2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/mii.h>
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "1.11"
46 #define PFX DRV_NAME " "
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
52 #define MAX_RX_RING_SIZE 4096
53 #define RX_COPY_THRESHOLD 128
54 #define RX_BUF_SIZE 1536
55 #define PHY_RETRIES 1000
56 #define ETH_JUMBO_MTU 9000
57 #define TX_WATCHDOG (5 * HZ)
58 #define NAPI_WEIGHT 64
60 #define LINK_HZ (HZ/2)
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION
);
67 static const u32 default_msg
68 = NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
;
71 static int debug
= -1; /* defaults above */
72 module_param(debug
, int, 0);
73 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
75 static const struct pci_device_id skge_id_table
[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
) },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
86 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 },
89 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
91 static int skge_up(struct net_device
*dev
);
92 static int skge_down(struct net_device
*dev
);
93 static void skge_phy_reset(struct skge_port
*skge
);
94 static void skge_tx_clean(struct net_device
*dev
);
95 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
96 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
97 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
98 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
99 static void yukon_init(struct skge_hw
*hw
, int port
);
100 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
101 static void genesis_link_up(struct skge_port
*skge
);
103 /* Avoid conditionals by using array */
104 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
105 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
106 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
107 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
108 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
109 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
111 static int skge_get_regs_len(struct net_device
*dev
)
117 * Returns copy of whole control register region
118 * Note: skip RAM address register because accessing it will
121 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
124 const struct skge_port
*skge
= netdev_priv(dev
);
125 const void __iomem
*io
= skge
->hw
->regs
;
128 memset(p
, 0, regs
->len
);
129 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
131 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
132 regs
->len
- B3_RI_WTO_R1
);
135 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
136 static u32
wol_supported(const struct skge_hw
*hw
)
138 if (hw
->chip_id
== CHIP_ID_GENESIS
)
141 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
144 return WAKE_MAGIC
| WAKE_PHY
;
147 static u32
pci_wake_enabled(struct pci_dev
*dev
)
149 int pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
152 /* If device doesn't support PM Capabilities, but request is to disable
153 * wake events, it's a nop; otherwise fail */
157 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &value
);
159 value
&= PCI_PM_CAP_PME_MASK
;
160 value
>>= ffs(PCI_PM_CAP_PME_MASK
) - 1; /* First bit of mask */
165 static void skge_wol_init(struct skge_port
*skge
)
167 struct skge_hw
*hw
= skge
->hw
;
168 int port
= skge
->port
;
171 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
172 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
175 skge_write8(hw
, B0_POWER_CTRL
,
176 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
178 /* WA code for COMA mode -- clear PHY reset */
179 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
180 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
181 u32 reg
= skge_read32(hw
, B2_GP_IO
);
184 skge_write32(hw
, B2_GP_IO
, reg
);
187 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
189 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
190 GPC_ANEG_1
| GPC_RST_SET
);
192 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
194 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
195 GPC_ANEG_1
| GPC_RST_CLR
);
197 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
199 /* Force to 10/100 skge_reset will re-enable on resume */
200 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
201 PHY_AN_100FULL
| PHY_AN_100HALF
|
202 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
);
204 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
205 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
206 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
207 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
210 /* Set GMAC to no flow control and auto update for speed/duplex */
211 gma_write16(hw
, port
, GM_GP_CTRL
,
212 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
213 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
215 /* Set WOL address */
216 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
217 skge
->netdev
->dev_addr
, ETH_ALEN
);
219 /* Turn on appropriate WOL control bits */
220 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
222 if (skge
->wol
& WAKE_PHY
)
223 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
225 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
227 if (skge
->wol
& WAKE_MAGIC
)
228 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
230 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;;
232 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
233 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
236 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
239 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
241 struct skge_port
*skge
= netdev_priv(dev
);
243 wol
->supported
= wol_supported(skge
->hw
);
244 wol
->wolopts
= skge
->wol
;
247 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
249 struct skge_port
*skge
= netdev_priv(dev
);
250 struct skge_hw
*hw
= skge
->hw
;
252 if (wol
->wolopts
& ~wol_supported(hw
))
255 skge
->wol
= wol
->wolopts
;
259 /* Determine supported/advertised modes based on hardware.
260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
262 static u32
skge_supported_modes(const struct skge_hw
*hw
)
267 supported
= SUPPORTED_10baseT_Half
268 | SUPPORTED_10baseT_Full
269 | SUPPORTED_100baseT_Half
270 | SUPPORTED_100baseT_Full
271 | SUPPORTED_1000baseT_Half
272 | SUPPORTED_1000baseT_Full
273 | SUPPORTED_Autoneg
| SUPPORTED_TP
;
275 if (hw
->chip_id
== CHIP_ID_GENESIS
)
276 supported
&= ~(SUPPORTED_10baseT_Half
277 | SUPPORTED_10baseT_Full
278 | SUPPORTED_100baseT_Half
279 | SUPPORTED_100baseT_Full
);
281 else if (hw
->chip_id
== CHIP_ID_YUKON
)
282 supported
&= ~SUPPORTED_1000baseT_Half
;
284 supported
= SUPPORTED_1000baseT_Full
| SUPPORTED_1000baseT_Half
285 | SUPPORTED_FIBRE
| SUPPORTED_Autoneg
;
290 static int skge_get_settings(struct net_device
*dev
,
291 struct ethtool_cmd
*ecmd
)
293 struct skge_port
*skge
= netdev_priv(dev
);
294 struct skge_hw
*hw
= skge
->hw
;
296 ecmd
->transceiver
= XCVR_INTERNAL
;
297 ecmd
->supported
= skge_supported_modes(hw
);
300 ecmd
->port
= PORT_TP
;
301 ecmd
->phy_address
= hw
->phy_addr
;
303 ecmd
->port
= PORT_FIBRE
;
305 ecmd
->advertising
= skge
->advertising
;
306 ecmd
->autoneg
= skge
->autoneg
;
307 ecmd
->speed
= skge
->speed
;
308 ecmd
->duplex
= skge
->duplex
;
312 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
314 struct skge_port
*skge
= netdev_priv(dev
);
315 const struct skge_hw
*hw
= skge
->hw
;
316 u32 supported
= skge_supported_modes(hw
);
318 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
319 ecmd
->advertising
= supported
;
325 switch (ecmd
->speed
) {
327 if (ecmd
->duplex
== DUPLEX_FULL
)
328 setting
= SUPPORTED_1000baseT_Full
;
329 else if (ecmd
->duplex
== DUPLEX_HALF
)
330 setting
= SUPPORTED_1000baseT_Half
;
335 if (ecmd
->duplex
== DUPLEX_FULL
)
336 setting
= SUPPORTED_100baseT_Full
;
337 else if (ecmd
->duplex
== DUPLEX_HALF
)
338 setting
= SUPPORTED_100baseT_Half
;
344 if (ecmd
->duplex
== DUPLEX_FULL
)
345 setting
= SUPPORTED_10baseT_Full
;
346 else if (ecmd
->duplex
== DUPLEX_HALF
)
347 setting
= SUPPORTED_10baseT_Half
;
355 if ((setting
& supported
) == 0)
358 skge
->speed
= ecmd
->speed
;
359 skge
->duplex
= ecmd
->duplex
;
362 skge
->autoneg
= ecmd
->autoneg
;
363 skge
->advertising
= ecmd
->advertising
;
365 if (netif_running(dev
))
366 skge_phy_reset(skge
);
371 static void skge_get_drvinfo(struct net_device
*dev
,
372 struct ethtool_drvinfo
*info
)
374 struct skge_port
*skge
= netdev_priv(dev
);
376 strcpy(info
->driver
, DRV_NAME
);
377 strcpy(info
->version
, DRV_VERSION
);
378 strcpy(info
->fw_version
, "N/A");
379 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
382 static const struct skge_stat
{
383 char name
[ETH_GSTRING_LEN
];
387 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
388 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
390 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
391 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
392 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
393 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
394 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
395 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
396 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
397 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
399 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
400 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
401 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
402 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
403 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
404 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
406 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
407 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
408 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
409 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
410 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
413 static int skge_get_stats_count(struct net_device
*dev
)
415 return ARRAY_SIZE(skge_stats
);
418 static void skge_get_ethtool_stats(struct net_device
*dev
,
419 struct ethtool_stats
*stats
, u64
*data
)
421 struct skge_port
*skge
= netdev_priv(dev
);
423 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
424 genesis_get_stats(skge
, data
);
426 yukon_get_stats(skge
, data
);
429 /* Use hardware MIB variables for critical path statistics and
430 * transmit feedback not reported at interrupt.
431 * Other errors are accounted for in interrupt handler.
433 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
435 struct skge_port
*skge
= netdev_priv(dev
);
436 u64 data
[ARRAY_SIZE(skge_stats
)];
438 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
439 genesis_get_stats(skge
, data
);
441 yukon_get_stats(skge
, data
);
443 skge
->net_stats
.tx_bytes
= data
[0];
444 skge
->net_stats
.rx_bytes
= data
[1];
445 skge
->net_stats
.tx_packets
= data
[2] + data
[4] + data
[6];
446 skge
->net_stats
.rx_packets
= data
[3] + data
[5] + data
[7];
447 skge
->net_stats
.multicast
= data
[3] + data
[5];
448 skge
->net_stats
.collisions
= data
[10];
449 skge
->net_stats
.tx_aborted_errors
= data
[12];
451 return &skge
->net_stats
;
454 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
460 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
461 memcpy(data
+ i
* ETH_GSTRING_LEN
,
462 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
467 static void skge_get_ring_param(struct net_device
*dev
,
468 struct ethtool_ringparam
*p
)
470 struct skge_port
*skge
= netdev_priv(dev
);
472 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
473 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
474 p
->rx_mini_max_pending
= 0;
475 p
->rx_jumbo_max_pending
= 0;
477 p
->rx_pending
= skge
->rx_ring
.count
;
478 p
->tx_pending
= skge
->tx_ring
.count
;
479 p
->rx_mini_pending
= 0;
480 p
->rx_jumbo_pending
= 0;
483 static int skge_set_ring_param(struct net_device
*dev
,
484 struct ethtool_ringparam
*p
)
486 struct skge_port
*skge
= netdev_priv(dev
);
489 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
490 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
493 skge
->rx_ring
.count
= p
->rx_pending
;
494 skge
->tx_ring
.count
= p
->tx_pending
;
496 if (netif_running(dev
)) {
506 static u32
skge_get_msglevel(struct net_device
*netdev
)
508 struct skge_port
*skge
= netdev_priv(netdev
);
509 return skge
->msg_enable
;
512 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
514 struct skge_port
*skge
= netdev_priv(netdev
);
515 skge
->msg_enable
= value
;
518 static int skge_nway_reset(struct net_device
*dev
)
520 struct skge_port
*skge
= netdev_priv(dev
);
522 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
525 skge_phy_reset(skge
);
529 static int skge_set_sg(struct net_device
*dev
, u32 data
)
531 struct skge_port
*skge
= netdev_priv(dev
);
532 struct skge_hw
*hw
= skge
->hw
;
534 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
536 return ethtool_op_set_sg(dev
, data
);
539 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
541 struct skge_port
*skge
= netdev_priv(dev
);
542 struct skge_hw
*hw
= skge
->hw
;
544 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
547 return ethtool_op_set_tx_csum(dev
, data
);
550 static u32
skge_get_rx_csum(struct net_device
*dev
)
552 struct skge_port
*skge
= netdev_priv(dev
);
554 return skge
->rx_csum
;
557 /* Only Yukon supports checksum offload. */
558 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
560 struct skge_port
*skge
= netdev_priv(dev
);
562 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
565 skge
->rx_csum
= data
;
569 static void skge_get_pauseparam(struct net_device
*dev
,
570 struct ethtool_pauseparam
*ecmd
)
572 struct skge_port
*skge
= netdev_priv(dev
);
574 ecmd
->rx_pause
= (skge
->flow_control
== FLOW_MODE_SYMMETRIC
)
575 || (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
);
576 ecmd
->tx_pause
= ecmd
->rx_pause
|| (skge
->flow_control
== FLOW_MODE_LOC_SEND
);
578 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
581 static int skge_set_pauseparam(struct net_device
*dev
,
582 struct ethtool_pauseparam
*ecmd
)
584 struct skge_port
*skge
= netdev_priv(dev
);
585 struct ethtool_pauseparam old
;
587 skge_get_pauseparam(dev
, &old
);
589 if (ecmd
->autoneg
!= old
.autoneg
)
590 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
592 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
593 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
594 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
595 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
596 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
597 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
599 skge
->flow_control
= FLOW_MODE_NONE
;
602 if (netif_running(dev
))
603 skge_phy_reset(skge
);
608 /* Chip internal frequency for clock calculations */
609 static inline u32
hwkhz(const struct skge_hw
*hw
)
611 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
614 /* Chip HZ to microseconds */
615 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
617 return (ticks
* 1000) / hwkhz(hw
);
620 /* Microseconds to chip HZ */
621 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
623 return hwkhz(hw
) * usec
/ 1000;
626 static int skge_get_coalesce(struct net_device
*dev
,
627 struct ethtool_coalesce
*ecmd
)
629 struct skge_port
*skge
= netdev_priv(dev
);
630 struct skge_hw
*hw
= skge
->hw
;
631 int port
= skge
->port
;
633 ecmd
->rx_coalesce_usecs
= 0;
634 ecmd
->tx_coalesce_usecs
= 0;
636 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
637 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
638 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
640 if (msk
& rxirqmask
[port
])
641 ecmd
->rx_coalesce_usecs
= delay
;
642 if (msk
& txirqmask
[port
])
643 ecmd
->tx_coalesce_usecs
= delay
;
649 /* Note: interrupt timer is per board, but can turn on/off per port */
650 static int skge_set_coalesce(struct net_device
*dev
,
651 struct ethtool_coalesce
*ecmd
)
653 struct skge_port
*skge
= netdev_priv(dev
);
654 struct skge_hw
*hw
= skge
->hw
;
655 int port
= skge
->port
;
656 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
659 if (ecmd
->rx_coalesce_usecs
== 0)
660 msk
&= ~rxirqmask
[port
];
661 else if (ecmd
->rx_coalesce_usecs
< 25 ||
662 ecmd
->rx_coalesce_usecs
> 33333)
665 msk
|= rxirqmask
[port
];
666 delay
= ecmd
->rx_coalesce_usecs
;
669 if (ecmd
->tx_coalesce_usecs
== 0)
670 msk
&= ~txirqmask
[port
];
671 else if (ecmd
->tx_coalesce_usecs
< 25 ||
672 ecmd
->tx_coalesce_usecs
> 33333)
675 msk
|= txirqmask
[port
];
676 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
679 skge_write32(hw
, B2_IRQM_MSK
, msk
);
681 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
683 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
684 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
689 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
690 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
692 struct skge_hw
*hw
= skge
->hw
;
693 int port
= skge
->port
;
695 spin_lock_bh(&hw
->phy_lock
);
696 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
699 if (hw
->phy_type
== SK_PHY_BCOM
)
700 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
702 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
703 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
705 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
706 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
707 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
711 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
712 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
714 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
715 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
720 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
721 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
722 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
724 if (hw
->phy_type
== SK_PHY_BCOM
)
725 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
727 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
728 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
729 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
736 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
737 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
738 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
739 PHY_M_LED_MO_10(MO_LED_OFF
) |
740 PHY_M_LED_MO_100(MO_LED_OFF
) |
741 PHY_M_LED_MO_1000(MO_LED_OFF
) |
742 PHY_M_LED_MO_RX(MO_LED_OFF
));
745 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
746 PHY_M_LED_PULS_DUR(PULS_170MS
) |
747 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
751 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
752 PHY_M_LED_MO_RX(MO_LED_OFF
) |
753 (skge
->speed
== SPEED_100
?
754 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
757 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
758 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
759 PHY_M_LED_MO_DUP(MO_LED_ON
) |
760 PHY_M_LED_MO_10(MO_LED_ON
) |
761 PHY_M_LED_MO_100(MO_LED_ON
) |
762 PHY_M_LED_MO_1000(MO_LED_ON
) |
763 PHY_M_LED_MO_RX(MO_LED_ON
));
766 spin_unlock_bh(&hw
->phy_lock
);
769 /* blink LED's for finding board */
770 static int skge_phys_id(struct net_device
*dev
, u32 data
)
772 struct skge_port
*skge
= netdev_priv(dev
);
774 enum led_mode mode
= LED_MODE_TST
;
776 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
777 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
782 skge_led(skge
, mode
);
783 mode
^= LED_MODE_TST
;
785 if (msleep_interruptible(BLINK_MS
))
790 /* back to regular LED state */
791 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
796 static const struct ethtool_ops skge_ethtool_ops
= {
797 .get_settings
= skge_get_settings
,
798 .set_settings
= skge_set_settings
,
799 .get_drvinfo
= skge_get_drvinfo
,
800 .get_regs_len
= skge_get_regs_len
,
801 .get_regs
= skge_get_regs
,
802 .get_wol
= skge_get_wol
,
803 .set_wol
= skge_set_wol
,
804 .get_msglevel
= skge_get_msglevel
,
805 .set_msglevel
= skge_set_msglevel
,
806 .nway_reset
= skge_nway_reset
,
807 .get_link
= ethtool_op_get_link
,
808 .get_ringparam
= skge_get_ring_param
,
809 .set_ringparam
= skge_set_ring_param
,
810 .get_pauseparam
= skge_get_pauseparam
,
811 .set_pauseparam
= skge_set_pauseparam
,
812 .get_coalesce
= skge_get_coalesce
,
813 .set_coalesce
= skge_set_coalesce
,
814 .get_sg
= ethtool_op_get_sg
,
815 .set_sg
= skge_set_sg
,
816 .get_tx_csum
= ethtool_op_get_tx_csum
,
817 .set_tx_csum
= skge_set_tx_csum
,
818 .get_rx_csum
= skge_get_rx_csum
,
819 .set_rx_csum
= skge_set_rx_csum
,
820 .get_strings
= skge_get_strings
,
821 .phys_id
= skge_phys_id
,
822 .get_stats_count
= skge_get_stats_count
,
823 .get_ethtool_stats
= skge_get_ethtool_stats
,
824 .get_perm_addr
= ethtool_op_get_perm_addr
,
828 * Allocate ring elements and chain them together
829 * One-to-one association of board descriptors with ring elements
831 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
833 struct skge_tx_desc
*d
;
834 struct skge_element
*e
;
837 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
841 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
843 if (i
== ring
->count
- 1) {
844 e
->next
= ring
->start
;
845 d
->next_offset
= base
;
848 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
851 ring
->to_use
= ring
->to_clean
= ring
->start
;
856 /* Allocate and setup a new buffer for receiving */
857 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
858 struct sk_buff
*skb
, unsigned int bufsize
)
860 struct skge_rx_desc
*rd
= e
->desc
;
863 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
867 rd
->dma_hi
= map
>> 32;
869 rd
->csum1_start
= ETH_HLEN
;
870 rd
->csum2_start
= ETH_HLEN
;
876 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
877 pci_unmap_addr_set(e
, mapaddr
, map
);
878 pci_unmap_len_set(e
, maplen
, bufsize
);
881 /* Resume receiving using existing skb,
882 * Note: DMA address is not changed by chip.
883 * MTU not changed while receiver active.
885 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
887 struct skge_rx_desc
*rd
= e
->desc
;
890 rd
->csum2_start
= ETH_HLEN
;
894 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
898 /* Free all buffers in receive ring, assumes receiver stopped */
899 static void skge_rx_clean(struct skge_port
*skge
)
901 struct skge_hw
*hw
= skge
->hw
;
902 struct skge_ring
*ring
= &skge
->rx_ring
;
903 struct skge_element
*e
;
907 struct skge_rx_desc
*rd
= e
->desc
;
910 pci_unmap_single(hw
->pdev
,
911 pci_unmap_addr(e
, mapaddr
),
912 pci_unmap_len(e
, maplen
),
914 dev_kfree_skb(e
->skb
);
917 } while ((e
= e
->next
) != ring
->start
);
921 /* Allocate buffers for receive ring
922 * For receive: to_clean is next received frame.
924 static int skge_rx_fill(struct net_device
*dev
)
926 struct skge_port
*skge
= netdev_priv(dev
);
927 struct skge_ring
*ring
= &skge
->rx_ring
;
928 struct skge_element
*e
;
934 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
939 skb_reserve(skb
, NET_IP_ALIGN
);
940 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
941 } while ( (e
= e
->next
) != ring
->start
);
943 ring
->to_clean
= ring
->start
;
947 static const char *skge_pause(enum pause_status status
)
952 case FLOW_STAT_REM_SEND
:
954 case FLOW_STAT_LOC_SEND
:
956 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
959 return "indeterminated";
964 static void skge_link_up(struct skge_port
*skge
)
966 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
967 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
969 netif_carrier_on(skge
->netdev
);
970 netif_wake_queue(skge
->netdev
);
972 if (netif_msg_link(skge
)) {
974 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
975 skge
->netdev
->name
, skge
->speed
,
976 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
977 skge_pause(skge
->flow_status
));
981 static void skge_link_down(struct skge_port
*skge
)
983 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
984 netif_carrier_off(skge
->netdev
);
985 netif_stop_queue(skge
->netdev
);
987 if (netif_msg_link(skge
))
988 printk(KERN_INFO PFX
"%s: Link is down.\n", skge
->netdev
->name
);
992 static void xm_link_down(struct skge_hw
*hw
, int port
)
994 struct net_device
*dev
= hw
->dev
[port
];
995 struct skge_port
*skge
= netdev_priv(dev
);
998 if (hw
->phy_type
== SK_PHY_XMAC
) {
999 msk
= xm_read16(hw
, port
, XM_IMSK
);
1000 msk
|= XM_IS_INP_ASS
| XM_IS_LIPA_RC
| XM_IS_RX_PAGE
| XM_IS_AND
;
1001 xm_write16(hw
, port
, XM_IMSK
, msk
);
1004 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1005 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1006 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1007 /* dummy read to ensure writing */
1008 (void) xm_read16(hw
, port
, XM_MMU_CMD
);
1010 if (netif_carrier_ok(dev
))
1011 skge_link_down(skge
);
1014 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1018 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1019 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1021 if (hw
->phy_type
== SK_PHY_XMAC
)
1024 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1025 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1032 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1037 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1040 if (__xm_phy_read(hw
, port
, reg
, &v
))
1041 printk(KERN_WARNING PFX
"%s: phy read timed out\n",
1042 hw
->dev
[port
]->name
);
1046 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1050 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1051 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1052 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1059 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1060 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1061 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1068 static void genesis_init(struct skge_hw
*hw
)
1070 /* set blink source counter */
1071 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1072 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1074 /* configure mac arbiter */
1075 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1077 /* configure mac arbiter timeout values */
1078 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1079 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1080 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1081 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1083 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1084 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1085 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1086 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1088 /* configure packet arbiter timeout */
1089 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1090 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1091 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1092 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1093 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1096 static void genesis_reset(struct skge_hw
*hw
, int port
)
1098 const u8 zero
[8] = { 0 };
1100 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1102 /* reset the statistics module */
1103 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1104 xm_write16(hw
, port
, XM_IMSK
, 0xffff); /* disable XMAC IRQs */
1105 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1106 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1107 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1109 /* disable Broadcom PHY IRQ */
1110 if (hw
->phy_type
== SK_PHY_BCOM
)
1111 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1113 xm_outhash(hw
, port
, XM_HSM
, zero
);
1117 /* Convert mode to MII values */
1118 static const u16 phy_pause_map
[] = {
1119 [FLOW_MODE_NONE
] = 0,
1120 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1121 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1122 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1125 /* special defines for FIBER (88E1011S only) */
1126 static const u16 fiber_pause_map
[] = {
1127 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1128 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1129 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1130 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1134 /* Check status of Broadcom phy link */
1135 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1137 struct net_device
*dev
= hw
->dev
[port
];
1138 struct skge_port
*skge
= netdev_priv(dev
);
1141 /* read twice because of latch */
1142 (void) xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1143 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1145 if ((status
& PHY_ST_LSYNC
) == 0) {
1146 xm_link_down(hw
, port
);
1150 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1153 if (!(status
& PHY_ST_AN_OVER
))
1156 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1157 if (lpa
& PHY_B_AN_RF
) {
1158 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1163 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1165 /* Check Duplex mismatch */
1166 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1167 case PHY_B_RES_1000FD
:
1168 skge
->duplex
= DUPLEX_FULL
;
1170 case PHY_B_RES_1000HD
:
1171 skge
->duplex
= DUPLEX_HALF
;
1174 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1179 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1180 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1181 case PHY_B_AS_PAUSE_MSK
:
1182 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1185 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1188 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1191 skge
->flow_status
= FLOW_STAT_NONE
;
1193 skge
->speed
= SPEED_1000
;
1196 if (!netif_carrier_ok(dev
))
1197 genesis_link_up(skge
);
1200 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1201 * Phy on for 100 or 10Mbit operation
1203 static void bcom_phy_init(struct skge_port
*skge
)
1205 struct skge_hw
*hw
= skge
->hw
;
1206 int port
= skge
->port
;
1208 u16 id1
, r
, ext
, ctl
;
1210 /* magic workaround patterns for Broadcom */
1211 static const struct {
1215 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1216 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1217 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1218 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1220 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1221 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1224 /* read Id from external PHY (all have the same address) */
1225 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1227 /* Optimize MDIO transfer by suppressing preamble. */
1228 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1230 xm_write16(hw
, port
, XM_MMU_CMD
,r
);
1233 case PHY_BCOM_ID1_C0
:
1235 * Workaround BCOM Errata for the C0 type.
1236 * Write magic patterns to reserved registers.
1238 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1239 xm_phy_write(hw
, port
,
1240 C0hack
[i
].reg
, C0hack
[i
].val
);
1243 case PHY_BCOM_ID1_A1
:
1245 * Workaround BCOM Errata for the A1 type.
1246 * Write magic patterns to reserved registers.
1248 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1249 xm_phy_write(hw
, port
,
1250 A1hack
[i
].reg
, A1hack
[i
].val
);
1255 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1256 * Disable Power Management after reset.
1258 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1259 r
|= PHY_B_AC_DIS_PM
;
1260 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1263 xm_read16(hw
, port
, XM_ISRC
);
1265 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1266 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1268 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1270 * Workaround BCOM Errata #1 for the C5 type.
1271 * 1000Base-T Link Acquisition Failure in Slave Mode
1272 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1274 u16 adv
= PHY_B_1000C_RD
;
1275 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1276 adv
|= PHY_B_1000C_AHD
;
1277 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1278 adv
|= PHY_B_1000C_AFD
;
1279 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1281 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1283 if (skge
->duplex
== DUPLEX_FULL
)
1284 ctl
|= PHY_CT_DUP_MD
;
1285 /* Force to slave */
1286 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1289 /* Set autonegotiation pause parameters */
1290 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1291 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1293 /* Handle Jumbo frames */
1294 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1295 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1296 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1298 ext
|= PHY_B_PEC_HIGH_LA
;
1302 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1303 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1305 /* Use link status change interrupt */
1306 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1309 static void xm_phy_init(struct skge_port
*skge
)
1311 struct skge_hw
*hw
= skge
->hw
;
1312 int port
= skge
->port
;
1315 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1316 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1317 ctrl
|= PHY_X_AN_HD
;
1318 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1319 ctrl
|= PHY_X_AN_FD
;
1321 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1323 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1325 /* Restart Auto-negotiation */
1326 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1328 /* Set DuplexMode in Config register */
1329 if (skge
->duplex
== DUPLEX_FULL
)
1330 ctrl
|= PHY_CT_DUP_MD
;
1332 * Do NOT enable Auto-negotiation here. This would hold
1333 * the link down because no IDLEs are transmitted
1337 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1339 /* Poll PHY for status changes */
1340 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1343 static void xm_check_link(struct net_device
*dev
)
1345 struct skge_port
*skge
= netdev_priv(dev
);
1346 struct skge_hw
*hw
= skge
->hw
;
1347 int port
= skge
->port
;
1350 /* read twice because of latch */
1351 (void) xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1352 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1354 if ((status
& PHY_ST_LSYNC
) == 0) {
1355 xm_link_down(hw
, port
);
1359 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1362 if (!(status
& PHY_ST_AN_OVER
))
1365 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1366 if (lpa
& PHY_B_AN_RF
) {
1367 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1372 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1374 /* Check Duplex mismatch */
1375 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1377 skge
->duplex
= DUPLEX_FULL
;
1380 skge
->duplex
= DUPLEX_HALF
;
1383 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1388 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1389 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1390 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1391 (lpa
& PHY_X_P_SYM_MD
))
1392 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1393 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1394 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1395 /* Enable PAUSE receive, disable PAUSE transmit */
1396 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1397 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1398 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1399 /* Disable PAUSE receive, enable PAUSE transmit */
1400 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1402 skge
->flow_status
= FLOW_STAT_NONE
;
1404 skge
->speed
= SPEED_1000
;
1407 if (!netif_carrier_ok(dev
))
1408 genesis_link_up(skge
);
1411 /* Poll to check for link coming up.
1412 * Since internal PHY is wired to a level triggered pin, can't
1413 * get an interrupt when carrier is detected.
1415 static void xm_link_timer(unsigned long arg
)
1417 struct skge_port
*skge
= (struct skge_port
*) arg
;
1418 struct net_device
*dev
= skge
->netdev
;
1419 struct skge_hw
*hw
= skge
->hw
;
1420 int port
= skge
->port
;
1422 if (!netif_running(dev
))
1425 if (netif_carrier_ok(dev
)) {
1426 xm_read16(hw
, port
, XM_ISRC
);
1427 if (!(xm_read16(hw
, port
, XM_ISRC
) & XM_IS_INP_ASS
))
1430 if (xm_read32(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1432 xm_read16(hw
, port
, XM_ISRC
);
1433 if (xm_read16(hw
, port
, XM_ISRC
) & XM_IS_INP_ASS
)
1437 spin_lock(&hw
->phy_lock
);
1439 spin_unlock(&hw
->phy_lock
);
1442 if (netif_running(dev
))
1443 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1446 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1448 struct net_device
*dev
= hw
->dev
[port
];
1449 struct skge_port
*skge
= netdev_priv(dev
);
1450 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1453 const u8 zero
[6] = { 0 };
1455 for (i
= 0; i
< 10; i
++) {
1456 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1458 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1463 printk(KERN_WARNING PFX
"%s: genesis reset failed\n", dev
->name
);
1466 /* Unreset the XMAC. */
1467 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1470 * Perform additional initialization for external PHYs,
1471 * namely for the 1000baseTX cards that use the XMAC's
1474 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1475 /* Take external Phy out of reset */
1476 r
= skge_read32(hw
, B2_GP_IO
);
1478 r
|= GP_DIR_0
|GP_IO_0
;
1480 r
|= GP_DIR_2
|GP_IO_2
;
1482 skge_write32(hw
, B2_GP_IO
, r
);
1484 /* Enable GMII interface */
1485 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1489 switch(hw
->phy_type
) {
1494 bcom_phy_init(skge
);
1495 bcom_check_link(hw
, port
);
1498 /* Set Station Address */
1499 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1501 /* We don't use match addresses so clear */
1502 for (i
= 1; i
< 16; i
++)
1503 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1505 /* Clear MIB counters */
1506 xm_write16(hw
, port
, XM_STAT_CMD
,
1507 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1508 /* Clear two times according to Errata #3 */
1509 xm_write16(hw
, port
, XM_STAT_CMD
,
1510 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1512 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1513 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1515 /* We don't need the FCS appended to the packet. */
1516 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1518 r
|= XM_RX_BIG_PK_OK
;
1520 if (skge
->duplex
== DUPLEX_HALF
) {
1522 * If in manual half duplex mode the other side might be in
1523 * full duplex mode, so ignore if a carrier extension is not seen
1524 * on frames received
1526 r
|= XM_RX_DIS_CEXT
;
1528 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1531 /* We want short frames padded to 60 bytes. */
1532 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1535 * Bump up the transmit threshold. This helps hold off transmit
1536 * underruns when we're blasting traffic from both ports at once.
1538 xm_write16(hw
, port
, XM_TX_THR
, 512);
1541 * Enable the reception of all error frames. This is is
1542 * a necessary evil due to the design of the XMAC. The
1543 * XMAC's receive FIFO is only 8K in size, however jumbo
1544 * frames can be up to 9000 bytes in length. When bad
1545 * frame filtering is enabled, the XMAC's RX FIFO operates
1546 * in 'store and forward' mode. For this to work, the
1547 * entire frame has to fit into the FIFO, but that means
1548 * that jumbo frames larger than 8192 bytes will be
1549 * truncated. Disabling all bad frame filtering causes
1550 * the RX FIFO to operate in streaming mode, in which
1551 * case the XMAC will start transferring frames out of the
1552 * RX FIFO as soon as the FIFO threshold is reached.
1554 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1558 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1559 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1560 * and 'Octets Rx OK Hi Cnt Ov'.
1562 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1565 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1566 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1567 * and 'Octets Tx OK Hi Cnt Ov'.
1569 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1571 /* Configure MAC arbiter */
1572 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1574 /* configure timeout values */
1575 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1576 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1577 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1578 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1580 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1581 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1582 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1583 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1585 /* Configure Rx MAC FIFO */
1586 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1587 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1588 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1590 /* Configure Tx MAC FIFO */
1591 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1592 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1593 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1596 /* Enable frame flushing if jumbo frames used */
1597 skge_write16(hw
, SK_REG(port
,RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1599 /* enable timeout timers if normal frames */
1600 skge_write16(hw
, B3_PA_CTRL
,
1601 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1605 static void genesis_stop(struct skge_port
*skge
)
1607 struct skge_hw
*hw
= skge
->hw
;
1608 int port
= skge
->port
;
1611 genesis_reset(hw
, port
);
1613 /* Clear Tx packet arbiter timeout IRQ */
1614 skge_write16(hw
, B3_PA_CTRL
,
1615 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1618 * If the transfer sticks at the MAC the STOP command will not
1619 * terminate if we don't flush the XMAC's transmit FIFO !
1621 xm_write32(hw
, port
, XM_MODE
,
1622 xm_read32(hw
, port
, XM_MODE
)|XM_MD_FTF
);
1626 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1628 /* For external PHYs there must be special handling */
1629 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1630 reg
= skge_read32(hw
, B2_GP_IO
);
1638 skge_write32(hw
, B2_GP_IO
, reg
);
1639 skge_read32(hw
, B2_GP_IO
);
1642 xm_write16(hw
, port
, XM_MMU_CMD
,
1643 xm_read16(hw
, port
, XM_MMU_CMD
)
1644 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1646 xm_read16(hw
, port
, XM_MMU_CMD
);
1650 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1652 struct skge_hw
*hw
= skge
->hw
;
1653 int port
= skge
->port
;
1655 unsigned long timeout
= jiffies
+ HZ
;
1657 xm_write16(hw
, port
,
1658 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1660 /* wait for update to complete */
1661 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1662 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1663 if (time_after(jiffies
, timeout
))
1668 /* special case for 64 bit octet counter */
1669 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1670 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1671 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1672 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1674 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1675 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1678 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1680 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1681 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1683 if (netif_msg_intr(skge
))
1684 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1685 skge
->netdev
->name
, status
);
1687 if (hw
->phy_type
== SK_PHY_XMAC
&&
1688 (status
& (XM_IS_INP_ASS
| XM_IS_LIPA_RC
)))
1689 xm_link_down(hw
, port
);
1691 if (status
& XM_IS_TXF_UR
) {
1692 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1693 ++skge
->net_stats
.tx_fifo_errors
;
1695 if (status
& XM_IS_RXF_OV
) {
1696 xm_write32(hw
, port
, XM_MODE
, XM_MD_FRF
);
1697 ++skge
->net_stats
.rx_fifo_errors
;
1701 static void genesis_link_up(struct skge_port
*skge
)
1703 struct skge_hw
*hw
= skge
->hw
;
1704 int port
= skge
->port
;
1708 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1711 * enabling pause frame reception is required for 1000BT
1712 * because the XMAC is not reset if the link is going down
1714 if (skge
->flow_status
== FLOW_STAT_NONE
||
1715 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1716 /* Disable Pause Frame Reception */
1717 cmd
|= XM_MMU_IGN_PF
;
1719 /* Enable Pause Frame Reception */
1720 cmd
&= ~XM_MMU_IGN_PF
;
1722 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1724 mode
= xm_read32(hw
, port
, XM_MODE
);
1725 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1726 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1728 * Configure Pause Frame Generation
1729 * Use internal and external Pause Frame Generation.
1730 * Sending pause frames is edge triggered.
1731 * Send a Pause frame with the maximum pause time if
1732 * internal oder external FIFO full condition occurs.
1733 * Send a zero pause time frame to re-start transmission.
1735 /* XM_PAUSE_DA = '010000C28001' (default) */
1736 /* XM_MAC_PTIME = 0xffff (maximum) */
1737 /* remember this value is defined in big endian (!) */
1738 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1740 mode
|= XM_PAUSE_MODE
;
1741 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1744 * disable pause frame generation is required for 1000BT
1745 * because the XMAC is not reset if the link is going down
1747 /* Disable Pause Mode in Mode Register */
1748 mode
&= ~XM_PAUSE_MODE
;
1750 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1753 xm_write32(hw
, port
, XM_MODE
, mode
);
1755 if (hw
->phy_type
!= SK_PHY_XMAC
)
1756 msk
|= XM_IS_INP_ASS
; /* disable GP0 interrupt bit */
1758 xm_write16(hw
, port
, XM_IMSK
, msk
);
1759 xm_read16(hw
, port
, XM_ISRC
);
1761 /* get MMU Command Reg. */
1762 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1763 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1764 cmd
|= XM_MMU_GMII_FD
;
1767 * Workaround BCOM Errata (#10523) for all BCom Phys
1768 * Enable Power Management after link up
1770 if (hw
->phy_type
== SK_PHY_BCOM
) {
1771 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1772 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1773 & ~PHY_B_AC_DIS_PM
);
1774 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1778 xm_write16(hw
, port
, XM_MMU_CMD
,
1779 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1784 static inline void bcom_phy_intr(struct skge_port
*skge
)
1786 struct skge_hw
*hw
= skge
->hw
;
1787 int port
= skge
->port
;
1790 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1791 if (netif_msg_intr(skge
))
1792 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x\n",
1793 skge
->netdev
->name
, isrc
);
1795 if (isrc
& PHY_B_IS_PSE
)
1796 printk(KERN_ERR PFX
"%s: uncorrectable pair swap error\n",
1797 hw
->dev
[port
]->name
);
1799 /* Workaround BCom Errata:
1800 * enable and disable loopback mode if "NO HCD" occurs.
1802 if (isrc
& PHY_B_IS_NO_HDCL
) {
1803 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1804 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1805 ctrl
| PHY_CT_LOOP
);
1806 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1807 ctrl
& ~PHY_CT_LOOP
);
1810 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1811 bcom_check_link(hw
, port
);
1815 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1819 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1820 gma_write16(hw
, port
, GM_SMI_CTRL
,
1821 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1822 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1825 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1829 printk(KERN_WARNING PFX
"%s: phy write timeout\n",
1830 hw
->dev
[port
]->name
);
1834 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1838 gma_write16(hw
, port
, GM_SMI_CTRL
,
1839 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1840 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1842 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1844 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1850 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1854 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1857 if (__gm_phy_read(hw
, port
, reg
, &v
))
1858 printk(KERN_WARNING PFX
"%s: phy read timeout\n",
1859 hw
->dev
[port
]->name
);
1863 /* Marvell Phy Initialization */
1864 static void yukon_init(struct skge_hw
*hw
, int port
)
1866 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1867 u16 ctrl
, ct1000
, adv
;
1869 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1870 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1872 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1873 PHY_M_EC_MAC_S_MSK
);
1874 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1876 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1878 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1881 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1882 if (skge
->autoneg
== AUTONEG_DISABLE
)
1883 ctrl
&= ~PHY_CT_ANE
;
1885 ctrl
|= PHY_CT_RESET
;
1886 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1892 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1894 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1895 ct1000
|= PHY_M_1000C_AFD
;
1896 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1897 ct1000
|= PHY_M_1000C_AHD
;
1898 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1899 adv
|= PHY_M_AN_100_FD
;
1900 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1901 adv
|= PHY_M_AN_100_HD
;
1902 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1903 adv
|= PHY_M_AN_10_FD
;
1904 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1905 adv
|= PHY_M_AN_10_HD
;
1907 /* Set Flow-control capabilities */
1908 adv
|= phy_pause_map
[skge
->flow_control
];
1910 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1911 adv
|= PHY_M_AN_1000X_AFD
;
1912 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1913 adv
|= PHY_M_AN_1000X_AHD
;
1915 adv
|= fiber_pause_map
[skge
->flow_control
];
1918 /* Restart Auto-negotiation */
1919 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1921 /* forced speed/duplex settings */
1922 ct1000
= PHY_M_1000C_MSE
;
1924 if (skge
->duplex
== DUPLEX_FULL
)
1925 ctrl
|= PHY_CT_DUP_MD
;
1927 switch (skge
->speed
) {
1929 ctrl
|= PHY_CT_SP1000
;
1932 ctrl
|= PHY_CT_SP100
;
1936 ctrl
|= PHY_CT_RESET
;
1939 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
1941 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
1942 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1944 /* Enable phy interrupt on autonegotiation complete (or link up) */
1945 if (skge
->autoneg
== AUTONEG_ENABLE
)
1946 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
1948 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
1951 static void yukon_reset(struct skge_hw
*hw
, int port
)
1953 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
1954 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
1955 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
1956 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
1957 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
1959 gma_write16(hw
, port
, GM_RX_CTRL
,
1960 gma_read16(hw
, port
, GM_RX_CTRL
)
1961 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
1964 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1965 static int is_yukon_lite_a0(struct skge_hw
*hw
)
1970 if (hw
->chip_id
!= CHIP_ID_YUKON
)
1973 reg
= skge_read32(hw
, B2_FAR
);
1974 skge_write8(hw
, B2_FAR
+ 3, 0xff);
1975 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
1976 skge_write32(hw
, B2_FAR
, reg
);
1980 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
1982 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1985 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
1987 /* WA code for COMA mode -- set PHY reset */
1988 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1989 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
1990 reg
= skge_read32(hw
, B2_GP_IO
);
1991 reg
|= GP_DIR_9
| GP_IO_9
;
1992 skge_write32(hw
, B2_GP_IO
, reg
);
1996 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
1997 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
1999 /* WA code for COMA mode -- clear PHY reset */
2000 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2001 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2002 reg
= skge_read32(hw
, B2_GP_IO
);
2005 skge_write32(hw
, B2_GP_IO
, reg
);
2008 /* Set hardware config mode */
2009 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2010 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2011 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2013 /* Clear GMC reset */
2014 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2015 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2016 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2018 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2019 reg
= GM_GPCR_AU_ALL_DIS
;
2020 gma_write16(hw
, port
, GM_GP_CTRL
,
2021 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2023 switch (skge
->speed
) {
2025 reg
&= ~GM_GPCR_SPEED_100
;
2026 reg
|= GM_GPCR_SPEED_1000
;
2029 reg
&= ~GM_GPCR_SPEED_1000
;
2030 reg
|= GM_GPCR_SPEED_100
;
2033 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2037 if (skge
->duplex
== DUPLEX_FULL
)
2038 reg
|= GM_GPCR_DUP_FULL
;
2040 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2042 switch (skge
->flow_control
) {
2043 case FLOW_MODE_NONE
:
2044 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2045 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2047 case FLOW_MODE_LOC_SEND
:
2048 /* disable Rx flow-control */
2049 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2051 case FLOW_MODE_SYMMETRIC
:
2052 case FLOW_MODE_SYM_OR_REM
:
2053 /* enable Tx & Rx flow-control */
2057 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2058 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2060 yukon_init(hw
, port
);
2063 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2064 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2066 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2067 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2068 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2070 /* transmit control */
2071 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2073 /* receive control reg: unicast + multicast + no FCS */
2074 gma_write16(hw
, port
, GM_RX_CTRL
,
2075 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2077 /* transmit flow control */
2078 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2080 /* transmit parameter */
2081 gma_write16(hw
, port
, GM_TX_PARAM
,
2082 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2083 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2084 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2086 /* serial mode register */
2087 reg
= GM_SMOD_VLAN_ENA
| IPG_DATA_VAL(IPG_DATA_DEF
);
2088 if (hw
->dev
[port
]->mtu
> 1500)
2089 reg
|= GM_SMOD_JUMBO_ENA
;
2091 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2093 /* physical address: used for pause frames */
2094 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2095 /* virtual address for data */
2096 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2098 /* enable interrupt mask for counter overflows */
2099 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2100 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2101 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2103 /* Initialize Mac Fifo */
2105 /* Configure Rx MAC FIFO */
2106 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2107 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2109 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2110 if (is_yukon_lite_a0(hw
))
2111 reg
&= ~GMF_RX_F_FL_ON
;
2113 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2114 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2116 * because Pause Packet Truncation in GMAC is not working
2117 * we have to increase the Flush Threshold to 64 bytes
2118 * in order to flush pause packets in Rx FIFO on Yukon-1
2120 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2122 /* Configure Tx MAC FIFO */
2123 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2124 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2127 /* Go into power down mode */
2128 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2132 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2133 ctrl
|= PHY_M_PC_POL_R_DIS
;
2134 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2136 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2137 ctrl
|= PHY_CT_RESET
;
2138 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2140 /* switch IEEE compatible power down mode on */
2141 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2142 ctrl
|= PHY_CT_PDOWN
;
2143 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2146 static void yukon_stop(struct skge_port
*skge
)
2148 struct skge_hw
*hw
= skge
->hw
;
2149 int port
= skge
->port
;
2151 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2152 yukon_reset(hw
, port
);
2154 gma_write16(hw
, port
, GM_GP_CTRL
,
2155 gma_read16(hw
, port
, GM_GP_CTRL
)
2156 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2157 gma_read16(hw
, port
, GM_GP_CTRL
);
2159 yukon_suspend(hw
, port
);
2161 /* set GPHY Control reset */
2162 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2163 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2166 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2168 struct skge_hw
*hw
= skge
->hw
;
2169 int port
= skge
->port
;
2172 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2173 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2174 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2175 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2177 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2178 data
[i
] = gma_read32(hw
, port
,
2179 skge_stats
[i
].gma_offset
);
2182 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2184 struct net_device
*dev
= hw
->dev
[port
];
2185 struct skge_port
*skge
= netdev_priv(dev
);
2186 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2188 if (netif_msg_intr(skge
))
2189 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
2192 if (status
& GM_IS_RX_FF_OR
) {
2193 ++skge
->net_stats
.rx_fifo_errors
;
2194 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2197 if (status
& GM_IS_TX_FF_UR
) {
2198 ++skge
->net_stats
.tx_fifo_errors
;
2199 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2204 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2206 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2207 case PHY_M_PS_SPEED_1000
:
2209 case PHY_M_PS_SPEED_100
:
2216 static void yukon_link_up(struct skge_port
*skge
)
2218 struct skge_hw
*hw
= skge
->hw
;
2219 int port
= skge
->port
;
2222 /* Enable Transmit FIFO Underrun */
2223 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2225 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2226 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2227 reg
|= GM_GPCR_DUP_FULL
;
2230 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2231 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2233 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2237 static void yukon_link_down(struct skge_port
*skge
)
2239 struct skge_hw
*hw
= skge
->hw
;
2240 int port
= skge
->port
;
2243 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2244 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2245 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2247 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2248 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2249 ctrl
|= PHY_M_AN_ASP
;
2250 /* restore Asymmetric Pause bit */
2251 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2254 skge_link_down(skge
);
2256 yukon_init(hw
, port
);
2259 static void yukon_phy_intr(struct skge_port
*skge
)
2261 struct skge_hw
*hw
= skge
->hw
;
2262 int port
= skge
->port
;
2263 const char *reason
= NULL
;
2264 u16 istatus
, phystat
;
2266 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2267 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2269 if (netif_msg_intr(skge
))
2270 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x 0x%x\n",
2271 skge
->netdev
->name
, istatus
, phystat
);
2273 if (istatus
& PHY_M_IS_AN_COMPL
) {
2274 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2276 reason
= "remote fault";
2280 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2281 reason
= "master/slave fault";
2285 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2286 reason
= "speed/duplex";
2290 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2291 ? DUPLEX_FULL
: DUPLEX_HALF
;
2292 skge
->speed
= yukon_speed(hw
, phystat
);
2294 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2295 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2296 case PHY_M_PS_PAUSE_MSK
:
2297 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2299 case PHY_M_PS_RX_P_EN
:
2300 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2302 case PHY_M_PS_TX_P_EN
:
2303 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2306 skge
->flow_status
= FLOW_STAT_NONE
;
2309 if (skge
->flow_status
== FLOW_STAT_NONE
||
2310 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2311 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2313 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2314 yukon_link_up(skge
);
2318 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2319 skge
->speed
= yukon_speed(hw
, phystat
);
2321 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2322 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2323 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2324 if (phystat
& PHY_M_PS_LINK_UP
)
2325 yukon_link_up(skge
);
2327 yukon_link_down(skge
);
2331 printk(KERN_ERR PFX
"%s: autonegotiation failed (%s)\n",
2332 skge
->netdev
->name
, reason
);
2334 /* XXX restart autonegotiation? */
2337 static void skge_phy_reset(struct skge_port
*skge
)
2339 struct skge_hw
*hw
= skge
->hw
;
2340 int port
= skge
->port
;
2341 struct net_device
*dev
= hw
->dev
[port
];
2343 netif_stop_queue(skge
->netdev
);
2344 netif_carrier_off(skge
->netdev
);
2346 spin_lock_bh(&hw
->phy_lock
);
2347 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2348 genesis_reset(hw
, port
);
2349 genesis_mac_init(hw
, port
);
2351 yukon_reset(hw
, port
);
2352 yukon_init(hw
, port
);
2354 spin_unlock_bh(&hw
->phy_lock
);
2356 dev
->set_multicast_list(dev
);
2359 /* Basic MII support */
2360 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2362 struct mii_ioctl_data
*data
= if_mii(ifr
);
2363 struct skge_port
*skge
= netdev_priv(dev
);
2364 struct skge_hw
*hw
= skge
->hw
;
2365 int err
= -EOPNOTSUPP
;
2367 if (!netif_running(dev
))
2368 return -ENODEV
; /* Phy still in reset */
2372 data
->phy_id
= hw
->phy_addr
;
2377 spin_lock_bh(&hw
->phy_lock
);
2378 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2379 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2381 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2382 spin_unlock_bh(&hw
->phy_lock
);
2383 data
->val_out
= val
;
2388 if (!capable(CAP_NET_ADMIN
))
2391 spin_lock_bh(&hw
->phy_lock
);
2392 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2393 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2396 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2398 spin_unlock_bh(&hw
->phy_lock
);
2404 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2410 end
= start
+ len
- 1;
2412 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2413 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2414 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2415 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2416 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2418 if (q
== Q_R1
|| q
== Q_R2
) {
2419 /* Set thresholds on receive queue's */
2420 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2422 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2425 /* Enable store & forward on Tx queue's because
2426 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2428 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2431 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2434 /* Setup Bus Memory Interface */
2435 static void skge_qset(struct skge_port
*skge
, u16 q
,
2436 const struct skge_element
*e
)
2438 struct skge_hw
*hw
= skge
->hw
;
2439 u32 watermark
= 0x600;
2440 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2442 /* optimization to reduce window on 32bit/33mhz */
2443 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2446 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2447 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2448 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2449 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2452 static int skge_up(struct net_device
*dev
)
2454 struct skge_port
*skge
= netdev_priv(dev
);
2455 struct skge_hw
*hw
= skge
->hw
;
2456 int port
= skge
->port
;
2457 u32 chunk
, ram_addr
;
2458 size_t rx_size
, tx_size
;
2461 if (!is_valid_ether_addr(dev
->dev_addr
))
2464 if (netif_msg_ifup(skge
))
2465 printk(KERN_INFO PFX
"%s: enabling interface\n", dev
->name
);
2467 if (dev
->mtu
> RX_BUF_SIZE
)
2468 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2470 skge
->rx_buf_size
= RX_BUF_SIZE
;
2473 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2474 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2475 skge
->mem_size
= tx_size
+ rx_size
;
2476 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2480 BUG_ON(skge
->dma
& 7);
2482 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2483 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2488 memset(skge
->mem
, 0, skge
->mem_size
);
2490 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2494 err
= skge_rx_fill(dev
);
2498 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2499 skge
->dma
+ rx_size
);
2503 /* Initialize MAC */
2504 spin_lock_bh(&hw
->phy_lock
);
2505 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2506 genesis_mac_init(hw
, port
);
2508 yukon_mac_init(hw
, port
);
2509 spin_unlock_bh(&hw
->phy_lock
);
2511 /* Configure RAMbuffers */
2512 chunk
= hw
->ram_size
/ ((hw
->ports
+ 1)*2);
2513 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2515 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2516 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2518 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2519 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2520 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2522 /* Start receiver BMU */
2524 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2525 skge_led(skge
, LED_MODE_ON
);
2527 spin_lock_irq(&hw
->hw_lock
);
2528 hw
->intr_mask
|= portmask
[port
];
2529 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2530 spin_unlock_irq(&hw
->hw_lock
);
2532 netif_poll_enable(dev
);
2536 skge_rx_clean(skge
);
2537 kfree(skge
->rx_ring
.start
);
2539 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2545 static int skge_down(struct net_device
*dev
)
2547 struct skge_port
*skge
= netdev_priv(dev
);
2548 struct skge_hw
*hw
= skge
->hw
;
2549 int port
= skge
->port
;
2551 if (skge
->mem
== NULL
)
2554 if (netif_msg_ifdown(skge
))
2555 printk(KERN_INFO PFX
"%s: disabling interface\n", dev
->name
);
2557 netif_stop_queue(dev
);
2559 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2560 del_timer_sync(&skge
->link_timer
);
2562 netif_poll_disable(dev
);
2563 netif_carrier_off(dev
);
2565 spin_lock_irq(&hw
->hw_lock
);
2566 hw
->intr_mask
&= ~portmask
[port
];
2567 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2568 spin_unlock_irq(&hw
->hw_lock
);
2570 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2571 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2576 /* Stop transmitter */
2577 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2578 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2579 RB_RST_SET
|RB_DIS_OP_MD
);
2582 /* Disable Force Sync bit and Enable Alloc bit */
2583 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2584 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2586 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2587 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2588 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2590 /* Reset PCI FIFO */
2591 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2592 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2594 /* Reset the RAM Buffer async Tx queue */
2595 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2597 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2598 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2599 RB_RST_SET
|RB_DIS_OP_MD
);
2600 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2602 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2603 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2604 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2606 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2607 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2610 skge_led(skge
, LED_MODE_OFF
);
2612 netif_tx_lock_bh(dev
);
2614 netif_tx_unlock_bh(dev
);
2616 skge_rx_clean(skge
);
2618 kfree(skge
->rx_ring
.start
);
2619 kfree(skge
->tx_ring
.start
);
2620 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2625 static inline int skge_avail(const struct skge_ring
*ring
)
2628 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2629 + (ring
->to_clean
- ring
->to_use
) - 1;
2632 static int skge_xmit_frame(struct sk_buff
*skb
, struct net_device
*dev
)
2634 struct skge_port
*skge
= netdev_priv(dev
);
2635 struct skge_hw
*hw
= skge
->hw
;
2636 struct skge_element
*e
;
2637 struct skge_tx_desc
*td
;
2642 if (skb_padto(skb
, ETH_ZLEN
))
2643 return NETDEV_TX_OK
;
2645 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2646 return NETDEV_TX_BUSY
;
2648 e
= skge
->tx_ring
.to_use
;
2650 BUG_ON(td
->control
& BMU_OWN
);
2652 len
= skb_headlen(skb
);
2653 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2654 pci_unmap_addr_set(e
, mapaddr
, map
);
2655 pci_unmap_len_set(e
, maplen
, len
);
2658 td
->dma_hi
= map
>> 32;
2660 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2661 const int offset
= skb_transport_offset(skb
);
2663 /* This seems backwards, but it is what the sk98lin
2664 * does. Looks like hardware is wrong?
2666 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
2667 && hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2668 control
= BMU_TCP_CHECK
;
2670 control
= BMU_UDP_CHECK
;
2673 td
->csum_start
= offset
;
2674 td
->csum_write
= offset
+ skb
->csum_offset
;
2676 control
= BMU_CHECK
;
2678 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2679 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2681 struct skge_tx_desc
*tf
= td
;
2683 control
|= BMU_STFWD
;
2684 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2685 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2687 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2688 frag
->size
, PCI_DMA_TODEVICE
);
2693 BUG_ON(tf
->control
& BMU_OWN
);
2696 tf
->dma_hi
= (u64
) map
>> 32;
2697 pci_unmap_addr_set(e
, mapaddr
, map
);
2698 pci_unmap_len_set(e
, maplen
, frag
->size
);
2700 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2702 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2704 /* Make sure all the descriptors written */
2706 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2709 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2711 if (unlikely(netif_msg_tx_queued(skge
)))
2712 printk(KERN_DEBUG
"%s: tx queued, slot %td, len %d\n",
2713 dev
->name
, e
- skge
->tx_ring
.start
, skb
->len
);
2715 skge
->tx_ring
.to_use
= e
->next
;
2718 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2719 pr_debug("%s: transmit queue full\n", dev
->name
);
2720 netif_stop_queue(dev
);
2723 dev
->trans_start
= jiffies
;
2725 return NETDEV_TX_OK
;
2729 /* Free resources associated with this reing element */
2730 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2733 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2735 /* skb header vs. fragment */
2736 if (control
& BMU_STF
)
2737 pci_unmap_single(pdev
, pci_unmap_addr(e
, mapaddr
),
2738 pci_unmap_len(e
, maplen
),
2741 pci_unmap_page(pdev
, pci_unmap_addr(e
, mapaddr
),
2742 pci_unmap_len(e
, maplen
),
2745 if (control
& BMU_EOF
) {
2746 if (unlikely(netif_msg_tx_done(skge
)))
2747 printk(KERN_DEBUG PFX
"%s: tx done slot %td\n",
2748 skge
->netdev
->name
, e
- skge
->tx_ring
.start
);
2750 dev_kfree_skb(e
->skb
);
2754 /* Free all buffers in transmit ring */
2755 static void skge_tx_clean(struct net_device
*dev
)
2757 struct skge_port
*skge
= netdev_priv(dev
);
2758 struct skge_element
*e
;
2760 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2761 struct skge_tx_desc
*td
= e
->desc
;
2762 skge_tx_free(skge
, e
, td
->control
);
2766 skge
->tx_ring
.to_clean
= e
;
2767 netif_wake_queue(dev
);
2770 static void skge_tx_timeout(struct net_device
*dev
)
2772 struct skge_port
*skge
= netdev_priv(dev
);
2774 if (netif_msg_timer(skge
))
2775 printk(KERN_DEBUG PFX
"%s: tx timeout\n", dev
->name
);
2777 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2781 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2785 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2788 if (!netif_running(dev
)) {
2804 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2806 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2810 crc
= ether_crc_le(ETH_ALEN
, addr
);
2812 filter
[bit
/8] |= 1 << (bit
%8);
2815 static void genesis_set_multicast(struct net_device
*dev
)
2817 struct skge_port
*skge
= netdev_priv(dev
);
2818 struct skge_hw
*hw
= skge
->hw
;
2819 int port
= skge
->port
;
2820 int i
, count
= dev
->mc_count
;
2821 struct dev_mc_list
*list
= dev
->mc_list
;
2825 mode
= xm_read32(hw
, port
, XM_MODE
);
2826 mode
|= XM_MD_ENA_HASH
;
2827 if (dev
->flags
& IFF_PROMISC
)
2828 mode
|= XM_MD_ENA_PROM
;
2830 mode
&= ~XM_MD_ENA_PROM
;
2832 if (dev
->flags
& IFF_ALLMULTI
)
2833 memset(filter
, 0xff, sizeof(filter
));
2835 memset(filter
, 0, sizeof(filter
));
2837 if (skge
->flow_status
== FLOW_STAT_REM_SEND
2838 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2839 genesis_add_filter(filter
, pause_mc_addr
);
2841 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
2842 genesis_add_filter(filter
, list
->dmi_addr
);
2845 xm_write32(hw
, port
, XM_MODE
, mode
);
2846 xm_outhash(hw
, port
, XM_HSM
, filter
);
2849 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2851 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2852 filter
[bit
/8] |= 1 << (bit
%8);
2855 static void yukon_set_multicast(struct net_device
*dev
)
2857 struct skge_port
*skge
= netdev_priv(dev
);
2858 struct skge_hw
*hw
= skge
->hw
;
2859 int port
= skge
->port
;
2860 struct dev_mc_list
*list
= dev
->mc_list
;
2861 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
2862 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2866 memset(filter
, 0, sizeof(filter
));
2868 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2869 reg
|= GM_RXCR_UCF_ENA
;
2871 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2872 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2873 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2874 memset(filter
, 0xff, sizeof(filter
));
2875 else if (dev
->mc_count
== 0 && !rx_pause
)/* no multicast */
2876 reg
&= ~GM_RXCR_MCF_ENA
;
2879 reg
|= GM_RXCR_MCF_ENA
;
2882 yukon_add_filter(filter
, pause_mc_addr
);
2884 for (i
= 0; list
&& i
< dev
->mc_count
; i
++, list
= list
->next
)
2885 yukon_add_filter(filter
, list
->dmi_addr
);
2889 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
2890 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
2891 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
2892 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
2893 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
2894 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
2895 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
2896 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
2898 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
2901 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
2903 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2904 return status
>> XMR_FS_LEN_SHIFT
;
2906 return status
>> GMR_FS_LEN_SHIFT
;
2909 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
2911 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2912 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
2914 return (status
& GMR_FS_ANY_ERR
) ||
2915 (status
& GMR_FS_RX_OK
) == 0;
2919 /* Get receive buffer from descriptor.
2920 * Handles copy of small buffers and reallocation failures
2922 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
2923 struct skge_element
*e
,
2924 u32 control
, u32 status
, u16 csum
)
2926 struct skge_port
*skge
= netdev_priv(dev
);
2927 struct sk_buff
*skb
;
2928 u16 len
= control
& BMU_BBC
;
2930 if (unlikely(netif_msg_rx_status(skge
)))
2931 printk(KERN_DEBUG PFX
"%s: rx slot %td status 0x%x len %d\n",
2932 dev
->name
, e
- skge
->rx_ring
.start
,
2935 if (len
> skge
->rx_buf_size
)
2938 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
2941 if (bad_phy_status(skge
->hw
, status
))
2944 if (phy_length(skge
->hw
, status
) != len
)
2947 if (len
< RX_COPY_THRESHOLD
) {
2948 skb
= netdev_alloc_skb(dev
, len
+ 2);
2952 skb_reserve(skb
, 2);
2953 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
2954 pci_unmap_addr(e
, mapaddr
),
2955 len
, PCI_DMA_FROMDEVICE
);
2956 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
2957 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
2958 pci_unmap_addr(e
, mapaddr
),
2959 len
, PCI_DMA_FROMDEVICE
);
2960 skge_rx_reuse(e
, skge
->rx_buf_size
);
2962 struct sk_buff
*nskb
;
2963 nskb
= netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
);
2967 skb_reserve(nskb
, NET_IP_ALIGN
);
2968 pci_unmap_single(skge
->hw
->pdev
,
2969 pci_unmap_addr(e
, mapaddr
),
2970 pci_unmap_len(e
, maplen
),
2971 PCI_DMA_FROMDEVICE
);
2973 prefetch(skb
->data
);
2974 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
2978 if (skge
->rx_csum
) {
2980 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2983 skb
->protocol
= eth_type_trans(skb
, dev
);
2988 if (netif_msg_rx_err(skge
))
2989 printk(KERN_DEBUG PFX
"%s: rx err, slot %td control 0x%x status 0x%x\n",
2990 dev
->name
, e
- skge
->rx_ring
.start
,
2993 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
2994 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
2995 skge
->net_stats
.rx_length_errors
++;
2996 if (status
& XMR_FS_FRA_ERR
)
2997 skge
->net_stats
.rx_frame_errors
++;
2998 if (status
& XMR_FS_FCS_ERR
)
2999 skge
->net_stats
.rx_crc_errors
++;
3001 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3002 skge
->net_stats
.rx_length_errors
++;
3003 if (status
& GMR_FS_FRAGMENT
)
3004 skge
->net_stats
.rx_frame_errors
++;
3005 if (status
& GMR_FS_CRC_ERR
)
3006 skge
->net_stats
.rx_crc_errors
++;
3010 skge_rx_reuse(e
, skge
->rx_buf_size
);
3014 /* Free all buffers in Tx ring which are no longer owned by device */
3015 static void skge_tx_done(struct net_device
*dev
)
3017 struct skge_port
*skge
= netdev_priv(dev
);
3018 struct skge_ring
*ring
= &skge
->tx_ring
;
3019 struct skge_element
*e
;
3021 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3023 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3024 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3026 if (control
& BMU_OWN
)
3029 skge_tx_free(skge
, e
, control
);
3031 skge
->tx_ring
.to_clean
= e
;
3033 /* Can run lockless until we need to synchronize to restart queue. */
3036 if (unlikely(netif_queue_stopped(dev
) &&
3037 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3039 if (unlikely(netif_queue_stopped(dev
) &&
3040 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3041 netif_wake_queue(dev
);
3044 netif_tx_unlock(dev
);
3048 static int skge_poll(struct net_device
*dev
, int *budget
)
3050 struct skge_port
*skge
= netdev_priv(dev
);
3051 struct skge_hw
*hw
= skge
->hw
;
3052 struct skge_ring
*ring
= &skge
->rx_ring
;
3053 struct skge_element
*e
;
3054 unsigned long flags
;
3055 int to_do
= min(dev
->quota
, *budget
);
3060 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3062 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3063 struct skge_rx_desc
*rd
= e
->desc
;
3064 struct sk_buff
*skb
;
3068 control
= rd
->control
;
3069 if (control
& BMU_OWN
)
3072 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3074 dev
->last_rx
= jiffies
;
3075 netif_receive_skb(skb
);
3082 /* restart receiver */
3084 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3086 *budget
-= work_done
;
3087 dev
->quota
-= work_done
;
3089 if (work_done
>= to_do
)
3090 return 1; /* not done */
3092 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3093 __netif_rx_complete(dev
);
3094 hw
->intr_mask
|= napimask
[skge
->port
];
3095 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3096 skge_read32(hw
, B0_IMSK
);
3097 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3102 /* Parity errors seem to happen when Genesis is connected to a switch
3103 * with no other ports present. Heartbeat error??
3105 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3107 struct net_device
*dev
= hw
->dev
[port
];
3110 struct skge_port
*skge
= netdev_priv(dev
);
3111 ++skge
->net_stats
.tx_heartbeat_errors
;
3114 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3115 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3118 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3119 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3120 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3121 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3124 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3126 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3127 genesis_mac_intr(hw
, port
);
3129 yukon_mac_intr(hw
, port
);
3132 /* Handle device specific framing and timeout interrupts */
3133 static void skge_error_irq(struct skge_hw
*hw
)
3135 struct pci_dev
*pdev
= hw
->pdev
;
3136 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3138 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3139 /* clear xmac errors */
3140 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3141 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3142 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3143 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3145 /* Timestamp (unused) overflow */
3146 if (hwstatus
& IS_IRQ_TIST_OV
)
3147 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3150 if (hwstatus
& IS_RAM_RD_PAR
) {
3151 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3152 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3155 if (hwstatus
& IS_RAM_WR_PAR
) {
3156 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3157 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3160 if (hwstatus
& IS_M1_PAR_ERR
)
3161 skge_mac_parity(hw
, 0);
3163 if (hwstatus
& IS_M2_PAR_ERR
)
3164 skge_mac_parity(hw
, 1);
3166 if (hwstatus
& IS_R1_PAR_ERR
) {
3167 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3169 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3172 if (hwstatus
& IS_R2_PAR_ERR
) {
3173 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3175 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3178 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3179 u16 pci_status
, pci_cmd
;
3181 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3182 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3184 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3185 pci_cmd
, pci_status
);
3187 /* Write the error bits back to clear them. */
3188 pci_status
&= PCI_STATUS_ERROR_BITS
;
3189 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3190 pci_write_config_word(pdev
, PCI_COMMAND
,
3191 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3192 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3193 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3195 /* if error still set then just ignore it */
3196 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3197 if (hwstatus
& IS_IRQ_STAT
) {
3198 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3199 hw
->intr_mask
&= ~IS_HW_ERR
;
3205 * Interrupt from PHY are handled in tasklet (softirq)
3206 * because accessing phy registers requires spin wait which might
3207 * cause excess interrupt latency.
3209 static void skge_extirq(unsigned long arg
)
3211 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3214 for (port
= 0; port
< hw
->ports
; port
++) {
3215 struct net_device
*dev
= hw
->dev
[port
];
3217 if (netif_running(dev
)) {
3218 struct skge_port
*skge
= netdev_priv(dev
);
3220 spin_lock(&hw
->phy_lock
);
3221 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3222 yukon_phy_intr(skge
);
3223 else if (hw
->phy_type
== SK_PHY_BCOM
)
3224 bcom_phy_intr(skge
);
3225 spin_unlock(&hw
->phy_lock
);
3229 spin_lock_irq(&hw
->hw_lock
);
3230 hw
->intr_mask
|= IS_EXT_REG
;
3231 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3232 skge_read32(hw
, B0_IMSK
);
3233 spin_unlock_irq(&hw
->hw_lock
);
3236 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3238 struct skge_hw
*hw
= dev_id
;
3242 spin_lock(&hw
->hw_lock
);
3243 /* Reading this register masks IRQ */
3244 status
= skge_read32(hw
, B0_SP_ISRC
);
3245 if (status
== 0 || status
== ~0)
3249 status
&= hw
->intr_mask
;
3250 if (status
& IS_EXT_REG
) {
3251 hw
->intr_mask
&= ~IS_EXT_REG
;
3252 tasklet_schedule(&hw
->phy_task
);
3255 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3256 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3257 netif_rx_schedule(hw
->dev
[0]);
3260 if (status
& IS_PA_TO_TX1
)
3261 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3263 if (status
& IS_PA_TO_RX1
) {
3264 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3266 ++skge
->net_stats
.rx_over_errors
;
3267 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3271 if (status
& IS_MAC1
)
3272 skge_mac_intr(hw
, 0);
3275 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3276 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3277 netif_rx_schedule(hw
->dev
[1]);
3280 if (status
& IS_PA_TO_RX2
) {
3281 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3282 ++skge
->net_stats
.rx_over_errors
;
3283 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3286 if (status
& IS_PA_TO_TX2
)
3287 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3289 if (status
& IS_MAC2
)
3290 skge_mac_intr(hw
, 1);
3293 if (status
& IS_HW_ERR
)
3296 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3297 skge_read32(hw
, B0_IMSK
);
3299 spin_unlock(&hw
->hw_lock
);
3301 return IRQ_RETVAL(handled
);
3304 #ifdef CONFIG_NET_POLL_CONTROLLER
3305 static void skge_netpoll(struct net_device
*dev
)
3307 struct skge_port
*skge
= netdev_priv(dev
);
3309 disable_irq(dev
->irq
);
3310 skge_intr(dev
->irq
, skge
->hw
);
3311 enable_irq(dev
->irq
);
3315 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3317 struct skge_port
*skge
= netdev_priv(dev
);
3318 struct skge_hw
*hw
= skge
->hw
;
3319 unsigned port
= skge
->port
;
3320 const struct sockaddr
*addr
= p
;
3323 if (!is_valid_ether_addr(addr
->sa_data
))
3324 return -EADDRNOTAVAIL
;
3326 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3328 if (!netif_running(dev
)) {
3329 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3330 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3333 spin_lock_bh(&hw
->phy_lock
);
3334 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3335 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3337 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3338 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3340 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3341 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3343 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3344 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3347 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3348 spin_unlock_bh(&hw
->phy_lock
);
3354 static const struct {
3358 { CHIP_ID_GENESIS
, "Genesis" },
3359 { CHIP_ID_YUKON
, "Yukon" },
3360 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3361 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3364 static const char *skge_board_name(const struct skge_hw
*hw
)
3367 static char buf
[16];
3369 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3370 if (skge_chips
[i
].id
== hw
->chip_id
)
3371 return skge_chips
[i
].name
;
3373 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3379 * Setup the board data structure, but don't bring up
3382 static int skge_reset(struct skge_hw
*hw
)
3385 u16 ctst
, pci_status
;
3386 u8 t8
, mac_cfg
, pmd_type
;
3389 ctst
= skge_read16(hw
, B0_CTST
);
3392 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3393 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3395 /* clear PCI errors, if any */
3396 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3397 skge_write8(hw
, B2_TST_CTRL2
, 0);
3399 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3400 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3401 pci_status
| PCI_STATUS_ERROR_BITS
);
3402 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3403 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3405 /* restore CLK_RUN bits (for Yukon-Lite) */
3406 skge_write16(hw
, B0_CTST
,
3407 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3409 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3410 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3411 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3412 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3414 switch (hw
->chip_id
) {
3415 case CHIP_ID_GENESIS
:
3416 switch (hw
->phy_type
) {
3418 hw
->phy_addr
= PHY_ADDR_XMAC
;
3421 hw
->phy_addr
= PHY_ADDR_BCOM
;
3424 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3431 case CHIP_ID_YUKON_LITE
:
3432 case CHIP_ID_YUKON_LP
:
3433 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3436 hw
->phy_addr
= PHY_ADDR_MARV
;
3440 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3445 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3446 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3447 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3449 /* read the adapters RAM size */
3450 t8
= skge_read8(hw
, B2_E_0
);
3451 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3453 /* special case: 4 x 64k x 36, offset = 0x80000 */
3454 hw
->ram_size
= 0x100000;
3455 hw
->ram_offset
= 0x80000;
3457 hw
->ram_size
= t8
* 512;
3460 hw
->ram_size
= 0x20000;
3462 hw
->ram_size
= t8
* 4096;
3464 hw
->intr_mask
= IS_HW_ERR
;
3466 /* Use PHY IRQ for all but fiber based Genesis board */
3467 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3468 hw
->intr_mask
|= IS_EXT_REG
;
3470 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3473 /* switch power to VCC (WA for VAUX problem) */
3474 skge_write8(hw
, B0_POWER_CTRL
,
3475 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3477 /* avoid boards with stuck Hardware error bits */
3478 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3479 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3480 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3481 hw
->intr_mask
&= ~IS_HW_ERR
;
3484 /* Clear PHY COMA */
3485 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3486 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3487 reg
&= ~PCI_PHY_COMA
;
3488 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3489 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3492 for (i
= 0; i
< hw
->ports
; i
++) {
3493 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3494 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3498 /* turn off hardware timer (unused) */
3499 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3500 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3501 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3503 /* enable the Tx Arbiters */
3504 for (i
= 0; i
< hw
->ports
; i
++)
3505 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3507 /* Initialize ram interface */
3508 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3510 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3511 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3512 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3513 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3514 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3515 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3516 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3517 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3518 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3519 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3520 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3521 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3523 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3525 /* Set interrupt moderation for Transmit only
3526 * Receive interrupts avoided by NAPI
3528 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3529 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3530 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3532 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3534 for (i
= 0; i
< hw
->ports
; i
++) {
3535 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3536 genesis_reset(hw
, i
);
3544 /* Initialize network device */
3545 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3548 struct skge_port
*skge
;
3549 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3552 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3556 SET_MODULE_OWNER(dev
);
3557 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3558 dev
->open
= skge_up
;
3559 dev
->stop
= skge_down
;
3560 dev
->do_ioctl
= skge_ioctl
;
3561 dev
->hard_start_xmit
= skge_xmit_frame
;
3562 dev
->get_stats
= skge_get_stats
;
3563 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3564 dev
->set_multicast_list
= genesis_set_multicast
;
3566 dev
->set_multicast_list
= yukon_set_multicast
;
3568 dev
->set_mac_address
= skge_set_mac_address
;
3569 dev
->change_mtu
= skge_change_mtu
;
3570 SET_ETHTOOL_OPS(dev
, &skge_ethtool_ops
);
3571 dev
->tx_timeout
= skge_tx_timeout
;
3572 dev
->watchdog_timeo
= TX_WATCHDOG
;
3573 dev
->poll
= skge_poll
;
3574 dev
->weight
= NAPI_WEIGHT
;
3575 #ifdef CONFIG_NET_POLL_CONTROLLER
3576 dev
->poll_controller
= skge_netpoll
;
3578 dev
->irq
= hw
->pdev
->irq
;
3581 dev
->features
|= NETIF_F_HIGHDMA
;
3583 skge
= netdev_priv(dev
);
3586 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3588 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3589 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3591 /* Auto speed and flow control */
3592 skge
->autoneg
= AUTONEG_ENABLE
;
3593 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3596 skge
->advertising
= skge_supported_modes(hw
);
3598 if (pci_wake_enabled(hw
->pdev
))
3599 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3601 hw
->dev
[port
] = dev
;
3605 /* Only used for Genesis XMAC */
3606 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3608 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3609 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3613 /* read the mac address */
3614 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3615 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3617 /* device is off until link detection */
3618 netif_carrier_off(dev
);
3619 netif_stop_queue(dev
);
3624 static void __devinit
skge_show_addr(struct net_device
*dev
)
3626 const struct skge_port
*skge
= netdev_priv(dev
);
3628 if (netif_msg_probe(skge
))
3629 printk(KERN_INFO PFX
"%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3631 dev
->dev_addr
[0], dev
->dev_addr
[1], dev
->dev_addr
[2],
3632 dev
->dev_addr
[3], dev
->dev_addr
[4], dev
->dev_addr
[5]);
3635 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3636 const struct pci_device_id
*ent
)
3638 struct net_device
*dev
, *dev1
;
3640 int err
, using_dac
= 0;
3642 err
= pci_enable_device(pdev
);
3644 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3648 err
= pci_request_regions(pdev
, DRV_NAME
);
3650 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3651 goto err_out_disable_pdev
;
3654 pci_set_master(pdev
);
3656 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3658 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3659 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
3661 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3665 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3666 goto err_out_free_regions
;
3670 /* byte swap descriptors in hardware */
3674 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3675 reg
|= PCI_REV_DESC
;
3676 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3681 hw
= kzalloc(sizeof(*hw
), GFP_KERNEL
);
3683 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3684 goto err_out_free_regions
;
3688 spin_lock_init(&hw
->hw_lock
);
3689 spin_lock_init(&hw
->phy_lock
);
3690 tasklet_init(&hw
->phy_task
, &skge_extirq
, (unsigned long) hw
);
3692 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3694 dev_err(&pdev
->dev
, "cannot map device registers\n");
3695 goto err_out_free_hw
;
3698 err
= skge_reset(hw
);
3700 goto err_out_iounmap
;
3702 printk(KERN_INFO PFX DRV_VERSION
" addr 0x%llx irq %d chip %s rev %d\n",
3703 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3704 skge_board_name(hw
), hw
->chip_rev
);
3706 dev
= skge_devinit(hw
, 0, using_dac
);
3708 goto err_out_led_off
;
3710 /* Some motherboards are broken and has zero in ROM. */
3711 if (!is_valid_ether_addr(dev
->dev_addr
))
3712 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3714 err
= register_netdev(dev
);
3716 dev_err(&pdev
->dev
, "cannot register net device\n");
3717 goto err_out_free_netdev
;
3720 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, dev
->name
, hw
);
3722 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3723 dev
->name
, pdev
->irq
);
3724 goto err_out_unregister
;
3726 skge_show_addr(dev
);
3728 if (hw
->ports
> 1 && (dev1
= skge_devinit(hw
, 1, using_dac
))) {
3729 if (register_netdev(dev1
) == 0)
3730 skge_show_addr(dev1
);
3732 /* Failure to register second port need not be fatal */
3733 dev_warn(&pdev
->dev
, "register of second port failed\n");
3738 pci_set_drvdata(pdev
, hw
);
3743 unregister_netdev(dev
);
3744 err_out_free_netdev
:
3747 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3752 err_out_free_regions
:
3753 pci_release_regions(pdev
);
3754 err_out_disable_pdev
:
3755 pci_disable_device(pdev
);
3756 pci_set_drvdata(pdev
, NULL
);
3761 static void __devexit
skge_remove(struct pci_dev
*pdev
)
3763 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3764 struct net_device
*dev0
, *dev1
;
3769 flush_scheduled_work();
3771 if ((dev1
= hw
->dev
[1]))
3772 unregister_netdev(dev1
);
3774 unregister_netdev(dev0
);
3776 tasklet_disable(&hw
->phy_task
);
3778 spin_lock_irq(&hw
->hw_lock
);
3780 skge_write32(hw
, B0_IMSK
, 0);
3781 skge_read32(hw
, B0_IMSK
);
3782 spin_unlock_irq(&hw
->hw_lock
);
3784 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3785 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3787 free_irq(pdev
->irq
, hw
);
3788 pci_release_regions(pdev
);
3789 pci_disable_device(pdev
);
3796 pci_set_drvdata(pdev
, NULL
);
3800 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3802 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3803 int i
, err
, wol
= 0;
3808 err
= pci_save_state(pdev
);
3812 for (i
= 0; i
< hw
->ports
; i
++) {
3813 struct net_device
*dev
= hw
->dev
[i
];
3814 struct skge_port
*skge
= netdev_priv(dev
);
3816 if (netif_running(dev
))
3819 skge_wol_init(skge
);
3824 skge_write32(hw
, B0_IMSK
, 0);
3825 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), wol
);
3826 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3831 static int skge_resume(struct pci_dev
*pdev
)
3833 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3839 err
= pci_set_power_state(pdev
, PCI_D0
);
3843 err
= pci_restore_state(pdev
);
3847 pci_enable_wake(pdev
, PCI_D0
, 0);
3849 err
= skge_reset(hw
);
3853 for (i
= 0; i
< hw
->ports
; i
++) {
3854 struct net_device
*dev
= hw
->dev
[i
];
3856 if (netif_running(dev
)) {
3860 printk(KERN_ERR PFX
"%s: could not up: %d\n",
3872 static void skge_shutdown(struct pci_dev
*pdev
)
3874 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3880 for (i
= 0; i
< hw
->ports
; i
++) {
3881 struct net_device
*dev
= hw
->dev
[i
];
3882 struct skge_port
*skge
= netdev_priv(dev
);
3885 skge_wol_init(skge
);
3889 pci_enable_wake(pdev
, PCI_D3hot
, wol
);
3890 pci_enable_wake(pdev
, PCI_D3cold
, wol
);
3892 pci_disable_device(pdev
);
3893 pci_set_power_state(pdev
, PCI_D3hot
);
3897 static struct pci_driver skge_driver
= {
3899 .id_table
= skge_id_table
,
3900 .probe
= skge_probe
,
3901 .remove
= __devexit_p(skge_remove
),
3903 .suspend
= skge_suspend
,
3904 .resume
= skge_resume
,
3906 .shutdown
= skge_shutdown
,
3909 static int __init
skge_init_module(void)
3911 return pci_register_driver(&skge_driver
);
3914 static void __exit
skge_cleanup_module(void)
3916 pci_unregister_driver(&skge_driver
);
3919 module_init(skge_init_module
);
3920 module_exit(skge_cleanup_module
);