[TCP]: TCP_CONG_YEAH requires TCP_CONG_VEGAS
[linux-2.6/verdex.git] / fs / namespace.c
blobb696e3a0d18fcf2d4bb017dcaa36dacb39c565e6
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <asm/uaccess.h>
29 #include <asm/unistd.h>
30 #include "pnode.h"
32 /* spinlock for vfsmount related operations, inplace of dcache_lock */
33 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
35 static int event;
37 static struct list_head *mount_hashtable __read_mostly;
38 static int hash_mask __read_mostly, hash_bits __read_mostly;
39 static struct kmem_cache *mnt_cache __read_mostly;
40 static struct rw_semaphore namespace_sem;
42 /* /sys/fs */
43 decl_subsys(fs, NULL, NULL);
44 EXPORT_SYMBOL_GPL(fs_subsys);
46 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
48 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
49 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
50 tmp = tmp + (tmp >> hash_bits);
51 return tmp & hash_mask;
54 struct vfsmount *alloc_vfsmnt(const char *name)
56 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
57 if (mnt) {
58 atomic_set(&mnt->mnt_count, 1);
59 INIT_LIST_HEAD(&mnt->mnt_hash);
60 INIT_LIST_HEAD(&mnt->mnt_child);
61 INIT_LIST_HEAD(&mnt->mnt_mounts);
62 INIT_LIST_HEAD(&mnt->mnt_list);
63 INIT_LIST_HEAD(&mnt->mnt_expire);
64 INIT_LIST_HEAD(&mnt->mnt_share);
65 INIT_LIST_HEAD(&mnt->mnt_slave_list);
66 INIT_LIST_HEAD(&mnt->mnt_slave);
67 if (name) {
68 int size = strlen(name) + 1;
69 char *newname = kmalloc(size, GFP_KERNEL);
70 if (newname) {
71 memcpy(newname, name, size);
72 mnt->mnt_devname = newname;
76 return mnt;
79 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
81 mnt->mnt_sb = sb;
82 mnt->mnt_root = dget(sb->s_root);
83 return 0;
86 EXPORT_SYMBOL(simple_set_mnt);
88 void free_vfsmnt(struct vfsmount *mnt)
90 kfree(mnt->mnt_devname);
91 kmem_cache_free(mnt_cache, mnt);
95 * find the first or last mount at @dentry on vfsmount @mnt depending on
96 * @dir. If @dir is set return the first mount else return the last mount.
98 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
99 int dir)
101 struct list_head *head = mount_hashtable + hash(mnt, dentry);
102 struct list_head *tmp = head;
103 struct vfsmount *p, *found = NULL;
105 for (;;) {
106 tmp = dir ? tmp->next : tmp->prev;
107 p = NULL;
108 if (tmp == head)
109 break;
110 p = list_entry(tmp, struct vfsmount, mnt_hash);
111 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
112 found = p;
113 break;
116 return found;
120 * lookup_mnt increments the ref count before returning
121 * the vfsmount struct.
123 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
125 struct vfsmount *child_mnt;
126 spin_lock(&vfsmount_lock);
127 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
128 mntget(child_mnt);
129 spin_unlock(&vfsmount_lock);
130 return child_mnt;
133 static inline int check_mnt(struct vfsmount *mnt)
135 return mnt->mnt_ns == current->nsproxy->mnt_ns;
138 static void touch_mnt_namespace(struct mnt_namespace *ns)
140 if (ns) {
141 ns->event = ++event;
142 wake_up_interruptible(&ns->poll);
146 static void __touch_mnt_namespace(struct mnt_namespace *ns)
148 if (ns && ns->event != event) {
149 ns->event = event;
150 wake_up_interruptible(&ns->poll);
154 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
156 old_nd->dentry = mnt->mnt_mountpoint;
157 old_nd->mnt = mnt->mnt_parent;
158 mnt->mnt_parent = mnt;
159 mnt->mnt_mountpoint = mnt->mnt_root;
160 list_del_init(&mnt->mnt_child);
161 list_del_init(&mnt->mnt_hash);
162 old_nd->dentry->d_mounted--;
165 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
166 struct vfsmount *child_mnt)
168 child_mnt->mnt_parent = mntget(mnt);
169 child_mnt->mnt_mountpoint = dget(dentry);
170 dentry->d_mounted++;
173 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
175 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
176 list_add_tail(&mnt->mnt_hash, mount_hashtable +
177 hash(nd->mnt, nd->dentry));
178 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
182 * the caller must hold vfsmount_lock
184 static void commit_tree(struct vfsmount *mnt)
186 struct vfsmount *parent = mnt->mnt_parent;
187 struct vfsmount *m;
188 LIST_HEAD(head);
189 struct mnt_namespace *n = parent->mnt_ns;
191 BUG_ON(parent == mnt);
193 list_add_tail(&head, &mnt->mnt_list);
194 list_for_each_entry(m, &head, mnt_list)
195 m->mnt_ns = n;
196 list_splice(&head, n->list.prev);
198 list_add_tail(&mnt->mnt_hash, mount_hashtable +
199 hash(parent, mnt->mnt_mountpoint));
200 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
201 touch_mnt_namespace(n);
204 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
206 struct list_head *next = p->mnt_mounts.next;
207 if (next == &p->mnt_mounts) {
208 while (1) {
209 if (p == root)
210 return NULL;
211 next = p->mnt_child.next;
212 if (next != &p->mnt_parent->mnt_mounts)
213 break;
214 p = p->mnt_parent;
217 return list_entry(next, struct vfsmount, mnt_child);
220 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
222 struct list_head *prev = p->mnt_mounts.prev;
223 while (prev != &p->mnt_mounts) {
224 p = list_entry(prev, struct vfsmount, mnt_child);
225 prev = p->mnt_mounts.prev;
227 return p;
230 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
231 int flag)
233 struct super_block *sb = old->mnt_sb;
234 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
236 if (mnt) {
237 mnt->mnt_flags = old->mnt_flags;
238 atomic_inc(&sb->s_active);
239 mnt->mnt_sb = sb;
240 mnt->mnt_root = dget(root);
241 mnt->mnt_mountpoint = mnt->mnt_root;
242 mnt->mnt_parent = mnt;
244 if (flag & CL_SLAVE) {
245 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
246 mnt->mnt_master = old;
247 CLEAR_MNT_SHARED(mnt);
248 } else {
249 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
250 list_add(&mnt->mnt_share, &old->mnt_share);
251 if (IS_MNT_SLAVE(old))
252 list_add(&mnt->mnt_slave, &old->mnt_slave);
253 mnt->mnt_master = old->mnt_master;
255 if (flag & CL_MAKE_SHARED)
256 set_mnt_shared(mnt);
258 /* stick the duplicate mount on the same expiry list
259 * as the original if that was on one */
260 if (flag & CL_EXPIRE) {
261 spin_lock(&vfsmount_lock);
262 if (!list_empty(&old->mnt_expire))
263 list_add(&mnt->mnt_expire, &old->mnt_expire);
264 spin_unlock(&vfsmount_lock);
267 return mnt;
270 static inline void __mntput(struct vfsmount *mnt)
272 struct super_block *sb = mnt->mnt_sb;
273 dput(mnt->mnt_root);
274 free_vfsmnt(mnt);
275 deactivate_super(sb);
278 void mntput_no_expire(struct vfsmount *mnt)
280 repeat:
281 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
282 if (likely(!mnt->mnt_pinned)) {
283 spin_unlock(&vfsmount_lock);
284 __mntput(mnt);
285 return;
287 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
288 mnt->mnt_pinned = 0;
289 spin_unlock(&vfsmount_lock);
290 acct_auto_close_mnt(mnt);
291 security_sb_umount_close(mnt);
292 goto repeat;
296 EXPORT_SYMBOL(mntput_no_expire);
298 void mnt_pin(struct vfsmount *mnt)
300 spin_lock(&vfsmount_lock);
301 mnt->mnt_pinned++;
302 spin_unlock(&vfsmount_lock);
305 EXPORT_SYMBOL(mnt_pin);
307 void mnt_unpin(struct vfsmount *mnt)
309 spin_lock(&vfsmount_lock);
310 if (mnt->mnt_pinned) {
311 atomic_inc(&mnt->mnt_count);
312 mnt->mnt_pinned--;
314 spin_unlock(&vfsmount_lock);
317 EXPORT_SYMBOL(mnt_unpin);
319 /* iterator */
320 static void *m_start(struct seq_file *m, loff_t *pos)
322 struct mnt_namespace *n = m->private;
323 struct list_head *p;
324 loff_t l = *pos;
326 down_read(&namespace_sem);
327 list_for_each(p, &n->list)
328 if (!l--)
329 return list_entry(p, struct vfsmount, mnt_list);
330 return NULL;
333 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
335 struct mnt_namespace *n = m->private;
336 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
337 (*pos)++;
338 return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
341 static void m_stop(struct seq_file *m, void *v)
343 up_read(&namespace_sem);
346 static inline void mangle(struct seq_file *m, const char *s)
348 seq_escape(m, s, " \t\n\\");
351 static int show_vfsmnt(struct seq_file *m, void *v)
353 struct vfsmount *mnt = v;
354 int err = 0;
355 static struct proc_fs_info {
356 int flag;
357 char *str;
358 } fs_info[] = {
359 { MS_SYNCHRONOUS, ",sync" },
360 { MS_DIRSYNC, ",dirsync" },
361 { MS_MANDLOCK, ",mand" },
362 { 0, NULL }
364 static struct proc_fs_info mnt_info[] = {
365 { MNT_NOSUID, ",nosuid" },
366 { MNT_NODEV, ",nodev" },
367 { MNT_NOEXEC, ",noexec" },
368 { MNT_NOATIME, ",noatime" },
369 { MNT_NODIRATIME, ",nodiratime" },
370 { MNT_RELATIME, ",relatime" },
371 { 0, NULL }
373 struct proc_fs_info *fs_infop;
375 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
376 seq_putc(m, ' ');
377 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
378 seq_putc(m, ' ');
379 mangle(m, mnt->mnt_sb->s_type->name);
380 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
381 seq_putc(m, '.');
382 mangle(m, mnt->mnt_sb->s_subtype);
384 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
385 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
386 if (mnt->mnt_sb->s_flags & fs_infop->flag)
387 seq_puts(m, fs_infop->str);
389 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
390 if (mnt->mnt_flags & fs_infop->flag)
391 seq_puts(m, fs_infop->str);
393 if (mnt->mnt_sb->s_op->show_options)
394 err = mnt->mnt_sb->s_op->show_options(m, mnt);
395 seq_puts(m, " 0 0\n");
396 return err;
399 struct seq_operations mounts_op = {
400 .start = m_start,
401 .next = m_next,
402 .stop = m_stop,
403 .show = show_vfsmnt
406 static int show_vfsstat(struct seq_file *m, void *v)
408 struct vfsmount *mnt = v;
409 int err = 0;
411 /* device */
412 if (mnt->mnt_devname) {
413 seq_puts(m, "device ");
414 mangle(m, mnt->mnt_devname);
415 } else
416 seq_puts(m, "no device");
418 /* mount point */
419 seq_puts(m, " mounted on ");
420 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
421 seq_putc(m, ' ');
423 /* file system type */
424 seq_puts(m, "with fstype ");
425 mangle(m, mnt->mnt_sb->s_type->name);
427 /* optional statistics */
428 if (mnt->mnt_sb->s_op->show_stats) {
429 seq_putc(m, ' ');
430 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
433 seq_putc(m, '\n');
434 return err;
437 struct seq_operations mountstats_op = {
438 .start = m_start,
439 .next = m_next,
440 .stop = m_stop,
441 .show = show_vfsstat,
445 * may_umount_tree - check if a mount tree is busy
446 * @mnt: root of mount tree
448 * This is called to check if a tree of mounts has any
449 * open files, pwds, chroots or sub mounts that are
450 * busy.
452 int may_umount_tree(struct vfsmount *mnt)
454 int actual_refs = 0;
455 int minimum_refs = 0;
456 struct vfsmount *p;
458 spin_lock(&vfsmount_lock);
459 for (p = mnt; p; p = next_mnt(p, mnt)) {
460 actual_refs += atomic_read(&p->mnt_count);
461 minimum_refs += 2;
463 spin_unlock(&vfsmount_lock);
465 if (actual_refs > minimum_refs)
466 return 0;
468 return 1;
471 EXPORT_SYMBOL(may_umount_tree);
474 * may_umount - check if a mount point is busy
475 * @mnt: root of mount
477 * This is called to check if a mount point has any
478 * open files, pwds, chroots or sub mounts. If the
479 * mount has sub mounts this will return busy
480 * regardless of whether the sub mounts are busy.
482 * Doesn't take quota and stuff into account. IOW, in some cases it will
483 * give false negatives. The main reason why it's here is that we need
484 * a non-destructive way to look for easily umountable filesystems.
486 int may_umount(struct vfsmount *mnt)
488 int ret = 1;
489 spin_lock(&vfsmount_lock);
490 if (propagate_mount_busy(mnt, 2))
491 ret = 0;
492 spin_unlock(&vfsmount_lock);
493 return ret;
496 EXPORT_SYMBOL(may_umount);
498 void release_mounts(struct list_head *head)
500 struct vfsmount *mnt;
501 while (!list_empty(head)) {
502 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
503 list_del_init(&mnt->mnt_hash);
504 if (mnt->mnt_parent != mnt) {
505 struct dentry *dentry;
506 struct vfsmount *m;
507 spin_lock(&vfsmount_lock);
508 dentry = mnt->mnt_mountpoint;
509 m = mnt->mnt_parent;
510 mnt->mnt_mountpoint = mnt->mnt_root;
511 mnt->mnt_parent = mnt;
512 spin_unlock(&vfsmount_lock);
513 dput(dentry);
514 mntput(m);
516 mntput(mnt);
520 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
522 struct vfsmount *p;
524 for (p = mnt; p; p = next_mnt(p, mnt))
525 list_move(&p->mnt_hash, kill);
527 if (propagate)
528 propagate_umount(kill);
530 list_for_each_entry(p, kill, mnt_hash) {
531 list_del_init(&p->mnt_expire);
532 list_del_init(&p->mnt_list);
533 __touch_mnt_namespace(p->mnt_ns);
534 p->mnt_ns = NULL;
535 list_del_init(&p->mnt_child);
536 if (p->mnt_parent != p)
537 p->mnt_mountpoint->d_mounted--;
538 change_mnt_propagation(p, MS_PRIVATE);
542 static int do_umount(struct vfsmount *mnt, int flags)
544 struct super_block *sb = mnt->mnt_sb;
545 int retval;
546 LIST_HEAD(umount_list);
548 retval = security_sb_umount(mnt, flags);
549 if (retval)
550 return retval;
553 * Allow userspace to request a mountpoint be expired rather than
554 * unmounting unconditionally. Unmount only happens if:
555 * (1) the mark is already set (the mark is cleared by mntput())
556 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
558 if (flags & MNT_EXPIRE) {
559 if (mnt == current->fs->rootmnt ||
560 flags & (MNT_FORCE | MNT_DETACH))
561 return -EINVAL;
563 if (atomic_read(&mnt->mnt_count) != 2)
564 return -EBUSY;
566 if (!xchg(&mnt->mnt_expiry_mark, 1))
567 return -EAGAIN;
571 * If we may have to abort operations to get out of this
572 * mount, and they will themselves hold resources we must
573 * allow the fs to do things. In the Unix tradition of
574 * 'Gee thats tricky lets do it in userspace' the umount_begin
575 * might fail to complete on the first run through as other tasks
576 * must return, and the like. Thats for the mount program to worry
577 * about for the moment.
580 lock_kernel();
581 if (sb->s_op->umount_begin)
582 sb->s_op->umount_begin(mnt, flags);
583 unlock_kernel();
586 * No sense to grab the lock for this test, but test itself looks
587 * somewhat bogus. Suggestions for better replacement?
588 * Ho-hum... In principle, we might treat that as umount + switch
589 * to rootfs. GC would eventually take care of the old vfsmount.
590 * Actually it makes sense, especially if rootfs would contain a
591 * /reboot - static binary that would close all descriptors and
592 * call reboot(9). Then init(8) could umount root and exec /reboot.
594 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
596 * Special case for "unmounting" root ...
597 * we just try to remount it readonly.
599 down_write(&sb->s_umount);
600 if (!(sb->s_flags & MS_RDONLY)) {
601 lock_kernel();
602 DQUOT_OFF(sb);
603 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
604 unlock_kernel();
606 up_write(&sb->s_umount);
607 return retval;
610 down_write(&namespace_sem);
611 spin_lock(&vfsmount_lock);
612 event++;
614 retval = -EBUSY;
615 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
616 if (!list_empty(&mnt->mnt_list))
617 umount_tree(mnt, 1, &umount_list);
618 retval = 0;
620 spin_unlock(&vfsmount_lock);
621 if (retval)
622 security_sb_umount_busy(mnt);
623 up_write(&namespace_sem);
624 release_mounts(&umount_list);
625 return retval;
629 * Now umount can handle mount points as well as block devices.
630 * This is important for filesystems which use unnamed block devices.
632 * We now support a flag for forced unmount like the other 'big iron'
633 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
636 asmlinkage long sys_umount(char __user * name, int flags)
638 struct nameidata nd;
639 int retval;
641 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
642 if (retval)
643 goto out;
644 retval = -EINVAL;
645 if (nd.dentry != nd.mnt->mnt_root)
646 goto dput_and_out;
647 if (!check_mnt(nd.mnt))
648 goto dput_and_out;
650 retval = -EPERM;
651 if (!capable(CAP_SYS_ADMIN))
652 goto dput_and_out;
654 retval = do_umount(nd.mnt, flags);
655 dput_and_out:
656 path_release_on_umount(&nd);
657 out:
658 return retval;
661 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
664 * The 2.0 compatible umount. No flags.
666 asmlinkage long sys_oldumount(char __user * name)
668 return sys_umount(name, 0);
671 #endif
673 static int mount_is_safe(struct nameidata *nd)
675 if (capable(CAP_SYS_ADMIN))
676 return 0;
677 return -EPERM;
678 #ifdef notyet
679 if (S_ISLNK(nd->dentry->d_inode->i_mode))
680 return -EPERM;
681 if (nd->dentry->d_inode->i_mode & S_ISVTX) {
682 if (current->uid != nd->dentry->d_inode->i_uid)
683 return -EPERM;
685 if (vfs_permission(nd, MAY_WRITE))
686 return -EPERM;
687 return 0;
688 #endif
691 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
693 while (1) {
694 if (d == dentry)
695 return 1;
696 if (d == NULL || d == d->d_parent)
697 return 0;
698 d = d->d_parent;
702 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
703 int flag)
705 struct vfsmount *res, *p, *q, *r, *s;
706 struct nameidata nd;
708 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
709 return NULL;
711 res = q = clone_mnt(mnt, dentry, flag);
712 if (!q)
713 goto Enomem;
714 q->mnt_mountpoint = mnt->mnt_mountpoint;
716 p = mnt;
717 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
718 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
719 continue;
721 for (s = r; s; s = next_mnt(s, r)) {
722 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
723 s = skip_mnt_tree(s);
724 continue;
726 while (p != s->mnt_parent) {
727 p = p->mnt_parent;
728 q = q->mnt_parent;
730 p = s;
731 nd.mnt = q;
732 nd.dentry = p->mnt_mountpoint;
733 q = clone_mnt(p, p->mnt_root, flag);
734 if (!q)
735 goto Enomem;
736 spin_lock(&vfsmount_lock);
737 list_add_tail(&q->mnt_list, &res->mnt_list);
738 attach_mnt(q, &nd);
739 spin_unlock(&vfsmount_lock);
742 return res;
743 Enomem:
744 if (res) {
745 LIST_HEAD(umount_list);
746 spin_lock(&vfsmount_lock);
747 umount_tree(res, 0, &umount_list);
748 spin_unlock(&vfsmount_lock);
749 release_mounts(&umount_list);
751 return NULL;
755 * @source_mnt : mount tree to be attached
756 * @nd : place the mount tree @source_mnt is attached
757 * @parent_nd : if non-null, detach the source_mnt from its parent and
758 * store the parent mount and mountpoint dentry.
759 * (done when source_mnt is moved)
761 * NOTE: in the table below explains the semantics when a source mount
762 * of a given type is attached to a destination mount of a given type.
763 * ---------------------------------------------------------------------------
764 * | BIND MOUNT OPERATION |
765 * |**************************************************************************
766 * | source-->| shared | private | slave | unbindable |
767 * | dest | | | | |
768 * | | | | | | |
769 * | v | | | | |
770 * |**************************************************************************
771 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
772 * | | | | | |
773 * |non-shared| shared (+) | private | slave (*) | invalid |
774 * ***************************************************************************
775 * A bind operation clones the source mount and mounts the clone on the
776 * destination mount.
778 * (++) the cloned mount is propagated to all the mounts in the propagation
779 * tree of the destination mount and the cloned mount is added to
780 * the peer group of the source mount.
781 * (+) the cloned mount is created under the destination mount and is marked
782 * as shared. The cloned mount is added to the peer group of the source
783 * mount.
784 * (+++) the mount is propagated to all the mounts in the propagation tree
785 * of the destination mount and the cloned mount is made slave
786 * of the same master as that of the source mount. The cloned mount
787 * is marked as 'shared and slave'.
788 * (*) the cloned mount is made a slave of the same master as that of the
789 * source mount.
791 * ---------------------------------------------------------------------------
792 * | MOVE MOUNT OPERATION |
793 * |**************************************************************************
794 * | source-->| shared | private | slave | unbindable |
795 * | dest | | | | |
796 * | | | | | | |
797 * | v | | | | |
798 * |**************************************************************************
799 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
800 * | | | | | |
801 * |non-shared| shared (+*) | private | slave (*) | unbindable |
802 * ***************************************************************************
804 * (+) the mount is moved to the destination. And is then propagated to
805 * all the mounts in the propagation tree of the destination mount.
806 * (+*) the mount is moved to the destination.
807 * (+++) the mount is moved to the destination and is then propagated to
808 * all the mounts belonging to the destination mount's propagation tree.
809 * the mount is marked as 'shared and slave'.
810 * (*) the mount continues to be a slave at the new location.
812 * if the source mount is a tree, the operations explained above is
813 * applied to each mount in the tree.
814 * Must be called without spinlocks held, since this function can sleep
815 * in allocations.
817 static int attach_recursive_mnt(struct vfsmount *source_mnt,
818 struct nameidata *nd, struct nameidata *parent_nd)
820 LIST_HEAD(tree_list);
821 struct vfsmount *dest_mnt = nd->mnt;
822 struct dentry *dest_dentry = nd->dentry;
823 struct vfsmount *child, *p;
825 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
826 return -EINVAL;
828 if (IS_MNT_SHARED(dest_mnt)) {
829 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
830 set_mnt_shared(p);
833 spin_lock(&vfsmount_lock);
834 if (parent_nd) {
835 detach_mnt(source_mnt, parent_nd);
836 attach_mnt(source_mnt, nd);
837 touch_mnt_namespace(current->nsproxy->mnt_ns);
838 } else {
839 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
840 commit_tree(source_mnt);
843 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
844 list_del_init(&child->mnt_hash);
845 commit_tree(child);
847 spin_unlock(&vfsmount_lock);
848 return 0;
851 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
853 int err;
854 if (mnt->mnt_sb->s_flags & MS_NOUSER)
855 return -EINVAL;
857 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
858 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
859 return -ENOTDIR;
861 err = -ENOENT;
862 mutex_lock(&nd->dentry->d_inode->i_mutex);
863 if (IS_DEADDIR(nd->dentry->d_inode))
864 goto out_unlock;
866 err = security_sb_check_sb(mnt, nd);
867 if (err)
868 goto out_unlock;
870 err = -ENOENT;
871 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
872 err = attach_recursive_mnt(mnt, nd, NULL);
873 out_unlock:
874 mutex_unlock(&nd->dentry->d_inode->i_mutex);
875 if (!err)
876 security_sb_post_addmount(mnt, nd);
877 return err;
881 * recursively change the type of the mountpoint.
883 static int do_change_type(struct nameidata *nd, int flag)
885 struct vfsmount *m, *mnt = nd->mnt;
886 int recurse = flag & MS_REC;
887 int type = flag & ~MS_REC;
889 if (!capable(CAP_SYS_ADMIN))
890 return -EPERM;
892 if (nd->dentry != nd->mnt->mnt_root)
893 return -EINVAL;
895 down_write(&namespace_sem);
896 spin_lock(&vfsmount_lock);
897 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
898 change_mnt_propagation(m, type);
899 spin_unlock(&vfsmount_lock);
900 up_write(&namespace_sem);
901 return 0;
905 * do loopback mount.
907 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
909 struct nameidata old_nd;
910 struct vfsmount *mnt = NULL;
911 int err = mount_is_safe(nd);
912 if (err)
913 return err;
914 if (!old_name || !*old_name)
915 return -EINVAL;
916 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
917 if (err)
918 return err;
920 down_write(&namespace_sem);
921 err = -EINVAL;
922 if (IS_MNT_UNBINDABLE(old_nd.mnt))
923 goto out;
925 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
926 goto out;
928 err = -ENOMEM;
929 if (recurse)
930 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
931 else
932 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
934 if (!mnt)
935 goto out;
937 err = graft_tree(mnt, nd);
938 if (err) {
939 LIST_HEAD(umount_list);
940 spin_lock(&vfsmount_lock);
941 umount_tree(mnt, 0, &umount_list);
942 spin_unlock(&vfsmount_lock);
943 release_mounts(&umount_list);
946 out:
947 up_write(&namespace_sem);
948 path_release(&old_nd);
949 return err;
953 * change filesystem flags. dir should be a physical root of filesystem.
954 * If you've mounted a non-root directory somewhere and want to do remount
955 * on it - tough luck.
957 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
958 void *data)
960 int err;
961 struct super_block *sb = nd->mnt->mnt_sb;
963 if (!capable(CAP_SYS_ADMIN))
964 return -EPERM;
966 if (!check_mnt(nd->mnt))
967 return -EINVAL;
969 if (nd->dentry != nd->mnt->mnt_root)
970 return -EINVAL;
972 down_write(&sb->s_umount);
973 err = do_remount_sb(sb, flags, data, 0);
974 if (!err)
975 nd->mnt->mnt_flags = mnt_flags;
976 up_write(&sb->s_umount);
977 if (!err)
978 security_sb_post_remount(nd->mnt, flags, data);
979 return err;
982 static inline int tree_contains_unbindable(struct vfsmount *mnt)
984 struct vfsmount *p;
985 for (p = mnt; p; p = next_mnt(p, mnt)) {
986 if (IS_MNT_UNBINDABLE(p))
987 return 1;
989 return 0;
992 static int do_move_mount(struct nameidata *nd, char *old_name)
994 struct nameidata old_nd, parent_nd;
995 struct vfsmount *p;
996 int err = 0;
997 if (!capable(CAP_SYS_ADMIN))
998 return -EPERM;
999 if (!old_name || !*old_name)
1000 return -EINVAL;
1001 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1002 if (err)
1003 return err;
1005 down_write(&namespace_sem);
1006 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1008 err = -EINVAL;
1009 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1010 goto out;
1012 err = -ENOENT;
1013 mutex_lock(&nd->dentry->d_inode->i_mutex);
1014 if (IS_DEADDIR(nd->dentry->d_inode))
1015 goto out1;
1017 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1018 goto out1;
1020 err = -EINVAL;
1021 if (old_nd.dentry != old_nd.mnt->mnt_root)
1022 goto out1;
1024 if (old_nd.mnt == old_nd.mnt->mnt_parent)
1025 goto out1;
1027 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1028 S_ISDIR(old_nd.dentry->d_inode->i_mode))
1029 goto out1;
1031 * Don't move a mount residing in a shared parent.
1033 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1034 goto out1;
1036 * Don't move a mount tree containing unbindable mounts to a destination
1037 * mount which is shared.
1039 if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1040 goto out1;
1041 err = -ELOOP;
1042 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1043 if (p == old_nd.mnt)
1044 goto out1;
1046 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1047 goto out1;
1049 spin_lock(&vfsmount_lock);
1050 /* if the mount is moved, it should no longer be expire
1051 * automatically */
1052 list_del_init(&old_nd.mnt->mnt_expire);
1053 spin_unlock(&vfsmount_lock);
1054 out1:
1055 mutex_unlock(&nd->dentry->d_inode->i_mutex);
1056 out:
1057 up_write(&namespace_sem);
1058 if (!err)
1059 path_release(&parent_nd);
1060 path_release(&old_nd);
1061 return err;
1065 * create a new mount for userspace and request it to be added into the
1066 * namespace's tree
1068 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1069 int mnt_flags, char *name, void *data)
1071 struct vfsmount *mnt;
1073 if (!type || !memchr(type, 0, PAGE_SIZE))
1074 return -EINVAL;
1076 /* we need capabilities... */
1077 if (!capable(CAP_SYS_ADMIN))
1078 return -EPERM;
1080 mnt = do_kern_mount(type, flags, name, data);
1081 if (IS_ERR(mnt))
1082 return PTR_ERR(mnt);
1084 return do_add_mount(mnt, nd, mnt_flags, NULL);
1088 * add a mount into a namespace's mount tree
1089 * - provide the option of adding the new mount to an expiration list
1091 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1092 int mnt_flags, struct list_head *fslist)
1094 int err;
1096 down_write(&namespace_sem);
1097 /* Something was mounted here while we slept */
1098 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1100 err = -EINVAL;
1101 if (!check_mnt(nd->mnt))
1102 goto unlock;
1104 /* Refuse the same filesystem on the same mount point */
1105 err = -EBUSY;
1106 if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1107 nd->mnt->mnt_root == nd->dentry)
1108 goto unlock;
1110 err = -EINVAL;
1111 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1112 goto unlock;
1114 newmnt->mnt_flags = mnt_flags;
1115 if ((err = graft_tree(newmnt, nd)))
1116 goto unlock;
1118 if (fslist) {
1119 /* add to the specified expiration list */
1120 spin_lock(&vfsmount_lock);
1121 list_add_tail(&newmnt->mnt_expire, fslist);
1122 spin_unlock(&vfsmount_lock);
1124 up_write(&namespace_sem);
1125 return 0;
1127 unlock:
1128 up_write(&namespace_sem);
1129 mntput(newmnt);
1130 return err;
1133 EXPORT_SYMBOL_GPL(do_add_mount);
1135 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1136 struct list_head *umounts)
1138 spin_lock(&vfsmount_lock);
1141 * Check if mount is still attached, if not, let whoever holds it deal
1142 * with the sucker
1144 if (mnt->mnt_parent == mnt) {
1145 spin_unlock(&vfsmount_lock);
1146 return;
1150 * Check that it is still dead: the count should now be 2 - as
1151 * contributed by the vfsmount parent and the mntget above
1153 if (!propagate_mount_busy(mnt, 2)) {
1154 /* delete from the namespace */
1155 touch_mnt_namespace(mnt->mnt_ns);
1156 list_del_init(&mnt->mnt_list);
1157 mnt->mnt_ns = NULL;
1158 umount_tree(mnt, 1, umounts);
1159 spin_unlock(&vfsmount_lock);
1160 } else {
1162 * Someone brought it back to life whilst we didn't have any
1163 * locks held so return it to the expiration list
1165 list_add_tail(&mnt->mnt_expire, mounts);
1166 spin_unlock(&vfsmount_lock);
1171 * go through the vfsmounts we've just consigned to the graveyard to
1172 * - check that they're still dead
1173 * - delete the vfsmount from the appropriate namespace under lock
1174 * - dispose of the corpse
1176 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1178 struct mnt_namespace *ns;
1179 struct vfsmount *mnt;
1181 while (!list_empty(graveyard)) {
1182 LIST_HEAD(umounts);
1183 mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire);
1184 list_del_init(&mnt->mnt_expire);
1186 /* don't do anything if the namespace is dead - all the
1187 * vfsmounts from it are going away anyway */
1188 ns = mnt->mnt_ns;
1189 if (!ns || !ns->root)
1190 continue;
1191 get_mnt_ns(ns);
1193 spin_unlock(&vfsmount_lock);
1194 down_write(&namespace_sem);
1195 expire_mount(mnt, mounts, &umounts);
1196 up_write(&namespace_sem);
1197 release_mounts(&umounts);
1198 mntput(mnt);
1199 put_mnt_ns(ns);
1200 spin_lock(&vfsmount_lock);
1205 * process a list of expirable mountpoints with the intent of discarding any
1206 * mountpoints that aren't in use and haven't been touched since last we came
1207 * here
1209 void mark_mounts_for_expiry(struct list_head *mounts)
1211 struct vfsmount *mnt, *next;
1212 LIST_HEAD(graveyard);
1214 if (list_empty(mounts))
1215 return;
1217 spin_lock(&vfsmount_lock);
1219 /* extract from the expiration list every vfsmount that matches the
1220 * following criteria:
1221 * - only referenced by its parent vfsmount
1222 * - still marked for expiry (marked on the last call here; marks are
1223 * cleared by mntput())
1225 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1226 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1227 atomic_read(&mnt->mnt_count) != 1)
1228 continue;
1230 mntget(mnt);
1231 list_move(&mnt->mnt_expire, &graveyard);
1234 expire_mount_list(&graveyard, mounts);
1236 spin_unlock(&vfsmount_lock);
1239 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1242 * Ripoff of 'select_parent()'
1244 * search the list of submounts for a given mountpoint, and move any
1245 * shrinkable submounts to the 'graveyard' list.
1247 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1249 struct vfsmount *this_parent = parent;
1250 struct list_head *next;
1251 int found = 0;
1253 repeat:
1254 next = this_parent->mnt_mounts.next;
1255 resume:
1256 while (next != &this_parent->mnt_mounts) {
1257 struct list_head *tmp = next;
1258 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1260 next = tmp->next;
1261 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1262 continue;
1264 * Descend a level if the d_mounts list is non-empty.
1266 if (!list_empty(&mnt->mnt_mounts)) {
1267 this_parent = mnt;
1268 goto repeat;
1271 if (!propagate_mount_busy(mnt, 1)) {
1272 mntget(mnt);
1273 list_move_tail(&mnt->mnt_expire, graveyard);
1274 found++;
1278 * All done at this level ... ascend and resume the search
1280 if (this_parent != parent) {
1281 next = this_parent->mnt_child.next;
1282 this_parent = this_parent->mnt_parent;
1283 goto resume;
1285 return found;
1289 * process a list of expirable mountpoints with the intent of discarding any
1290 * submounts of a specific parent mountpoint
1292 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1294 LIST_HEAD(graveyard);
1295 int found;
1297 spin_lock(&vfsmount_lock);
1299 /* extract submounts of 'mountpoint' from the expiration list */
1300 while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1301 expire_mount_list(&graveyard, mounts);
1303 spin_unlock(&vfsmount_lock);
1306 EXPORT_SYMBOL_GPL(shrink_submounts);
1309 * Some copy_from_user() implementations do not return the exact number of
1310 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1311 * Note that this function differs from copy_from_user() in that it will oops
1312 * on bad values of `to', rather than returning a short copy.
1314 static long exact_copy_from_user(void *to, const void __user * from,
1315 unsigned long n)
1317 char *t = to;
1318 const char __user *f = from;
1319 char c;
1321 if (!access_ok(VERIFY_READ, from, n))
1322 return n;
1324 while (n) {
1325 if (__get_user(c, f)) {
1326 memset(t, 0, n);
1327 break;
1329 *t++ = c;
1330 f++;
1331 n--;
1333 return n;
1336 int copy_mount_options(const void __user * data, unsigned long *where)
1338 int i;
1339 unsigned long page;
1340 unsigned long size;
1342 *where = 0;
1343 if (!data)
1344 return 0;
1346 if (!(page = __get_free_page(GFP_KERNEL)))
1347 return -ENOMEM;
1349 /* We only care that *some* data at the address the user
1350 * gave us is valid. Just in case, we'll zero
1351 * the remainder of the page.
1353 /* copy_from_user cannot cross TASK_SIZE ! */
1354 size = TASK_SIZE - (unsigned long)data;
1355 if (size > PAGE_SIZE)
1356 size = PAGE_SIZE;
1358 i = size - exact_copy_from_user((void *)page, data, size);
1359 if (!i) {
1360 free_page(page);
1361 return -EFAULT;
1363 if (i != PAGE_SIZE)
1364 memset((char *)page + i, 0, PAGE_SIZE - i);
1365 *where = page;
1366 return 0;
1370 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1371 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1373 * data is a (void *) that can point to any structure up to
1374 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1375 * information (or be NULL).
1377 * Pre-0.97 versions of mount() didn't have a flags word.
1378 * When the flags word was introduced its top half was required
1379 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1380 * Therefore, if this magic number is present, it carries no information
1381 * and must be discarded.
1383 long do_mount(char *dev_name, char *dir_name, char *type_page,
1384 unsigned long flags, void *data_page)
1386 struct nameidata nd;
1387 int retval = 0;
1388 int mnt_flags = 0;
1390 /* Discard magic */
1391 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1392 flags &= ~MS_MGC_MSK;
1394 /* Basic sanity checks */
1396 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1397 return -EINVAL;
1398 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1399 return -EINVAL;
1401 if (data_page)
1402 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1404 /* Separate the per-mountpoint flags */
1405 if (flags & MS_NOSUID)
1406 mnt_flags |= MNT_NOSUID;
1407 if (flags & MS_NODEV)
1408 mnt_flags |= MNT_NODEV;
1409 if (flags & MS_NOEXEC)
1410 mnt_flags |= MNT_NOEXEC;
1411 if (flags & MS_NOATIME)
1412 mnt_flags |= MNT_NOATIME;
1413 if (flags & MS_NODIRATIME)
1414 mnt_flags |= MNT_NODIRATIME;
1415 if (flags & MS_RELATIME)
1416 mnt_flags |= MNT_RELATIME;
1418 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1419 MS_NOATIME | MS_NODIRATIME | MS_RELATIME);
1421 /* ... and get the mountpoint */
1422 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1423 if (retval)
1424 return retval;
1426 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1427 if (retval)
1428 goto dput_out;
1430 if (flags & MS_REMOUNT)
1431 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1432 data_page);
1433 else if (flags & MS_BIND)
1434 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1435 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1436 retval = do_change_type(&nd, flags);
1437 else if (flags & MS_MOVE)
1438 retval = do_move_mount(&nd, dev_name);
1439 else
1440 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1441 dev_name, data_page);
1442 dput_out:
1443 path_release(&nd);
1444 return retval;
1448 * Allocate a new namespace structure and populate it with contents
1449 * copied from the namespace of the passed in task structure.
1451 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1452 struct fs_struct *fs)
1454 struct mnt_namespace *new_ns;
1455 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1456 struct vfsmount *p, *q;
1458 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1459 if (!new_ns)
1460 return NULL;
1462 atomic_set(&new_ns->count, 1);
1463 INIT_LIST_HEAD(&new_ns->list);
1464 init_waitqueue_head(&new_ns->poll);
1465 new_ns->event = 0;
1467 down_write(&namespace_sem);
1468 /* First pass: copy the tree topology */
1469 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1470 CL_COPY_ALL | CL_EXPIRE);
1471 if (!new_ns->root) {
1472 up_write(&namespace_sem);
1473 kfree(new_ns);
1474 return NULL;
1476 spin_lock(&vfsmount_lock);
1477 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1478 spin_unlock(&vfsmount_lock);
1481 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1482 * as belonging to new namespace. We have already acquired a private
1483 * fs_struct, so tsk->fs->lock is not needed.
1485 p = mnt_ns->root;
1486 q = new_ns->root;
1487 while (p) {
1488 q->mnt_ns = new_ns;
1489 if (fs) {
1490 if (p == fs->rootmnt) {
1491 rootmnt = p;
1492 fs->rootmnt = mntget(q);
1494 if (p == fs->pwdmnt) {
1495 pwdmnt = p;
1496 fs->pwdmnt = mntget(q);
1498 if (p == fs->altrootmnt) {
1499 altrootmnt = p;
1500 fs->altrootmnt = mntget(q);
1503 p = next_mnt(p, mnt_ns->root);
1504 q = next_mnt(q, new_ns->root);
1506 up_write(&namespace_sem);
1508 if (rootmnt)
1509 mntput(rootmnt);
1510 if (pwdmnt)
1511 mntput(pwdmnt);
1512 if (altrootmnt)
1513 mntput(altrootmnt);
1515 return new_ns;
1518 struct mnt_namespace *copy_mnt_ns(int flags, struct mnt_namespace *ns,
1519 struct fs_struct *new_fs)
1521 struct mnt_namespace *new_ns;
1523 BUG_ON(!ns);
1524 get_mnt_ns(ns);
1526 if (!(flags & CLONE_NEWNS))
1527 return ns;
1529 new_ns = dup_mnt_ns(ns, new_fs);
1531 put_mnt_ns(ns);
1532 return new_ns;
1535 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1536 char __user * type, unsigned long flags,
1537 void __user * data)
1539 int retval;
1540 unsigned long data_page;
1541 unsigned long type_page;
1542 unsigned long dev_page;
1543 char *dir_page;
1545 retval = copy_mount_options(type, &type_page);
1546 if (retval < 0)
1547 return retval;
1549 dir_page = getname(dir_name);
1550 retval = PTR_ERR(dir_page);
1551 if (IS_ERR(dir_page))
1552 goto out1;
1554 retval = copy_mount_options(dev_name, &dev_page);
1555 if (retval < 0)
1556 goto out2;
1558 retval = copy_mount_options(data, &data_page);
1559 if (retval < 0)
1560 goto out3;
1562 lock_kernel();
1563 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1564 flags, (void *)data_page);
1565 unlock_kernel();
1566 free_page(data_page);
1568 out3:
1569 free_page(dev_page);
1570 out2:
1571 putname(dir_page);
1572 out1:
1573 free_page(type_page);
1574 return retval;
1578 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1579 * It can block. Requires the big lock held.
1581 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1582 struct dentry *dentry)
1584 struct dentry *old_root;
1585 struct vfsmount *old_rootmnt;
1586 write_lock(&fs->lock);
1587 old_root = fs->root;
1588 old_rootmnt = fs->rootmnt;
1589 fs->rootmnt = mntget(mnt);
1590 fs->root = dget(dentry);
1591 write_unlock(&fs->lock);
1592 if (old_root) {
1593 dput(old_root);
1594 mntput(old_rootmnt);
1599 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1600 * It can block. Requires the big lock held.
1602 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1603 struct dentry *dentry)
1605 struct dentry *old_pwd;
1606 struct vfsmount *old_pwdmnt;
1608 write_lock(&fs->lock);
1609 old_pwd = fs->pwd;
1610 old_pwdmnt = fs->pwdmnt;
1611 fs->pwdmnt = mntget(mnt);
1612 fs->pwd = dget(dentry);
1613 write_unlock(&fs->lock);
1615 if (old_pwd) {
1616 dput(old_pwd);
1617 mntput(old_pwdmnt);
1621 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1623 struct task_struct *g, *p;
1624 struct fs_struct *fs;
1626 read_lock(&tasklist_lock);
1627 do_each_thread(g, p) {
1628 task_lock(p);
1629 fs = p->fs;
1630 if (fs) {
1631 atomic_inc(&fs->count);
1632 task_unlock(p);
1633 if (fs->root == old_nd->dentry
1634 && fs->rootmnt == old_nd->mnt)
1635 set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1636 if (fs->pwd == old_nd->dentry
1637 && fs->pwdmnt == old_nd->mnt)
1638 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1639 put_fs_struct(fs);
1640 } else
1641 task_unlock(p);
1642 } while_each_thread(g, p);
1643 read_unlock(&tasklist_lock);
1647 * pivot_root Semantics:
1648 * Moves the root file system of the current process to the directory put_old,
1649 * makes new_root as the new root file system of the current process, and sets
1650 * root/cwd of all processes which had them on the current root to new_root.
1652 * Restrictions:
1653 * The new_root and put_old must be directories, and must not be on the
1654 * same file system as the current process root. The put_old must be
1655 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1656 * pointed to by put_old must yield the same directory as new_root. No other
1657 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1659 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1660 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1661 * in this situation.
1663 * Notes:
1664 * - we don't move root/cwd if they are not at the root (reason: if something
1665 * cared enough to change them, it's probably wrong to force them elsewhere)
1666 * - it's okay to pick a root that isn't the root of a file system, e.g.
1667 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1668 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1669 * first.
1671 asmlinkage long sys_pivot_root(const char __user * new_root,
1672 const char __user * put_old)
1674 struct vfsmount *tmp;
1675 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1676 int error;
1678 if (!capable(CAP_SYS_ADMIN))
1679 return -EPERM;
1681 lock_kernel();
1683 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1684 &new_nd);
1685 if (error)
1686 goto out0;
1687 error = -EINVAL;
1688 if (!check_mnt(new_nd.mnt))
1689 goto out1;
1691 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1692 if (error)
1693 goto out1;
1695 error = security_sb_pivotroot(&old_nd, &new_nd);
1696 if (error) {
1697 path_release(&old_nd);
1698 goto out1;
1701 read_lock(&current->fs->lock);
1702 user_nd.mnt = mntget(current->fs->rootmnt);
1703 user_nd.dentry = dget(current->fs->root);
1704 read_unlock(&current->fs->lock);
1705 down_write(&namespace_sem);
1706 mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1707 error = -EINVAL;
1708 if (IS_MNT_SHARED(old_nd.mnt) ||
1709 IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1710 IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1711 goto out2;
1712 if (!check_mnt(user_nd.mnt))
1713 goto out2;
1714 error = -ENOENT;
1715 if (IS_DEADDIR(new_nd.dentry->d_inode))
1716 goto out2;
1717 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1718 goto out2;
1719 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1720 goto out2;
1721 error = -EBUSY;
1722 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1723 goto out2; /* loop, on the same file system */
1724 error = -EINVAL;
1725 if (user_nd.mnt->mnt_root != user_nd.dentry)
1726 goto out2; /* not a mountpoint */
1727 if (user_nd.mnt->mnt_parent == user_nd.mnt)
1728 goto out2; /* not attached */
1729 if (new_nd.mnt->mnt_root != new_nd.dentry)
1730 goto out2; /* not a mountpoint */
1731 if (new_nd.mnt->mnt_parent == new_nd.mnt)
1732 goto out2; /* not attached */
1733 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1734 spin_lock(&vfsmount_lock);
1735 if (tmp != new_nd.mnt) {
1736 for (;;) {
1737 if (tmp->mnt_parent == tmp)
1738 goto out3; /* already mounted on put_old */
1739 if (tmp->mnt_parent == new_nd.mnt)
1740 break;
1741 tmp = tmp->mnt_parent;
1743 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1744 goto out3;
1745 } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1746 goto out3;
1747 detach_mnt(new_nd.mnt, &parent_nd);
1748 detach_mnt(user_nd.mnt, &root_parent);
1749 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
1750 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1751 touch_mnt_namespace(current->nsproxy->mnt_ns);
1752 spin_unlock(&vfsmount_lock);
1753 chroot_fs_refs(&user_nd, &new_nd);
1754 security_sb_post_pivotroot(&user_nd, &new_nd);
1755 error = 0;
1756 path_release(&root_parent);
1757 path_release(&parent_nd);
1758 out2:
1759 mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1760 up_write(&namespace_sem);
1761 path_release(&user_nd);
1762 path_release(&old_nd);
1763 out1:
1764 path_release(&new_nd);
1765 out0:
1766 unlock_kernel();
1767 return error;
1768 out3:
1769 spin_unlock(&vfsmount_lock);
1770 goto out2;
1773 static void __init init_mount_tree(void)
1775 struct vfsmount *mnt;
1776 struct mnt_namespace *ns;
1778 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1779 if (IS_ERR(mnt))
1780 panic("Can't create rootfs");
1781 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1782 if (!ns)
1783 panic("Can't allocate initial namespace");
1784 atomic_set(&ns->count, 1);
1785 INIT_LIST_HEAD(&ns->list);
1786 init_waitqueue_head(&ns->poll);
1787 ns->event = 0;
1788 list_add(&mnt->mnt_list, &ns->list);
1789 ns->root = mnt;
1790 mnt->mnt_ns = ns;
1792 init_task.nsproxy->mnt_ns = ns;
1793 get_mnt_ns(ns);
1795 set_fs_pwd(current->fs, ns->root, ns->root->mnt_root);
1796 set_fs_root(current->fs, ns->root, ns->root->mnt_root);
1799 void __init mnt_init(unsigned long mempages)
1801 struct list_head *d;
1802 unsigned int nr_hash;
1803 int i;
1804 int err;
1806 init_rwsem(&namespace_sem);
1808 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1809 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1811 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1813 if (!mount_hashtable)
1814 panic("Failed to allocate mount hash table\n");
1817 * Find the power-of-two list-heads that can fit into the allocation..
1818 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1819 * a power-of-two.
1821 nr_hash = PAGE_SIZE / sizeof(struct list_head);
1822 hash_bits = 0;
1823 do {
1824 hash_bits++;
1825 } while ((nr_hash >> hash_bits) != 0);
1826 hash_bits--;
1829 * Re-calculate the actual number of entries and the mask
1830 * from the number of bits we can fit.
1832 nr_hash = 1UL << hash_bits;
1833 hash_mask = nr_hash - 1;
1835 printk("Mount-cache hash table entries: %d\n", nr_hash);
1837 /* And initialize the newly allocated array */
1838 d = mount_hashtable;
1839 i = nr_hash;
1840 do {
1841 INIT_LIST_HEAD(d);
1842 d++;
1843 i--;
1844 } while (i);
1845 err = sysfs_init();
1846 if (err)
1847 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1848 __FUNCTION__, err);
1849 err = subsystem_register(&fs_subsys);
1850 if (err)
1851 printk(KERN_WARNING "%s: subsystem_register error: %d\n",
1852 __FUNCTION__, err);
1853 init_rootfs();
1854 init_mount_tree();
1857 void __put_mnt_ns(struct mnt_namespace *ns)
1859 struct vfsmount *root = ns->root;
1860 LIST_HEAD(umount_list);
1861 ns->root = NULL;
1862 spin_unlock(&vfsmount_lock);
1863 down_write(&namespace_sem);
1864 spin_lock(&vfsmount_lock);
1865 umount_tree(root, 0, &umount_list);
1866 spin_unlock(&vfsmount_lock);
1867 up_write(&namespace_sem);
1868 release_mounts(&umount_list);
1869 kfree(ns);