4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
52 bh
->b_end_io
= handler
;
53 bh
->b_private
= private;
56 static int sync_buffer(void *word
)
58 struct block_device
*bd
;
59 struct buffer_head
*bh
60 = container_of(word
, struct buffer_head
, b_state
);
65 blk_run_address_space(bd
->bd_inode
->i_mapping
);
70 void fastcall
__lock_buffer(struct buffer_head
*bh
)
72 wait_on_bit_lock(&bh
->b_state
, BH_Lock
, sync_buffer
,
73 TASK_UNINTERRUPTIBLE
);
75 EXPORT_SYMBOL(__lock_buffer
);
77 void fastcall
unlock_buffer(struct buffer_head
*bh
)
79 smp_mb__before_clear_bit();
80 clear_buffer_locked(bh
);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh
->b_state
, BH_Lock
);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head
* bh
)
92 wait_on_bit(&bh
->b_state
, BH_Lock
, sync_buffer
, TASK_UNINTERRUPTIBLE
);
96 __clear_page_buffers(struct page
*page
)
98 ClearPagePrivate(page
);
99 set_page_private(page
, 0);
100 page_cache_release(page
);
103 static void buffer_io_error(struct buffer_head
*bh
)
105 char b
[BDEVNAME_SIZE
];
107 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh
->b_bdev
, b
),
109 (unsigned long long)bh
->b_blocknr
);
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
116 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
119 set_buffer_uptodate(bh
);
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh
);
128 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
130 char b
[BDEVNAME_SIZE
];
133 set_buffer_uptodate(bh
);
135 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
137 printk(KERN_WARNING
"lost page write due to "
139 bdevname(bh
->b_bdev
, b
));
141 set_buffer_write_io_error(bh
);
142 clear_buffer_uptodate(bh
);
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
152 int sync_blockdev(struct block_device
*bdev
)
157 ret
= filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
160 EXPORT_SYMBOL(sync_blockdev
);
163 * Write out and wait upon all dirty data associated with this
164 * device. Filesystem data as well as the underlying block
165 * device. Takes the superblock lock.
167 int fsync_bdev(struct block_device
*bdev
)
169 struct super_block
*sb
= get_super(bdev
);
171 int res
= fsync_super(sb
);
175 return sync_blockdev(bdev
);
179 * freeze_bdev -- lock a filesystem and force it into a consistent state
180 * @bdev: blockdevice to lock
182 * This takes the block device bd_mount_sem to make sure no new mounts
183 * happen on bdev until thaw_bdev() is called.
184 * If a superblock is found on this device, we take the s_umount semaphore
185 * on it to make sure nobody unmounts until the snapshot creation is done.
187 struct super_block
*freeze_bdev(struct block_device
*bdev
)
189 struct super_block
*sb
;
191 down(&bdev
->bd_mount_sem
);
192 sb
= get_super(bdev
);
193 if (sb
&& !(sb
->s_flags
& MS_RDONLY
)) {
194 sb
->s_frozen
= SB_FREEZE_WRITE
;
199 sb
->s_frozen
= SB_FREEZE_TRANS
;
202 sync_blockdev(sb
->s_bdev
);
204 if (sb
->s_op
->write_super_lockfs
)
205 sb
->s_op
->write_super_lockfs(sb
);
209 return sb
; /* thaw_bdev releases s->s_umount and bd_mount_sem */
211 EXPORT_SYMBOL(freeze_bdev
);
214 * thaw_bdev -- unlock filesystem
215 * @bdev: blockdevice to unlock
216 * @sb: associated superblock
218 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
220 void thaw_bdev(struct block_device
*bdev
, struct super_block
*sb
)
223 BUG_ON(sb
->s_bdev
!= bdev
);
225 if (sb
->s_op
->unlockfs
)
226 sb
->s_op
->unlockfs(sb
);
227 sb
->s_frozen
= SB_UNFROZEN
;
229 wake_up(&sb
->s_wait_unfrozen
);
233 up(&bdev
->bd_mount_sem
);
235 EXPORT_SYMBOL(thaw_bdev
);
238 * Various filesystems appear to want __find_get_block to be non-blocking.
239 * But it's the page lock which protects the buffers. To get around this,
240 * we get exclusion from try_to_free_buffers with the blockdev mapping's
243 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244 * may be quite high. This code could TryLock the page, and if that
245 * succeeds, there is no need to take private_lock. (But if
246 * private_lock is contended then so is mapping->tree_lock).
248 static struct buffer_head
*
249 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
251 struct inode
*bd_inode
= bdev
->bd_inode
;
252 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
253 struct buffer_head
*ret
= NULL
;
255 struct buffer_head
*bh
;
256 struct buffer_head
*head
;
260 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
261 page
= find_get_page(bd_mapping
, index
);
265 spin_lock(&bd_mapping
->private_lock
);
266 if (!page_has_buffers(page
))
268 head
= page_buffers(page
);
271 if (bh
->b_blocknr
== block
) {
276 if (!buffer_mapped(bh
))
278 bh
= bh
->b_this_page
;
279 } while (bh
!= head
);
281 /* we might be here because some of the buffers on this page are
282 * not mapped. This is due to various races between
283 * file io on the block device and getblk. It gets dealt with
284 * elsewhere, don't buffer_error if we had some unmapped buffers
287 printk("__find_get_block_slow() failed. "
288 "block=%llu, b_blocknr=%llu\n",
289 (unsigned long long)block
,
290 (unsigned long long)bh
->b_blocknr
);
291 printk("b_state=0x%08lx, b_size=%zu\n",
292 bh
->b_state
, bh
->b_size
);
293 printk("device blocksize: %d\n", 1 << bd_inode
->i_blkbits
);
296 spin_unlock(&bd_mapping
->private_lock
);
297 page_cache_release(page
);
302 /* If invalidate_buffers() will trash dirty buffers, it means some kind
303 of fs corruption is going on. Trashing dirty data always imply losing
304 information that was supposed to be just stored on the physical layer
307 Thus invalidate_buffers in general usage is not allwowed to trash
308 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309 be preserved. These buffers are simply skipped.
311 We also skip buffers which are still in use. For example this can
312 happen if a userspace program is reading the block device.
314 NOTE: In the case where the user removed a removable-media-disk even if
315 there's still dirty data not synced on disk (due a bug in the device driver
316 or due an error of the user), by not destroying the dirty buffers we could
317 generate corruption also on the next media inserted, thus a parameter is
318 necessary to handle this case in the most safe way possible (trying
319 to not corrupt also the new disk inserted with the data belonging to
320 the old now corrupted disk). Also for the ramdisk the natural thing
321 to do in order to release the ramdisk memory is to destroy dirty buffers.
323 These are two special cases. Normal usage imply the device driver
324 to issue a sync on the device (without waiting I/O completion) and
325 then an invalidate_buffers call that doesn't trash dirty buffers.
327 For handling cache coherency with the blkdev pagecache the 'update' case
328 is been introduced. It is needed to re-read from disk any pinned
329 buffer. NOTE: re-reading from disk is destructive so we can do it only
330 when we assume nobody is changing the buffercache under our I/O and when
331 we think the disk contains more recent information than the buffercache.
332 The update == 1 pass marks the buffers we need to update, the update == 2
333 pass does the actual I/O. */
334 void invalidate_bdev(struct block_device
*bdev
)
336 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
338 if (mapping
->nrpages
== 0)
341 invalidate_bh_lrus();
342 invalidate_mapping_pages(mapping
, 0, -1);
346 * Kick pdflush then try to free up some ZONE_NORMAL memory.
348 static void free_more_memory(void)
353 wakeup_pdflush(1024);
356 for_each_online_pgdat(pgdat
) {
357 zones
= pgdat
->node_zonelists
[gfp_zone(GFP_NOFS
)].zones
;
359 try_to_free_pages(zones
, GFP_NOFS
);
364 * I/O completion handler for block_read_full_page() - pages
365 * which come unlocked at the end of I/O.
367 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
370 struct buffer_head
*first
;
371 struct buffer_head
*tmp
;
373 int page_uptodate
= 1;
375 BUG_ON(!buffer_async_read(bh
));
379 set_buffer_uptodate(bh
);
381 clear_buffer_uptodate(bh
);
382 if (printk_ratelimit())
388 * Be _very_ careful from here on. Bad things can happen if
389 * two buffer heads end IO at almost the same time and both
390 * decide that the page is now completely done.
392 first
= page_buffers(page
);
393 local_irq_save(flags
);
394 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
395 clear_buffer_async_read(bh
);
399 if (!buffer_uptodate(tmp
))
401 if (buffer_async_read(tmp
)) {
402 BUG_ON(!buffer_locked(tmp
));
405 tmp
= tmp
->b_this_page
;
407 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
408 local_irq_restore(flags
);
411 * If none of the buffers had errors and they are all
412 * uptodate then we can set the page uptodate.
414 if (page_uptodate
&& !PageError(page
))
415 SetPageUptodate(page
);
420 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
421 local_irq_restore(flags
);
426 * Completion handler for block_write_full_page() - pages which are unlocked
427 * during I/O, and which have PageWriteback cleared upon I/O completion.
429 static void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
431 char b
[BDEVNAME_SIZE
];
433 struct buffer_head
*first
;
434 struct buffer_head
*tmp
;
437 BUG_ON(!buffer_async_write(bh
));
441 set_buffer_uptodate(bh
);
443 if (printk_ratelimit()) {
445 printk(KERN_WARNING
"lost page write due to "
447 bdevname(bh
->b_bdev
, b
));
449 set_bit(AS_EIO
, &page
->mapping
->flags
);
450 set_buffer_write_io_error(bh
);
451 clear_buffer_uptodate(bh
);
455 first
= page_buffers(page
);
456 local_irq_save(flags
);
457 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
459 clear_buffer_async_write(bh
);
461 tmp
= bh
->b_this_page
;
463 if (buffer_async_write(tmp
)) {
464 BUG_ON(!buffer_locked(tmp
));
467 tmp
= tmp
->b_this_page
;
469 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
470 local_irq_restore(flags
);
471 end_page_writeback(page
);
475 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
476 local_irq_restore(flags
);
481 * If a page's buffers are under async readin (end_buffer_async_read
482 * completion) then there is a possibility that another thread of
483 * control could lock one of the buffers after it has completed
484 * but while some of the other buffers have not completed. This
485 * locked buffer would confuse end_buffer_async_read() into not unlocking
486 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
487 * that this buffer is not under async I/O.
489 * The page comes unlocked when it has no locked buffer_async buffers
492 * PageLocked prevents anyone starting new async I/O reads any of
495 * PageWriteback is used to prevent simultaneous writeout of the same
498 * PageLocked prevents anyone from starting writeback of a page which is
499 * under read I/O (PageWriteback is only ever set against a locked page).
501 static void mark_buffer_async_read(struct buffer_head
*bh
)
503 bh
->b_end_io
= end_buffer_async_read
;
504 set_buffer_async_read(bh
);
507 void mark_buffer_async_write(struct buffer_head
*bh
)
509 bh
->b_end_io
= end_buffer_async_write
;
510 set_buffer_async_write(bh
);
512 EXPORT_SYMBOL(mark_buffer_async_write
);
516 * fs/buffer.c contains helper functions for buffer-backed address space's
517 * fsync functions. A common requirement for buffer-based filesystems is
518 * that certain data from the backing blockdev needs to be written out for
519 * a successful fsync(). For example, ext2 indirect blocks need to be
520 * written back and waited upon before fsync() returns.
522 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
523 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
524 * management of a list of dependent buffers at ->i_mapping->private_list.
526 * Locking is a little subtle: try_to_free_buffers() will remove buffers
527 * from their controlling inode's queue when they are being freed. But
528 * try_to_free_buffers() will be operating against the *blockdev* mapping
529 * at the time, not against the S_ISREG file which depends on those buffers.
530 * So the locking for private_list is via the private_lock in the address_space
531 * which backs the buffers. Which is different from the address_space
532 * against which the buffers are listed. So for a particular address_space,
533 * mapping->private_lock does *not* protect mapping->private_list! In fact,
534 * mapping->private_list will always be protected by the backing blockdev's
537 * Which introduces a requirement: all buffers on an address_space's
538 * ->private_list must be from the same address_space: the blockdev's.
540 * address_spaces which do not place buffers at ->private_list via these
541 * utility functions are free to use private_lock and private_list for
542 * whatever they want. The only requirement is that list_empty(private_list)
543 * be true at clear_inode() time.
545 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
546 * filesystems should do that. invalidate_inode_buffers() should just go
547 * BUG_ON(!list_empty).
549 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
550 * take an address_space, not an inode. And it should be called
551 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
554 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
555 * list if it is already on a list. Because if the buffer is on a list,
556 * it *must* already be on the right one. If not, the filesystem is being
557 * silly. This will save a ton of locking. But first we have to ensure
558 * that buffers are taken *off* the old inode's list when they are freed
559 * (presumably in truncate). That requires careful auditing of all
560 * filesystems (do it inside bforget()). It could also be done by bringing
565 * The buffer's backing address_space's private_lock must be held
567 static inline void __remove_assoc_queue(struct buffer_head
*bh
)
569 list_del_init(&bh
->b_assoc_buffers
);
570 WARN_ON(!bh
->b_assoc_map
);
571 if (buffer_write_io_error(bh
))
572 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
573 bh
->b_assoc_map
= NULL
;
576 int inode_has_buffers(struct inode
*inode
)
578 return !list_empty(&inode
->i_data
.private_list
);
582 * osync is designed to support O_SYNC io. It waits synchronously for
583 * all already-submitted IO to complete, but does not queue any new
584 * writes to the disk.
586 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
587 * you dirty the buffers, and then use osync_inode_buffers to wait for
588 * completion. Any other dirty buffers which are not yet queued for
589 * write will not be flushed to disk by the osync.
591 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
593 struct buffer_head
*bh
;
599 list_for_each_prev(p
, list
) {
601 if (buffer_locked(bh
)) {
605 if (!buffer_uptodate(bh
))
617 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
619 * @mapping: the mapping which wants those buffers written
621 * Starts I/O against the buffers at mapping->private_list, and waits upon
624 * Basically, this is a convenience function for fsync().
625 * @mapping is a file or directory which needs those buffers to be written for
626 * a successful fsync().
628 int sync_mapping_buffers(struct address_space
*mapping
)
630 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
632 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
635 return fsync_buffers_list(&buffer_mapping
->private_lock
,
636 &mapping
->private_list
);
638 EXPORT_SYMBOL(sync_mapping_buffers
);
641 * Called when we've recently written block `bblock', and it is known that
642 * `bblock' was for a buffer_boundary() buffer. This means that the block at
643 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
644 * dirty, schedule it for IO. So that indirects merge nicely with their data.
646 void write_boundary_block(struct block_device
*bdev
,
647 sector_t bblock
, unsigned blocksize
)
649 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
651 if (buffer_dirty(bh
))
652 ll_rw_block(WRITE
, 1, &bh
);
657 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
659 struct address_space
*mapping
= inode
->i_mapping
;
660 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
662 mark_buffer_dirty(bh
);
663 if (!mapping
->assoc_mapping
) {
664 mapping
->assoc_mapping
= buffer_mapping
;
666 BUG_ON(mapping
->assoc_mapping
!= buffer_mapping
);
668 if (list_empty(&bh
->b_assoc_buffers
)) {
669 spin_lock(&buffer_mapping
->private_lock
);
670 list_move_tail(&bh
->b_assoc_buffers
,
671 &mapping
->private_list
);
672 bh
->b_assoc_map
= mapping
;
673 spin_unlock(&buffer_mapping
->private_lock
);
676 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
679 * Add a page to the dirty page list.
681 * It is a sad fact of life that this function is called from several places
682 * deeply under spinlocking. It may not sleep.
684 * If the page has buffers, the uptodate buffers are set dirty, to preserve
685 * dirty-state coherency between the page and the buffers. It the page does
686 * not have buffers then when they are later attached they will all be set
689 * The buffers are dirtied before the page is dirtied. There's a small race
690 * window in which a writepage caller may see the page cleanness but not the
691 * buffer dirtiness. That's fine. If this code were to set the page dirty
692 * before the buffers, a concurrent writepage caller could clear the page dirty
693 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
694 * page on the dirty page list.
696 * We use private_lock to lock against try_to_free_buffers while using the
697 * page's buffer list. Also use this to protect against clean buffers being
698 * added to the page after it was set dirty.
700 * FIXME: may need to call ->reservepage here as well. That's rather up to the
701 * address_space though.
703 int __set_page_dirty_buffers(struct page
*page
)
705 struct address_space
* const mapping
= page_mapping(page
);
707 if (unlikely(!mapping
))
708 return !TestSetPageDirty(page
);
710 spin_lock(&mapping
->private_lock
);
711 if (page_has_buffers(page
)) {
712 struct buffer_head
*head
= page_buffers(page
);
713 struct buffer_head
*bh
= head
;
716 set_buffer_dirty(bh
);
717 bh
= bh
->b_this_page
;
718 } while (bh
!= head
);
720 spin_unlock(&mapping
->private_lock
);
722 if (TestSetPageDirty(page
))
725 write_lock_irq(&mapping
->tree_lock
);
726 if (page
->mapping
) { /* Race with truncate? */
727 if (mapping_cap_account_dirty(mapping
)) {
728 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
729 task_io_account_write(PAGE_CACHE_SIZE
);
731 radix_tree_tag_set(&mapping
->page_tree
,
732 page_index(page
), PAGECACHE_TAG_DIRTY
);
734 write_unlock_irq(&mapping
->tree_lock
);
735 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
738 EXPORT_SYMBOL(__set_page_dirty_buffers
);
741 * Write out and wait upon a list of buffers.
743 * We have conflicting pressures: we want to make sure that all
744 * initially dirty buffers get waited on, but that any subsequently
745 * dirtied buffers don't. After all, we don't want fsync to last
746 * forever if somebody is actively writing to the file.
748 * Do this in two main stages: first we copy dirty buffers to a
749 * temporary inode list, queueing the writes as we go. Then we clean
750 * up, waiting for those writes to complete.
752 * During this second stage, any subsequent updates to the file may end
753 * up refiling the buffer on the original inode's dirty list again, so
754 * there is a chance we will end up with a buffer queued for write but
755 * not yet completed on that list. So, as a final cleanup we go through
756 * the osync code to catch these locked, dirty buffers without requeuing
757 * any newly dirty buffers for write.
759 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
761 struct buffer_head
*bh
;
762 struct list_head tmp
;
765 INIT_LIST_HEAD(&tmp
);
768 while (!list_empty(list
)) {
769 bh
= BH_ENTRY(list
->next
);
770 __remove_assoc_queue(bh
);
771 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
772 list_add(&bh
->b_assoc_buffers
, &tmp
);
773 if (buffer_dirty(bh
)) {
777 * Ensure any pending I/O completes so that
778 * ll_rw_block() actually writes the current
779 * contents - it is a noop if I/O is still in
780 * flight on potentially older contents.
782 ll_rw_block(SWRITE
, 1, &bh
);
789 while (!list_empty(&tmp
)) {
790 bh
= BH_ENTRY(tmp
.prev
);
791 list_del_init(&bh
->b_assoc_buffers
);
795 if (!buffer_uptodate(bh
))
802 err2
= osync_buffers_list(lock
, list
);
810 * Invalidate any and all dirty buffers on a given inode. We are
811 * probably unmounting the fs, but that doesn't mean we have already
812 * done a sync(). Just drop the buffers from the inode list.
814 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
815 * assumes that all the buffers are against the blockdev. Not true
818 void invalidate_inode_buffers(struct inode
*inode
)
820 if (inode_has_buffers(inode
)) {
821 struct address_space
*mapping
= &inode
->i_data
;
822 struct list_head
*list
= &mapping
->private_list
;
823 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
825 spin_lock(&buffer_mapping
->private_lock
);
826 while (!list_empty(list
))
827 __remove_assoc_queue(BH_ENTRY(list
->next
));
828 spin_unlock(&buffer_mapping
->private_lock
);
833 * Remove any clean buffers from the inode's buffer list. This is called
834 * when we're trying to free the inode itself. Those buffers can pin it.
836 * Returns true if all buffers were removed.
838 int remove_inode_buffers(struct inode
*inode
)
842 if (inode_has_buffers(inode
)) {
843 struct address_space
*mapping
= &inode
->i_data
;
844 struct list_head
*list
= &mapping
->private_list
;
845 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
847 spin_lock(&buffer_mapping
->private_lock
);
848 while (!list_empty(list
)) {
849 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
850 if (buffer_dirty(bh
)) {
854 __remove_assoc_queue(bh
);
856 spin_unlock(&buffer_mapping
->private_lock
);
862 * Create the appropriate buffers when given a page for data area and
863 * the size of each buffer.. Use the bh->b_this_page linked list to
864 * follow the buffers created. Return NULL if unable to create more
867 * The retry flag is used to differentiate async IO (paging, swapping)
868 * which may not fail from ordinary buffer allocations.
870 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
873 struct buffer_head
*bh
, *head
;
879 while ((offset
-= size
) >= 0) {
880 bh
= alloc_buffer_head(GFP_NOFS
);
885 bh
->b_this_page
= head
;
890 atomic_set(&bh
->b_count
, 0);
891 bh
->b_private
= NULL
;
894 /* Link the buffer to its page */
895 set_bh_page(bh
, page
, offset
);
897 init_buffer(bh
, NULL
, NULL
);
901 * In case anything failed, we just free everything we got.
907 head
= head
->b_this_page
;
908 free_buffer_head(bh
);
913 * Return failure for non-async IO requests. Async IO requests
914 * are not allowed to fail, so we have to wait until buffer heads
915 * become available. But we don't want tasks sleeping with
916 * partially complete buffers, so all were released above.
921 /* We're _really_ low on memory. Now we just
922 * wait for old buffer heads to become free due to
923 * finishing IO. Since this is an async request and
924 * the reserve list is empty, we're sure there are
925 * async buffer heads in use.
930 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
933 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
935 struct buffer_head
*bh
, *tail
;
940 bh
= bh
->b_this_page
;
942 tail
->b_this_page
= head
;
943 attach_page_buffers(page
, head
);
947 * Initialise the state of a blockdev page's buffers.
950 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
951 sector_t block
, int size
)
953 struct buffer_head
*head
= page_buffers(page
);
954 struct buffer_head
*bh
= head
;
955 int uptodate
= PageUptodate(page
);
958 if (!buffer_mapped(bh
)) {
959 init_buffer(bh
, NULL
, NULL
);
961 bh
->b_blocknr
= block
;
963 set_buffer_uptodate(bh
);
964 set_buffer_mapped(bh
);
967 bh
= bh
->b_this_page
;
968 } while (bh
!= head
);
972 * Create the page-cache page that contains the requested block.
974 * This is user purely for blockdev mappings.
977 grow_dev_page(struct block_device
*bdev
, sector_t block
,
978 pgoff_t index
, int size
)
980 struct inode
*inode
= bdev
->bd_inode
;
982 struct buffer_head
*bh
;
984 page
= find_or_create_page(inode
->i_mapping
, index
,
985 mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
);
989 BUG_ON(!PageLocked(page
));
991 if (page_has_buffers(page
)) {
992 bh
= page_buffers(page
);
993 if (bh
->b_size
== size
) {
994 init_page_buffers(page
, bdev
, block
, size
);
997 if (!try_to_free_buffers(page
))
1002 * Allocate some buffers for this page
1004 bh
= alloc_page_buffers(page
, size
, 0);
1009 * Link the page to the buffers and initialise them. Take the
1010 * lock to be atomic wrt __find_get_block(), which does not
1011 * run under the page lock.
1013 spin_lock(&inode
->i_mapping
->private_lock
);
1014 link_dev_buffers(page
, bh
);
1015 init_page_buffers(page
, bdev
, block
, size
);
1016 spin_unlock(&inode
->i_mapping
->private_lock
);
1022 page_cache_release(page
);
1027 * Create buffers for the specified block device block's page. If
1028 * that page was dirty, the buffers are set dirty also.
1030 * Except that's a bug. Attaching dirty buffers to a dirty
1031 * blockdev's page can result in filesystem corruption, because
1032 * some of those buffers may be aliases of filesystem data.
1033 * grow_dev_page() will go BUG() if this happens.
1036 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
)
1045 } while ((size
<< sizebits
) < PAGE_SIZE
);
1047 index
= block
>> sizebits
;
1050 * Check for a block which wants to lie outside our maximum possible
1051 * pagecache index. (this comparison is done using sector_t types).
1053 if (unlikely(index
!= block
>> sizebits
)) {
1054 char b
[BDEVNAME_SIZE
];
1056 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1058 __FUNCTION__
, (unsigned long long)block
,
1062 block
= index
<< sizebits
;
1063 /* Create a page with the proper size buffers.. */
1064 page
= grow_dev_page(bdev
, block
, index
, size
);
1068 page_cache_release(page
);
1072 static struct buffer_head
*
1073 __getblk_slow(struct block_device
*bdev
, sector_t block
, int size
)
1075 /* Size must be multiple of hard sectorsize */
1076 if (unlikely(size
& (bdev_hardsect_size(bdev
)-1) ||
1077 (size
< 512 || size
> PAGE_SIZE
))) {
1078 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1080 printk(KERN_ERR
"hardsect size: %d\n",
1081 bdev_hardsect_size(bdev
));
1088 struct buffer_head
* bh
;
1091 bh
= __find_get_block(bdev
, block
, size
);
1095 ret
= grow_buffers(bdev
, block
, size
);
1104 * The relationship between dirty buffers and dirty pages:
1106 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1107 * the page is tagged dirty in its radix tree.
1109 * At all times, the dirtiness of the buffers represents the dirtiness of
1110 * subsections of the page. If the page has buffers, the page dirty bit is
1111 * merely a hint about the true dirty state.
1113 * When a page is set dirty in its entirety, all its buffers are marked dirty
1114 * (if the page has buffers).
1116 * When a buffer is marked dirty, its page is dirtied, but the page's other
1119 * Also. When blockdev buffers are explicitly read with bread(), they
1120 * individually become uptodate. But their backing page remains not
1121 * uptodate - even if all of its buffers are uptodate. A subsequent
1122 * block_read_full_page() against that page will discover all the uptodate
1123 * buffers, will set the page uptodate and will perform no I/O.
1127 * mark_buffer_dirty - mark a buffer_head as needing writeout
1128 * @bh: the buffer_head to mark dirty
1130 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1131 * backing page dirty, then tag the page as dirty in its address_space's radix
1132 * tree and then attach the address_space's inode to its superblock's dirty
1135 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1136 * mapping->tree_lock and the global inode_lock.
1138 void fastcall
mark_buffer_dirty(struct buffer_head
*bh
)
1140 if (!buffer_dirty(bh
) && !test_set_buffer_dirty(bh
))
1141 __set_page_dirty_nobuffers(bh
->b_page
);
1145 * Decrement a buffer_head's reference count. If all buffers against a page
1146 * have zero reference count, are clean and unlocked, and if the page is clean
1147 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1148 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1149 * a page but it ends up not being freed, and buffers may later be reattached).
1151 void __brelse(struct buffer_head
* buf
)
1153 if (atomic_read(&buf
->b_count
)) {
1157 printk(KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1162 * bforget() is like brelse(), except it discards any
1163 * potentially dirty data.
1165 void __bforget(struct buffer_head
*bh
)
1167 clear_buffer_dirty(bh
);
1168 if (!list_empty(&bh
->b_assoc_buffers
)) {
1169 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1171 spin_lock(&buffer_mapping
->private_lock
);
1172 list_del_init(&bh
->b_assoc_buffers
);
1173 bh
->b_assoc_map
= NULL
;
1174 spin_unlock(&buffer_mapping
->private_lock
);
1179 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1182 if (buffer_uptodate(bh
)) {
1187 bh
->b_end_io
= end_buffer_read_sync
;
1188 submit_bh(READ
, bh
);
1190 if (buffer_uptodate(bh
))
1198 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1199 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1200 * refcount elevated by one when they're in an LRU. A buffer can only appear
1201 * once in a particular CPU's LRU. A single buffer can be present in multiple
1202 * CPU's LRUs at the same time.
1204 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1205 * sb_find_get_block().
1207 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1208 * a local interrupt disable for that.
1211 #define BH_LRU_SIZE 8
1214 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1217 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1220 #define bh_lru_lock() local_irq_disable()
1221 #define bh_lru_unlock() local_irq_enable()
1223 #define bh_lru_lock() preempt_disable()
1224 #define bh_lru_unlock() preempt_enable()
1227 static inline void check_irqs_on(void)
1229 #ifdef irqs_disabled
1230 BUG_ON(irqs_disabled());
1235 * The LRU management algorithm is dopey-but-simple. Sorry.
1237 static void bh_lru_install(struct buffer_head
*bh
)
1239 struct buffer_head
*evictee
= NULL
;
1244 lru
= &__get_cpu_var(bh_lrus
);
1245 if (lru
->bhs
[0] != bh
) {
1246 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1252 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1253 struct buffer_head
*bh2
= lru
->bhs
[in
];
1258 if (out
>= BH_LRU_SIZE
) {
1259 BUG_ON(evictee
!= NULL
);
1266 while (out
< BH_LRU_SIZE
)
1268 memcpy(lru
->bhs
, bhs
, sizeof(bhs
));
1277 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1279 static struct buffer_head
*
1280 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1282 struct buffer_head
*ret
= NULL
;
1288 lru
= &__get_cpu_var(bh_lrus
);
1289 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1290 struct buffer_head
*bh
= lru
->bhs
[i
];
1292 if (bh
&& bh
->b_bdev
== bdev
&&
1293 bh
->b_blocknr
== block
&& bh
->b_size
== size
) {
1296 lru
->bhs
[i
] = lru
->bhs
[i
- 1];
1311 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1312 * it in the LRU and mark it as accessed. If it is not present then return
1315 struct buffer_head
*
1316 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1318 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1321 bh
= __find_get_block_slow(bdev
, block
);
1329 EXPORT_SYMBOL(__find_get_block
);
1332 * __getblk will locate (and, if necessary, create) the buffer_head
1333 * which corresponds to the passed block_device, block and size. The
1334 * returned buffer has its reference count incremented.
1336 * __getblk() cannot fail - it just keeps trying. If you pass it an
1337 * illegal block number, __getblk() will happily return a buffer_head
1338 * which represents the non-existent block. Very weird.
1340 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1341 * attempt is failing. FIXME, perhaps?
1343 struct buffer_head
*
1344 __getblk(struct block_device
*bdev
, sector_t block
, unsigned size
)
1346 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1350 bh
= __getblk_slow(bdev
, block
, size
);
1353 EXPORT_SYMBOL(__getblk
);
1356 * Do async read-ahead on a buffer..
1358 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1360 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1362 ll_rw_block(READA
, 1, &bh
);
1366 EXPORT_SYMBOL(__breadahead
);
1369 * __bread() - reads a specified block and returns the bh
1370 * @bdev: the block_device to read from
1371 * @block: number of block
1372 * @size: size (in bytes) to read
1374 * Reads a specified block, and returns buffer head that contains it.
1375 * It returns NULL if the block was unreadable.
1377 struct buffer_head
*
1378 __bread(struct block_device
*bdev
, sector_t block
, unsigned size
)
1380 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1382 if (likely(bh
) && !buffer_uptodate(bh
))
1383 bh
= __bread_slow(bh
);
1386 EXPORT_SYMBOL(__bread
);
1389 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1390 * This doesn't race because it runs in each cpu either in irq
1391 * or with preempt disabled.
1393 static void invalidate_bh_lru(void *arg
)
1395 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1398 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1402 put_cpu_var(bh_lrus
);
1405 void invalidate_bh_lrus(void)
1407 on_each_cpu(invalidate_bh_lru
, NULL
, 1, 1);
1410 void set_bh_page(struct buffer_head
*bh
,
1411 struct page
*page
, unsigned long offset
)
1414 BUG_ON(offset
>= PAGE_SIZE
);
1415 if (PageHighMem(page
))
1417 * This catches illegal uses and preserves the offset:
1419 bh
->b_data
= (char *)(0 + offset
);
1421 bh
->b_data
= page_address(page
) + offset
;
1423 EXPORT_SYMBOL(set_bh_page
);
1426 * Called when truncating a buffer on a page completely.
1428 static void discard_buffer(struct buffer_head
* bh
)
1431 clear_buffer_dirty(bh
);
1433 clear_buffer_mapped(bh
);
1434 clear_buffer_req(bh
);
1435 clear_buffer_new(bh
);
1436 clear_buffer_delay(bh
);
1437 clear_buffer_unwritten(bh
);
1442 * block_invalidatepage - invalidate part of all of a buffer-backed page
1444 * @page: the page which is affected
1445 * @offset: the index of the truncation point
1447 * block_invalidatepage() is called when all or part of the page has become
1448 * invalidatedby a truncate operation.
1450 * block_invalidatepage() does not have to release all buffers, but it must
1451 * ensure that no dirty buffer is left outside @offset and that no I/O
1452 * is underway against any of the blocks which are outside the truncation
1453 * point. Because the caller is about to free (and possibly reuse) those
1456 void block_invalidatepage(struct page
*page
, unsigned long offset
)
1458 struct buffer_head
*head
, *bh
, *next
;
1459 unsigned int curr_off
= 0;
1461 BUG_ON(!PageLocked(page
));
1462 if (!page_has_buffers(page
))
1465 head
= page_buffers(page
);
1468 unsigned int next_off
= curr_off
+ bh
->b_size
;
1469 next
= bh
->b_this_page
;
1472 * is this block fully invalidated?
1474 if (offset
<= curr_off
)
1476 curr_off
= next_off
;
1478 } while (bh
!= head
);
1481 * We release buffers only if the entire page is being invalidated.
1482 * The get_block cached value has been unconditionally invalidated,
1483 * so real IO is not possible anymore.
1486 try_to_release_page(page
, 0);
1490 EXPORT_SYMBOL(block_invalidatepage
);
1493 * We attach and possibly dirty the buffers atomically wrt
1494 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1495 * is already excluded via the page lock.
1497 void create_empty_buffers(struct page
*page
,
1498 unsigned long blocksize
, unsigned long b_state
)
1500 struct buffer_head
*bh
, *head
, *tail
;
1502 head
= alloc_page_buffers(page
, blocksize
, 1);
1505 bh
->b_state
|= b_state
;
1507 bh
= bh
->b_this_page
;
1509 tail
->b_this_page
= head
;
1511 spin_lock(&page
->mapping
->private_lock
);
1512 if (PageUptodate(page
) || PageDirty(page
)) {
1515 if (PageDirty(page
))
1516 set_buffer_dirty(bh
);
1517 if (PageUptodate(page
))
1518 set_buffer_uptodate(bh
);
1519 bh
= bh
->b_this_page
;
1520 } while (bh
!= head
);
1522 attach_page_buffers(page
, head
);
1523 spin_unlock(&page
->mapping
->private_lock
);
1525 EXPORT_SYMBOL(create_empty_buffers
);
1528 * We are taking a block for data and we don't want any output from any
1529 * buffer-cache aliases starting from return from that function and
1530 * until the moment when something will explicitly mark the buffer
1531 * dirty (hopefully that will not happen until we will free that block ;-)
1532 * We don't even need to mark it not-uptodate - nobody can expect
1533 * anything from a newly allocated buffer anyway. We used to used
1534 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1535 * don't want to mark the alias unmapped, for example - it would confuse
1536 * anyone who might pick it with bread() afterwards...
1538 * Also.. Note that bforget() doesn't lock the buffer. So there can
1539 * be writeout I/O going on against recently-freed buffers. We don't
1540 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1541 * only if we really need to. That happens here.
1543 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1545 struct buffer_head
*old_bh
;
1549 old_bh
= __find_get_block_slow(bdev
, block
);
1551 clear_buffer_dirty(old_bh
);
1552 wait_on_buffer(old_bh
);
1553 clear_buffer_req(old_bh
);
1557 EXPORT_SYMBOL(unmap_underlying_metadata
);
1560 * NOTE! All mapped/uptodate combinations are valid:
1562 * Mapped Uptodate Meaning
1564 * No No "unknown" - must do get_block()
1565 * No Yes "hole" - zero-filled
1566 * Yes No "allocated" - allocated on disk, not read in
1567 * Yes Yes "valid" - allocated and up-to-date in memory.
1569 * "Dirty" is valid only with the last case (mapped+uptodate).
1573 * While block_write_full_page is writing back the dirty buffers under
1574 * the page lock, whoever dirtied the buffers may decide to clean them
1575 * again at any time. We handle that by only looking at the buffer
1576 * state inside lock_buffer().
1578 * If block_write_full_page() is called for regular writeback
1579 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1580 * locked buffer. This only can happen if someone has written the buffer
1581 * directly, with submit_bh(). At the address_space level PageWriteback
1582 * prevents this contention from occurring.
1584 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1585 get_block_t
*get_block
, struct writeback_control
*wbc
)
1589 sector_t last_block
;
1590 struct buffer_head
*bh
, *head
;
1591 const unsigned blocksize
= 1 << inode
->i_blkbits
;
1592 int nr_underway
= 0;
1594 BUG_ON(!PageLocked(page
));
1596 last_block
= (i_size_read(inode
) - 1) >> inode
->i_blkbits
;
1598 if (!page_has_buffers(page
)) {
1599 create_empty_buffers(page
, blocksize
,
1600 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1604 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1605 * here, and the (potentially unmapped) buffers may become dirty at
1606 * any time. If a buffer becomes dirty here after we've inspected it
1607 * then we just miss that fact, and the page stays dirty.
1609 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1610 * handle that here by just cleaning them.
1613 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1614 head
= page_buffers(page
);
1618 * Get all the dirty buffers mapped to disk addresses and
1619 * handle any aliases from the underlying blockdev's mapping.
1622 if (block
> last_block
) {
1624 * mapped buffers outside i_size will occur, because
1625 * this page can be outside i_size when there is a
1626 * truncate in progress.
1629 * The buffer was zeroed by block_write_full_page()
1631 clear_buffer_dirty(bh
);
1632 set_buffer_uptodate(bh
);
1633 } else if (!buffer_mapped(bh
) && buffer_dirty(bh
)) {
1634 WARN_ON(bh
->b_size
!= blocksize
);
1635 err
= get_block(inode
, block
, bh
, 1);
1638 if (buffer_new(bh
)) {
1639 /* blockdev mappings never come here */
1640 clear_buffer_new(bh
);
1641 unmap_underlying_metadata(bh
->b_bdev
,
1645 bh
= bh
->b_this_page
;
1647 } while (bh
!= head
);
1650 if (!buffer_mapped(bh
))
1653 * If it's a fully non-blocking write attempt and we cannot
1654 * lock the buffer then redirty the page. Note that this can
1655 * potentially cause a busy-wait loop from pdflush and kswapd
1656 * activity, but those code paths have their own higher-level
1659 if (wbc
->sync_mode
!= WB_SYNC_NONE
|| !wbc
->nonblocking
) {
1661 } else if (test_set_buffer_locked(bh
)) {
1662 redirty_page_for_writepage(wbc
, page
);
1665 if (test_clear_buffer_dirty(bh
)) {
1666 mark_buffer_async_write(bh
);
1670 } while ((bh
= bh
->b_this_page
) != head
);
1673 * The page and its buffers are protected by PageWriteback(), so we can
1674 * drop the bh refcounts early.
1676 BUG_ON(PageWriteback(page
));
1677 set_page_writeback(page
);
1680 struct buffer_head
*next
= bh
->b_this_page
;
1681 if (buffer_async_write(bh
)) {
1682 submit_bh(WRITE
, bh
);
1686 } while (bh
!= head
);
1691 if (nr_underway
== 0) {
1693 * The page was marked dirty, but the buffers were
1694 * clean. Someone wrote them back by hand with
1695 * ll_rw_block/submit_bh. A rare case.
1697 end_page_writeback(page
);
1700 * The page and buffer_heads can be released at any time from
1703 wbc
->pages_skipped
++; /* We didn't write this page */
1709 * ENOSPC, or some other error. We may already have added some
1710 * blocks to the file, so we need to write these out to avoid
1711 * exposing stale data.
1712 * The page is currently locked and not marked for writeback
1715 /* Recovery: lock and submit the mapped buffers */
1717 if (buffer_mapped(bh
) && buffer_dirty(bh
)) {
1719 mark_buffer_async_write(bh
);
1722 * The buffer may have been set dirty during
1723 * attachment to a dirty page.
1725 clear_buffer_dirty(bh
);
1727 } while ((bh
= bh
->b_this_page
) != head
);
1729 BUG_ON(PageWriteback(page
));
1730 mapping_set_error(page
->mapping
, err
);
1731 set_page_writeback(page
);
1733 struct buffer_head
*next
= bh
->b_this_page
;
1734 if (buffer_async_write(bh
)) {
1735 clear_buffer_dirty(bh
);
1736 submit_bh(WRITE
, bh
);
1740 } while (bh
!= head
);
1745 static int __block_prepare_write(struct inode
*inode
, struct page
*page
,
1746 unsigned from
, unsigned to
, get_block_t
*get_block
)
1748 unsigned block_start
, block_end
;
1751 unsigned blocksize
, bbits
;
1752 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1754 BUG_ON(!PageLocked(page
));
1755 BUG_ON(from
> PAGE_CACHE_SIZE
);
1756 BUG_ON(to
> PAGE_CACHE_SIZE
);
1759 blocksize
= 1 << inode
->i_blkbits
;
1760 if (!page_has_buffers(page
))
1761 create_empty_buffers(page
, blocksize
, 0);
1762 head
= page_buffers(page
);
1764 bbits
= inode
->i_blkbits
;
1765 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1767 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1768 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1769 block_end
= block_start
+ blocksize
;
1770 if (block_end
<= from
|| block_start
>= to
) {
1771 if (PageUptodate(page
)) {
1772 if (!buffer_uptodate(bh
))
1773 set_buffer_uptodate(bh
);
1778 clear_buffer_new(bh
);
1779 if (!buffer_mapped(bh
)) {
1780 WARN_ON(bh
->b_size
!= blocksize
);
1781 err
= get_block(inode
, block
, bh
, 1);
1784 if (buffer_new(bh
)) {
1785 unmap_underlying_metadata(bh
->b_bdev
,
1787 if (PageUptodate(page
)) {
1788 set_buffer_uptodate(bh
);
1791 if (block_end
> to
|| block_start
< from
) {
1794 kaddr
= kmap_atomic(page
, KM_USER0
);
1798 if (block_start
< from
)
1799 memset(kaddr
+block_start
,
1800 0, from
-block_start
);
1801 flush_dcache_page(page
);
1802 kunmap_atomic(kaddr
, KM_USER0
);
1807 if (PageUptodate(page
)) {
1808 if (!buffer_uptodate(bh
))
1809 set_buffer_uptodate(bh
);
1812 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1813 !buffer_unwritten(bh
) &&
1814 (block_start
< from
|| block_end
> to
)) {
1815 ll_rw_block(READ
, 1, &bh
);
1820 * If we issued read requests - let them complete.
1822 while(wait_bh
> wait
) {
1823 wait_on_buffer(*--wait_bh
);
1824 if (!buffer_uptodate(*wait_bh
))
1831 clear_buffer_new(bh
);
1832 } while ((bh
= bh
->b_this_page
) != head
);
1837 * Zero out any newly allocated blocks to avoid exposing stale
1838 * data. If BH_New is set, we know that the block was newly
1839 * allocated in the above loop.
1844 block_end
= block_start
+blocksize
;
1845 if (block_end
<= from
)
1847 if (block_start
>= to
)
1849 if (buffer_new(bh
)) {
1850 clear_buffer_new(bh
);
1851 zero_user_page(page
, block_start
, bh
->b_size
, KM_USER0
);
1852 set_buffer_uptodate(bh
);
1853 mark_buffer_dirty(bh
);
1856 block_start
= block_end
;
1857 bh
= bh
->b_this_page
;
1858 } while (bh
!= head
);
1862 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1863 unsigned from
, unsigned to
)
1865 unsigned block_start
, block_end
;
1868 struct buffer_head
*bh
, *head
;
1870 blocksize
= 1 << inode
->i_blkbits
;
1872 for(bh
= head
= page_buffers(page
), block_start
= 0;
1873 bh
!= head
|| !block_start
;
1874 block_start
=block_end
, bh
= bh
->b_this_page
) {
1875 block_end
= block_start
+ blocksize
;
1876 if (block_end
<= from
|| block_start
>= to
) {
1877 if (!buffer_uptodate(bh
))
1880 set_buffer_uptodate(bh
);
1881 mark_buffer_dirty(bh
);
1886 * If this is a partial write which happened to make all buffers
1887 * uptodate then we can optimize away a bogus readpage() for
1888 * the next read(). Here we 'discover' whether the page went
1889 * uptodate as a result of this (potentially partial) write.
1892 SetPageUptodate(page
);
1897 * Generic "read page" function for block devices that have the normal
1898 * get_block functionality. This is most of the block device filesystems.
1899 * Reads the page asynchronously --- the unlock_buffer() and
1900 * set/clear_buffer_uptodate() functions propagate buffer state into the
1901 * page struct once IO has completed.
1903 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
1905 struct inode
*inode
= page
->mapping
->host
;
1906 sector_t iblock
, lblock
;
1907 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
1908 unsigned int blocksize
;
1910 int fully_mapped
= 1;
1912 BUG_ON(!PageLocked(page
));
1913 blocksize
= 1 << inode
->i_blkbits
;
1914 if (!page_has_buffers(page
))
1915 create_empty_buffers(page
, blocksize
, 0);
1916 head
= page_buffers(page
);
1918 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1919 lblock
= (i_size_read(inode
)+blocksize
-1) >> inode
->i_blkbits
;
1925 if (buffer_uptodate(bh
))
1928 if (!buffer_mapped(bh
)) {
1932 if (iblock
< lblock
) {
1933 WARN_ON(bh
->b_size
!= blocksize
);
1934 err
= get_block(inode
, iblock
, bh
, 0);
1938 if (!buffer_mapped(bh
)) {
1939 zero_user_page(page
, i
* blocksize
, blocksize
,
1942 set_buffer_uptodate(bh
);
1946 * get_block() might have updated the buffer
1949 if (buffer_uptodate(bh
))
1953 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
1956 SetPageMappedToDisk(page
);
1960 * All buffers are uptodate - we can set the page uptodate
1961 * as well. But not if get_block() returned an error.
1963 if (!PageError(page
))
1964 SetPageUptodate(page
);
1969 /* Stage two: lock the buffers */
1970 for (i
= 0; i
< nr
; i
++) {
1973 mark_buffer_async_read(bh
);
1977 * Stage 3: start the IO. Check for uptodateness
1978 * inside the buffer lock in case another process reading
1979 * the underlying blockdev brought it uptodate (the sct fix).
1981 for (i
= 0; i
< nr
; i
++) {
1983 if (buffer_uptodate(bh
))
1984 end_buffer_async_read(bh
, 1);
1986 submit_bh(READ
, bh
);
1991 /* utility function for filesystems that need to do work on expanding
1992 * truncates. Uses prepare/commit_write to allow the filesystem to
1993 * deal with the hole.
1995 static int __generic_cont_expand(struct inode
*inode
, loff_t size
,
1996 pgoff_t index
, unsigned int offset
)
1998 struct address_space
*mapping
= inode
->i_mapping
;
2000 unsigned long limit
;
2004 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2005 if (limit
!= RLIM_INFINITY
&& size
> (loff_t
)limit
) {
2006 send_sig(SIGXFSZ
, current
, 0);
2009 if (size
> inode
->i_sb
->s_maxbytes
)
2013 page
= grab_cache_page(mapping
, index
);
2016 err
= mapping
->a_ops
->prepare_write(NULL
, page
, offset
, offset
);
2019 * ->prepare_write() may have instantiated a few blocks
2020 * outside i_size. Trim these off again.
2023 page_cache_release(page
);
2024 vmtruncate(inode
, inode
->i_size
);
2028 err
= mapping
->a_ops
->commit_write(NULL
, page
, offset
, offset
);
2031 page_cache_release(page
);
2038 int generic_cont_expand(struct inode
*inode
, loff_t size
)
2041 unsigned int offset
;
2043 offset
= (size
& (PAGE_CACHE_SIZE
- 1)); /* Within page */
2045 /* ugh. in prepare/commit_write, if from==to==start of block, we
2046 ** skip the prepare. make sure we never send an offset for the start
2049 if ((offset
& (inode
->i_sb
->s_blocksize
- 1)) == 0) {
2050 /* caller must handle this extra byte. */
2053 index
= size
>> PAGE_CACHE_SHIFT
;
2055 return __generic_cont_expand(inode
, size
, index
, offset
);
2058 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2060 loff_t pos
= size
- 1;
2061 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
2062 unsigned int offset
= (pos
& (PAGE_CACHE_SIZE
- 1)) + 1;
2064 /* prepare/commit_write can handle even if from==to==start of block. */
2065 return __generic_cont_expand(inode
, size
, index
, offset
);
2069 * For moronic filesystems that do not allow holes in file.
2070 * We may have to extend the file.
2073 int cont_prepare_write(struct page
*page
, unsigned offset
,
2074 unsigned to
, get_block_t
*get_block
, loff_t
*bytes
)
2076 struct address_space
*mapping
= page
->mapping
;
2077 struct inode
*inode
= mapping
->host
;
2078 struct page
*new_page
;
2082 unsigned blocksize
= 1 << inode
->i_blkbits
;
2084 while(page
->index
> (pgpos
= *bytes
>>PAGE_CACHE_SHIFT
)) {
2086 new_page
= grab_cache_page(mapping
, pgpos
);
2089 /* we might sleep */
2090 if (*bytes
>>PAGE_CACHE_SHIFT
!= pgpos
) {
2091 unlock_page(new_page
);
2092 page_cache_release(new_page
);
2095 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2096 if (zerofrom
& (blocksize
-1)) {
2097 *bytes
|= (blocksize
-1);
2100 status
= __block_prepare_write(inode
, new_page
, zerofrom
,
2101 PAGE_CACHE_SIZE
, get_block
);
2104 zero_user_page(page
, zerofrom
, PAGE_CACHE_SIZE
- zerofrom
,
2106 generic_commit_write(NULL
, new_page
, zerofrom
, PAGE_CACHE_SIZE
);
2107 unlock_page(new_page
);
2108 page_cache_release(new_page
);
2111 if (page
->index
< pgpos
) {
2112 /* completely inside the area */
2115 /* page covers the boundary, find the boundary offset */
2116 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2118 /* if we will expand the thing last block will be filled */
2119 if (to
> zerofrom
&& (zerofrom
& (blocksize
-1))) {
2120 *bytes
|= (blocksize
-1);
2124 /* starting below the boundary? Nothing to zero out */
2125 if (offset
<= zerofrom
)
2128 status
= __block_prepare_write(inode
, page
, zerofrom
, to
, get_block
);
2131 if (zerofrom
< offset
) {
2132 zero_user_page(page
, zerofrom
, offset
- zerofrom
, KM_USER0
);
2133 __block_commit_write(inode
, page
, zerofrom
, offset
);
2137 ClearPageUptodate(page
);
2141 ClearPageUptodate(new_page
);
2142 unlock_page(new_page
);
2143 page_cache_release(new_page
);
2148 int block_prepare_write(struct page
*page
, unsigned from
, unsigned to
,
2149 get_block_t
*get_block
)
2151 struct inode
*inode
= page
->mapping
->host
;
2152 int err
= __block_prepare_write(inode
, page
, from
, to
, get_block
);
2154 ClearPageUptodate(page
);
2158 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2160 struct inode
*inode
= page
->mapping
->host
;
2161 __block_commit_write(inode
,page
,from
,to
);
2165 int generic_commit_write(struct file
*file
, struct page
*page
,
2166 unsigned from
, unsigned to
)
2168 struct inode
*inode
= page
->mapping
->host
;
2169 loff_t pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2170 __block_commit_write(inode
,page
,from
,to
);
2172 * No need to use i_size_read() here, the i_size
2173 * cannot change under us because we hold i_mutex.
2175 if (pos
> inode
->i_size
) {
2176 i_size_write(inode
, pos
);
2177 mark_inode_dirty(inode
);
2184 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2185 * immediately, while under the page lock. So it needs a special end_io
2186 * handler which does not touch the bh after unlocking it.
2188 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2189 * a race there is benign: unlock_buffer() only use the bh's address for
2190 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2193 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2196 set_buffer_uptodate(bh
);
2198 /* This happens, due to failed READA attempts. */
2199 clear_buffer_uptodate(bh
);
2205 * On entry, the page is fully not uptodate.
2206 * On exit the page is fully uptodate in the areas outside (from,to)
2208 int nobh_prepare_write(struct page
*page
, unsigned from
, unsigned to
,
2209 get_block_t
*get_block
)
2211 struct inode
*inode
= page
->mapping
->host
;
2212 const unsigned blkbits
= inode
->i_blkbits
;
2213 const unsigned blocksize
= 1 << blkbits
;
2214 struct buffer_head map_bh
;
2215 struct buffer_head
*read_bh
[MAX_BUF_PER_PAGE
];
2216 unsigned block_in_page
;
2217 unsigned block_start
;
2218 sector_t block_in_file
;
2223 int is_mapped_to_disk
= 1;
2225 if (PageMappedToDisk(page
))
2228 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2229 map_bh
.b_page
= page
;
2232 * We loop across all blocks in the page, whether or not they are
2233 * part of the affected region. This is so we can discover if the
2234 * page is fully mapped-to-disk.
2236 for (block_start
= 0, block_in_page
= 0;
2237 block_start
< PAGE_CACHE_SIZE
;
2238 block_in_page
++, block_start
+= blocksize
) {
2239 unsigned block_end
= block_start
+ blocksize
;
2244 if (block_start
>= to
)
2246 map_bh
.b_size
= blocksize
;
2247 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2251 if (!buffer_mapped(&map_bh
))
2252 is_mapped_to_disk
= 0;
2253 if (buffer_new(&map_bh
))
2254 unmap_underlying_metadata(map_bh
.b_bdev
,
2256 if (PageUptodate(page
))
2258 if (buffer_new(&map_bh
) || !buffer_mapped(&map_bh
)) {
2259 kaddr
= kmap_atomic(page
, KM_USER0
);
2260 if (block_start
< from
)
2261 memset(kaddr
+block_start
, 0, from
-block_start
);
2263 memset(kaddr
+ to
, 0, block_end
- to
);
2264 flush_dcache_page(page
);
2265 kunmap_atomic(kaddr
, KM_USER0
);
2268 if (buffer_uptodate(&map_bh
))
2269 continue; /* reiserfs does this */
2270 if (block_start
< from
|| block_end
> to
) {
2271 struct buffer_head
*bh
= alloc_buffer_head(GFP_NOFS
);
2277 bh
->b_state
= map_bh
.b_state
;
2278 atomic_set(&bh
->b_count
, 0);
2279 bh
->b_this_page
= NULL
;
2281 bh
->b_blocknr
= map_bh
.b_blocknr
;
2282 bh
->b_size
= blocksize
;
2283 bh
->b_data
= (char *)(long)block_start
;
2284 bh
->b_bdev
= map_bh
.b_bdev
;
2285 bh
->b_private
= NULL
;
2286 read_bh
[nr_reads
++] = bh
;
2291 struct buffer_head
*bh
;
2294 * The page is locked, so these buffers are protected from
2295 * any VM or truncate activity. Hence we don't need to care
2296 * for the buffer_head refcounts.
2298 for (i
= 0; i
< nr_reads
; i
++) {
2301 bh
->b_end_io
= end_buffer_read_nobh
;
2302 submit_bh(READ
, bh
);
2304 for (i
= 0; i
< nr_reads
; i
++) {
2307 if (!buffer_uptodate(bh
))
2309 free_buffer_head(bh
);
2316 if (is_mapped_to_disk
)
2317 SetPageMappedToDisk(page
);
2322 for (i
= 0; i
< nr_reads
; i
++) {
2324 free_buffer_head(read_bh
[i
]);
2328 * Error recovery is pretty slack. Clear the page and mark it dirty
2329 * so we'll later zero out any blocks which _were_ allocated.
2331 zero_user_page(page
, 0, PAGE_CACHE_SIZE
, KM_USER0
);
2332 SetPageUptodate(page
);
2333 set_page_dirty(page
);
2336 EXPORT_SYMBOL(nobh_prepare_write
);
2339 * Make sure any changes to nobh_commit_write() are reflected in
2340 * nobh_truncate_page(), since it doesn't call commit_write().
2342 int nobh_commit_write(struct file
*file
, struct page
*page
,
2343 unsigned from
, unsigned to
)
2345 struct inode
*inode
= page
->mapping
->host
;
2346 loff_t pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2348 SetPageUptodate(page
);
2349 set_page_dirty(page
);
2350 if (pos
> inode
->i_size
) {
2351 i_size_write(inode
, pos
);
2352 mark_inode_dirty(inode
);
2356 EXPORT_SYMBOL(nobh_commit_write
);
2359 * nobh_writepage() - based on block_full_write_page() except
2360 * that it tries to operate without attaching bufferheads to
2363 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2364 struct writeback_control
*wbc
)
2366 struct inode
* const inode
= page
->mapping
->host
;
2367 loff_t i_size
= i_size_read(inode
);
2368 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2372 /* Is the page fully inside i_size? */
2373 if (page
->index
< end_index
)
2376 /* Is the page fully outside i_size? (truncate in progress) */
2377 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2378 if (page
->index
>= end_index
+1 || !offset
) {
2380 * The page may have dirty, unmapped buffers. For example,
2381 * they may have been added in ext3_writepage(). Make them
2382 * freeable here, so the page does not leak.
2385 /* Not really sure about this - do we need this ? */
2386 if (page
->mapping
->a_ops
->invalidatepage
)
2387 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2390 return 0; /* don't care */
2394 * The page straddles i_size. It must be zeroed out on each and every
2395 * writepage invocation because it may be mmapped. "A file is mapped
2396 * in multiples of the page size. For a file that is not a multiple of
2397 * the page size, the remaining memory is zeroed when mapped, and
2398 * writes to that region are not written out to the file."
2400 zero_user_page(page
, offset
, PAGE_CACHE_SIZE
- offset
, KM_USER0
);
2402 ret
= mpage_writepage(page
, get_block
, wbc
);
2404 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
);
2407 EXPORT_SYMBOL(nobh_writepage
);
2410 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2412 int nobh_truncate_page(struct address_space
*mapping
, loff_t from
)
2414 struct inode
*inode
= mapping
->host
;
2415 unsigned blocksize
= 1 << inode
->i_blkbits
;
2416 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2417 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2420 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2423 if ((offset
& (blocksize
- 1)) == 0)
2427 page
= grab_cache_page(mapping
, index
);
2431 to
= (offset
+ blocksize
) & ~(blocksize
- 1);
2432 ret
= a_ops
->prepare_write(NULL
, page
, offset
, to
);
2434 zero_user_page(page
, offset
, PAGE_CACHE_SIZE
- offset
,
2437 * It would be more correct to call aops->commit_write()
2438 * here, but this is more efficient.
2440 SetPageUptodate(page
);
2441 set_page_dirty(page
);
2444 page_cache_release(page
);
2448 EXPORT_SYMBOL(nobh_truncate_page
);
2450 int block_truncate_page(struct address_space
*mapping
,
2451 loff_t from
, get_block_t
*get_block
)
2453 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2454 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2457 unsigned length
, pos
;
2458 struct inode
*inode
= mapping
->host
;
2460 struct buffer_head
*bh
;
2463 blocksize
= 1 << inode
->i_blkbits
;
2464 length
= offset
& (blocksize
- 1);
2466 /* Block boundary? Nothing to do */
2470 length
= blocksize
- length
;
2471 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2473 page
= grab_cache_page(mapping
, index
);
2478 if (!page_has_buffers(page
))
2479 create_empty_buffers(page
, blocksize
, 0);
2481 /* Find the buffer that contains "offset" */
2482 bh
= page_buffers(page
);
2484 while (offset
>= pos
) {
2485 bh
= bh
->b_this_page
;
2491 if (!buffer_mapped(bh
)) {
2492 WARN_ON(bh
->b_size
!= blocksize
);
2493 err
= get_block(inode
, iblock
, bh
, 0);
2496 /* unmapped? It's a hole - nothing to do */
2497 if (!buffer_mapped(bh
))
2501 /* Ok, it's mapped. Make sure it's up-to-date */
2502 if (PageUptodate(page
))
2503 set_buffer_uptodate(bh
);
2505 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2507 ll_rw_block(READ
, 1, &bh
);
2509 /* Uhhuh. Read error. Complain and punt. */
2510 if (!buffer_uptodate(bh
))
2514 zero_user_page(page
, offset
, length
, KM_USER0
);
2515 mark_buffer_dirty(bh
);
2520 page_cache_release(page
);
2526 * The generic ->writepage function for buffer-backed address_spaces
2528 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2529 struct writeback_control
*wbc
)
2531 struct inode
* const inode
= page
->mapping
->host
;
2532 loff_t i_size
= i_size_read(inode
);
2533 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2536 /* Is the page fully inside i_size? */
2537 if (page
->index
< end_index
)
2538 return __block_write_full_page(inode
, page
, get_block
, wbc
);
2540 /* Is the page fully outside i_size? (truncate in progress) */
2541 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2542 if (page
->index
>= end_index
+1 || !offset
) {
2544 * The page may have dirty, unmapped buffers. For example,
2545 * they may have been added in ext3_writepage(). Make them
2546 * freeable here, so the page does not leak.
2548 do_invalidatepage(page
, 0);
2550 return 0; /* don't care */
2554 * The page straddles i_size. It must be zeroed out on each and every
2555 * writepage invokation because it may be mmapped. "A file is mapped
2556 * in multiples of the page size. For a file that is not a multiple of
2557 * the page size, the remaining memory is zeroed when mapped, and
2558 * writes to that region are not written out to the file."
2560 zero_user_page(page
, offset
, PAGE_CACHE_SIZE
- offset
, KM_USER0
);
2561 return __block_write_full_page(inode
, page
, get_block
, wbc
);
2564 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2565 get_block_t
*get_block
)
2567 struct buffer_head tmp
;
2568 struct inode
*inode
= mapping
->host
;
2571 tmp
.b_size
= 1 << inode
->i_blkbits
;
2572 get_block(inode
, block
, &tmp
, 0);
2573 return tmp
.b_blocknr
;
2576 static int end_bio_bh_io_sync(struct bio
*bio
, unsigned int bytes_done
, int err
)
2578 struct buffer_head
*bh
= bio
->bi_private
;
2583 if (err
== -EOPNOTSUPP
) {
2584 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2585 set_bit(BH_Eopnotsupp
, &bh
->b_state
);
2588 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2593 int submit_bh(int rw
, struct buffer_head
* bh
)
2598 BUG_ON(!buffer_locked(bh
));
2599 BUG_ON(!buffer_mapped(bh
));
2600 BUG_ON(!bh
->b_end_io
);
2602 if (buffer_ordered(bh
) && (rw
== WRITE
))
2606 * Only clear out a write error when rewriting, should this
2607 * include WRITE_SYNC as well?
2609 if (test_set_buffer_req(bh
) && (rw
== WRITE
|| rw
== WRITE_BARRIER
))
2610 clear_buffer_write_io_error(bh
);
2613 * from here on down, it's all bio -- do the initial mapping,
2614 * submit_bio -> generic_make_request may further map this bio around
2616 bio
= bio_alloc(GFP_NOIO
, 1);
2618 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
2619 bio
->bi_bdev
= bh
->b_bdev
;
2620 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
2621 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
2622 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
2626 bio
->bi_size
= bh
->b_size
;
2628 bio
->bi_end_io
= end_bio_bh_io_sync
;
2629 bio
->bi_private
= bh
;
2632 submit_bio(rw
, bio
);
2634 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2642 * ll_rw_block: low-level access to block devices (DEPRECATED)
2643 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2644 * @nr: number of &struct buffer_heads in the array
2645 * @bhs: array of pointers to &struct buffer_head
2647 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2648 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2649 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2650 * are sent to disk. The fourth %READA option is described in the documentation
2651 * for generic_make_request() which ll_rw_block() calls.
2653 * This function drops any buffer that it cannot get a lock on (with the
2654 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2655 * clean when doing a write request, and any buffer that appears to be
2656 * up-to-date when doing read request. Further it marks as clean buffers that
2657 * are processed for writing (the buffer cache won't assume that they are
2658 * actually clean until the buffer gets unlocked).
2660 * ll_rw_block sets b_end_io to simple completion handler that marks
2661 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2664 * All of the buffers must be for the same device, and must also be a
2665 * multiple of the current approved size for the device.
2667 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
2671 for (i
= 0; i
< nr
; i
++) {
2672 struct buffer_head
*bh
= bhs
[i
];
2676 else if (test_set_buffer_locked(bh
))
2679 if (rw
== WRITE
|| rw
== SWRITE
) {
2680 if (test_clear_buffer_dirty(bh
)) {
2681 bh
->b_end_io
= end_buffer_write_sync
;
2683 submit_bh(WRITE
, bh
);
2687 if (!buffer_uptodate(bh
)) {
2688 bh
->b_end_io
= end_buffer_read_sync
;
2699 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2700 * and then start new I/O and then wait upon it. The caller must have a ref on
2703 int sync_dirty_buffer(struct buffer_head
*bh
)
2707 WARN_ON(atomic_read(&bh
->b_count
) < 1);
2709 if (test_clear_buffer_dirty(bh
)) {
2711 bh
->b_end_io
= end_buffer_write_sync
;
2712 ret
= submit_bh(WRITE
, bh
);
2714 if (buffer_eopnotsupp(bh
)) {
2715 clear_buffer_eopnotsupp(bh
);
2718 if (!ret
&& !buffer_uptodate(bh
))
2727 * try_to_free_buffers() checks if all the buffers on this particular page
2728 * are unused, and releases them if so.
2730 * Exclusion against try_to_free_buffers may be obtained by either
2731 * locking the page or by holding its mapping's private_lock.
2733 * If the page is dirty but all the buffers are clean then we need to
2734 * be sure to mark the page clean as well. This is because the page
2735 * may be against a block device, and a later reattachment of buffers
2736 * to a dirty page will set *all* buffers dirty. Which would corrupt
2737 * filesystem data on the same device.
2739 * The same applies to regular filesystem pages: if all the buffers are
2740 * clean then we set the page clean and proceed. To do that, we require
2741 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2744 * try_to_free_buffers() is non-blocking.
2746 static inline int buffer_busy(struct buffer_head
*bh
)
2748 return atomic_read(&bh
->b_count
) |
2749 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
2753 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
2755 struct buffer_head
*head
= page_buffers(page
);
2756 struct buffer_head
*bh
;
2760 if (buffer_write_io_error(bh
) && page
->mapping
)
2761 set_bit(AS_EIO
, &page
->mapping
->flags
);
2762 if (buffer_busy(bh
))
2764 bh
= bh
->b_this_page
;
2765 } while (bh
!= head
);
2768 struct buffer_head
*next
= bh
->b_this_page
;
2770 if (!list_empty(&bh
->b_assoc_buffers
))
2771 __remove_assoc_queue(bh
);
2773 } while (bh
!= head
);
2774 *buffers_to_free
= head
;
2775 __clear_page_buffers(page
);
2781 int try_to_free_buffers(struct page
*page
)
2783 struct address_space
* const mapping
= page
->mapping
;
2784 struct buffer_head
*buffers_to_free
= NULL
;
2787 BUG_ON(!PageLocked(page
));
2788 if (PageWriteback(page
))
2791 if (mapping
== NULL
) { /* can this still happen? */
2792 ret
= drop_buffers(page
, &buffers_to_free
);
2796 spin_lock(&mapping
->private_lock
);
2797 ret
= drop_buffers(page
, &buffers_to_free
);
2800 * If the filesystem writes its buffers by hand (eg ext3)
2801 * then we can have clean buffers against a dirty page. We
2802 * clean the page here; otherwise the VM will never notice
2803 * that the filesystem did any IO at all.
2805 * Also, during truncate, discard_buffer will have marked all
2806 * the page's buffers clean. We discover that here and clean
2809 * private_lock must be held over this entire operation in order
2810 * to synchronise against __set_page_dirty_buffers and prevent the
2811 * dirty bit from being lost.
2814 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
2815 spin_unlock(&mapping
->private_lock
);
2817 if (buffers_to_free
) {
2818 struct buffer_head
*bh
= buffers_to_free
;
2821 struct buffer_head
*next
= bh
->b_this_page
;
2822 free_buffer_head(bh
);
2824 } while (bh
!= buffers_to_free
);
2828 EXPORT_SYMBOL(try_to_free_buffers
);
2830 void block_sync_page(struct page
*page
)
2832 struct address_space
*mapping
;
2835 mapping
= page_mapping(page
);
2837 blk_run_backing_dev(mapping
->backing_dev_info
, page
);
2841 * There are no bdflush tunables left. But distributions are
2842 * still running obsolete flush daemons, so we terminate them here.
2844 * Use of bdflush() is deprecated and will be removed in a future kernel.
2845 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2847 asmlinkage
long sys_bdflush(int func
, long data
)
2849 static int msg_count
;
2851 if (!capable(CAP_SYS_ADMIN
))
2854 if (msg_count
< 5) {
2857 "warning: process `%s' used the obsolete bdflush"
2858 " system call\n", current
->comm
);
2859 printk(KERN_INFO
"Fix your initscripts?\n");
2868 * Buffer-head allocation
2870 static struct kmem_cache
*bh_cachep
;
2873 * Once the number of bh's in the machine exceeds this level, we start
2874 * stripping them in writeback.
2876 static int max_buffer_heads
;
2878 int buffer_heads_over_limit
;
2880 struct bh_accounting
{
2881 int nr
; /* Number of live bh's */
2882 int ratelimit
; /* Limit cacheline bouncing */
2885 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
2887 static void recalc_bh_state(void)
2892 if (__get_cpu_var(bh_accounting
).ratelimit
++ < 4096)
2894 __get_cpu_var(bh_accounting
).ratelimit
= 0;
2895 for_each_online_cpu(i
)
2896 tot
+= per_cpu(bh_accounting
, i
).nr
;
2897 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
2900 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
2902 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
2904 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
2905 get_cpu_var(bh_accounting
).nr
++;
2907 put_cpu_var(bh_accounting
);
2911 EXPORT_SYMBOL(alloc_buffer_head
);
2913 void free_buffer_head(struct buffer_head
*bh
)
2915 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
2916 kmem_cache_free(bh_cachep
, bh
);
2917 get_cpu_var(bh_accounting
).nr
--;
2919 put_cpu_var(bh_accounting
);
2921 EXPORT_SYMBOL(free_buffer_head
);
2923 static void buffer_exit_cpu(int cpu
)
2926 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
2928 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
2932 get_cpu_var(bh_accounting
).nr
+= per_cpu(bh_accounting
, cpu
).nr
;
2933 per_cpu(bh_accounting
, cpu
).nr
= 0;
2934 put_cpu_var(bh_accounting
);
2937 static int buffer_cpu_notify(struct notifier_block
*self
,
2938 unsigned long action
, void *hcpu
)
2940 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
2941 buffer_exit_cpu((unsigned long)hcpu
);
2945 void __init
buffer_init(void)
2949 bh_cachep
= KMEM_CACHE(buffer_head
,
2950 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
2953 * Limit the bh occupancy to 10% of ZONE_NORMAL
2955 nrpages
= (nr_free_buffer_pages() * 10) / 100;
2956 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
2957 hotcpu_notifier(buffer_cpu_notify
, 0);
2960 EXPORT_SYMBOL(__bforget
);
2961 EXPORT_SYMBOL(__brelse
);
2962 EXPORT_SYMBOL(__wait_on_buffer
);
2963 EXPORT_SYMBOL(block_commit_write
);
2964 EXPORT_SYMBOL(block_prepare_write
);
2965 EXPORT_SYMBOL(block_read_full_page
);
2966 EXPORT_SYMBOL(block_sync_page
);
2967 EXPORT_SYMBOL(block_truncate_page
);
2968 EXPORT_SYMBOL(block_write_full_page
);
2969 EXPORT_SYMBOL(cont_prepare_write
);
2970 EXPORT_SYMBOL(end_buffer_read_sync
);
2971 EXPORT_SYMBOL(end_buffer_write_sync
);
2972 EXPORT_SYMBOL(file_fsync
);
2973 EXPORT_SYMBOL(fsync_bdev
);
2974 EXPORT_SYMBOL(generic_block_bmap
);
2975 EXPORT_SYMBOL(generic_commit_write
);
2976 EXPORT_SYMBOL(generic_cont_expand
);
2977 EXPORT_SYMBOL(generic_cont_expand_simple
);
2978 EXPORT_SYMBOL(init_buffer
);
2979 EXPORT_SYMBOL(invalidate_bdev
);
2980 EXPORT_SYMBOL(ll_rw_block
);
2981 EXPORT_SYMBOL(mark_buffer_dirty
);
2982 EXPORT_SYMBOL(submit_bh
);
2983 EXPORT_SYMBOL(sync_dirty_buffer
);
2984 EXPORT_SYMBOL(unlock_buffer
);