ETH1_HWADDR);
2972 #endif
2973 #ifdef SBMAC_ETH2_HWADDR
2974 if (chip_max_units > 2)
2975 sbmac_setup_hwaddr(2,SBMAC_ETH2_HWADDR);
2976 #endif
2977 #ifdef SBMAC_ETH3_HWADDR
2978 if (chip_max_units > 3)
2979 sbmac_setup_hwaddr(3,SBMAC_ETH3_HWADDR);
2980 #endif
2983 * Walk through the Ethernet controllers and find
2984 * those who have their MAC addresses set.
2986 for (idx = 0; idx < chip_max_units; idx++) {
2989 * This is the base address of the MAC.
2992 port = A_MAC_CHANNEL_BASE(idx);
2995 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2996 * value for us by the firmware if we are going to use this MAC.
2997 * If we find a zero, skip this MAC.
3000 sbmac_orig_hwaddr[idx] = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
3001 if (sbmac_orig_hwaddr[idx] == 0) {
3002 printk(KERN_DEBUG "sbmac: not configuring MAC at "
3003 "%lx\n", port);
3004 continue;
3008 * Okay, cool. Initialize this MAC.
3011 dev = alloc_etherdev(sizeof(struct sbmac_softc));
3012 if (!dev)
3013 return -ENOMEM;
3015 printk(KERN_DEBUG "sbmac: configuring MAC at %lx\n", port);
3017 dev->irq = UNIT_INT(idx);
3018 dev->base_addr = port;
3019 dev->mem_end = 0;
3020 if (sbmac_init(dev, idx)) {
3021 port = A_MAC_CHANNEL_BASE(idx);
3022 __raw_writeq(sbmac_orig_hwaddr[idx], IOADDR(port+R_MAC_ETHERNET_ADDR));
3023 free_netdev(dev);
3024 continue;
3026 dev_sbmac[idx] = dev;
3028 return 0;
3032 static void __exit
3033 sbmac_cleanup_module(void)
3035 struct net_device *dev;
3036 int idx;
3038 for (idx = 0; idx < MAX_UNITS; idx++) {
3039 struct sbmac_softc *sc;
3040 dev = dev_sbmac[idx];
3041 if (!dev)
3042 continue;
3044 sc = netdev_priv(dev);
3045 unregister_netdev(dev);
3046 sbmac_uninitctx(sc);
3047 free_netdev(dev);
3051 module_init(sbmac_init_module);
3052 module_exit(sbmac_cleanup_module);