[TCP]: TCP_CONG_YEAH requires TCP_CONG_VEGAS
[linux-2.6/verdex.git] / drivers / net / sungem.c
blob4328038550344733f910f50f2f8e87e31a7fbf11
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
13 * TODO:
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
18 * though:
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call netif_poll_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
40 #include <linux/in.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/delay.h>
44 #include <linux/init.h>
45 #include <linux/errno.h>
46 #include <linux/pci.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/mii.h>
52 #include <linux/ethtool.h>
53 #include <linux/crc32.h>
54 #include <linux/random.h>
55 #include <linux/workqueue.h>
56 #include <linux/if_vlan.h>
57 #include <linux/bitops.h>
58 #include <linux/mutex.h>
59 #include <linux/mm.h>
61 #include <asm/system.h>
62 #include <asm/io.h>
63 #include <asm/byteorder.h>
64 #include <asm/uaccess.h>
65 #include <asm/irq.h>
67 #ifdef CONFIG_SPARC
68 #include <asm/idprom.h>
69 #include <asm/prom.h>
70 #endif
72 #ifdef CONFIG_PPC_PMAC
73 #include <asm/pci-bridge.h>
74 #include <asm/prom.h>
75 #include <asm/machdep.h>
76 #include <asm/pmac_feature.h>
77 #endif
79 #include "sungem_phy.h"
80 #include "sungem.h"
82 /* Stripping FCS is causing problems, disabled for now */
83 #undef STRIP_FCS
85 #define DEFAULT_MSG (NETIF_MSG_DRV | \
86 NETIF_MSG_PROBE | \
87 NETIF_MSG_LINK)
89 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
90 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
91 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
92 SUPPORTED_Pause | SUPPORTED_Autoneg)
94 #define DRV_NAME "sungem"
95 #define DRV_VERSION "0.98"
96 #define DRV_RELDATE "8/24/03"
97 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
99 static char version[] __devinitdata =
100 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
102 MODULE_AUTHOR(DRV_AUTHOR);
103 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
104 MODULE_LICENSE("GPL");
106 #define GEM_MODULE_NAME "gem"
107 #define PFX GEM_MODULE_NAME ": "
109 static struct pci_device_id gem_pci_tbl[] = {
110 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
113 /* These models only differ from the original GEM in
114 * that their tx/rx fifos are of a different size and
115 * they only support 10/100 speeds. -DaveM
117 * Apple's GMAC does support gigabit on machines with
118 * the BCM54xx PHYs. -BenH
120 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
121 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
122 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
123 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
124 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
125 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
126 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
127 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
128 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
130 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
132 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
134 {0, }
137 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
139 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
141 u32 cmd;
142 int limit = 10000;
144 cmd = (1 << 30);
145 cmd |= (2 << 28);
146 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
147 cmd |= (reg << 18) & MIF_FRAME_REGAD;
148 cmd |= (MIF_FRAME_TAMSB);
149 writel(cmd, gp->regs + MIF_FRAME);
151 while (limit--) {
152 cmd = readl(gp->regs + MIF_FRAME);
153 if (cmd & MIF_FRAME_TALSB)
154 break;
156 udelay(10);
159 if (!limit)
160 cmd = 0xffff;
162 return cmd & MIF_FRAME_DATA;
165 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
167 struct gem *gp = dev->priv;
168 return __phy_read(gp, mii_id, reg);
171 static inline u16 phy_read(struct gem *gp, int reg)
173 return __phy_read(gp, gp->mii_phy_addr, reg);
176 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
178 u32 cmd;
179 int limit = 10000;
181 cmd = (1 << 30);
182 cmd |= (1 << 28);
183 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
184 cmd |= (reg << 18) & MIF_FRAME_REGAD;
185 cmd |= (MIF_FRAME_TAMSB);
186 cmd |= (val & MIF_FRAME_DATA);
187 writel(cmd, gp->regs + MIF_FRAME);
189 while (limit--) {
190 cmd = readl(gp->regs + MIF_FRAME);
191 if (cmd & MIF_FRAME_TALSB)
192 break;
194 udelay(10);
198 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
200 struct gem *gp = dev->priv;
201 __phy_write(gp, mii_id, reg, val & 0xffff);
204 static inline void phy_write(struct gem *gp, int reg, u16 val)
206 __phy_write(gp, gp->mii_phy_addr, reg, val);
209 static inline void gem_enable_ints(struct gem *gp)
211 /* Enable all interrupts but TXDONE */
212 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
215 static inline void gem_disable_ints(struct gem *gp)
217 /* Disable all interrupts, including TXDONE */
218 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
221 static void gem_get_cell(struct gem *gp)
223 BUG_ON(gp->cell_enabled < 0);
224 gp->cell_enabled++;
225 #ifdef CONFIG_PPC_PMAC
226 if (gp->cell_enabled == 1) {
227 mb();
228 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
229 udelay(10);
231 #endif /* CONFIG_PPC_PMAC */
234 /* Turn off the chip's clock */
235 static void gem_put_cell(struct gem *gp)
237 BUG_ON(gp->cell_enabled <= 0);
238 gp->cell_enabled--;
239 #ifdef CONFIG_PPC_PMAC
240 if (gp->cell_enabled == 0) {
241 mb();
242 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
243 udelay(10);
245 #endif /* CONFIG_PPC_PMAC */
248 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
250 if (netif_msg_intr(gp))
251 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
254 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
256 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
257 u32 pcs_miistat;
259 if (netif_msg_intr(gp))
260 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
261 gp->dev->name, pcs_istat);
263 if (!(pcs_istat & PCS_ISTAT_LSC)) {
264 printk(KERN_ERR "%s: PCS irq but no link status change???\n",
265 dev->name);
266 return 0;
269 /* The link status bit latches on zero, so you must
270 * read it twice in such a case to see a transition
271 * to the link being up.
273 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
274 if (!(pcs_miistat & PCS_MIISTAT_LS))
275 pcs_miistat |=
276 (readl(gp->regs + PCS_MIISTAT) &
277 PCS_MIISTAT_LS);
279 if (pcs_miistat & PCS_MIISTAT_ANC) {
280 /* The remote-fault indication is only valid
281 * when autoneg has completed.
283 if (pcs_miistat & PCS_MIISTAT_RF)
284 printk(KERN_INFO "%s: PCS AutoNEG complete, "
285 "RemoteFault\n", dev->name);
286 else
287 printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
288 dev->name);
291 if (pcs_miistat & PCS_MIISTAT_LS) {
292 printk(KERN_INFO "%s: PCS link is now up.\n",
293 dev->name);
294 netif_carrier_on(gp->dev);
295 } else {
296 printk(KERN_INFO "%s: PCS link is now down.\n",
297 dev->name);
298 netif_carrier_off(gp->dev);
299 /* If this happens and the link timer is not running,
300 * reset so we re-negotiate.
302 if (!timer_pending(&gp->link_timer))
303 return 1;
306 return 0;
309 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
311 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
313 if (netif_msg_intr(gp))
314 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
315 gp->dev->name, txmac_stat);
317 /* Defer timer expiration is quite normal,
318 * don't even log the event.
320 if ((txmac_stat & MAC_TXSTAT_DTE) &&
321 !(txmac_stat & ~MAC_TXSTAT_DTE))
322 return 0;
324 if (txmac_stat & MAC_TXSTAT_URUN) {
325 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
326 dev->name);
327 gp->net_stats.tx_fifo_errors++;
330 if (txmac_stat & MAC_TXSTAT_MPE) {
331 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
332 dev->name);
333 gp->net_stats.tx_errors++;
336 /* The rest are all cases of one of the 16-bit TX
337 * counters expiring.
339 if (txmac_stat & MAC_TXSTAT_NCE)
340 gp->net_stats.collisions += 0x10000;
342 if (txmac_stat & MAC_TXSTAT_ECE) {
343 gp->net_stats.tx_aborted_errors += 0x10000;
344 gp->net_stats.collisions += 0x10000;
347 if (txmac_stat & MAC_TXSTAT_LCE) {
348 gp->net_stats.tx_aborted_errors += 0x10000;
349 gp->net_stats.collisions += 0x10000;
352 /* We do not keep track of MAC_TXSTAT_FCE and
353 * MAC_TXSTAT_PCE events.
355 return 0;
358 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
359 * so we do the following.
361 * If any part of the reset goes wrong, we return 1 and that causes the
362 * whole chip to be reset.
364 static int gem_rxmac_reset(struct gem *gp)
366 struct net_device *dev = gp->dev;
367 int limit, i;
368 u64 desc_dma;
369 u32 val;
371 /* First, reset & disable MAC RX. */
372 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
373 for (limit = 0; limit < 5000; limit++) {
374 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
375 break;
376 udelay(10);
378 if (limit == 5000) {
379 printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
380 "chip.\n", dev->name);
381 return 1;
384 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
385 gp->regs + MAC_RXCFG);
386 for (limit = 0; limit < 5000; limit++) {
387 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
388 break;
389 udelay(10);
391 if (limit == 5000) {
392 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
393 "chip.\n", dev->name);
394 return 1;
397 /* Second, disable RX DMA. */
398 writel(0, gp->regs + RXDMA_CFG);
399 for (limit = 0; limit < 5000; limit++) {
400 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
401 break;
402 udelay(10);
404 if (limit == 5000) {
405 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
406 "chip.\n", dev->name);
407 return 1;
410 udelay(5000);
412 /* Execute RX reset command. */
413 writel(gp->swrst_base | GREG_SWRST_RXRST,
414 gp->regs + GREG_SWRST);
415 for (limit = 0; limit < 5000; limit++) {
416 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
417 break;
418 udelay(10);
420 if (limit == 5000) {
421 printk(KERN_ERR "%s: RX reset command will not execute, resetting "
422 "whole chip.\n", dev->name);
423 return 1;
426 /* Refresh the RX ring. */
427 for (i = 0; i < RX_RING_SIZE; i++) {
428 struct gem_rxd *rxd = &gp->init_block->rxd[i];
430 if (gp->rx_skbs[i] == NULL) {
431 printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
432 "whole chip.\n", dev->name);
433 return 1;
436 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
438 gp->rx_new = gp->rx_old = 0;
440 /* Now we must reprogram the rest of RX unit. */
441 desc_dma = (u64) gp->gblock_dvma;
442 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
443 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
444 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
445 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
446 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
447 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
448 writel(val, gp->regs + RXDMA_CFG);
449 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
450 writel(((5 & RXDMA_BLANK_IPKTS) |
451 ((8 << 12) & RXDMA_BLANK_ITIME)),
452 gp->regs + RXDMA_BLANK);
453 else
454 writel(((5 & RXDMA_BLANK_IPKTS) |
455 ((4 << 12) & RXDMA_BLANK_ITIME)),
456 gp->regs + RXDMA_BLANK);
457 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
458 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
459 writel(val, gp->regs + RXDMA_PTHRESH);
460 val = readl(gp->regs + RXDMA_CFG);
461 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
462 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
463 val = readl(gp->regs + MAC_RXCFG);
464 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
466 return 0;
469 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
471 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
472 int ret = 0;
474 if (netif_msg_intr(gp))
475 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
476 gp->dev->name, rxmac_stat);
478 if (rxmac_stat & MAC_RXSTAT_OFLW) {
479 u32 smac = readl(gp->regs + MAC_SMACHINE);
481 printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
482 dev->name, smac);
483 gp->net_stats.rx_over_errors++;
484 gp->net_stats.rx_fifo_errors++;
486 ret = gem_rxmac_reset(gp);
489 if (rxmac_stat & MAC_RXSTAT_ACE)
490 gp->net_stats.rx_frame_errors += 0x10000;
492 if (rxmac_stat & MAC_RXSTAT_CCE)
493 gp->net_stats.rx_crc_errors += 0x10000;
495 if (rxmac_stat & MAC_RXSTAT_LCE)
496 gp->net_stats.rx_length_errors += 0x10000;
498 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
499 * events.
501 return ret;
504 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
506 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
508 if (netif_msg_intr(gp))
509 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
510 gp->dev->name, mac_cstat);
512 /* This interrupt is just for pause frame and pause
513 * tracking. It is useful for diagnostics and debug
514 * but probably by default we will mask these events.
516 if (mac_cstat & MAC_CSTAT_PS)
517 gp->pause_entered++;
519 if (mac_cstat & MAC_CSTAT_PRCV)
520 gp->pause_last_time_recvd = (mac_cstat >> 16);
522 return 0;
525 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
527 u32 mif_status = readl(gp->regs + MIF_STATUS);
528 u32 reg_val, changed_bits;
530 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
531 changed_bits = (mif_status & MIF_STATUS_STAT);
533 gem_handle_mif_event(gp, reg_val, changed_bits);
535 return 0;
538 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
540 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
542 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
543 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
544 printk(KERN_ERR "%s: PCI error [%04x] ",
545 dev->name, pci_estat);
547 if (pci_estat & GREG_PCIESTAT_BADACK)
548 printk("<No ACK64# during ABS64 cycle> ");
549 if (pci_estat & GREG_PCIESTAT_DTRTO)
550 printk("<Delayed transaction timeout> ");
551 if (pci_estat & GREG_PCIESTAT_OTHER)
552 printk("<other>");
553 printk("\n");
554 } else {
555 pci_estat |= GREG_PCIESTAT_OTHER;
556 printk(KERN_ERR "%s: PCI error\n", dev->name);
559 if (pci_estat & GREG_PCIESTAT_OTHER) {
560 u16 pci_cfg_stat;
562 /* Interrogate PCI config space for the
563 * true cause.
565 pci_read_config_word(gp->pdev, PCI_STATUS,
566 &pci_cfg_stat);
567 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
568 dev->name, pci_cfg_stat);
569 if (pci_cfg_stat & PCI_STATUS_PARITY)
570 printk(KERN_ERR "%s: PCI parity error detected.\n",
571 dev->name);
572 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
573 printk(KERN_ERR "%s: PCI target abort.\n",
574 dev->name);
575 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
576 printk(KERN_ERR "%s: PCI master acks target abort.\n",
577 dev->name);
578 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
579 printk(KERN_ERR "%s: PCI master abort.\n",
580 dev->name);
581 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
582 printk(KERN_ERR "%s: PCI system error SERR#.\n",
583 dev->name);
584 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
585 printk(KERN_ERR "%s: PCI parity error.\n",
586 dev->name);
588 /* Write the error bits back to clear them. */
589 pci_cfg_stat &= (PCI_STATUS_PARITY |
590 PCI_STATUS_SIG_TARGET_ABORT |
591 PCI_STATUS_REC_TARGET_ABORT |
592 PCI_STATUS_REC_MASTER_ABORT |
593 PCI_STATUS_SIG_SYSTEM_ERROR |
594 PCI_STATUS_DETECTED_PARITY);
595 pci_write_config_word(gp->pdev,
596 PCI_STATUS, pci_cfg_stat);
599 /* For all PCI errors, we should reset the chip. */
600 return 1;
603 /* All non-normal interrupt conditions get serviced here.
604 * Returns non-zero if we should just exit the interrupt
605 * handler right now (ie. if we reset the card which invalidates
606 * all of the other original irq status bits).
608 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
610 if (gem_status & GREG_STAT_RXNOBUF) {
611 /* Frame arrived, no free RX buffers available. */
612 if (netif_msg_rx_err(gp))
613 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
614 gp->dev->name);
615 gp->net_stats.rx_dropped++;
618 if (gem_status & GREG_STAT_RXTAGERR) {
619 /* corrupt RX tag framing */
620 if (netif_msg_rx_err(gp))
621 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
622 gp->dev->name);
623 gp->net_stats.rx_errors++;
625 goto do_reset;
628 if (gem_status & GREG_STAT_PCS) {
629 if (gem_pcs_interrupt(dev, gp, gem_status))
630 goto do_reset;
633 if (gem_status & GREG_STAT_TXMAC) {
634 if (gem_txmac_interrupt(dev, gp, gem_status))
635 goto do_reset;
638 if (gem_status & GREG_STAT_RXMAC) {
639 if (gem_rxmac_interrupt(dev, gp, gem_status))
640 goto do_reset;
643 if (gem_status & GREG_STAT_MAC) {
644 if (gem_mac_interrupt(dev, gp, gem_status))
645 goto do_reset;
648 if (gem_status & GREG_STAT_MIF) {
649 if (gem_mif_interrupt(dev, gp, gem_status))
650 goto do_reset;
653 if (gem_status & GREG_STAT_PCIERR) {
654 if (gem_pci_interrupt(dev, gp, gem_status))
655 goto do_reset;
658 return 0;
660 do_reset:
661 gp->reset_task_pending = 1;
662 schedule_work(&gp->reset_task);
664 return 1;
667 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
669 int entry, limit;
671 if (netif_msg_intr(gp))
672 printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
673 gp->dev->name, gem_status);
675 entry = gp->tx_old;
676 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
677 while (entry != limit) {
678 struct sk_buff *skb;
679 struct gem_txd *txd;
680 dma_addr_t dma_addr;
681 u32 dma_len;
682 int frag;
684 if (netif_msg_tx_done(gp))
685 printk(KERN_DEBUG "%s: tx done, slot %d\n",
686 gp->dev->name, entry);
687 skb = gp->tx_skbs[entry];
688 if (skb_shinfo(skb)->nr_frags) {
689 int last = entry + skb_shinfo(skb)->nr_frags;
690 int walk = entry;
691 int incomplete = 0;
693 last &= (TX_RING_SIZE - 1);
694 for (;;) {
695 walk = NEXT_TX(walk);
696 if (walk == limit)
697 incomplete = 1;
698 if (walk == last)
699 break;
701 if (incomplete)
702 break;
704 gp->tx_skbs[entry] = NULL;
705 gp->net_stats.tx_bytes += skb->len;
707 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
708 txd = &gp->init_block->txd[entry];
710 dma_addr = le64_to_cpu(txd->buffer);
711 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
713 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
714 entry = NEXT_TX(entry);
717 gp->net_stats.tx_packets++;
718 dev_kfree_skb_irq(skb);
720 gp->tx_old = entry;
722 if (netif_queue_stopped(dev) &&
723 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
724 netif_wake_queue(dev);
727 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
729 int cluster_start, curr, count, kick;
731 cluster_start = curr = (gp->rx_new & ~(4 - 1));
732 count = 0;
733 kick = -1;
734 wmb();
735 while (curr != limit) {
736 curr = NEXT_RX(curr);
737 if (++count == 4) {
738 struct gem_rxd *rxd =
739 &gp->init_block->rxd[cluster_start];
740 for (;;) {
741 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
742 rxd++;
743 cluster_start = NEXT_RX(cluster_start);
744 if (cluster_start == curr)
745 break;
747 kick = curr;
748 count = 0;
751 if (kick >= 0) {
752 mb();
753 writel(kick, gp->regs + RXDMA_KICK);
757 static int gem_rx(struct gem *gp, int work_to_do)
759 int entry, drops, work_done = 0;
760 u32 done;
762 if (netif_msg_rx_status(gp))
763 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
764 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
766 entry = gp->rx_new;
767 drops = 0;
768 done = readl(gp->regs + RXDMA_DONE);
769 for (;;) {
770 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
771 struct sk_buff *skb;
772 u64 status = cpu_to_le64(rxd->status_word);
773 dma_addr_t dma_addr;
774 int len;
776 if ((status & RXDCTRL_OWN) != 0)
777 break;
779 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
780 break;
782 /* When writing back RX descriptor, GEM writes status
783 * then buffer address, possibly in seperate transactions.
784 * If we don't wait for the chip to write both, we could
785 * post a new buffer to this descriptor then have GEM spam
786 * on the buffer address. We sync on the RX completion
787 * register to prevent this from happening.
789 if (entry == done) {
790 done = readl(gp->regs + RXDMA_DONE);
791 if (entry == done)
792 break;
795 /* We can now account for the work we're about to do */
796 work_done++;
798 skb = gp->rx_skbs[entry];
800 len = (status & RXDCTRL_BUFSZ) >> 16;
801 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
802 gp->net_stats.rx_errors++;
803 if (len < ETH_ZLEN)
804 gp->net_stats.rx_length_errors++;
805 if (len & RXDCTRL_BAD)
806 gp->net_stats.rx_crc_errors++;
808 /* We'll just return it to GEM. */
809 drop_it:
810 gp->net_stats.rx_dropped++;
811 goto next;
814 dma_addr = cpu_to_le64(rxd->buffer);
815 if (len > RX_COPY_THRESHOLD) {
816 struct sk_buff *new_skb;
818 new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
819 if (new_skb == NULL) {
820 drops++;
821 goto drop_it;
823 pci_unmap_page(gp->pdev, dma_addr,
824 RX_BUF_ALLOC_SIZE(gp),
825 PCI_DMA_FROMDEVICE);
826 gp->rx_skbs[entry] = new_skb;
827 new_skb->dev = gp->dev;
828 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
829 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
830 virt_to_page(new_skb->data),
831 offset_in_page(new_skb->data),
832 RX_BUF_ALLOC_SIZE(gp),
833 PCI_DMA_FROMDEVICE));
834 skb_reserve(new_skb, RX_OFFSET);
836 /* Trim the original skb for the netif. */
837 skb_trim(skb, len);
838 } else {
839 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
841 if (copy_skb == NULL) {
842 drops++;
843 goto drop_it;
846 skb_reserve(copy_skb, 2);
847 skb_put(copy_skb, len);
848 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
849 skb_copy_from_linear_data(skb, copy_skb->data, len);
850 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
852 /* We'll reuse the original ring buffer. */
853 skb = copy_skb;
856 skb->csum = ntohs((status & RXDCTRL_TCPCSUM) ^ 0xffff);
857 skb->ip_summed = CHECKSUM_COMPLETE;
858 skb->protocol = eth_type_trans(skb, gp->dev);
860 netif_receive_skb(skb);
862 gp->net_stats.rx_packets++;
863 gp->net_stats.rx_bytes += len;
864 gp->dev->last_rx = jiffies;
866 next:
867 entry = NEXT_RX(entry);
870 gem_post_rxds(gp, entry);
872 gp->rx_new = entry;
874 if (drops)
875 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
876 gp->dev->name);
878 return work_done;
881 static int gem_poll(struct net_device *dev, int *budget)
883 struct gem *gp = dev->priv;
884 unsigned long flags;
887 * NAPI locking nightmare: See comment at head of driver
889 spin_lock_irqsave(&gp->lock, flags);
891 do {
892 int work_to_do, work_done;
894 /* Handle anomalies */
895 if (gp->status & GREG_STAT_ABNORMAL) {
896 if (gem_abnormal_irq(dev, gp, gp->status))
897 break;
900 /* Run TX completion thread */
901 spin_lock(&gp->tx_lock);
902 gem_tx(dev, gp, gp->status);
903 spin_unlock(&gp->tx_lock);
905 spin_unlock_irqrestore(&gp->lock, flags);
907 /* Run RX thread. We don't use any locking here,
908 * code willing to do bad things - like cleaning the
909 * rx ring - must call netif_poll_disable(), which
910 * schedule_timeout()'s if polling is already disabled.
912 work_to_do = min(*budget, dev->quota);
914 work_done = gem_rx(gp, work_to_do);
916 *budget -= work_done;
917 dev->quota -= work_done;
919 if (work_done >= work_to_do)
920 return 1;
922 spin_lock_irqsave(&gp->lock, flags);
924 gp->status = readl(gp->regs + GREG_STAT);
925 } while (gp->status & GREG_STAT_NAPI);
927 __netif_rx_complete(dev);
928 gem_enable_ints(gp);
930 spin_unlock_irqrestore(&gp->lock, flags);
931 return 0;
934 static irqreturn_t gem_interrupt(int irq, void *dev_id)
936 struct net_device *dev = dev_id;
937 struct gem *gp = dev->priv;
938 unsigned long flags;
940 /* Swallow interrupts when shutting the chip down, though
941 * that shouldn't happen, we should have done free_irq() at
942 * this point...
944 if (!gp->running)
945 return IRQ_HANDLED;
947 spin_lock_irqsave(&gp->lock, flags);
949 if (netif_rx_schedule_prep(dev)) {
950 u32 gem_status = readl(gp->regs + GREG_STAT);
952 if (gem_status == 0) {
953 netif_poll_enable(dev);
954 spin_unlock_irqrestore(&gp->lock, flags);
955 return IRQ_NONE;
957 gp->status = gem_status;
958 gem_disable_ints(gp);
959 __netif_rx_schedule(dev);
962 spin_unlock_irqrestore(&gp->lock, flags);
964 /* If polling was disabled at the time we received that
965 * interrupt, we may return IRQ_HANDLED here while we
966 * should return IRQ_NONE. No big deal...
968 return IRQ_HANDLED;
971 #ifdef CONFIG_NET_POLL_CONTROLLER
972 static void gem_poll_controller(struct net_device *dev)
974 /* gem_interrupt is safe to reentrance so no need
975 * to disable_irq here.
977 gem_interrupt(dev->irq, dev);
979 #endif
981 static void gem_tx_timeout(struct net_device *dev)
983 struct gem *gp = dev->priv;
985 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
986 if (!gp->running) {
987 printk("%s: hrm.. hw not running !\n", dev->name);
988 return;
990 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
991 dev->name,
992 readl(gp->regs + TXDMA_CFG),
993 readl(gp->regs + MAC_TXSTAT),
994 readl(gp->regs + MAC_TXCFG));
995 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
996 dev->name,
997 readl(gp->regs + RXDMA_CFG),
998 readl(gp->regs + MAC_RXSTAT),
999 readl(gp->regs + MAC_RXCFG));
1001 spin_lock_irq(&gp->lock);
1002 spin_lock(&gp->tx_lock);
1004 gp->reset_task_pending = 1;
1005 schedule_work(&gp->reset_task);
1007 spin_unlock(&gp->tx_lock);
1008 spin_unlock_irq(&gp->lock);
1011 static __inline__ int gem_intme(int entry)
1013 /* Algorithm: IRQ every 1/2 of descriptors. */
1014 if (!(entry & ((TX_RING_SIZE>>1)-1)))
1015 return 1;
1017 return 0;
1020 static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
1022 struct gem *gp = dev->priv;
1023 int entry;
1024 u64 ctrl;
1025 unsigned long flags;
1027 ctrl = 0;
1028 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1029 const u64 csum_start_off = skb_transport_offset(skb);
1030 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1032 ctrl = (TXDCTRL_CENAB |
1033 (csum_start_off << 15) |
1034 (csum_stuff_off << 21));
1037 local_irq_save(flags);
1038 if (!spin_trylock(&gp->tx_lock)) {
1039 /* Tell upper layer to requeue */
1040 local_irq_restore(flags);
1041 return NETDEV_TX_LOCKED;
1043 /* We raced with gem_do_stop() */
1044 if (!gp->running) {
1045 spin_unlock_irqrestore(&gp->tx_lock, flags);
1046 return NETDEV_TX_BUSY;
1049 /* This is a hard error, log it. */
1050 if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1051 netif_stop_queue(dev);
1052 spin_unlock_irqrestore(&gp->tx_lock, flags);
1053 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
1054 dev->name);
1055 return NETDEV_TX_BUSY;
1058 entry = gp->tx_new;
1059 gp->tx_skbs[entry] = skb;
1061 if (skb_shinfo(skb)->nr_frags == 0) {
1062 struct gem_txd *txd = &gp->init_block->txd[entry];
1063 dma_addr_t mapping;
1064 u32 len;
1066 len = skb->len;
1067 mapping = pci_map_page(gp->pdev,
1068 virt_to_page(skb->data),
1069 offset_in_page(skb->data),
1070 len, PCI_DMA_TODEVICE);
1071 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1072 if (gem_intme(entry))
1073 ctrl |= TXDCTRL_INTME;
1074 txd->buffer = cpu_to_le64(mapping);
1075 wmb();
1076 txd->control_word = cpu_to_le64(ctrl);
1077 entry = NEXT_TX(entry);
1078 } else {
1079 struct gem_txd *txd;
1080 u32 first_len;
1081 u64 intme;
1082 dma_addr_t first_mapping;
1083 int frag, first_entry = entry;
1085 intme = 0;
1086 if (gem_intme(entry))
1087 intme |= TXDCTRL_INTME;
1089 /* We must give this initial chunk to the device last.
1090 * Otherwise we could race with the device.
1092 first_len = skb_headlen(skb);
1093 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1094 offset_in_page(skb->data),
1095 first_len, PCI_DMA_TODEVICE);
1096 entry = NEXT_TX(entry);
1098 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1099 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1100 u32 len;
1101 dma_addr_t mapping;
1102 u64 this_ctrl;
1104 len = this_frag->size;
1105 mapping = pci_map_page(gp->pdev,
1106 this_frag->page,
1107 this_frag->page_offset,
1108 len, PCI_DMA_TODEVICE);
1109 this_ctrl = ctrl;
1110 if (frag == skb_shinfo(skb)->nr_frags - 1)
1111 this_ctrl |= TXDCTRL_EOF;
1113 txd = &gp->init_block->txd[entry];
1114 txd->buffer = cpu_to_le64(mapping);
1115 wmb();
1116 txd->control_word = cpu_to_le64(this_ctrl | len);
1118 if (gem_intme(entry))
1119 intme |= TXDCTRL_INTME;
1121 entry = NEXT_TX(entry);
1123 txd = &gp->init_block->txd[first_entry];
1124 txd->buffer = cpu_to_le64(first_mapping);
1125 wmb();
1126 txd->control_word =
1127 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1130 gp->tx_new = entry;
1131 if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
1132 netif_stop_queue(dev);
1134 if (netif_msg_tx_queued(gp))
1135 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1136 dev->name, entry, skb->len);
1137 mb();
1138 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1139 spin_unlock_irqrestore(&gp->tx_lock, flags);
1141 dev->trans_start = jiffies;
1143 return NETDEV_TX_OK;
1146 #define STOP_TRIES 32
1148 /* Must be invoked under gp->lock and gp->tx_lock. */
1149 static void gem_reset(struct gem *gp)
1151 int limit;
1152 u32 val;
1154 /* Make sure we won't get any more interrupts */
1155 writel(0xffffffff, gp->regs + GREG_IMASK);
1157 /* Reset the chip */
1158 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1159 gp->regs + GREG_SWRST);
1161 limit = STOP_TRIES;
1163 do {
1164 udelay(20);
1165 val = readl(gp->regs + GREG_SWRST);
1166 if (limit-- <= 0)
1167 break;
1168 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1170 if (limit <= 0)
1171 printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
1174 /* Must be invoked under gp->lock and gp->tx_lock. */
1175 static void gem_start_dma(struct gem *gp)
1177 u32 val;
1179 /* We are ready to rock, turn everything on. */
1180 val = readl(gp->regs + TXDMA_CFG);
1181 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1182 val = readl(gp->regs + RXDMA_CFG);
1183 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1184 val = readl(gp->regs + MAC_TXCFG);
1185 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1186 val = readl(gp->regs + MAC_RXCFG);
1187 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1189 (void) readl(gp->regs + MAC_RXCFG);
1190 udelay(100);
1192 gem_enable_ints(gp);
1194 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1197 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1198 * actually stopped before about 4ms tho ...
1200 static void gem_stop_dma(struct gem *gp)
1202 u32 val;
1204 /* We are done rocking, turn everything off. */
1205 val = readl(gp->regs + TXDMA_CFG);
1206 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1207 val = readl(gp->regs + RXDMA_CFG);
1208 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1209 val = readl(gp->regs + MAC_TXCFG);
1210 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1211 val = readl(gp->regs + MAC_RXCFG);
1212 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1214 (void) readl(gp->regs + MAC_RXCFG);
1216 /* Need to wait a bit ... done by the caller */
1220 /* Must be invoked under gp->lock and gp->tx_lock. */
1221 // XXX dbl check what that function should do when called on PCS PHY
1222 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1224 u32 advertise, features;
1225 int autoneg;
1226 int speed;
1227 int duplex;
1229 if (gp->phy_type != phy_mii_mdio0 &&
1230 gp->phy_type != phy_mii_mdio1)
1231 goto non_mii;
1233 /* Setup advertise */
1234 if (found_mii_phy(gp))
1235 features = gp->phy_mii.def->features;
1236 else
1237 features = 0;
1239 advertise = features & ADVERTISE_MASK;
1240 if (gp->phy_mii.advertising != 0)
1241 advertise &= gp->phy_mii.advertising;
1243 autoneg = gp->want_autoneg;
1244 speed = gp->phy_mii.speed;
1245 duplex = gp->phy_mii.duplex;
1247 /* Setup link parameters */
1248 if (!ep)
1249 goto start_aneg;
1250 if (ep->autoneg == AUTONEG_ENABLE) {
1251 advertise = ep->advertising;
1252 autoneg = 1;
1253 } else {
1254 autoneg = 0;
1255 speed = ep->speed;
1256 duplex = ep->duplex;
1259 start_aneg:
1260 /* Sanitize settings based on PHY capabilities */
1261 if ((features & SUPPORTED_Autoneg) == 0)
1262 autoneg = 0;
1263 if (speed == SPEED_1000 &&
1264 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1265 speed = SPEED_100;
1266 if (speed == SPEED_100 &&
1267 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1268 speed = SPEED_10;
1269 if (duplex == DUPLEX_FULL &&
1270 !(features & (SUPPORTED_1000baseT_Full |
1271 SUPPORTED_100baseT_Full |
1272 SUPPORTED_10baseT_Full)))
1273 duplex = DUPLEX_HALF;
1274 if (speed == 0)
1275 speed = SPEED_10;
1277 /* If we are asleep, we don't try to actually setup the PHY, we
1278 * just store the settings
1280 if (gp->asleep) {
1281 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1282 gp->phy_mii.speed = speed;
1283 gp->phy_mii.duplex = duplex;
1284 return;
1287 /* Configure PHY & start aneg */
1288 gp->want_autoneg = autoneg;
1289 if (autoneg) {
1290 if (found_mii_phy(gp))
1291 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1292 gp->lstate = link_aneg;
1293 } else {
1294 if (found_mii_phy(gp))
1295 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1296 gp->lstate = link_force_ok;
1299 non_mii:
1300 gp->timer_ticks = 0;
1301 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1304 /* A link-up condition has occurred, initialize and enable the
1305 * rest of the chip.
1307 * Must be invoked under gp->lock and gp->tx_lock.
1309 static int gem_set_link_modes(struct gem *gp)
1311 u32 val;
1312 int full_duplex, speed, pause;
1314 full_duplex = 0;
1315 speed = SPEED_10;
1316 pause = 0;
1318 if (found_mii_phy(gp)) {
1319 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1320 return 1;
1321 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1322 speed = gp->phy_mii.speed;
1323 pause = gp->phy_mii.pause;
1324 } else if (gp->phy_type == phy_serialink ||
1325 gp->phy_type == phy_serdes) {
1326 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1328 if (pcs_lpa & PCS_MIIADV_FD)
1329 full_duplex = 1;
1330 speed = SPEED_1000;
1333 if (netif_msg_link(gp))
1334 printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
1335 gp->dev->name, speed, (full_duplex ? "full" : "half"));
1337 if (!gp->running)
1338 return 0;
1340 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1341 if (full_duplex) {
1342 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1343 } else {
1344 /* MAC_TXCFG_NBO must be zero. */
1346 writel(val, gp->regs + MAC_TXCFG);
1348 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1349 if (!full_duplex &&
1350 (gp->phy_type == phy_mii_mdio0 ||
1351 gp->phy_type == phy_mii_mdio1)) {
1352 val |= MAC_XIFCFG_DISE;
1353 } else if (full_duplex) {
1354 val |= MAC_XIFCFG_FLED;
1357 if (speed == SPEED_1000)
1358 val |= (MAC_XIFCFG_GMII);
1360 writel(val, gp->regs + MAC_XIFCFG);
1362 /* If gigabit and half-duplex, enable carrier extension
1363 * mode. Else, disable it.
1365 if (speed == SPEED_1000 && !full_duplex) {
1366 val = readl(gp->regs + MAC_TXCFG);
1367 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1369 val = readl(gp->regs + MAC_RXCFG);
1370 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1371 } else {
1372 val = readl(gp->regs + MAC_TXCFG);
1373 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1375 val = readl(gp->regs + MAC_RXCFG);
1376 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1379 if (gp->phy_type == phy_serialink ||
1380 gp->phy_type == phy_serdes) {
1381 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1383 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1384 pause = 1;
1387 if (netif_msg_link(gp)) {
1388 if (pause) {
1389 printk(KERN_INFO "%s: Pause is enabled "
1390 "(rxfifo: %d off: %d on: %d)\n",
1391 gp->dev->name,
1392 gp->rx_fifo_sz,
1393 gp->rx_pause_off,
1394 gp->rx_pause_on);
1395 } else {
1396 printk(KERN_INFO "%s: Pause is disabled\n",
1397 gp->dev->name);
1401 if (!full_duplex)
1402 writel(512, gp->regs + MAC_STIME);
1403 else
1404 writel(64, gp->regs + MAC_STIME);
1405 val = readl(gp->regs + MAC_MCCFG);
1406 if (pause)
1407 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1408 else
1409 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1410 writel(val, gp->regs + MAC_MCCFG);
1412 gem_start_dma(gp);
1414 return 0;
1417 /* Must be invoked under gp->lock and gp->tx_lock. */
1418 static int gem_mdio_link_not_up(struct gem *gp)
1420 switch (gp->lstate) {
1421 case link_force_ret:
1422 if (netif_msg_link(gp))
1423 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1424 " forced mode\n", gp->dev->name);
1425 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1426 gp->last_forced_speed, DUPLEX_HALF);
1427 gp->timer_ticks = 5;
1428 gp->lstate = link_force_ok;
1429 return 0;
1430 case link_aneg:
1431 /* We try forced modes after a failed aneg only on PHYs that don't
1432 * have "magic_aneg" bit set, which means they internally do the
1433 * while forced-mode thingy. On these, we just restart aneg
1435 if (gp->phy_mii.def->magic_aneg)
1436 return 1;
1437 if (netif_msg_link(gp))
1438 printk(KERN_INFO "%s: switching to forced 100bt\n",
1439 gp->dev->name);
1440 /* Try forced modes. */
1441 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1442 DUPLEX_HALF);
1443 gp->timer_ticks = 5;
1444 gp->lstate = link_force_try;
1445 return 0;
1446 case link_force_try:
1447 /* Downgrade from 100 to 10 Mbps if necessary.
1448 * If already at 10Mbps, warn user about the
1449 * situation every 10 ticks.
1451 if (gp->phy_mii.speed == SPEED_100) {
1452 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1453 DUPLEX_HALF);
1454 gp->timer_ticks = 5;
1455 if (netif_msg_link(gp))
1456 printk(KERN_INFO "%s: switching to forced 10bt\n",
1457 gp->dev->name);
1458 return 0;
1459 } else
1460 return 1;
1461 default:
1462 return 0;
1466 static void gem_link_timer(unsigned long data)
1468 struct gem *gp = (struct gem *) data;
1469 int restart_aneg = 0;
1471 if (gp->asleep)
1472 return;
1474 spin_lock_irq(&gp->lock);
1475 spin_lock(&gp->tx_lock);
1476 gem_get_cell(gp);
1478 /* If the reset task is still pending, we just
1479 * reschedule the link timer
1481 if (gp->reset_task_pending)
1482 goto restart;
1484 if (gp->phy_type == phy_serialink ||
1485 gp->phy_type == phy_serdes) {
1486 u32 val = readl(gp->regs + PCS_MIISTAT);
1488 if (!(val & PCS_MIISTAT_LS))
1489 val = readl(gp->regs + PCS_MIISTAT);
1491 if ((val & PCS_MIISTAT_LS) != 0) {
1492 gp->lstate = link_up;
1493 netif_carrier_on(gp->dev);
1494 (void)gem_set_link_modes(gp);
1496 goto restart;
1498 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1499 /* Ok, here we got a link. If we had it due to a forced
1500 * fallback, and we were configured for autoneg, we do
1501 * retry a short autoneg pass. If you know your hub is
1502 * broken, use ethtool ;)
1504 if (gp->lstate == link_force_try && gp->want_autoneg) {
1505 gp->lstate = link_force_ret;
1506 gp->last_forced_speed = gp->phy_mii.speed;
1507 gp->timer_ticks = 5;
1508 if (netif_msg_link(gp))
1509 printk(KERN_INFO "%s: Got link after fallback, retrying"
1510 " autoneg once...\n", gp->dev->name);
1511 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1512 } else if (gp->lstate != link_up) {
1513 gp->lstate = link_up;
1514 netif_carrier_on(gp->dev);
1515 if (gem_set_link_modes(gp))
1516 restart_aneg = 1;
1518 } else {
1519 /* If the link was previously up, we restart the
1520 * whole process
1522 if (gp->lstate == link_up) {
1523 gp->lstate = link_down;
1524 if (netif_msg_link(gp))
1525 printk(KERN_INFO "%s: Link down\n",
1526 gp->dev->name);
1527 netif_carrier_off(gp->dev);
1528 gp->reset_task_pending = 1;
1529 schedule_work(&gp->reset_task);
1530 restart_aneg = 1;
1531 } else if (++gp->timer_ticks > 10) {
1532 if (found_mii_phy(gp))
1533 restart_aneg = gem_mdio_link_not_up(gp);
1534 else
1535 restart_aneg = 1;
1538 if (restart_aneg) {
1539 gem_begin_auto_negotiation(gp, NULL);
1540 goto out_unlock;
1542 restart:
1543 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1544 out_unlock:
1545 gem_put_cell(gp);
1546 spin_unlock(&gp->tx_lock);
1547 spin_unlock_irq(&gp->lock);
1550 /* Must be invoked under gp->lock and gp->tx_lock. */
1551 static void gem_clean_rings(struct gem *gp)
1553 struct gem_init_block *gb = gp->init_block;
1554 struct sk_buff *skb;
1555 int i;
1556 dma_addr_t dma_addr;
1558 for (i = 0; i < RX_RING_SIZE; i++) {
1559 struct gem_rxd *rxd;
1561 rxd = &gb->rxd[i];
1562 if (gp->rx_skbs[i] != NULL) {
1563 skb = gp->rx_skbs[i];
1564 dma_addr = le64_to_cpu(rxd->buffer);
1565 pci_unmap_page(gp->pdev, dma_addr,
1566 RX_BUF_ALLOC_SIZE(gp),
1567 PCI_DMA_FROMDEVICE);
1568 dev_kfree_skb_any(skb);
1569 gp->rx_skbs[i] = NULL;
1571 rxd->status_word = 0;
1572 wmb();
1573 rxd->buffer = 0;
1576 for (i = 0; i < TX_RING_SIZE; i++) {
1577 if (gp->tx_skbs[i] != NULL) {
1578 struct gem_txd *txd;
1579 int frag;
1581 skb = gp->tx_skbs[i];
1582 gp->tx_skbs[i] = NULL;
1584 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1585 int ent = i & (TX_RING_SIZE - 1);
1587 txd = &gb->txd[ent];
1588 dma_addr = le64_to_cpu(txd->buffer);
1589 pci_unmap_page(gp->pdev, dma_addr,
1590 le64_to_cpu(txd->control_word) &
1591 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1593 if (frag != skb_shinfo(skb)->nr_frags)
1594 i++;
1596 dev_kfree_skb_any(skb);
1601 /* Must be invoked under gp->lock and gp->tx_lock. */
1602 static void gem_init_rings(struct gem *gp)
1604 struct gem_init_block *gb = gp->init_block;
1605 struct net_device *dev = gp->dev;
1606 int i;
1607 dma_addr_t dma_addr;
1609 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1611 gem_clean_rings(gp);
1613 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1614 (unsigned)VLAN_ETH_FRAME_LEN);
1616 for (i = 0; i < RX_RING_SIZE; i++) {
1617 struct sk_buff *skb;
1618 struct gem_rxd *rxd = &gb->rxd[i];
1620 skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
1621 if (!skb) {
1622 rxd->buffer = 0;
1623 rxd->status_word = 0;
1624 continue;
1627 gp->rx_skbs[i] = skb;
1628 skb->dev = dev;
1629 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1630 dma_addr = pci_map_page(gp->pdev,
1631 virt_to_page(skb->data),
1632 offset_in_page(skb->data),
1633 RX_BUF_ALLOC_SIZE(gp),
1634 PCI_DMA_FROMDEVICE);
1635 rxd->buffer = cpu_to_le64(dma_addr);
1636 wmb();
1637 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1638 skb_reserve(skb, RX_OFFSET);
1641 for (i = 0; i < TX_RING_SIZE; i++) {
1642 struct gem_txd *txd = &gb->txd[i];
1644 txd->control_word = 0;
1645 wmb();
1646 txd->buffer = 0;
1648 wmb();
1651 /* Init PHY interface and start link poll state machine */
1652 static void gem_init_phy(struct gem *gp)
1654 u32 mifcfg;
1656 /* Revert MIF CFG setting done on stop_phy */
1657 mifcfg = readl(gp->regs + MIF_CFG);
1658 mifcfg &= ~MIF_CFG_BBMODE;
1659 writel(mifcfg, gp->regs + MIF_CFG);
1661 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1662 int i;
1664 /* Those delay sucks, the HW seem to love them though, I'll
1665 * serisouly consider breaking some locks here to be able
1666 * to schedule instead
1668 for (i = 0; i < 3; i++) {
1669 #ifdef CONFIG_PPC_PMAC
1670 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1671 msleep(20);
1672 #endif
1673 /* Some PHYs used by apple have problem getting back to us,
1674 * we do an additional reset here
1676 phy_write(gp, MII_BMCR, BMCR_RESET);
1677 msleep(20);
1678 if (phy_read(gp, MII_BMCR) != 0xffff)
1679 break;
1680 if (i == 2)
1681 printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
1682 gp->dev->name);
1686 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1687 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1688 u32 val;
1690 /* Init datapath mode register. */
1691 if (gp->phy_type == phy_mii_mdio0 ||
1692 gp->phy_type == phy_mii_mdio1) {
1693 val = PCS_DMODE_MGM;
1694 } else if (gp->phy_type == phy_serialink) {
1695 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1696 } else {
1697 val = PCS_DMODE_ESM;
1700 writel(val, gp->regs + PCS_DMODE);
1703 if (gp->phy_type == phy_mii_mdio0 ||
1704 gp->phy_type == phy_mii_mdio1) {
1705 // XXX check for errors
1706 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1708 /* Init PHY */
1709 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1710 gp->phy_mii.def->ops->init(&gp->phy_mii);
1711 } else {
1712 u32 val;
1713 int limit;
1715 /* Reset PCS unit. */
1716 val = readl(gp->regs + PCS_MIICTRL);
1717 val |= PCS_MIICTRL_RST;
1718 writeb(val, gp->regs + PCS_MIICTRL);
1720 limit = 32;
1721 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1722 udelay(100);
1723 if (limit-- <= 0)
1724 break;
1726 if (limit <= 0)
1727 printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
1728 gp->dev->name);
1730 /* Make sure PCS is disabled while changing advertisement
1731 * configuration.
1733 val = readl(gp->regs + PCS_CFG);
1734 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1735 writel(val, gp->regs + PCS_CFG);
1737 /* Advertise all capabilities except assymetric
1738 * pause.
1740 val = readl(gp->regs + PCS_MIIADV);
1741 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1742 PCS_MIIADV_SP | PCS_MIIADV_AP);
1743 writel(val, gp->regs + PCS_MIIADV);
1745 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1746 * and re-enable PCS.
1748 val = readl(gp->regs + PCS_MIICTRL);
1749 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1750 val &= ~PCS_MIICTRL_WB;
1751 writel(val, gp->regs + PCS_MIICTRL);
1753 val = readl(gp->regs + PCS_CFG);
1754 val |= PCS_CFG_ENABLE;
1755 writel(val, gp->regs + PCS_CFG);
1757 /* Make sure serialink loopback is off. The meaning
1758 * of this bit is logically inverted based upon whether
1759 * you are in Serialink or SERDES mode.
1761 val = readl(gp->regs + PCS_SCTRL);
1762 if (gp->phy_type == phy_serialink)
1763 val &= ~PCS_SCTRL_LOOP;
1764 else
1765 val |= PCS_SCTRL_LOOP;
1766 writel(val, gp->regs + PCS_SCTRL);
1769 /* Default aneg parameters */
1770 gp->timer_ticks = 0;
1771 gp->lstate = link_down;
1772 netif_carrier_off(gp->dev);
1774 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1775 spin_lock_irq(&gp->lock);
1776 gem_begin_auto_negotiation(gp, NULL);
1777 spin_unlock_irq(&gp->lock);
1780 /* Must be invoked under gp->lock and gp->tx_lock. */
1781 static void gem_init_dma(struct gem *gp)
1783 u64 desc_dma = (u64) gp->gblock_dvma;
1784 u32 val;
1786 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1787 writel(val, gp->regs + TXDMA_CFG);
1789 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1790 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1791 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1793 writel(0, gp->regs + TXDMA_KICK);
1795 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1796 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1797 writel(val, gp->regs + RXDMA_CFG);
1799 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1800 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1802 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1804 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1805 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1806 writel(val, gp->regs + RXDMA_PTHRESH);
1808 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1809 writel(((5 & RXDMA_BLANK_IPKTS) |
1810 ((8 << 12) & RXDMA_BLANK_ITIME)),
1811 gp->regs + RXDMA_BLANK);
1812 else
1813 writel(((5 & RXDMA_BLANK_IPKTS) |
1814 ((4 << 12) & RXDMA_BLANK_ITIME)),
1815 gp->regs + RXDMA_BLANK);
1818 /* Must be invoked under gp->lock and gp->tx_lock. */
1819 static u32 gem_setup_multicast(struct gem *gp)
1821 u32 rxcfg = 0;
1822 int i;
1824 if ((gp->dev->flags & IFF_ALLMULTI) ||
1825 (gp->dev->mc_count > 256)) {
1826 for (i=0; i<16; i++)
1827 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1828 rxcfg |= MAC_RXCFG_HFE;
1829 } else if (gp->dev->flags & IFF_PROMISC) {
1830 rxcfg |= MAC_RXCFG_PROM;
1831 } else {
1832 u16 hash_table[16];
1833 u32 crc;
1834 struct dev_mc_list *dmi = gp->dev->mc_list;
1835 int i;
1837 for (i = 0; i < 16; i++)
1838 hash_table[i] = 0;
1840 for (i = 0; i < gp->dev->mc_count; i++) {
1841 char *addrs = dmi->dmi_addr;
1843 dmi = dmi->next;
1845 if (!(*addrs & 1))
1846 continue;
1848 crc = ether_crc_le(6, addrs);
1849 crc >>= 24;
1850 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1852 for (i=0; i<16; i++)
1853 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1854 rxcfg |= MAC_RXCFG_HFE;
1857 return rxcfg;
1860 /* Must be invoked under gp->lock and gp->tx_lock. */
1861 static void gem_init_mac(struct gem *gp)
1863 unsigned char *e = &gp->dev->dev_addr[0];
1865 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1867 writel(0x00, gp->regs + MAC_IPG0);
1868 writel(0x08, gp->regs + MAC_IPG1);
1869 writel(0x04, gp->regs + MAC_IPG2);
1870 writel(0x40, gp->regs + MAC_STIME);
1871 writel(0x40, gp->regs + MAC_MINFSZ);
1873 /* Ethernet payload + header + FCS + optional VLAN tag. */
1874 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1876 writel(0x07, gp->regs + MAC_PASIZE);
1877 writel(0x04, gp->regs + MAC_JAMSIZE);
1878 writel(0x10, gp->regs + MAC_ATTLIM);
1879 writel(0x8808, gp->regs + MAC_MCTYPE);
1881 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1883 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1884 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1885 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1887 writel(0, gp->regs + MAC_ADDR3);
1888 writel(0, gp->regs + MAC_ADDR4);
1889 writel(0, gp->regs + MAC_ADDR5);
1891 writel(0x0001, gp->regs + MAC_ADDR6);
1892 writel(0xc200, gp->regs + MAC_ADDR7);
1893 writel(0x0180, gp->regs + MAC_ADDR8);
1895 writel(0, gp->regs + MAC_AFILT0);
1896 writel(0, gp->regs + MAC_AFILT1);
1897 writel(0, gp->regs + MAC_AFILT2);
1898 writel(0, gp->regs + MAC_AF21MSK);
1899 writel(0, gp->regs + MAC_AF0MSK);
1901 gp->mac_rx_cfg = gem_setup_multicast(gp);
1902 #ifdef STRIP_FCS
1903 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1904 #endif
1905 writel(0, gp->regs + MAC_NCOLL);
1906 writel(0, gp->regs + MAC_FASUCC);
1907 writel(0, gp->regs + MAC_ECOLL);
1908 writel(0, gp->regs + MAC_LCOLL);
1909 writel(0, gp->regs + MAC_DTIMER);
1910 writel(0, gp->regs + MAC_PATMPS);
1911 writel(0, gp->regs + MAC_RFCTR);
1912 writel(0, gp->regs + MAC_LERR);
1913 writel(0, gp->regs + MAC_AERR);
1914 writel(0, gp->regs + MAC_FCSERR);
1915 writel(0, gp->regs + MAC_RXCVERR);
1917 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1918 * them once a link is established.
1920 writel(0, gp->regs + MAC_TXCFG);
1921 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1922 writel(0, gp->regs + MAC_MCCFG);
1923 writel(0, gp->regs + MAC_XIFCFG);
1925 /* Setup MAC interrupts. We want to get all of the interesting
1926 * counter expiration events, but we do not want to hear about
1927 * normal rx/tx as the DMA engine tells us that.
1929 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1930 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1932 /* Don't enable even the PAUSE interrupts for now, we
1933 * make no use of those events other than to record them.
1935 writel(0xffffffff, gp->regs + MAC_MCMASK);
1937 /* Don't enable GEM's WOL in normal operations
1939 if (gp->has_wol)
1940 writel(0, gp->regs + WOL_WAKECSR);
1943 /* Must be invoked under gp->lock and gp->tx_lock. */
1944 static void gem_init_pause_thresholds(struct gem *gp)
1946 u32 cfg;
1948 /* Calculate pause thresholds. Setting the OFF threshold to the
1949 * full RX fifo size effectively disables PAUSE generation which
1950 * is what we do for 10/100 only GEMs which have FIFOs too small
1951 * to make real gains from PAUSE.
1953 if (gp->rx_fifo_sz <= (2 * 1024)) {
1954 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1955 } else {
1956 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1957 int off = (gp->rx_fifo_sz - (max_frame * 2));
1958 int on = off - max_frame;
1960 gp->rx_pause_off = off;
1961 gp->rx_pause_on = on;
1965 /* Configure the chip "burst" DMA mode & enable some
1966 * HW bug fixes on Apple version
1968 cfg = 0;
1969 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1970 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1971 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1972 cfg |= GREG_CFG_IBURST;
1973 #endif
1974 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1975 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1976 writel(cfg, gp->regs + GREG_CFG);
1978 /* If Infinite Burst didn't stick, then use different
1979 * thresholds (and Apple bug fixes don't exist)
1981 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1982 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1983 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1984 writel(cfg, gp->regs + GREG_CFG);
1988 static int gem_check_invariants(struct gem *gp)
1990 struct pci_dev *pdev = gp->pdev;
1991 u32 mif_cfg;
1993 /* On Apple's sungem, we can't rely on registers as the chip
1994 * was been powered down by the firmware. The PHY is looked
1995 * up later on.
1997 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1998 gp->phy_type = phy_mii_mdio0;
1999 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2000 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2001 gp->swrst_base = 0;
2003 mif_cfg = readl(gp->regs + MIF_CFG);
2004 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
2005 mif_cfg |= MIF_CFG_MDI0;
2006 writel(mif_cfg, gp->regs + MIF_CFG);
2007 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
2008 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
2010 /* We hard-code the PHY address so we can properly bring it out of
2011 * reset later on, we can't really probe it at this point, though
2012 * that isn't an issue.
2014 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
2015 gp->mii_phy_addr = 1;
2016 else
2017 gp->mii_phy_addr = 0;
2019 return 0;
2022 mif_cfg = readl(gp->regs + MIF_CFG);
2024 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2025 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
2026 /* One of the MII PHYs _must_ be present
2027 * as this chip has no gigabit PHY.
2029 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
2030 printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2031 mif_cfg);
2032 return -1;
2036 /* Determine initial PHY interface type guess. MDIO1 is the
2037 * external PHY and thus takes precedence over MDIO0.
2040 if (mif_cfg & MIF_CFG_MDI1) {
2041 gp->phy_type = phy_mii_mdio1;
2042 mif_cfg |= MIF_CFG_PSELECT;
2043 writel(mif_cfg, gp->regs + MIF_CFG);
2044 } else if (mif_cfg & MIF_CFG_MDI0) {
2045 gp->phy_type = phy_mii_mdio0;
2046 mif_cfg &= ~MIF_CFG_PSELECT;
2047 writel(mif_cfg, gp->regs + MIF_CFG);
2048 } else {
2049 gp->phy_type = phy_serialink;
2051 if (gp->phy_type == phy_mii_mdio1 ||
2052 gp->phy_type == phy_mii_mdio0) {
2053 int i;
2055 for (i = 0; i < 32; i++) {
2056 gp->mii_phy_addr = i;
2057 if (phy_read(gp, MII_BMCR) != 0xffff)
2058 break;
2060 if (i == 32) {
2061 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2062 printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
2063 return -1;
2065 gp->phy_type = phy_serdes;
2069 /* Fetch the FIFO configurations now too. */
2070 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2071 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2073 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2074 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2075 if (gp->tx_fifo_sz != (9 * 1024) ||
2076 gp->rx_fifo_sz != (20 * 1024)) {
2077 printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2078 gp->tx_fifo_sz, gp->rx_fifo_sz);
2079 return -1;
2081 gp->swrst_base = 0;
2082 } else {
2083 if (gp->tx_fifo_sz != (2 * 1024) ||
2084 gp->rx_fifo_sz != (2 * 1024)) {
2085 printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2086 gp->tx_fifo_sz, gp->rx_fifo_sz);
2087 return -1;
2089 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2093 return 0;
2096 /* Must be invoked under gp->lock and gp->tx_lock. */
2097 static void gem_reinit_chip(struct gem *gp)
2099 /* Reset the chip */
2100 gem_reset(gp);
2102 /* Make sure ints are disabled */
2103 gem_disable_ints(gp);
2105 /* Allocate & setup ring buffers */
2106 gem_init_rings(gp);
2108 /* Configure pause thresholds */
2109 gem_init_pause_thresholds(gp);
2111 /* Init DMA & MAC engines */
2112 gem_init_dma(gp);
2113 gem_init_mac(gp);
2117 /* Must be invoked with no lock held. */
2118 static void gem_stop_phy(struct gem *gp, int wol)
2120 u32 mifcfg;
2121 unsigned long flags;
2123 /* Let the chip settle down a bit, it seems that helps
2124 * for sleep mode on some models
2126 msleep(10);
2128 /* Make sure we aren't polling PHY status change. We
2129 * don't currently use that feature though
2131 mifcfg = readl(gp->regs + MIF_CFG);
2132 mifcfg &= ~MIF_CFG_POLL;
2133 writel(mifcfg, gp->regs + MIF_CFG);
2135 if (wol && gp->has_wol) {
2136 unsigned char *e = &gp->dev->dev_addr[0];
2137 u32 csr;
2139 /* Setup wake-on-lan for MAGIC packet */
2140 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2141 gp->regs + MAC_RXCFG);
2142 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2143 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2144 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2146 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2147 csr = WOL_WAKECSR_ENABLE;
2148 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2149 csr |= WOL_WAKECSR_MII;
2150 writel(csr, gp->regs + WOL_WAKECSR);
2151 } else {
2152 writel(0, gp->regs + MAC_RXCFG);
2153 (void)readl(gp->regs + MAC_RXCFG);
2154 /* Machine sleep will die in strange ways if we
2155 * dont wait a bit here, looks like the chip takes
2156 * some time to really shut down
2158 msleep(10);
2161 writel(0, gp->regs + MAC_TXCFG);
2162 writel(0, gp->regs + MAC_XIFCFG);
2163 writel(0, gp->regs + TXDMA_CFG);
2164 writel(0, gp->regs + RXDMA_CFG);
2166 if (!wol) {
2167 spin_lock_irqsave(&gp->lock, flags);
2168 spin_lock(&gp->tx_lock);
2169 gem_reset(gp);
2170 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2171 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2172 spin_unlock(&gp->tx_lock);
2173 spin_unlock_irqrestore(&gp->lock, flags);
2175 /* No need to take the lock here */
2177 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2178 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2180 /* According to Apple, we must set the MDIO pins to this begnign
2181 * state or we may 1) eat more current, 2) damage some PHYs
2183 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2184 writel(0, gp->regs + MIF_BBCLK);
2185 writel(0, gp->regs + MIF_BBDATA);
2186 writel(0, gp->regs + MIF_BBOENAB);
2187 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2188 (void) readl(gp->regs + MAC_XIFCFG);
2193 static int gem_do_start(struct net_device *dev)
2195 struct gem *gp = dev->priv;
2196 unsigned long flags;
2198 spin_lock_irqsave(&gp->lock, flags);
2199 spin_lock(&gp->tx_lock);
2201 /* Enable the cell */
2202 gem_get_cell(gp);
2204 /* Init & setup chip hardware */
2205 gem_reinit_chip(gp);
2207 gp->running = 1;
2209 if (gp->lstate == link_up) {
2210 netif_carrier_on(gp->dev);
2211 gem_set_link_modes(gp);
2214 netif_wake_queue(gp->dev);
2216 spin_unlock(&gp->tx_lock);
2217 spin_unlock_irqrestore(&gp->lock, flags);
2219 if (request_irq(gp->pdev->irq, gem_interrupt,
2220 IRQF_SHARED, dev->name, (void *)dev)) {
2221 printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
2223 spin_lock_irqsave(&gp->lock, flags);
2224 spin_lock(&gp->tx_lock);
2226 gp->running = 0;
2227 gem_reset(gp);
2228 gem_clean_rings(gp);
2229 gem_put_cell(gp);
2231 spin_unlock(&gp->tx_lock);
2232 spin_unlock_irqrestore(&gp->lock, flags);
2234 return -EAGAIN;
2237 return 0;
2240 static void gem_do_stop(struct net_device *dev, int wol)
2242 struct gem *gp = dev->priv;
2243 unsigned long flags;
2245 spin_lock_irqsave(&gp->lock, flags);
2246 spin_lock(&gp->tx_lock);
2248 gp->running = 0;
2250 /* Stop netif queue */
2251 netif_stop_queue(dev);
2253 /* Make sure ints are disabled */
2254 gem_disable_ints(gp);
2256 /* We can drop the lock now */
2257 spin_unlock(&gp->tx_lock);
2258 spin_unlock_irqrestore(&gp->lock, flags);
2260 /* If we are going to sleep with WOL */
2261 gem_stop_dma(gp);
2262 msleep(10);
2263 if (!wol)
2264 gem_reset(gp);
2265 msleep(10);
2267 /* Get rid of rings */
2268 gem_clean_rings(gp);
2270 /* No irq needed anymore */
2271 free_irq(gp->pdev->irq, (void *) dev);
2273 /* Cell not needed neither if no WOL */
2274 if (!wol) {
2275 spin_lock_irqsave(&gp->lock, flags);
2276 gem_put_cell(gp);
2277 spin_unlock_irqrestore(&gp->lock, flags);
2281 static void gem_reset_task(struct work_struct *work)
2283 struct gem *gp = container_of(work, struct gem, reset_task);
2285 mutex_lock(&gp->pm_mutex);
2287 netif_poll_disable(gp->dev);
2289 spin_lock_irq(&gp->lock);
2290 spin_lock(&gp->tx_lock);
2292 if (gp->running == 0)
2293 goto not_running;
2295 if (gp->running) {
2296 netif_stop_queue(gp->dev);
2298 /* Reset the chip & rings */
2299 gem_reinit_chip(gp);
2300 if (gp->lstate == link_up)
2301 gem_set_link_modes(gp);
2302 netif_wake_queue(gp->dev);
2304 not_running:
2305 gp->reset_task_pending = 0;
2307 spin_unlock(&gp->tx_lock);
2308 spin_unlock_irq(&gp->lock);
2310 netif_poll_enable(gp->dev);
2312 mutex_unlock(&gp->pm_mutex);
2316 static int gem_open(struct net_device *dev)
2318 struct gem *gp = dev->priv;
2319 int rc = 0;
2321 mutex_lock(&gp->pm_mutex);
2323 /* We need the cell enabled */
2324 if (!gp->asleep)
2325 rc = gem_do_start(dev);
2326 gp->opened = (rc == 0);
2328 mutex_unlock(&gp->pm_mutex);
2330 return rc;
2333 static int gem_close(struct net_device *dev)
2335 struct gem *gp = dev->priv;
2337 /* Note: we don't need to call netif_poll_disable() here because
2338 * our caller (dev_close) already did it for us
2341 mutex_lock(&gp->pm_mutex);
2343 gp->opened = 0;
2344 if (!gp->asleep)
2345 gem_do_stop(dev, 0);
2347 mutex_unlock(&gp->pm_mutex);
2349 return 0;
2352 #ifdef CONFIG_PM
2353 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2355 struct net_device *dev = pci_get_drvdata(pdev);
2356 struct gem *gp = dev->priv;
2357 unsigned long flags;
2359 mutex_lock(&gp->pm_mutex);
2361 netif_poll_disable(dev);
2363 printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
2364 dev->name,
2365 (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
2367 /* Keep the cell enabled during the entire operation */
2368 spin_lock_irqsave(&gp->lock, flags);
2369 spin_lock(&gp->tx_lock);
2370 gem_get_cell(gp);
2371 spin_unlock(&gp->tx_lock);
2372 spin_unlock_irqrestore(&gp->lock, flags);
2374 /* If the driver is opened, we stop the MAC */
2375 if (gp->opened) {
2376 /* Stop traffic, mark us closed */
2377 netif_device_detach(dev);
2379 /* Switch off MAC, remember WOL setting */
2380 gp->asleep_wol = gp->wake_on_lan;
2381 gem_do_stop(dev, gp->asleep_wol);
2382 } else
2383 gp->asleep_wol = 0;
2385 /* Mark us asleep */
2386 gp->asleep = 1;
2387 wmb();
2389 /* Stop the link timer */
2390 del_timer_sync(&gp->link_timer);
2392 /* Now we release the mutex to not block the reset task who
2393 * can take it too. We are marked asleep, so there will be no
2394 * conflict here
2396 mutex_unlock(&gp->pm_mutex);
2398 /* Wait for a pending reset task to complete */
2399 while (gp->reset_task_pending)
2400 yield();
2401 flush_scheduled_work();
2403 /* Shut the PHY down eventually and setup WOL */
2404 gem_stop_phy(gp, gp->asleep_wol);
2406 /* Make sure bus master is disabled */
2407 pci_disable_device(gp->pdev);
2409 /* Release the cell, no need to take a lock at this point since
2410 * nothing else can happen now
2412 gem_put_cell(gp);
2414 return 0;
2417 static int gem_resume(struct pci_dev *pdev)
2419 struct net_device *dev = pci_get_drvdata(pdev);
2420 struct gem *gp = dev->priv;
2421 unsigned long flags;
2423 printk(KERN_INFO "%s: resuming\n", dev->name);
2425 mutex_lock(&gp->pm_mutex);
2427 /* Keep the cell enabled during the entire operation, no need to
2428 * take a lock here tho since nothing else can happen while we are
2429 * marked asleep
2431 gem_get_cell(gp);
2433 /* Make sure PCI access and bus master are enabled */
2434 if (pci_enable_device(gp->pdev)) {
2435 printk(KERN_ERR "%s: Can't re-enable chip !\n",
2436 dev->name);
2437 /* Put cell and forget it for now, it will be considered as
2438 * still asleep, a new sleep cycle may bring it back
2440 gem_put_cell(gp);
2441 mutex_unlock(&gp->pm_mutex);
2442 return 0;
2444 pci_set_master(gp->pdev);
2446 /* Reset everything */
2447 gem_reset(gp);
2449 /* Mark us woken up */
2450 gp->asleep = 0;
2451 wmb();
2453 /* Bring the PHY back. Again, lock is useless at this point as
2454 * nothing can be happening until we restart the whole thing
2456 gem_init_phy(gp);
2458 /* If we were opened, bring everything back */
2459 if (gp->opened) {
2460 /* Restart MAC */
2461 gem_do_start(dev);
2463 /* Re-attach net device */
2464 netif_device_attach(dev);
2468 spin_lock_irqsave(&gp->lock, flags);
2469 spin_lock(&gp->tx_lock);
2471 /* If we had WOL enabled, the cell clock was never turned off during
2472 * sleep, so we end up beeing unbalanced. Fix that here
2474 if (gp->asleep_wol)
2475 gem_put_cell(gp);
2477 /* This function doesn't need to hold the cell, it will be held if the
2478 * driver is open by gem_do_start().
2480 gem_put_cell(gp);
2482 spin_unlock(&gp->tx_lock);
2483 spin_unlock_irqrestore(&gp->lock, flags);
2485 netif_poll_enable(dev);
2487 mutex_unlock(&gp->pm_mutex);
2489 return 0;
2491 #endif /* CONFIG_PM */
2493 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2495 struct gem *gp = dev->priv;
2496 struct net_device_stats *stats = &gp->net_stats;
2498 spin_lock_irq(&gp->lock);
2499 spin_lock(&gp->tx_lock);
2501 /* I have seen this being called while the PM was in progress,
2502 * so we shield against this
2504 if (gp->running) {
2505 stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2506 writel(0, gp->regs + MAC_FCSERR);
2508 stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
2509 writel(0, gp->regs + MAC_AERR);
2511 stats->rx_length_errors += readl(gp->regs + MAC_LERR);
2512 writel(0, gp->regs + MAC_LERR);
2514 stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2515 stats->collisions +=
2516 (readl(gp->regs + MAC_ECOLL) +
2517 readl(gp->regs + MAC_LCOLL));
2518 writel(0, gp->regs + MAC_ECOLL);
2519 writel(0, gp->regs + MAC_LCOLL);
2522 spin_unlock(&gp->tx_lock);
2523 spin_unlock_irq(&gp->lock);
2525 return &gp->net_stats;
2528 static int gem_set_mac_address(struct net_device *dev, void *addr)
2530 struct sockaddr *macaddr = (struct sockaddr *) addr;
2531 struct gem *gp = dev->priv;
2532 unsigned char *e = &dev->dev_addr[0];
2534 if (!is_valid_ether_addr(macaddr->sa_data))
2535 return -EADDRNOTAVAIL;
2537 if (!netif_running(dev) || !netif_device_present(dev)) {
2538 /* We'll just catch it later when the
2539 * device is up'd or resumed.
2541 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2542 return 0;
2545 mutex_lock(&gp->pm_mutex);
2546 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2547 if (gp->running) {
2548 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2549 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2550 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2552 mutex_unlock(&gp->pm_mutex);
2554 return 0;
2557 static void gem_set_multicast(struct net_device *dev)
2559 struct gem *gp = dev->priv;
2560 u32 rxcfg, rxcfg_new;
2561 int limit = 10000;
2564 spin_lock_irq(&gp->lock);
2565 spin_lock(&gp->tx_lock);
2567 if (!gp->running)
2568 goto bail;
2570 netif_stop_queue(dev);
2572 rxcfg = readl(gp->regs + MAC_RXCFG);
2573 rxcfg_new = gem_setup_multicast(gp);
2574 #ifdef STRIP_FCS
2575 rxcfg_new |= MAC_RXCFG_SFCS;
2576 #endif
2577 gp->mac_rx_cfg = rxcfg_new;
2579 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2580 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2581 if (!limit--)
2582 break;
2583 udelay(10);
2586 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2587 rxcfg |= rxcfg_new;
2589 writel(rxcfg, gp->regs + MAC_RXCFG);
2591 netif_wake_queue(dev);
2593 bail:
2594 spin_unlock(&gp->tx_lock);
2595 spin_unlock_irq(&gp->lock);
2598 /* Jumbo-grams don't seem to work :-( */
2599 #define GEM_MIN_MTU 68
2600 #if 1
2601 #define GEM_MAX_MTU 1500
2602 #else
2603 #define GEM_MAX_MTU 9000
2604 #endif
2606 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2608 struct gem *gp = dev->priv;
2610 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2611 return -EINVAL;
2613 if (!netif_running(dev) || !netif_device_present(dev)) {
2614 /* We'll just catch it later when the
2615 * device is up'd or resumed.
2617 dev->mtu = new_mtu;
2618 return 0;
2621 mutex_lock(&gp->pm_mutex);
2622 spin_lock_irq(&gp->lock);
2623 spin_lock(&gp->tx_lock);
2624 dev->mtu = new_mtu;
2625 if (gp->running) {
2626 gem_reinit_chip(gp);
2627 if (gp->lstate == link_up)
2628 gem_set_link_modes(gp);
2630 spin_unlock(&gp->tx_lock);
2631 spin_unlock_irq(&gp->lock);
2632 mutex_unlock(&gp->pm_mutex);
2634 return 0;
2637 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2639 struct gem *gp = dev->priv;
2641 strcpy(info->driver, DRV_NAME);
2642 strcpy(info->version, DRV_VERSION);
2643 strcpy(info->bus_info, pci_name(gp->pdev));
2646 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2648 struct gem *gp = dev->priv;
2650 if (gp->phy_type == phy_mii_mdio0 ||
2651 gp->phy_type == phy_mii_mdio1) {
2652 if (gp->phy_mii.def)
2653 cmd->supported = gp->phy_mii.def->features;
2654 else
2655 cmd->supported = (SUPPORTED_10baseT_Half |
2656 SUPPORTED_10baseT_Full);
2658 /* XXX hardcoded stuff for now */
2659 cmd->port = PORT_MII;
2660 cmd->transceiver = XCVR_EXTERNAL;
2661 cmd->phy_address = 0; /* XXX fixed PHYAD */
2663 /* Return current PHY settings */
2664 spin_lock_irq(&gp->lock);
2665 cmd->autoneg = gp->want_autoneg;
2666 cmd->speed = gp->phy_mii.speed;
2667 cmd->duplex = gp->phy_mii.duplex;
2668 cmd->advertising = gp->phy_mii.advertising;
2670 /* If we started with a forced mode, we don't have a default
2671 * advertise set, we need to return something sensible so
2672 * userland can re-enable autoneg properly.
2674 if (cmd->advertising == 0)
2675 cmd->advertising = cmd->supported;
2676 spin_unlock_irq(&gp->lock);
2677 } else { // XXX PCS ?
2678 cmd->supported =
2679 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2680 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2681 SUPPORTED_Autoneg);
2682 cmd->advertising = cmd->supported;
2683 cmd->speed = 0;
2684 cmd->duplex = cmd->port = cmd->phy_address =
2685 cmd->transceiver = cmd->autoneg = 0;
2687 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2689 return 0;
2692 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2694 struct gem *gp = dev->priv;
2696 /* Verify the settings we care about. */
2697 if (cmd->autoneg != AUTONEG_ENABLE &&
2698 cmd->autoneg != AUTONEG_DISABLE)
2699 return -EINVAL;
2701 if (cmd->autoneg == AUTONEG_ENABLE &&
2702 cmd->advertising == 0)
2703 return -EINVAL;
2705 if (cmd->autoneg == AUTONEG_DISABLE &&
2706 ((cmd->speed != SPEED_1000 &&
2707 cmd->speed != SPEED_100 &&
2708 cmd->speed != SPEED_10) ||
2709 (cmd->duplex != DUPLEX_HALF &&
2710 cmd->duplex != DUPLEX_FULL)))
2711 return -EINVAL;
2713 /* Apply settings and restart link process. */
2714 spin_lock_irq(&gp->lock);
2715 gem_get_cell(gp);
2716 gem_begin_auto_negotiation(gp, cmd);
2717 gem_put_cell(gp);
2718 spin_unlock_irq(&gp->lock);
2720 return 0;
2723 static int gem_nway_reset(struct net_device *dev)
2725 struct gem *gp = dev->priv;
2727 if (!gp->want_autoneg)
2728 return -EINVAL;
2730 /* Restart link process. */
2731 spin_lock_irq(&gp->lock);
2732 gem_get_cell(gp);
2733 gem_begin_auto_negotiation(gp, NULL);
2734 gem_put_cell(gp);
2735 spin_unlock_irq(&gp->lock);
2737 return 0;
2740 static u32 gem_get_msglevel(struct net_device *dev)
2742 struct gem *gp = dev->priv;
2743 return gp->msg_enable;
2746 static void gem_set_msglevel(struct net_device *dev, u32 value)
2748 struct gem *gp = dev->priv;
2749 gp->msg_enable = value;
2753 /* Add more when I understand how to program the chip */
2754 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2756 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2758 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2760 struct gem *gp = dev->priv;
2762 /* Add more when I understand how to program the chip */
2763 if (gp->has_wol) {
2764 wol->supported = WOL_SUPPORTED_MASK;
2765 wol->wolopts = gp->wake_on_lan;
2766 } else {
2767 wol->supported = 0;
2768 wol->wolopts = 0;
2772 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2774 struct gem *gp = dev->priv;
2776 if (!gp->has_wol)
2777 return -EOPNOTSUPP;
2778 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2779 return 0;
2782 static const struct ethtool_ops gem_ethtool_ops = {
2783 .get_drvinfo = gem_get_drvinfo,
2784 .get_link = ethtool_op_get_link,
2785 .get_settings = gem_get_settings,
2786 .set_settings = gem_set_settings,
2787 .nway_reset = gem_nway_reset,
2788 .get_msglevel = gem_get_msglevel,
2789 .set_msglevel = gem_set_msglevel,
2790 .get_wol = gem_get_wol,
2791 .set_wol = gem_set_wol,
2794 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2796 struct gem *gp = dev->priv;
2797 struct mii_ioctl_data *data = if_mii(ifr);
2798 int rc = -EOPNOTSUPP;
2799 unsigned long flags;
2801 /* Hold the PM mutex while doing ioctl's or we may collide
2802 * with power management.
2804 mutex_lock(&gp->pm_mutex);
2806 spin_lock_irqsave(&gp->lock, flags);
2807 gem_get_cell(gp);
2808 spin_unlock_irqrestore(&gp->lock, flags);
2810 switch (cmd) {
2811 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2812 data->phy_id = gp->mii_phy_addr;
2813 /* Fallthrough... */
2815 case SIOCGMIIREG: /* Read MII PHY register. */
2816 if (!gp->running)
2817 rc = -EAGAIN;
2818 else {
2819 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2820 data->reg_num & 0x1f);
2821 rc = 0;
2823 break;
2825 case SIOCSMIIREG: /* Write MII PHY register. */
2826 if (!capable(CAP_NET_ADMIN))
2827 rc = -EPERM;
2828 else if (!gp->running)
2829 rc = -EAGAIN;
2830 else {
2831 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2832 data->val_in);
2833 rc = 0;
2835 break;
2838 spin_lock_irqsave(&gp->lock, flags);
2839 gem_put_cell(gp);
2840 spin_unlock_irqrestore(&gp->lock, flags);
2842 mutex_unlock(&gp->pm_mutex);
2844 return rc;
2847 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2848 /* Fetch MAC address from vital product data of PCI ROM. */
2849 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2851 int this_offset;
2853 for (this_offset = 0x20; this_offset < len; this_offset++) {
2854 void __iomem *p = rom_base + this_offset;
2855 int i;
2857 if (readb(p + 0) != 0x90 ||
2858 readb(p + 1) != 0x00 ||
2859 readb(p + 2) != 0x09 ||
2860 readb(p + 3) != 0x4e ||
2861 readb(p + 4) != 0x41 ||
2862 readb(p + 5) != 0x06)
2863 continue;
2865 this_offset += 6;
2866 p += 6;
2868 for (i = 0; i < 6; i++)
2869 dev_addr[i] = readb(p + i);
2870 return 1;
2872 return 0;
2875 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2877 size_t size;
2878 void __iomem *p = pci_map_rom(pdev, &size);
2880 if (p) {
2881 int found;
2883 found = readb(p) == 0x55 &&
2884 readb(p + 1) == 0xaa &&
2885 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2886 pci_unmap_rom(pdev, p);
2887 if (found)
2888 return;
2891 /* Sun MAC prefix then 3 random bytes. */
2892 dev_addr[0] = 0x08;
2893 dev_addr[1] = 0x00;
2894 dev_addr[2] = 0x20;
2895 get_random_bytes(dev_addr + 3, 3);
2896 return;
2898 #endif /* not Sparc and not PPC */
2900 static int __devinit gem_get_device_address(struct gem *gp)
2902 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2903 struct net_device *dev = gp->dev;
2904 const unsigned char *addr;
2906 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2907 if (addr == NULL) {
2908 #ifdef CONFIG_SPARC
2909 addr = idprom->id_ethaddr;
2910 #else
2911 printk("\n");
2912 printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
2913 return -1;
2914 #endif
2916 memcpy(dev->dev_addr, addr, 6);
2917 #else
2918 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2919 #endif
2920 return 0;
2923 static void gem_remove_one(struct pci_dev *pdev)
2925 struct net_device *dev = pci_get_drvdata(pdev);
2927 if (dev) {
2928 struct gem *gp = dev->priv;
2930 unregister_netdev(dev);
2932 /* Stop the link timer */
2933 del_timer_sync(&gp->link_timer);
2935 /* We shouldn't need any locking here */
2936 gem_get_cell(gp);
2938 /* Wait for a pending reset task to complete */
2939 while (gp->reset_task_pending)
2940 yield();
2941 flush_scheduled_work();
2943 /* Shut the PHY down */
2944 gem_stop_phy(gp, 0);
2946 gem_put_cell(gp);
2948 /* Make sure bus master is disabled */
2949 pci_disable_device(gp->pdev);
2951 /* Free resources */
2952 pci_free_consistent(pdev,
2953 sizeof(struct gem_init_block),
2954 gp->init_block,
2955 gp->gblock_dvma);
2956 iounmap(gp->regs);
2957 pci_release_regions(pdev);
2958 free_netdev(dev);
2960 pci_set_drvdata(pdev, NULL);
2964 static int __devinit gem_init_one(struct pci_dev *pdev,
2965 const struct pci_device_id *ent)
2967 static int gem_version_printed = 0;
2968 unsigned long gemreg_base, gemreg_len;
2969 struct net_device *dev;
2970 struct gem *gp;
2971 int i, err, pci_using_dac;
2973 if (gem_version_printed++ == 0)
2974 printk(KERN_INFO "%s", version);
2976 /* Apple gmac note: during probe, the chip is powered up by
2977 * the arch code to allow the code below to work (and to let
2978 * the chip be probed on the config space. It won't stay powered
2979 * up until the interface is brought up however, so we can't rely
2980 * on register configuration done at this point.
2982 err = pci_enable_device(pdev);
2983 if (err) {
2984 printk(KERN_ERR PFX "Cannot enable MMIO operation, "
2985 "aborting.\n");
2986 return err;
2988 pci_set_master(pdev);
2990 /* Configure DMA attributes. */
2992 /* All of the GEM documentation states that 64-bit DMA addressing
2993 * is fully supported and should work just fine. However the
2994 * front end for RIO based GEMs is different and only supports
2995 * 32-bit addressing.
2997 * For now we assume the various PPC GEMs are 32-bit only as well.
2999 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
3000 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
3001 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3002 pci_using_dac = 1;
3003 } else {
3004 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3005 if (err) {
3006 printk(KERN_ERR PFX "No usable DMA configuration, "
3007 "aborting.\n");
3008 goto err_disable_device;
3010 pci_using_dac = 0;
3013 gemreg_base = pci_resource_start(pdev, 0);
3014 gemreg_len = pci_resource_len(pdev, 0);
3016 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3017 printk(KERN_ERR PFX "Cannot find proper PCI device "
3018 "base address, aborting.\n");
3019 err = -ENODEV;
3020 goto err_disable_device;
3023 dev = alloc_etherdev(sizeof(*gp));
3024 if (!dev) {
3025 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
3026 err = -ENOMEM;
3027 goto err_disable_device;
3029 SET_MODULE_OWNER(dev);
3030 SET_NETDEV_DEV(dev, &pdev->dev);
3032 gp = dev->priv;
3034 err = pci_request_regions(pdev, DRV_NAME);
3035 if (err) {
3036 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
3037 "aborting.\n");
3038 goto err_out_free_netdev;
3041 gp->pdev = pdev;
3042 dev->base_addr = (long) pdev;
3043 gp->dev = dev;
3045 gp->msg_enable = DEFAULT_MSG;
3047 spin_lock_init(&gp->lock);
3048 spin_lock_init(&gp->tx_lock);
3049 mutex_init(&gp->pm_mutex);
3051 init_timer(&gp->link_timer);
3052 gp->link_timer.function = gem_link_timer;
3053 gp->link_timer.data = (unsigned long) gp;
3055 INIT_WORK(&gp->reset_task, gem_reset_task);
3057 gp->lstate = link_down;
3058 gp->timer_ticks = 0;
3059 netif_carrier_off(dev);
3061 gp->regs = ioremap(gemreg_base, gemreg_len);
3062 if (gp->regs == 0UL) {
3063 printk(KERN_ERR PFX "Cannot map device registers, "
3064 "aborting.\n");
3065 err = -EIO;
3066 goto err_out_free_res;
3069 /* On Apple, we want a reference to the Open Firmware device-tree
3070 * node. We use it for clock control.
3072 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
3073 gp->of_node = pci_device_to_OF_node(pdev);
3074 #endif
3076 /* Only Apple version supports WOL afaik */
3077 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
3078 gp->has_wol = 1;
3080 /* Make sure cell is enabled */
3081 gem_get_cell(gp);
3083 /* Make sure everything is stopped and in init state */
3084 gem_reset(gp);
3086 /* Fill up the mii_phy structure (even if we won't use it) */
3087 gp->phy_mii.dev = dev;
3088 gp->phy_mii.mdio_read = _phy_read;
3089 gp->phy_mii.mdio_write = _phy_write;
3090 #ifdef CONFIG_PPC_PMAC
3091 gp->phy_mii.platform_data = gp->of_node;
3092 #endif
3093 /* By default, we start with autoneg */
3094 gp->want_autoneg = 1;
3096 /* Check fifo sizes, PHY type, etc... */
3097 if (gem_check_invariants(gp)) {
3098 err = -ENODEV;
3099 goto err_out_iounmap;
3102 /* It is guaranteed that the returned buffer will be at least
3103 * PAGE_SIZE aligned.
3105 gp->init_block = (struct gem_init_block *)
3106 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
3107 &gp->gblock_dvma);
3108 if (!gp->init_block) {
3109 printk(KERN_ERR PFX "Cannot allocate init block, "
3110 "aborting.\n");
3111 err = -ENOMEM;
3112 goto err_out_iounmap;
3115 if (gem_get_device_address(gp))
3116 goto err_out_free_consistent;
3118 dev->open = gem_open;
3119 dev->stop = gem_close;
3120 dev->hard_start_xmit = gem_start_xmit;
3121 dev->get_stats = gem_get_stats;
3122 dev->set_multicast_list = gem_set_multicast;
3123 dev->do_ioctl = gem_ioctl;
3124 dev->poll = gem_poll;
3125 dev->weight = 64;
3126 dev->ethtool_ops = &gem_ethtool_ops;
3127 dev->tx_timeout = gem_tx_timeout;
3128 dev->watchdog_timeo = 5 * HZ;
3129 dev->change_mtu = gem_change_mtu;
3130 dev->irq = pdev->irq;
3131 dev->dma = 0;
3132 dev->set_mac_address = gem_set_mac_address;
3133 #ifdef CONFIG_NET_POLL_CONTROLLER
3134 dev->poll_controller = gem_poll_controller;
3135 #endif
3137 /* Set that now, in case PM kicks in now */
3138 pci_set_drvdata(pdev, dev);
3140 /* Detect & init PHY, start autoneg, we release the cell now
3141 * too, it will be managed by whoever needs it
3143 gem_init_phy(gp);
3145 spin_lock_irq(&gp->lock);
3146 gem_put_cell(gp);
3147 spin_unlock_irq(&gp->lock);
3149 /* Register with kernel */
3150 if (register_netdev(dev)) {
3151 printk(KERN_ERR PFX "Cannot register net device, "
3152 "aborting.\n");
3153 err = -ENOMEM;
3154 goto err_out_free_consistent;
3157 printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
3158 dev->name);
3159 for (i = 0; i < 6; i++)
3160 printk("%2.2x%c", dev->dev_addr[i],
3161 i == 5 ? ' ' : ':');
3162 printk("\n");
3164 if (gp->phy_type == phy_mii_mdio0 ||
3165 gp->phy_type == phy_mii_mdio1)
3166 printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
3167 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
3169 /* GEM can do it all... */
3170 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
3171 if (pci_using_dac)
3172 dev->features |= NETIF_F_HIGHDMA;
3174 return 0;
3176 err_out_free_consistent:
3177 gem_remove_one(pdev);
3178 err_out_iounmap:
3179 gem_put_cell(gp);
3180 iounmap(gp->regs);
3182 err_out_free_res:
3183 pci_release_regions(pdev);
3185 err_out_free_netdev:
3186 free_netdev(dev);
3187 err_disable_device:
3188 pci_disable_device(pdev);
3189 return err;
3194 static struct pci_driver gem_driver = {
3195 .name = GEM_MODULE_NAME,
3196 .id_table = gem_pci_tbl,
3197 .probe = gem_init_one,
3198 .remove = gem_remove_one,
3199 #ifdef CONFIG_PM
3200 .suspend = gem_suspend,
3201 .resume = gem_resume,
3202 #endif /* CONFIG_PM */
3205 static int __init gem_init(void)
3207 return pci_register_driver(&gem_driver);
3210 static void __exit gem_cleanup(void)
3212 pci_unregister_driver(&gem_driver);
3215 module_init(gem_init);
3216 module_exit(gem_cleanup);