3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
131 #define FORCED_DEBUG 1
135 #define FORCED_DEBUG 0
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
145 #ifndef ARCH_KMALLOC_MINALIGN
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
155 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158 #ifndef ARCH_SLAB_MINALIGN
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
166 #define ARCH_SLAB_MINALIGN 0
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173 /* Legal flag mask for kmem_cache_create(). */
175 # define CREATE_MASK (SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
191 * Bufctl's are used for linking objs within a slab
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
207 typedef unsigned int kmem_bufctl_t
;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct list_head list
;
222 unsigned long colouroff
;
223 void *s_mem
; /* including colour offset */
224 unsigned int inuse
; /* num of objs active in slab */
226 unsigned short nodeid
;
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
246 struct rcu_head head
;
247 struct kmem_cache
*cachep
;
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
266 unsigned int batchcount
;
267 unsigned int touched
;
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
273 * [0] is for gcc 2.95. It should really be [].
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init
{
283 struct array_cache cache
;
284 void *entries
[BOOT_CPUCACHE_ENTRIES
];
288 * The slab lists for all objects.
291 struct list_head slabs_partial
; /* partial list first, better asm code */
292 struct list_head slabs_full
;
293 struct list_head slabs_free
;
294 unsigned long free_objects
;
295 unsigned int free_limit
;
296 unsigned int colour_next
; /* Per-node cache coloring */
297 spinlock_t list_lock
;
298 struct array_cache
*shared
; /* shared per node */
299 struct array_cache
**alien
; /* on other nodes */
300 unsigned long next_reap
; /* updated without locking */
301 int free_touched
; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
309 #define CACHE_CACHE 0
311 #define SIZE_L3 (1 + MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache
*cache
,
314 struct kmem_list3
*l3
, int tofree
);
315 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
317 static int enable_cpucache(struct kmem_cache
*cachep
);
318 static void cache_reap(struct work_struct
*unused
);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline
int index_of(const size_t size
)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size
)) {
336 #include "linux/kmalloc_sizes.h"
344 static int slab_early_init
= 1;
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 static void kmem_list3_init(struct kmem_list3
*parent
)
351 INIT_LIST_HEAD(&parent
->slabs_full
);
352 INIT_LIST_HEAD(&parent
->slabs_partial
);
353 INIT_LIST_HEAD(&parent
->slabs_free
);
354 parent
->shared
= NULL
;
355 parent
->alien
= NULL
;
356 parent
->colour_next
= 0;
357 spin_lock_init(&parent
->list_lock
);
358 parent
->free_objects
= 0;
359 parent
->free_touched
= 0;
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache
*array
[NR_CPUS
];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount
;
389 unsigned int buffer_size
;
390 u32 reciprocal_buffer_size
;
391 /* 3) touched by every alloc & free from the backend */
393 unsigned int flags
; /* constant flags */
394 unsigned int num
; /* # of objs per slab */
396 /* 4) cache_grow/shrink */
397 /* order of pgs per slab (2^n) */
398 unsigned int gfporder
;
400 /* force GFP flags, e.g. GFP_DMA */
403 size_t colour
; /* cache colouring range */
404 unsigned int colour_off
; /* colour offset */
405 struct kmem_cache
*slabp_cache
;
406 unsigned int slab_size
;
407 unsigned int dflags
; /* dynamic flags */
409 /* constructor func */
410 void (*ctor
) (void *, struct kmem_cache
*, unsigned long);
412 /* 5) cache creation/removal */
414 struct list_head next
;
418 unsigned long num_active
;
419 unsigned long num_allocations
;
420 unsigned long high_mark
;
422 unsigned long reaped
;
423 unsigned long errors
;
424 unsigned long max_freeable
;
425 unsigned long node_allocs
;
426 unsigned long node_frees
;
427 unsigned long node_overflow
;
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
450 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
452 * Do not add fields after nodelists[]
456 #define CFLGS_OFF_SLAB (0x80000000UL)
457 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
459 #define BATCHREFILL_LIMIT 16
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
464 * OTOH the cpuarrays can contain lots of objects,
465 * which could lock up otherwise freeable slabs.
467 #define REAPTIMEOUT_CPUC (2*HZ)
468 #define REAPTIMEOUT_LIST3 (4*HZ)
471 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
472 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474 #define STATS_INC_GROWN(x) ((x)->grown++)
475 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
476 #define STATS_SET_HIGH(x) \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
481 #define STATS_INC_ERR(x) ((x)->errors++)
482 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
483 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
484 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
485 #define STATS_SET_FREEABLE(x, i) \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
490 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
495 #define STATS_INC_ACTIVE(x) do { } while (0)
496 #define STATS_DEC_ACTIVE(x) do { } while (0)
497 #define STATS_INC_ALLOCED(x) do { } while (0)
498 #define STATS_INC_GROWN(x) do { } while (0)
499 #define STATS_ADD_REAPED(x,y) do { } while (0)
500 #define STATS_SET_HIGH(x) do { } while (0)
501 #define STATS_INC_ERR(x) do { } while (0)
502 #define STATS_INC_NODEALLOCS(x) do { } while (0)
503 #define STATS_INC_NODEFREES(x) do { } while (0)
504 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
505 #define STATS_SET_FREEABLE(x, i) do { } while (0)
506 #define STATS_INC_ALLOCHIT(x) do { } while (0)
507 #define STATS_INC_ALLOCMISS(x) do { } while (0)
508 #define STATS_INC_FREEHIT(x) do { } while (0)
509 #define STATS_INC_FREEMISS(x) do { } while (0)
515 * memory layout of objects:
517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
527 static int obj_offset(struct kmem_cache
*cachep
)
529 return cachep
->obj_offset
;
532 static int obj_size(struct kmem_cache
*cachep
)
534 return cachep
->obj_size
;
537 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
539 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
540 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
541 sizeof(unsigned long long));
544 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
546 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
547 if (cachep
->flags
& SLAB_STORE_USER
)
548 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
549 sizeof(unsigned long long) -
551 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
552 sizeof(unsigned long long));
555 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
557 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
558 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
563 #define obj_offset(x) 0
564 #define obj_size(cachep) (cachep->buffer_size)
565 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
572 * Do not go above this order unless 0 objects fit into the slab.
574 #define BREAK_GFP_ORDER_HI 1
575 #define BREAK_GFP_ORDER_LO 0
576 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator. These are used to find the slab an obj belongs to. With kfree(),
581 * these are used to find the cache which an obj belongs to.
583 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
585 page
->lru
.next
= (struct list_head
*)cache
;
588 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
590 page
= compound_head(page
);
591 BUG_ON(!PageSlab(page
));
592 return (struct kmem_cache
*)page
->lru
.next
;
595 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
597 page
->lru
.prev
= (struct list_head
*)slab
;
600 static inline struct slab
*page_get_slab(struct page
*page
)
602 BUG_ON(!PageSlab(page
));
603 return (struct slab
*)page
->lru
.prev
;
606 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
608 struct page
*page
= virt_to_head_page(obj
);
609 return page_get_cache(page
);
612 static inline struct slab
*virt_to_slab(const void *obj
)
614 struct page
*page
= virt_to_head_page(obj
);
615 return page_get_slab(page
);
618 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
621 return slab
->s_mem
+ cache
->buffer_size
* idx
;
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 * Using the fact that buffer_size is a constant for a particular cache,
627 * we can replace (offset / cache->buffer_size) by
628 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
630 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
631 const struct slab
*slab
, void *obj
)
633 u32 offset
= (obj
- slab
->s_mem
);
634 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
640 struct cache_sizes malloc_sizes
[] = {
641 #define CACHE(x) { .cs_size = (x) },
642 #include <linux/kmalloc_sizes.h>
646 EXPORT_SYMBOL(malloc_sizes
);
648 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
654 static struct cache_names __initdata cache_names
[] = {
655 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656 #include <linux/kmalloc_sizes.h>
661 static struct arraycache_init initarray_cache __initdata
=
662 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
663 static struct arraycache_init initarray_generic
=
664 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
666 /* internal cache of cache description objs */
667 static struct kmem_cache cache_cache
= {
669 .limit
= BOOT_CPUCACHE_ENTRIES
,
671 .buffer_size
= sizeof(struct kmem_cache
),
672 .name
= "kmem_cache",
675 #define BAD_ALIEN_MAGIC 0x01020304ul
677 #ifdef CONFIG_LOCKDEP
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
690 static struct lock_class_key on_slab_l3_key
;
691 static struct lock_class_key on_slab_alc_key
;
693 static inline void init_lock_keys(void)
697 struct cache_sizes
*s
= malloc_sizes
;
699 while (s
->cs_size
!= ULONG_MAX
) {
701 struct array_cache
**alc
;
703 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
704 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
706 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
709 * FIXME: This check for BAD_ALIEN_MAGIC
710 * should go away when common slab code is taught to
711 * work even without alien caches.
712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713 * for alloc_alien_cache,
715 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
719 lockdep_set_class(&alc
[r
]->lock
,
727 static inline void init_lock_keys(void)
733 * 1. Guard access to the cache-chain.
734 * 2. Protect sanity of cpu_online_map against cpu hotplug events
736 static DEFINE_MUTEX(cache_chain_mutex
);
737 static struct list_head cache_chain
;
740 * chicken and egg problem: delay the per-cpu array allocation
741 * until the general caches are up.
751 * used by boot code to determine if it can use slab based allocator
753 int slab_is_available(void)
755 return g_cpucache_up
== FULL
;
758 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
760 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
762 return cachep
->array
[smp_processor_id()];
765 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
768 struct cache_sizes
*csizep
= malloc_sizes
;
771 /* This happens if someone tries to call
772 * kmem_cache_create(), or __kmalloc(), before
773 * the generic caches are initialized.
775 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
777 WARN_ON_ONCE(size
== 0);
778 while (size
> csizep
->cs_size
)
782 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
783 * has cs_{dma,}cachep==NULL. Thus no special case
784 * for large kmalloc calls required.
786 #ifdef CONFIG_ZONE_DMA
787 if (unlikely(gfpflags
& GFP_DMA
))
788 return csizep
->cs_dmacachep
;
790 return csizep
->cs_cachep
;
793 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
795 return __find_general_cachep(size
, gfpflags
);
798 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
800 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
804 * Calculate the number of objects and left-over bytes for a given buffer size.
806 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
807 size_t align
, int flags
, size_t *left_over
,
812 size_t slab_size
= PAGE_SIZE
<< gfporder
;
815 * The slab management structure can be either off the slab or
816 * on it. For the latter case, the memory allocated for a
820 * - One kmem_bufctl_t for each object
821 * - Padding to respect alignment of @align
822 * - @buffer_size bytes for each object
824 * If the slab management structure is off the slab, then the
825 * alignment will already be calculated into the size. Because
826 * the slabs are all pages aligned, the objects will be at the
827 * correct alignment when allocated.
829 if (flags
& CFLGS_OFF_SLAB
) {
831 nr_objs
= slab_size
/ buffer_size
;
833 if (nr_objs
> SLAB_LIMIT
)
834 nr_objs
= SLAB_LIMIT
;
837 * Ignore padding for the initial guess. The padding
838 * is at most @align-1 bytes, and @buffer_size is at
839 * least @align. In the worst case, this result will
840 * be one greater than the number of objects that fit
841 * into the memory allocation when taking the padding
844 nr_objs
= (slab_size
- sizeof(struct slab
)) /
845 (buffer_size
+ sizeof(kmem_bufctl_t
));
848 * This calculated number will be either the right
849 * amount, or one greater than what we want.
851 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
855 if (nr_objs
> SLAB_LIMIT
)
856 nr_objs
= SLAB_LIMIT
;
858 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
861 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
864 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
866 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
869 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
870 function
, cachep
->name
, msg
);
875 * By default on NUMA we use alien caches to stage the freeing of
876 * objects allocated from other nodes. This causes massive memory
877 * inefficiencies when using fake NUMA setup to split memory into a
878 * large number of small nodes, so it can be disabled on the command
882 static int use_alien_caches __read_mostly
= 1;
883 static int __init
noaliencache_setup(char *s
)
885 use_alien_caches
= 0;
888 __setup("noaliencache", noaliencache_setup
);
892 * Special reaping functions for NUMA systems called from cache_reap().
893 * These take care of doing round robin flushing of alien caches (containing
894 * objects freed on different nodes from which they were allocated) and the
895 * flushing of remote pcps by calling drain_node_pages.
897 static DEFINE_PER_CPU(unsigned long, reap_node
);
899 static void init_reap_node(int cpu
)
903 node
= next_node(cpu_to_node(cpu
), node_online_map
);
904 if (node
== MAX_NUMNODES
)
905 node
= first_node(node_online_map
);
907 per_cpu(reap_node
, cpu
) = node
;
910 static void next_reap_node(void)
912 int node
= __get_cpu_var(reap_node
);
914 node
= next_node(node
, node_online_map
);
915 if (unlikely(node
>= MAX_NUMNODES
))
916 node
= first_node(node_online_map
);
917 __get_cpu_var(reap_node
) = node
;
921 #define init_reap_node(cpu) do { } while (0)
922 #define next_reap_node(void) do { } while (0)
926 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
927 * via the workqueue/eventd.
928 * Add the CPU number into the expiration time to minimize the possibility of
929 * the CPUs getting into lockstep and contending for the global cache chain
932 static void __devinit
start_cpu_timer(int cpu
)
934 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
937 * When this gets called from do_initcalls via cpucache_init(),
938 * init_workqueues() has already run, so keventd will be setup
941 if (keventd_up() && reap_work
->work
.func
== NULL
) {
943 INIT_DELAYED_WORK(reap_work
, cache_reap
);
944 schedule_delayed_work_on(cpu
, reap_work
,
945 __round_jiffies_relative(HZ
, cpu
));
949 static struct array_cache
*alloc_arraycache(int node
, int entries
,
952 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
953 struct array_cache
*nc
= NULL
;
955 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
959 nc
->batchcount
= batchcount
;
961 spin_lock_init(&nc
->lock
);
967 * Transfer objects in one arraycache to another.
968 * Locking must be handled by the caller.
970 * Return the number of entries transferred.
972 static int transfer_objects(struct array_cache
*to
,
973 struct array_cache
*from
, unsigned int max
)
975 /* Figure out how many entries to transfer */
976 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
981 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
992 #define drain_alien_cache(cachep, alien) do { } while (0)
993 #define reap_alien(cachep, l3) do { } while (0)
995 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
997 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1000 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1004 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1009 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1015 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1016 gfp_t flags
, int nodeid
)
1021 #else /* CONFIG_NUMA */
1023 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1024 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1026 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1028 struct array_cache
**ac_ptr
;
1029 int memsize
= sizeof(void *) * nr_node_ids
;
1034 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1037 if (i
== node
|| !node_online(i
)) {
1041 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1043 for (i
--; i
<= 0; i
--)
1053 static void free_alien_cache(struct array_cache
**ac_ptr
)
1064 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1065 struct array_cache
*ac
, int node
)
1067 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1070 spin_lock(&rl3
->list_lock
);
1072 * Stuff objects into the remote nodes shared array first.
1073 * That way we could avoid the overhead of putting the objects
1074 * into the free lists and getting them back later.
1077 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1079 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1081 spin_unlock(&rl3
->list_lock
);
1086 * Called from cache_reap() to regularly drain alien caches round robin.
1088 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1090 int node
= __get_cpu_var(reap_node
);
1093 struct array_cache
*ac
= l3
->alien
[node
];
1095 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1096 __drain_alien_cache(cachep
, ac
, node
);
1097 spin_unlock_irq(&ac
->lock
);
1102 static void drain_alien_cache(struct kmem_cache
*cachep
,
1103 struct array_cache
**alien
)
1106 struct array_cache
*ac
;
1107 unsigned long flags
;
1109 for_each_online_node(i
) {
1112 spin_lock_irqsave(&ac
->lock
, flags
);
1113 __drain_alien_cache(cachep
, ac
, i
);
1114 spin_unlock_irqrestore(&ac
->lock
, flags
);
1119 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1121 struct slab
*slabp
= virt_to_slab(objp
);
1122 int nodeid
= slabp
->nodeid
;
1123 struct kmem_list3
*l3
;
1124 struct array_cache
*alien
= NULL
;
1127 node
= numa_node_id();
1130 * Make sure we are not freeing a object from another node to the array
1131 * cache on this cpu.
1133 if (likely(slabp
->nodeid
== node
))
1136 l3
= cachep
->nodelists
[node
];
1137 STATS_INC_NODEFREES(cachep
);
1138 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1139 alien
= l3
->alien
[nodeid
];
1140 spin_lock(&alien
->lock
);
1141 if (unlikely(alien
->avail
== alien
->limit
)) {
1142 STATS_INC_ACOVERFLOW(cachep
);
1143 __drain_alien_cache(cachep
, alien
, nodeid
);
1145 alien
->entry
[alien
->avail
++] = objp
;
1146 spin_unlock(&alien
->lock
);
1148 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1149 free_block(cachep
, &objp
, 1, nodeid
);
1150 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1156 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1157 unsigned long action
, void *hcpu
)
1159 long cpu
= (long)hcpu
;
1160 struct kmem_cache
*cachep
;
1161 struct kmem_list3
*l3
= NULL
;
1162 int node
= cpu_to_node(cpu
);
1163 int memsize
= sizeof(struct kmem_list3
);
1166 case CPU_LOCK_ACQUIRE
:
1167 mutex_lock(&cache_chain_mutex
);
1169 case CPU_UP_PREPARE
:
1170 case CPU_UP_PREPARE_FROZEN
:
1172 * We need to do this right in the beginning since
1173 * alloc_arraycache's are going to use this list.
1174 * kmalloc_node allows us to add the slab to the right
1175 * kmem_list3 and not this cpu's kmem_list3
1178 list_for_each_entry(cachep
, &cache_chain
, next
) {
1180 * Set up the size64 kmemlist for cpu before we can
1181 * begin anything. Make sure some other cpu on this
1182 * node has not already allocated this
1184 if (!cachep
->nodelists
[node
]) {
1185 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1188 kmem_list3_init(l3
);
1189 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1190 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1193 * The l3s don't come and go as CPUs come and
1194 * go. cache_chain_mutex is sufficient
1197 cachep
->nodelists
[node
] = l3
;
1200 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1201 cachep
->nodelists
[node
]->free_limit
=
1202 (1 + nr_cpus_node(node
)) *
1203 cachep
->batchcount
+ cachep
->num
;
1204 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1208 * Now we can go ahead with allocating the shared arrays and
1211 list_for_each_entry(cachep
, &cache_chain
, next
) {
1212 struct array_cache
*nc
;
1213 struct array_cache
*shared
= NULL
;
1214 struct array_cache
**alien
= NULL
;
1216 nc
= alloc_arraycache(node
, cachep
->limit
,
1217 cachep
->batchcount
);
1220 if (cachep
->shared
) {
1221 shared
= alloc_arraycache(node
,
1222 cachep
->shared
* cachep
->batchcount
,
1227 if (use_alien_caches
) {
1228 alien
= alloc_alien_cache(node
, cachep
->limit
);
1232 cachep
->array
[cpu
] = nc
;
1233 l3
= cachep
->nodelists
[node
];
1236 spin_lock_irq(&l3
->list_lock
);
1239 * We are serialised from CPU_DEAD or
1240 * CPU_UP_CANCELLED by the cpucontrol lock
1242 l3
->shared
= shared
;
1251 spin_unlock_irq(&l3
->list_lock
);
1253 free_alien_cache(alien
);
1257 case CPU_ONLINE_FROZEN
:
1258 start_cpu_timer(cpu
);
1260 #ifdef CONFIG_HOTPLUG_CPU
1261 case CPU_DOWN_PREPARE
:
1262 case CPU_DOWN_PREPARE_FROZEN
:
1264 * Shutdown cache reaper. Note that the cache_chain_mutex is
1265 * held so that if cache_reap() is invoked it cannot do
1266 * anything expensive but will only modify reap_work
1267 * and reschedule the timer.
1269 cancel_rearming_delayed_work(&per_cpu(reap_work
, cpu
));
1270 /* Now the cache_reaper is guaranteed to be not running. */
1271 per_cpu(reap_work
, cpu
).work
.func
= NULL
;
1273 case CPU_DOWN_FAILED
:
1274 case CPU_DOWN_FAILED_FROZEN
:
1275 start_cpu_timer(cpu
);
1278 case CPU_DEAD_FROZEN
:
1280 * Even if all the cpus of a node are down, we don't free the
1281 * kmem_list3 of any cache. This to avoid a race between
1282 * cpu_down, and a kmalloc allocation from another cpu for
1283 * memory from the node of the cpu going down. The list3
1284 * structure is usually allocated from kmem_cache_create() and
1285 * gets destroyed at kmem_cache_destroy().
1289 case CPU_UP_CANCELED
:
1290 case CPU_UP_CANCELED_FROZEN
:
1291 list_for_each_entry(cachep
, &cache_chain
, next
) {
1292 struct array_cache
*nc
;
1293 struct array_cache
*shared
;
1294 struct array_cache
**alien
;
1297 mask
= node_to_cpumask(node
);
1298 /* cpu is dead; no one can alloc from it. */
1299 nc
= cachep
->array
[cpu
];
1300 cachep
->array
[cpu
] = NULL
;
1301 l3
= cachep
->nodelists
[node
];
1304 goto free_array_cache
;
1306 spin_lock_irq(&l3
->list_lock
);
1308 /* Free limit for this kmem_list3 */
1309 l3
->free_limit
-= cachep
->batchcount
;
1311 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1313 if (!cpus_empty(mask
)) {
1314 spin_unlock_irq(&l3
->list_lock
);
1315 goto free_array_cache
;
1318 shared
= l3
->shared
;
1320 free_block(cachep
, shared
->entry
,
1321 shared
->avail
, node
);
1328 spin_unlock_irq(&l3
->list_lock
);
1332 drain_alien_cache(cachep
, alien
);
1333 free_alien_cache(alien
);
1339 * In the previous loop, all the objects were freed to
1340 * the respective cache's slabs, now we can go ahead and
1341 * shrink each nodelist to its limit.
1343 list_for_each_entry(cachep
, &cache_chain
, next
) {
1344 l3
= cachep
->nodelists
[node
];
1347 drain_freelist(cachep
, l3
, l3
->free_objects
);
1350 case CPU_LOCK_RELEASE
:
1351 mutex_unlock(&cache_chain_mutex
);
1359 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1360 &cpuup_callback
, NULL
, 0
1364 * swap the static kmem_list3 with kmalloced memory
1366 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1369 struct kmem_list3
*ptr
;
1371 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1374 local_irq_disable();
1375 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1377 * Do not assume that spinlocks can be initialized via memcpy:
1379 spin_lock_init(&ptr
->list_lock
);
1381 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1382 cachep
->nodelists
[nodeid
] = ptr
;
1387 * Initialisation. Called after the page allocator have been initialised and
1388 * before smp_init().
1390 void __init
kmem_cache_init(void)
1393 struct cache_sizes
*sizes
;
1394 struct cache_names
*names
;
1399 if (num_possible_nodes() == 1)
1400 use_alien_caches
= 0;
1402 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1403 kmem_list3_init(&initkmem_list3
[i
]);
1404 if (i
< MAX_NUMNODES
)
1405 cache_cache
.nodelists
[i
] = NULL
;
1409 * Fragmentation resistance on low memory - only use bigger
1410 * page orders on machines with more than 32MB of memory.
1412 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1413 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1415 /* Bootstrap is tricky, because several objects are allocated
1416 * from caches that do not exist yet:
1417 * 1) initialize the cache_cache cache: it contains the struct
1418 * kmem_cache structures of all caches, except cache_cache itself:
1419 * cache_cache is statically allocated.
1420 * Initially an __init data area is used for the head array and the
1421 * kmem_list3 structures, it's replaced with a kmalloc allocated
1422 * array at the end of the bootstrap.
1423 * 2) Create the first kmalloc cache.
1424 * The struct kmem_cache for the new cache is allocated normally.
1425 * An __init data area is used for the head array.
1426 * 3) Create the remaining kmalloc caches, with minimally sized
1428 * 4) Replace the __init data head arrays for cache_cache and the first
1429 * kmalloc cache with kmalloc allocated arrays.
1430 * 5) Replace the __init data for kmem_list3 for cache_cache and
1431 * the other cache's with kmalloc allocated memory.
1432 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1435 node
= numa_node_id();
1437 /* 1) create the cache_cache */
1438 INIT_LIST_HEAD(&cache_chain
);
1439 list_add(&cache_cache
.next
, &cache_chain
);
1440 cache_cache
.colour_off
= cache_line_size();
1441 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1442 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
];
1445 * struct kmem_cache size depends on nr_node_ids, which
1446 * can be less than MAX_NUMNODES.
1448 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1449 nr_node_ids
* sizeof(struct kmem_list3
*);
1451 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1453 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1455 cache_cache
.reciprocal_buffer_size
=
1456 reciprocal_value(cache_cache
.buffer_size
);
1458 for (order
= 0; order
< MAX_ORDER
; order
++) {
1459 cache_estimate(order
, cache_cache
.buffer_size
,
1460 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1461 if (cache_cache
.num
)
1464 BUG_ON(!cache_cache
.num
);
1465 cache_cache
.gfporder
= order
;
1466 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1467 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1468 sizeof(struct slab
), cache_line_size());
1470 /* 2+3) create the kmalloc caches */
1471 sizes
= malloc_sizes
;
1472 names
= cache_names
;
1475 * Initialize the caches that provide memory for the array cache and the
1476 * kmem_list3 structures first. Without this, further allocations will
1480 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1481 sizes
[INDEX_AC
].cs_size
,
1482 ARCH_KMALLOC_MINALIGN
,
1483 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1486 if (INDEX_AC
!= INDEX_L3
) {
1487 sizes
[INDEX_L3
].cs_cachep
=
1488 kmem_cache_create(names
[INDEX_L3
].name
,
1489 sizes
[INDEX_L3
].cs_size
,
1490 ARCH_KMALLOC_MINALIGN
,
1491 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1495 slab_early_init
= 0;
1497 while (sizes
->cs_size
!= ULONG_MAX
) {
1499 * For performance, all the general caches are L1 aligned.
1500 * This should be particularly beneficial on SMP boxes, as it
1501 * eliminates "false sharing".
1502 * Note for systems short on memory removing the alignment will
1503 * allow tighter packing of the smaller caches.
1505 if (!sizes
->cs_cachep
) {
1506 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1508 ARCH_KMALLOC_MINALIGN
,
1509 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1512 #ifdef CONFIG_ZONE_DMA
1513 sizes
->cs_dmacachep
= kmem_cache_create(
1516 ARCH_KMALLOC_MINALIGN
,
1517 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1524 /* 4) Replace the bootstrap head arrays */
1526 struct array_cache
*ptr
;
1528 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1530 local_irq_disable();
1531 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1532 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1533 sizeof(struct arraycache_init
));
1535 * Do not assume that spinlocks can be initialized via memcpy:
1537 spin_lock_init(&ptr
->lock
);
1539 cache_cache
.array
[smp_processor_id()] = ptr
;
1542 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1544 local_irq_disable();
1545 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1546 != &initarray_generic
.cache
);
1547 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1548 sizeof(struct arraycache_init
));
1550 * Do not assume that spinlocks can be initialized via memcpy:
1552 spin_lock_init(&ptr
->lock
);
1554 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1558 /* 5) Replace the bootstrap kmem_list3's */
1562 /* Replace the static kmem_list3 structures for the boot cpu */
1563 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
], node
);
1565 for_each_online_node(nid
) {
1566 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1567 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1569 if (INDEX_AC
!= INDEX_L3
) {
1570 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1571 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1576 /* 6) resize the head arrays to their final sizes */
1578 struct kmem_cache
*cachep
;
1579 mutex_lock(&cache_chain_mutex
);
1580 list_for_each_entry(cachep
, &cache_chain
, next
)
1581 if (enable_cpucache(cachep
))
1583 mutex_unlock(&cache_chain_mutex
);
1586 /* Annotate slab for lockdep -- annotate the malloc caches */
1591 g_cpucache_up
= FULL
;
1594 * Register a cpu startup notifier callback that initializes
1595 * cpu_cache_get for all new cpus
1597 register_cpu_notifier(&cpucache_notifier
);
1600 * The reap timers are started later, with a module init call: That part
1601 * of the kernel is not yet operational.
1605 static int __init
cpucache_init(void)
1610 * Register the timers that return unneeded pages to the page allocator
1612 for_each_online_cpu(cpu
)
1613 start_cpu_timer(cpu
);
1616 __initcall(cpucache_init
);
1619 * Interface to system's page allocator. No need to hold the cache-lock.
1621 * If we requested dmaable memory, we will get it. Even if we
1622 * did not request dmaable memory, we might get it, but that
1623 * would be relatively rare and ignorable.
1625 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1633 * Nommu uses slab's for process anonymous memory allocations, and thus
1634 * requires __GFP_COMP to properly refcount higher order allocations
1636 flags
|= __GFP_COMP
;
1639 flags
|= cachep
->gfpflags
;
1641 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1645 nr_pages
= (1 << cachep
->gfporder
);
1646 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1647 add_zone_page_state(page_zone(page
),
1648 NR_SLAB_RECLAIMABLE
, nr_pages
);
1650 add_zone_page_state(page_zone(page
),
1651 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1652 for (i
= 0; i
< nr_pages
; i
++)
1653 __SetPageSlab(page
+ i
);
1654 return page_address(page
);
1658 * Interface to system's page release.
1660 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1662 unsigned long i
= (1 << cachep
->gfporder
);
1663 struct page
*page
= virt_to_page(addr
);
1664 const unsigned long nr_freed
= i
;
1666 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1667 sub_zone_page_state(page_zone(page
),
1668 NR_SLAB_RECLAIMABLE
, nr_freed
);
1670 sub_zone_page_state(page_zone(page
),
1671 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1673 BUG_ON(!PageSlab(page
));
1674 __ClearPageSlab(page
);
1677 if (current
->reclaim_state
)
1678 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1679 free_pages((unsigned long)addr
, cachep
->gfporder
);
1682 static void kmem_rcu_free(struct rcu_head
*head
)
1684 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1685 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1687 kmem_freepages(cachep
, slab_rcu
->addr
);
1688 if (OFF_SLAB(cachep
))
1689 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1694 #ifdef CONFIG_DEBUG_PAGEALLOC
1695 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1696 unsigned long caller
)
1698 int size
= obj_size(cachep
);
1700 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1702 if (size
< 5 * sizeof(unsigned long))
1705 *addr
++ = 0x12345678;
1707 *addr
++ = smp_processor_id();
1708 size
-= 3 * sizeof(unsigned long);
1710 unsigned long *sptr
= &caller
;
1711 unsigned long svalue
;
1713 while (!kstack_end(sptr
)) {
1715 if (kernel_text_address(svalue
)) {
1717 size
-= sizeof(unsigned long);
1718 if (size
<= sizeof(unsigned long))
1724 *addr
++ = 0x87654321;
1728 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1730 int size
= obj_size(cachep
);
1731 addr
= &((char *)addr
)[obj_offset(cachep
)];
1733 memset(addr
, val
, size
);
1734 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1737 static void dump_line(char *data
, int offset
, int limit
)
1740 unsigned char error
= 0;
1743 printk(KERN_ERR
"%03x:", offset
);
1744 for (i
= 0; i
< limit
; i
++) {
1745 if (data
[offset
+ i
] != POISON_FREE
) {
1746 error
= data
[offset
+ i
];
1749 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1753 if (bad_count
== 1) {
1754 error
^= POISON_FREE
;
1755 if (!(error
& (error
- 1))) {
1756 printk(KERN_ERR
"Single bit error detected. Probably "
1759 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1762 printk(KERN_ERR
"Run a memory test tool.\n");
1771 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1776 if (cachep
->flags
& SLAB_RED_ZONE
) {
1777 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1778 *dbg_redzone1(cachep
, objp
),
1779 *dbg_redzone2(cachep
, objp
));
1782 if (cachep
->flags
& SLAB_STORE_USER
) {
1783 printk(KERN_ERR
"Last user: [<%p>]",
1784 *dbg_userword(cachep
, objp
));
1785 print_symbol("(%s)",
1786 (unsigned long)*dbg_userword(cachep
, objp
));
1789 realobj
= (char *)objp
+ obj_offset(cachep
);
1790 size
= obj_size(cachep
);
1791 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1794 if (i
+ limit
> size
)
1796 dump_line(realobj
, i
, limit
);
1800 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1806 realobj
= (char *)objp
+ obj_offset(cachep
);
1807 size
= obj_size(cachep
);
1809 for (i
= 0; i
< size
; i
++) {
1810 char exp
= POISON_FREE
;
1813 if (realobj
[i
] != exp
) {
1819 "Slab corruption: %s start=%p, len=%d\n",
1820 cachep
->name
, realobj
, size
);
1821 print_objinfo(cachep
, objp
, 0);
1823 /* Hexdump the affected line */
1826 if (i
+ limit
> size
)
1828 dump_line(realobj
, i
, limit
);
1831 /* Limit to 5 lines */
1837 /* Print some data about the neighboring objects, if they
1840 struct slab
*slabp
= virt_to_slab(objp
);
1843 objnr
= obj_to_index(cachep
, slabp
, objp
);
1845 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1846 realobj
= (char *)objp
+ obj_offset(cachep
);
1847 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1849 print_objinfo(cachep
, objp
, 2);
1851 if (objnr
+ 1 < cachep
->num
) {
1852 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1853 realobj
= (char *)objp
+ obj_offset(cachep
);
1854 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1856 print_objinfo(cachep
, objp
, 2);
1864 * slab_destroy_objs - destroy a slab and its objects
1865 * @cachep: cache pointer being destroyed
1866 * @slabp: slab pointer being destroyed
1868 * Call the registered destructor for each object in a slab that is being
1871 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1874 for (i
= 0; i
< cachep
->num
; i
++) {
1875 void *objp
= index_to_obj(cachep
, slabp
, i
);
1877 if (cachep
->flags
& SLAB_POISON
) {
1878 #ifdef CONFIG_DEBUG_PAGEALLOC
1879 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1881 kernel_map_pages(virt_to_page(objp
),
1882 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1884 check_poison_obj(cachep
, objp
);
1886 check_poison_obj(cachep
, objp
);
1889 if (cachep
->flags
& SLAB_RED_ZONE
) {
1890 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1891 slab_error(cachep
, "start of a freed object "
1893 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1894 slab_error(cachep
, "end of a freed object "
1900 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1906 * slab_destroy - destroy and release all objects in a slab
1907 * @cachep: cache pointer being destroyed
1908 * @slabp: slab pointer being destroyed
1910 * Destroy all the objs in a slab, and release the mem back to the system.
1911 * Before calling the slab must have been unlinked from the cache. The
1912 * cache-lock is not held/needed.
1914 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1916 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1918 slab_destroy_objs(cachep
, slabp
);
1919 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1920 struct slab_rcu
*slab_rcu
;
1922 slab_rcu
= (struct slab_rcu
*)slabp
;
1923 slab_rcu
->cachep
= cachep
;
1924 slab_rcu
->addr
= addr
;
1925 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1927 kmem_freepages(cachep
, addr
);
1928 if (OFF_SLAB(cachep
))
1929 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1934 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1935 * size of kmem_list3.
1937 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1941 for_each_online_node(node
) {
1942 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1943 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1945 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1949 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1952 struct kmem_list3
*l3
;
1954 for_each_online_cpu(i
)
1955 kfree(cachep
->array
[i
]);
1957 /* NUMA: free the list3 structures */
1958 for_each_online_node(i
) {
1959 l3
= cachep
->nodelists
[i
];
1962 free_alien_cache(l3
->alien
);
1966 kmem_cache_free(&cache_cache
, cachep
);
1971 * calculate_slab_order - calculate size (page order) of slabs
1972 * @cachep: pointer to the cache that is being created
1973 * @size: size of objects to be created in this cache.
1974 * @align: required alignment for the objects.
1975 * @flags: slab allocation flags
1977 * Also calculates the number of objects per slab.
1979 * This could be made much more intelligent. For now, try to avoid using
1980 * high order pages for slabs. When the gfp() functions are more friendly
1981 * towards high-order requests, this should be changed.
1983 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1984 size_t size
, size_t align
, unsigned long flags
)
1986 unsigned long offslab_limit
;
1987 size_t left_over
= 0;
1990 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
1994 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
1998 if (flags
& CFLGS_OFF_SLAB
) {
2000 * Max number of objs-per-slab for caches which
2001 * use off-slab slabs. Needed to avoid a possible
2002 * looping condition in cache_grow().
2004 offslab_limit
= size
- sizeof(struct slab
);
2005 offslab_limit
/= sizeof(kmem_bufctl_t
);
2007 if (num
> offslab_limit
)
2011 /* Found something acceptable - save it away */
2013 cachep
->gfporder
= gfporder
;
2014 left_over
= remainder
;
2017 * A VFS-reclaimable slab tends to have most allocations
2018 * as GFP_NOFS and we really don't want to have to be allocating
2019 * higher-order pages when we are unable to shrink dcache.
2021 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2025 * Large number of objects is good, but very large slabs are
2026 * currently bad for the gfp()s.
2028 if (gfporder
>= slab_break_gfp_order
)
2032 * Acceptable internal fragmentation?
2034 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2040 static int setup_cpu_cache(struct kmem_cache
*cachep
)
2042 if (g_cpucache_up
== FULL
)
2043 return enable_cpucache(cachep
);
2045 if (g_cpucache_up
== NONE
) {
2047 * Note: the first kmem_cache_create must create the cache
2048 * that's used by kmalloc(24), otherwise the creation of
2049 * further caches will BUG().
2051 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2054 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2055 * the first cache, then we need to set up all its list3s,
2056 * otherwise the creation of further caches will BUG().
2058 set_up_list3s(cachep
, SIZE_AC
);
2059 if (INDEX_AC
== INDEX_L3
)
2060 g_cpucache_up
= PARTIAL_L3
;
2062 g_cpucache_up
= PARTIAL_AC
;
2064 cachep
->array
[smp_processor_id()] =
2065 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2067 if (g_cpucache_up
== PARTIAL_AC
) {
2068 set_up_list3s(cachep
, SIZE_L3
);
2069 g_cpucache_up
= PARTIAL_L3
;
2072 for_each_online_node(node
) {
2073 cachep
->nodelists
[node
] =
2074 kmalloc_node(sizeof(struct kmem_list3
),
2076 BUG_ON(!cachep
->nodelists
[node
]);
2077 kmem_list3_init(cachep
->nodelists
[node
]);
2081 cachep
->nodelists
[numa_node_id()]->next_reap
=
2082 jiffies
+ REAPTIMEOUT_LIST3
+
2083 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2085 cpu_cache_get(cachep
)->avail
= 0;
2086 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2087 cpu_cache_get(cachep
)->batchcount
= 1;
2088 cpu_cache_get(cachep
)->touched
= 0;
2089 cachep
->batchcount
= 1;
2090 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2095 * kmem_cache_create - Create a cache.
2096 * @name: A string which is used in /proc/slabinfo to identify this cache.
2097 * @size: The size of objects to be created in this cache.
2098 * @align: The required alignment for the objects.
2099 * @flags: SLAB flags
2100 * @ctor: A constructor for the objects.
2101 * @dtor: A destructor for the objects (not implemented anymore).
2103 * Returns a ptr to the cache on success, NULL on failure.
2104 * Cannot be called within a int, but can be interrupted.
2105 * The @ctor is run when new pages are allocated by the cache
2106 * and the @dtor is run before the pages are handed back.
2108 * @name must be valid until the cache is destroyed. This implies that
2109 * the module calling this has to destroy the cache before getting unloaded.
2113 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2114 * to catch references to uninitialised memory.
2116 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2117 * for buffer overruns.
2119 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2120 * cacheline. This can be beneficial if you're counting cycles as closely
2124 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2125 unsigned long flags
,
2126 void (*ctor
)(void*, struct kmem_cache
*, unsigned long),
2127 void (*dtor
)(void*, struct kmem_cache
*, unsigned long))
2129 size_t left_over
, slab_size
, ralign
;
2130 struct kmem_cache
*cachep
= NULL
, *pc
;
2133 * Sanity checks... these are all serious usage bugs.
2135 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2136 size
> KMALLOC_MAX_SIZE
|| dtor
) {
2137 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
2143 * We use cache_chain_mutex to ensure a consistent view of
2144 * cpu_online_map as well. Please see cpuup_callback
2146 mutex_lock(&cache_chain_mutex
);
2148 list_for_each_entry(pc
, &cache_chain
, next
) {
2153 * This happens when the module gets unloaded and doesn't
2154 * destroy its slab cache and no-one else reuses the vmalloc
2155 * area of the module. Print a warning.
2157 res
= probe_kernel_address(pc
->name
, tmp
);
2160 "SLAB: cache with size %d has lost its name\n",
2165 if (!strcmp(pc
->name
, name
)) {
2167 "kmem_cache_create: duplicate cache %s\n", name
);
2174 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2177 * Enable redzoning and last user accounting, except for caches with
2178 * large objects, if the increased size would increase the object size
2179 * above the next power of two: caches with object sizes just above a
2180 * power of two have a significant amount of internal fragmentation.
2182 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + 3 * BYTES_PER_WORD
))
2183 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2184 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2185 flags
|= SLAB_POISON
;
2187 if (flags
& SLAB_DESTROY_BY_RCU
)
2188 BUG_ON(flags
& SLAB_POISON
);
2191 * Always checks flags, a caller might be expecting debug support which
2194 BUG_ON(flags
& ~CREATE_MASK
);
2197 * Check that size is in terms of words. This is needed to avoid
2198 * unaligned accesses for some archs when redzoning is used, and makes
2199 * sure any on-slab bufctl's are also correctly aligned.
2201 if (size
& (BYTES_PER_WORD
- 1)) {
2202 size
+= (BYTES_PER_WORD
- 1);
2203 size
&= ~(BYTES_PER_WORD
- 1);
2206 /* calculate the final buffer alignment: */
2208 /* 1) arch recommendation: can be overridden for debug */
2209 if (flags
& SLAB_HWCACHE_ALIGN
) {
2211 * Default alignment: as specified by the arch code. Except if
2212 * an object is really small, then squeeze multiple objects into
2215 ralign
= cache_line_size();
2216 while (size
<= ralign
/ 2)
2219 ralign
= BYTES_PER_WORD
;
2223 * Redzoning and user store require word alignment. Note this will be
2224 * overridden by architecture or caller mandated alignment if either
2225 * is greater than BYTES_PER_WORD.
2227 if (flags
& SLAB_RED_ZONE
|| flags
& SLAB_STORE_USER
)
2228 ralign
= __alignof__(unsigned long long);
2230 /* 2) arch mandated alignment */
2231 if (ralign
< ARCH_SLAB_MINALIGN
) {
2232 ralign
= ARCH_SLAB_MINALIGN
;
2234 /* 3) caller mandated alignment */
2235 if (ralign
< align
) {
2238 /* disable debug if necessary */
2239 if (ralign
> __alignof__(unsigned long long))
2240 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2246 /* Get cache's description obj. */
2247 cachep
= kmem_cache_zalloc(&cache_cache
, GFP_KERNEL
);
2252 cachep
->obj_size
= size
;
2255 * Both debugging options require word-alignment which is calculated
2258 if (flags
& SLAB_RED_ZONE
) {
2259 /* add space for red zone words */
2260 cachep
->obj_offset
+= sizeof(unsigned long long);
2261 size
+= 2 * sizeof(unsigned long long);
2263 if (flags
& SLAB_STORE_USER
) {
2264 /* user store requires one word storage behind the end of
2267 size
+= BYTES_PER_WORD
;
2269 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2270 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2271 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2272 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2279 * Determine if the slab management is 'on' or 'off' slab.
2280 * (bootstrapping cannot cope with offslab caches so don't do
2283 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2285 * Size is large, assume best to place the slab management obj
2286 * off-slab (should allow better packing of objs).
2288 flags
|= CFLGS_OFF_SLAB
;
2290 size
= ALIGN(size
, align
);
2292 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2296 "kmem_cache_create: couldn't create cache %s.\n", name
);
2297 kmem_cache_free(&cache_cache
, cachep
);
2301 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2302 + sizeof(struct slab
), align
);
2305 * If the slab has been placed off-slab, and we have enough space then
2306 * move it on-slab. This is at the expense of any extra colouring.
2308 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2309 flags
&= ~CFLGS_OFF_SLAB
;
2310 left_over
-= slab_size
;
2313 if (flags
& CFLGS_OFF_SLAB
) {
2314 /* really off slab. No need for manual alignment */
2316 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2319 cachep
->colour_off
= cache_line_size();
2320 /* Offset must be a multiple of the alignment. */
2321 if (cachep
->colour_off
< align
)
2322 cachep
->colour_off
= align
;
2323 cachep
->colour
= left_over
/ cachep
->colour_off
;
2324 cachep
->slab_size
= slab_size
;
2325 cachep
->flags
= flags
;
2326 cachep
->gfpflags
= 0;
2327 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2328 cachep
->gfpflags
|= GFP_DMA
;
2329 cachep
->buffer_size
= size
;
2330 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2332 if (flags
& CFLGS_OFF_SLAB
) {
2333 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2335 * This is a possibility for one of the malloc_sizes caches.
2336 * But since we go off slab only for object size greater than
2337 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2338 * this should not happen at all.
2339 * But leave a BUG_ON for some lucky dude.
2341 BUG_ON(!cachep
->slabp_cache
);
2343 cachep
->ctor
= ctor
;
2344 cachep
->name
= name
;
2346 if (setup_cpu_cache(cachep
)) {
2347 __kmem_cache_destroy(cachep
);
2352 /* cache setup completed, link it into the list */
2353 list_add(&cachep
->next
, &cache_chain
);
2355 if (!cachep
&& (flags
& SLAB_PANIC
))
2356 panic("kmem_cache_create(): failed to create slab `%s'\n",
2358 mutex_unlock(&cache_chain_mutex
);
2361 EXPORT_SYMBOL(kmem_cache_create
);
2364 static void check_irq_off(void)
2366 BUG_ON(!irqs_disabled());
2369 static void check_irq_on(void)
2371 BUG_ON(irqs_disabled());
2374 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2378 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2382 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2386 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2391 #define check_irq_off() do { } while(0)
2392 #define check_irq_on() do { } while(0)
2393 #define check_spinlock_acquired(x) do { } while(0)
2394 #define check_spinlock_acquired_node(x, y) do { } while(0)
2397 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2398 struct array_cache
*ac
,
2399 int force
, int node
);
2401 static void do_drain(void *arg
)
2403 struct kmem_cache
*cachep
= arg
;
2404 struct array_cache
*ac
;
2405 int node
= numa_node_id();
2408 ac
= cpu_cache_get(cachep
);
2409 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2410 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2411 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2415 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2417 struct kmem_list3
*l3
;
2420 on_each_cpu(do_drain
, cachep
, 1, 1);
2422 for_each_online_node(node
) {
2423 l3
= cachep
->nodelists
[node
];
2424 if (l3
&& l3
->alien
)
2425 drain_alien_cache(cachep
, l3
->alien
);
2428 for_each_online_node(node
) {
2429 l3
= cachep
->nodelists
[node
];
2431 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2436 * Remove slabs from the list of free slabs.
2437 * Specify the number of slabs to drain in tofree.
2439 * Returns the actual number of slabs released.
2441 static int drain_freelist(struct kmem_cache
*cache
,
2442 struct kmem_list3
*l3
, int tofree
)
2444 struct list_head
*p
;
2449 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2451 spin_lock_irq(&l3
->list_lock
);
2452 p
= l3
->slabs_free
.prev
;
2453 if (p
== &l3
->slabs_free
) {
2454 spin_unlock_irq(&l3
->list_lock
);
2458 slabp
= list_entry(p
, struct slab
, list
);
2460 BUG_ON(slabp
->inuse
);
2462 list_del(&slabp
->list
);
2464 * Safe to drop the lock. The slab is no longer linked
2467 l3
->free_objects
-= cache
->num
;
2468 spin_unlock_irq(&l3
->list_lock
);
2469 slab_destroy(cache
, slabp
);
2476 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2477 static int __cache_shrink(struct kmem_cache
*cachep
)
2480 struct kmem_list3
*l3
;
2482 drain_cpu_caches(cachep
);
2485 for_each_online_node(i
) {
2486 l3
= cachep
->nodelists
[i
];
2490 drain_freelist(cachep
, l3
, l3
->free_objects
);
2492 ret
+= !list_empty(&l3
->slabs_full
) ||
2493 !list_empty(&l3
->slabs_partial
);
2495 return (ret
? 1 : 0);
2499 * kmem_cache_shrink - Shrink a cache.
2500 * @cachep: The cache to shrink.
2502 * Releases as many slabs as possible for a cache.
2503 * To help debugging, a zero exit status indicates all slabs were released.
2505 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2508 BUG_ON(!cachep
|| in_interrupt());
2510 mutex_lock(&cache_chain_mutex
);
2511 ret
= __cache_shrink(cachep
);
2512 mutex_unlock(&cache_chain_mutex
);
2515 EXPORT_SYMBOL(kmem_cache_shrink
);
2518 * kmem_cache_destroy - delete a cache
2519 * @cachep: the cache to destroy
2521 * Remove a &struct kmem_cache object from the slab cache.
2523 * It is expected this function will be called by a module when it is
2524 * unloaded. This will remove the cache completely, and avoid a duplicate
2525 * cache being allocated each time a module is loaded and unloaded, if the
2526 * module doesn't have persistent in-kernel storage across loads and unloads.
2528 * The cache must be empty before calling this function.
2530 * The caller must guarantee that noone will allocate memory from the cache
2531 * during the kmem_cache_destroy().
2533 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2535 BUG_ON(!cachep
|| in_interrupt());
2537 /* Find the cache in the chain of caches. */
2538 mutex_lock(&cache_chain_mutex
);
2540 * the chain is never empty, cache_cache is never destroyed
2542 list_del(&cachep
->next
);
2543 if (__cache_shrink(cachep
)) {
2544 slab_error(cachep
, "Can't free all objects");
2545 list_add(&cachep
->next
, &cache_chain
);
2546 mutex_unlock(&cache_chain_mutex
);
2550 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2553 __kmem_cache_destroy(cachep
);
2554 mutex_unlock(&cache_chain_mutex
);
2556 EXPORT_SYMBOL(kmem_cache_destroy
);
2559 * Get the memory for a slab management obj.
2560 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2561 * always come from malloc_sizes caches. The slab descriptor cannot
2562 * come from the same cache which is getting created because,
2563 * when we are searching for an appropriate cache for these
2564 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2565 * If we are creating a malloc_sizes cache here it would not be visible to
2566 * kmem_find_general_cachep till the initialization is complete.
2567 * Hence we cannot have slabp_cache same as the original cache.
2569 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2570 int colour_off
, gfp_t local_flags
,
2575 if (OFF_SLAB(cachep
)) {
2576 /* Slab management obj is off-slab. */
2577 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2578 local_flags
& ~GFP_THISNODE
, nodeid
);
2582 slabp
= objp
+ colour_off
;
2583 colour_off
+= cachep
->slab_size
;
2586 slabp
->colouroff
= colour_off
;
2587 slabp
->s_mem
= objp
+ colour_off
;
2588 slabp
->nodeid
= nodeid
;
2592 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2594 return (kmem_bufctl_t
*) (slabp
+ 1);
2597 static void cache_init_objs(struct kmem_cache
*cachep
,
2602 for (i
= 0; i
< cachep
->num
; i
++) {
2603 void *objp
= index_to_obj(cachep
, slabp
, i
);
2605 /* need to poison the objs? */
2606 if (cachep
->flags
& SLAB_POISON
)
2607 poison_obj(cachep
, objp
, POISON_FREE
);
2608 if (cachep
->flags
& SLAB_STORE_USER
)
2609 *dbg_userword(cachep
, objp
) = NULL
;
2611 if (cachep
->flags
& SLAB_RED_ZONE
) {
2612 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2613 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2616 * Constructors are not allowed to allocate memory from the same
2617 * cache which they are a constructor for. Otherwise, deadlock.
2618 * They must also be threaded.
2620 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2621 cachep
->ctor(objp
+ obj_offset(cachep
), cachep
,
2624 if (cachep
->flags
& SLAB_RED_ZONE
) {
2625 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2626 slab_error(cachep
, "constructor overwrote the"
2627 " end of an object");
2628 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2629 slab_error(cachep
, "constructor overwrote the"
2630 " start of an object");
2632 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2633 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2634 kernel_map_pages(virt_to_page(objp
),
2635 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2638 cachep
->ctor(objp
, cachep
, 0);
2640 slab_bufctl(slabp
)[i
] = i
+ 1;
2642 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2646 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2648 if (CONFIG_ZONE_DMA_FLAG
) {
2649 if (flags
& GFP_DMA
)
2650 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2652 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2656 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2659 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2663 next
= slab_bufctl(slabp
)[slabp
->free
];
2665 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2666 WARN_ON(slabp
->nodeid
!= nodeid
);
2673 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2674 void *objp
, int nodeid
)
2676 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2679 /* Verify that the slab belongs to the intended node */
2680 WARN_ON(slabp
->nodeid
!= nodeid
);
2682 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2683 printk(KERN_ERR
"slab: double free detected in cache "
2684 "'%s', objp %p\n", cachep
->name
, objp
);
2688 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2689 slabp
->free
= objnr
;
2694 * Map pages beginning at addr to the given cache and slab. This is required
2695 * for the slab allocator to be able to lookup the cache and slab of a
2696 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2698 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2704 page
= virt_to_page(addr
);
2707 if (likely(!PageCompound(page
)))
2708 nr_pages
<<= cache
->gfporder
;
2711 page_set_cache(page
, cache
);
2712 page_set_slab(page
, slab
);
2714 } while (--nr_pages
);
2718 * Grow (by 1) the number of slabs within a cache. This is called by
2719 * kmem_cache_alloc() when there are no active objs left in a cache.
2721 static int cache_grow(struct kmem_cache
*cachep
,
2722 gfp_t flags
, int nodeid
, void *objp
)
2727 struct kmem_list3
*l3
;
2730 * Be lazy and only check for valid flags here, keeping it out of the
2731 * critical path in kmem_cache_alloc().
2733 BUG_ON(flags
& ~(GFP_DMA
| GFP_LEVEL_MASK
));
2735 local_flags
= (flags
& GFP_LEVEL_MASK
);
2736 /* Take the l3 list lock to change the colour_next on this node */
2738 l3
= cachep
->nodelists
[nodeid
];
2739 spin_lock(&l3
->list_lock
);
2741 /* Get colour for the slab, and cal the next value. */
2742 offset
= l3
->colour_next
;
2744 if (l3
->colour_next
>= cachep
->colour
)
2745 l3
->colour_next
= 0;
2746 spin_unlock(&l3
->list_lock
);
2748 offset
*= cachep
->colour_off
;
2750 if (local_flags
& __GFP_WAIT
)
2754 * The test for missing atomic flag is performed here, rather than
2755 * the more obvious place, simply to reduce the critical path length
2756 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2757 * will eventually be caught here (where it matters).
2759 kmem_flagcheck(cachep
, flags
);
2762 * Get mem for the objs. Attempt to allocate a physical page from
2766 objp
= kmem_getpages(cachep
, flags
, nodeid
);
2770 /* Get slab management. */
2771 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2772 local_flags
& ~GFP_THISNODE
, nodeid
);
2776 slabp
->nodeid
= nodeid
;
2777 slab_map_pages(cachep
, slabp
, objp
);
2779 cache_init_objs(cachep
, slabp
);
2781 if (local_flags
& __GFP_WAIT
)
2782 local_irq_disable();
2784 spin_lock(&l3
->list_lock
);
2786 /* Make slab active. */
2787 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2788 STATS_INC_GROWN(cachep
);
2789 l3
->free_objects
+= cachep
->num
;
2790 spin_unlock(&l3
->list_lock
);
2793 kmem_freepages(cachep
, objp
);
2795 if (local_flags
& __GFP_WAIT
)
2796 local_irq_disable();
2803 * Perform extra freeing checks:
2804 * - detect bad pointers.
2805 * - POISON/RED_ZONE checking
2807 static void kfree_debugcheck(const void *objp
)
2809 if (!virt_addr_valid(objp
)) {
2810 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2811 (unsigned long)objp
);
2816 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2818 unsigned long long redzone1
, redzone2
;
2820 redzone1
= *dbg_redzone1(cache
, obj
);
2821 redzone2
= *dbg_redzone2(cache
, obj
);
2826 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2829 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2830 slab_error(cache
, "double free detected");
2832 slab_error(cache
, "memory outside object was overwritten");
2834 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2835 obj
, redzone1
, redzone2
);
2838 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2845 objp
-= obj_offset(cachep
);
2846 kfree_debugcheck(objp
);
2847 page
= virt_to_head_page(objp
);
2849 slabp
= page_get_slab(page
);
2851 if (cachep
->flags
& SLAB_RED_ZONE
) {
2852 verify_redzone_free(cachep
, objp
);
2853 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2854 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2856 if (cachep
->flags
& SLAB_STORE_USER
)
2857 *dbg_userword(cachep
, objp
) = caller
;
2859 objnr
= obj_to_index(cachep
, slabp
, objp
);
2861 BUG_ON(objnr
>= cachep
->num
);
2862 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2864 #ifdef CONFIG_DEBUG_SLAB_LEAK
2865 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2867 if (cachep
->flags
& SLAB_POISON
) {
2868 #ifdef CONFIG_DEBUG_PAGEALLOC
2869 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2870 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2871 kernel_map_pages(virt_to_page(objp
),
2872 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2874 poison_obj(cachep
, objp
, POISON_FREE
);
2877 poison_obj(cachep
, objp
, POISON_FREE
);
2883 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2888 /* Check slab's freelist to see if this obj is there. */
2889 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2891 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2894 if (entries
!= cachep
->num
- slabp
->inuse
) {
2896 printk(KERN_ERR
"slab: Internal list corruption detected in "
2897 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2898 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2900 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2903 printk("\n%03x:", i
);
2904 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2911 #define kfree_debugcheck(x) do { } while(0)
2912 #define cache_free_debugcheck(x,objp,z) (objp)
2913 #define check_slabp(x,y) do { } while(0)
2916 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2919 struct kmem_list3
*l3
;
2920 struct array_cache
*ac
;
2923 node
= numa_node_id();
2926 ac
= cpu_cache_get(cachep
);
2928 batchcount
= ac
->batchcount
;
2929 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2931 * If there was little recent activity on this cache, then
2932 * perform only a partial refill. Otherwise we could generate
2935 batchcount
= BATCHREFILL_LIMIT
;
2937 l3
= cachep
->nodelists
[node
];
2939 BUG_ON(ac
->avail
> 0 || !l3
);
2940 spin_lock(&l3
->list_lock
);
2942 /* See if we can refill from the shared array */
2943 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2946 while (batchcount
> 0) {
2947 struct list_head
*entry
;
2949 /* Get slab alloc is to come from. */
2950 entry
= l3
->slabs_partial
.next
;
2951 if (entry
== &l3
->slabs_partial
) {
2952 l3
->free_touched
= 1;
2953 entry
= l3
->slabs_free
.next
;
2954 if (entry
== &l3
->slabs_free
)
2958 slabp
= list_entry(entry
, struct slab
, list
);
2959 check_slabp(cachep
, slabp
);
2960 check_spinlock_acquired(cachep
);
2963 * The slab was either on partial or free list so
2964 * there must be at least one object available for
2967 BUG_ON(slabp
->inuse
< 0 || slabp
->inuse
>= cachep
->num
);
2969 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2970 STATS_INC_ALLOCED(cachep
);
2971 STATS_INC_ACTIVE(cachep
);
2972 STATS_SET_HIGH(cachep
);
2974 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
2977 check_slabp(cachep
, slabp
);
2979 /* move slabp to correct slabp list: */
2980 list_del(&slabp
->list
);
2981 if (slabp
->free
== BUFCTL_END
)
2982 list_add(&slabp
->list
, &l3
->slabs_full
);
2984 list_add(&slabp
->list
, &l3
->slabs_partial
);
2988 l3
->free_objects
-= ac
->avail
;
2990 spin_unlock(&l3
->list_lock
);
2992 if (unlikely(!ac
->avail
)) {
2994 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
2996 /* cache_grow can reenable interrupts, then ac could change. */
2997 ac
= cpu_cache_get(cachep
);
2998 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3001 if (!ac
->avail
) /* objects refilled by interrupt? */
3005 return ac
->entry
[--ac
->avail
];
3008 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3011 might_sleep_if(flags
& __GFP_WAIT
);
3013 kmem_flagcheck(cachep
, flags
);
3018 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3019 gfp_t flags
, void *objp
, void *caller
)
3023 if (cachep
->flags
& SLAB_POISON
) {
3024 #ifdef CONFIG_DEBUG_PAGEALLOC
3025 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3026 kernel_map_pages(virt_to_page(objp
),
3027 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3029 check_poison_obj(cachep
, objp
);
3031 check_poison_obj(cachep
, objp
);
3033 poison_obj(cachep
, objp
, POISON_INUSE
);
3035 if (cachep
->flags
& SLAB_STORE_USER
)
3036 *dbg_userword(cachep
, objp
) = caller
;
3038 if (cachep
->flags
& SLAB_RED_ZONE
) {
3039 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3040 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3041 slab_error(cachep
, "double free, or memory outside"
3042 " object was overwritten");
3044 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3045 objp
, *dbg_redzone1(cachep
, objp
),
3046 *dbg_redzone2(cachep
, objp
));
3048 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3049 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3051 #ifdef CONFIG_DEBUG_SLAB_LEAK
3056 slabp
= page_get_slab(virt_to_head_page(objp
));
3057 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3058 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3061 objp
+= obj_offset(cachep
);
3062 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3063 cachep
->ctor(objp
, cachep
, 0);
3064 #if ARCH_SLAB_MINALIGN
3065 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3066 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3067 objp
, ARCH_SLAB_MINALIGN
);
3073 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3076 #ifdef CONFIG_FAILSLAB
3078 static struct failslab_attr
{
3080 struct fault_attr attr
;
3082 u32 ignore_gfp_wait
;
3083 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3084 struct dentry
*ignore_gfp_wait_file
;
3088 .attr
= FAULT_ATTR_INITIALIZER
,
3089 .ignore_gfp_wait
= 1,
3092 static int __init
setup_failslab(char *str
)
3094 return setup_fault_attr(&failslab
.attr
, str
);
3096 __setup("failslab=", setup_failslab
);
3098 static int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3100 if (cachep
== &cache_cache
)
3102 if (flags
& __GFP_NOFAIL
)
3104 if (failslab
.ignore_gfp_wait
&& (flags
& __GFP_WAIT
))
3107 return should_fail(&failslab
.attr
, obj_size(cachep
));
3110 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3112 static int __init
failslab_debugfs(void)
3114 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
3118 err
= init_fault_attr_dentries(&failslab
.attr
, "failslab");
3121 dir
= failslab
.attr
.dentries
.dir
;
3123 failslab
.ignore_gfp_wait_file
=
3124 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3125 &failslab
.ignore_gfp_wait
);
3127 if (!failslab
.ignore_gfp_wait_file
) {
3129 debugfs_remove(failslab
.ignore_gfp_wait_file
);
3130 cleanup_fault_attr_dentries(&failslab
.attr
);
3136 late_initcall(failslab_debugfs
);
3138 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3140 #else /* CONFIG_FAILSLAB */
3142 static inline int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3147 #endif /* CONFIG_FAILSLAB */
3149 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3152 struct array_cache
*ac
;
3156 ac
= cpu_cache_get(cachep
);
3157 if (likely(ac
->avail
)) {
3158 STATS_INC_ALLOCHIT(cachep
);
3160 objp
= ac
->entry
[--ac
->avail
];
3162 STATS_INC_ALLOCMISS(cachep
);
3163 objp
= cache_alloc_refill(cachep
, flags
);
3170 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3172 * If we are in_interrupt, then process context, including cpusets and
3173 * mempolicy, may not apply and should not be used for allocation policy.
3175 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3177 int nid_alloc
, nid_here
;
3179 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3181 nid_alloc
= nid_here
= numa_node_id();
3182 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3183 nid_alloc
= cpuset_mem_spread_node();
3184 else if (current
->mempolicy
)
3185 nid_alloc
= slab_node(current
->mempolicy
);
3186 if (nid_alloc
!= nid_here
)
3187 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3192 * Fallback function if there was no memory available and no objects on a
3193 * certain node and fall back is permitted. First we scan all the
3194 * available nodelists for available objects. If that fails then we
3195 * perform an allocation without specifying a node. This allows the page
3196 * allocator to do its reclaim / fallback magic. We then insert the
3197 * slab into the proper nodelist and then allocate from it.
3199 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3201 struct zonelist
*zonelist
;
3207 if (flags
& __GFP_THISNODE
)
3210 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
3211 ->node_zonelists
[gfp_zone(flags
)];
3212 local_flags
= (flags
& GFP_LEVEL_MASK
);
3216 * Look through allowed nodes for objects available
3217 * from existing per node queues.
3219 for (z
= zonelist
->zones
; *z
&& !obj
; z
++) {
3220 nid
= zone_to_nid(*z
);
3222 if (cpuset_zone_allowed_hardwall(*z
, flags
) &&
3223 cache
->nodelists
[nid
] &&
3224 cache
->nodelists
[nid
]->free_objects
)
3225 obj
= ____cache_alloc_node(cache
,
3226 flags
| GFP_THISNODE
, nid
);
3231 * This allocation will be performed within the constraints
3232 * of the current cpuset / memory policy requirements.
3233 * We may trigger various forms of reclaim on the allowed
3234 * set and go into memory reserves if necessary.
3236 if (local_flags
& __GFP_WAIT
)
3238 kmem_flagcheck(cache
, flags
);
3239 obj
= kmem_getpages(cache
, flags
, -1);
3240 if (local_flags
& __GFP_WAIT
)
3241 local_irq_disable();
3244 * Insert into the appropriate per node queues
3246 nid
= page_to_nid(virt_to_page(obj
));
3247 if (cache_grow(cache
, flags
, nid
, obj
)) {
3248 obj
= ____cache_alloc_node(cache
,
3249 flags
| GFP_THISNODE
, nid
);
3252 * Another processor may allocate the
3253 * objects in the slab since we are
3254 * not holding any locks.
3258 /* cache_grow already freed obj */
3267 * A interface to enable slab creation on nodeid
3269 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3272 struct list_head
*entry
;
3274 struct kmem_list3
*l3
;
3278 l3
= cachep
->nodelists
[nodeid
];
3283 spin_lock(&l3
->list_lock
);
3284 entry
= l3
->slabs_partial
.next
;
3285 if (entry
== &l3
->slabs_partial
) {
3286 l3
->free_touched
= 1;
3287 entry
= l3
->slabs_free
.next
;
3288 if (entry
== &l3
->slabs_free
)
3292 slabp
= list_entry(entry
, struct slab
, list
);
3293 check_spinlock_acquired_node(cachep
, nodeid
);
3294 check_slabp(cachep
, slabp
);
3296 STATS_INC_NODEALLOCS(cachep
);
3297 STATS_INC_ACTIVE(cachep
);
3298 STATS_SET_HIGH(cachep
);
3300 BUG_ON(slabp
->inuse
== cachep
->num
);
3302 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3303 check_slabp(cachep
, slabp
);
3305 /* move slabp to correct slabp list: */
3306 list_del(&slabp
->list
);
3308 if (slabp
->free
== BUFCTL_END
)
3309 list_add(&slabp
->list
, &l3
->slabs_full
);
3311 list_add(&slabp
->list
, &l3
->slabs_partial
);
3313 spin_unlock(&l3
->list_lock
);
3317 spin_unlock(&l3
->list_lock
);
3318 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3322 return fallback_alloc(cachep
, flags
);
3329 * kmem_cache_alloc_node - Allocate an object on the specified node
3330 * @cachep: The cache to allocate from.
3331 * @flags: See kmalloc().
3332 * @nodeid: node number of the target node.
3333 * @caller: return address of caller, used for debug information
3335 * Identical to kmem_cache_alloc but it will allocate memory on the given
3336 * node, which can improve the performance for cpu bound structures.
3338 * Fallback to other node is possible if __GFP_THISNODE is not set.
3340 static __always_inline
void *
3341 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3344 unsigned long save_flags
;
3347 if (should_failslab(cachep
, flags
))
3350 cache_alloc_debugcheck_before(cachep
, flags
);
3351 local_irq_save(save_flags
);
3353 if (unlikely(nodeid
== -1))
3354 nodeid
= numa_node_id();
3356 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3357 /* Node not bootstrapped yet */
3358 ptr
= fallback_alloc(cachep
, flags
);
3362 if (nodeid
== numa_node_id()) {
3364 * Use the locally cached objects if possible.
3365 * However ____cache_alloc does not allow fallback
3366 * to other nodes. It may fail while we still have
3367 * objects on other nodes available.
3369 ptr
= ____cache_alloc(cachep
, flags
);
3373 /* ___cache_alloc_node can fall back to other nodes */
3374 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3376 local_irq_restore(save_flags
);
3377 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3382 static __always_inline
void *
3383 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3387 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3388 objp
= alternate_node_alloc(cache
, flags
);
3392 objp
= ____cache_alloc(cache
, flags
);
3395 * We may just have run out of memory on the local node.
3396 * ____cache_alloc_node() knows how to locate memory on other nodes
3399 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3406 static __always_inline
void *
3407 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3409 return ____cache_alloc(cachep
, flags
);
3412 #endif /* CONFIG_NUMA */
3414 static __always_inline
void *
3415 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3417 unsigned long save_flags
;
3420 if (should_failslab(cachep
, flags
))
3423 cache_alloc_debugcheck_before(cachep
, flags
);
3424 local_irq_save(save_flags
);
3425 objp
= __do_cache_alloc(cachep
, flags
);
3426 local_irq_restore(save_flags
);
3427 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3434 * Caller needs to acquire correct kmem_list's list_lock
3436 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3440 struct kmem_list3
*l3
;
3442 for (i
= 0; i
< nr_objects
; i
++) {
3443 void *objp
= objpp
[i
];
3446 slabp
= virt_to_slab(objp
);
3447 l3
= cachep
->nodelists
[node
];
3448 list_del(&slabp
->list
);
3449 check_spinlock_acquired_node(cachep
, node
);
3450 check_slabp(cachep
, slabp
);
3451 slab_put_obj(cachep
, slabp
, objp
, node
);
3452 STATS_DEC_ACTIVE(cachep
);
3454 check_slabp(cachep
, slabp
);
3456 /* fixup slab chains */
3457 if (slabp
->inuse
== 0) {
3458 if (l3
->free_objects
> l3
->free_limit
) {
3459 l3
->free_objects
-= cachep
->num
;
3460 /* No need to drop any previously held
3461 * lock here, even if we have a off-slab slab
3462 * descriptor it is guaranteed to come from
3463 * a different cache, refer to comments before
3466 slab_destroy(cachep
, slabp
);
3468 list_add(&slabp
->list
, &l3
->slabs_free
);
3471 /* Unconditionally move a slab to the end of the
3472 * partial list on free - maximum time for the
3473 * other objects to be freed, too.
3475 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3480 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3483 struct kmem_list3
*l3
;
3484 int node
= numa_node_id();
3486 batchcount
= ac
->batchcount
;
3488 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3491 l3
= cachep
->nodelists
[node
];
3492 spin_lock(&l3
->list_lock
);
3494 struct array_cache
*shared_array
= l3
->shared
;
3495 int max
= shared_array
->limit
- shared_array
->avail
;
3497 if (batchcount
> max
)
3499 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3500 ac
->entry
, sizeof(void *) * batchcount
);
3501 shared_array
->avail
+= batchcount
;
3506 free_block(cachep
, ac
->entry
, batchcount
, node
);
3511 struct list_head
*p
;
3513 p
= l3
->slabs_free
.next
;
3514 while (p
!= &(l3
->slabs_free
)) {
3517 slabp
= list_entry(p
, struct slab
, list
);
3518 BUG_ON(slabp
->inuse
);
3523 STATS_SET_FREEABLE(cachep
, i
);
3526 spin_unlock(&l3
->list_lock
);
3527 ac
->avail
-= batchcount
;
3528 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3532 * Release an obj back to its cache. If the obj has a constructed state, it must
3533 * be in this state _before_ it is released. Called with disabled ints.
3535 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3537 struct array_cache
*ac
= cpu_cache_get(cachep
);
3540 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3542 if (use_alien_caches
&& cache_free_alien(cachep
, objp
))
3545 if (likely(ac
->avail
< ac
->limit
)) {
3546 STATS_INC_FREEHIT(cachep
);
3547 ac
->entry
[ac
->avail
++] = objp
;
3550 STATS_INC_FREEMISS(cachep
);
3551 cache_flusharray(cachep
, ac
);
3552 ac
->entry
[ac
->avail
++] = objp
;
3557 * kmem_cache_alloc - Allocate an object
3558 * @cachep: The cache to allocate from.
3559 * @flags: See kmalloc().
3561 * Allocate an object from this cache. The flags are only relevant
3562 * if the cache has no available objects.
3564 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3566 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3568 EXPORT_SYMBOL(kmem_cache_alloc
);
3571 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3572 * @cache: The cache to allocate from.
3573 * @flags: See kmalloc().
3575 * Allocate an object from this cache and set the allocated memory to zero.
3576 * The flags are only relevant if the cache has no available objects.
3578 void *kmem_cache_zalloc(struct kmem_cache
*cache
, gfp_t flags
)
3580 void *ret
= __cache_alloc(cache
, flags
, __builtin_return_address(0));
3582 memset(ret
, 0, obj_size(cache
));
3585 EXPORT_SYMBOL(kmem_cache_zalloc
);
3588 * kmem_ptr_validate - check if an untrusted pointer might
3590 * @cachep: the cache we're checking against
3591 * @ptr: pointer to validate
3593 * This verifies that the untrusted pointer looks sane:
3594 * it is _not_ a guarantee that the pointer is actually
3595 * part of the slab cache in question, but it at least
3596 * validates that the pointer can be dereferenced and
3597 * looks half-way sane.
3599 * Currently only used for dentry validation.
3601 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3603 unsigned long addr
= (unsigned long)ptr
;
3604 unsigned long min_addr
= PAGE_OFFSET
;
3605 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3606 unsigned long size
= cachep
->buffer_size
;
3609 if (unlikely(addr
< min_addr
))
3611 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3613 if (unlikely(addr
& align_mask
))
3615 if (unlikely(!kern_addr_valid(addr
)))
3617 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3619 page
= virt_to_page(ptr
);
3620 if (unlikely(!PageSlab(page
)))
3622 if (unlikely(page_get_cache(page
) != cachep
))
3630 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3632 return __cache_alloc_node(cachep
, flags
, nodeid
,
3633 __builtin_return_address(0));
3635 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3637 static __always_inline
void *
3638 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3640 struct kmem_cache
*cachep
;
3642 cachep
= kmem_find_general_cachep(size
, flags
);
3643 if (unlikely(cachep
== NULL
))
3645 return kmem_cache_alloc_node(cachep
, flags
, node
);
3648 #ifdef CONFIG_DEBUG_SLAB
3649 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3651 return __do_kmalloc_node(size
, flags
, node
,
3652 __builtin_return_address(0));
3654 EXPORT_SYMBOL(__kmalloc_node
);
3656 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3657 int node
, void *caller
)
3659 return __do_kmalloc_node(size
, flags
, node
, caller
);
3661 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3663 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3665 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3667 EXPORT_SYMBOL(__kmalloc_node
);
3668 #endif /* CONFIG_DEBUG_SLAB */
3669 #endif /* CONFIG_NUMA */
3672 * __do_kmalloc - allocate memory
3673 * @size: how many bytes of memory are required.
3674 * @flags: the type of memory to allocate (see kmalloc).
3675 * @caller: function caller for debug tracking of the caller
3677 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3680 struct kmem_cache
*cachep
;
3682 /* If you want to save a few bytes .text space: replace
3684 * Then kmalloc uses the uninlined functions instead of the inline
3687 cachep
= __find_general_cachep(size
, flags
);
3688 if (unlikely(cachep
== NULL
))
3690 return __cache_alloc(cachep
, flags
, caller
);
3694 #ifdef CONFIG_DEBUG_SLAB
3695 void *__kmalloc(size_t size
, gfp_t flags
)
3697 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3699 EXPORT_SYMBOL(__kmalloc
);
3701 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3703 return __do_kmalloc(size
, flags
, caller
);
3705 EXPORT_SYMBOL(__kmalloc_track_caller
);
3708 void *__kmalloc(size_t size
, gfp_t flags
)
3710 return __do_kmalloc(size
, flags
, NULL
);
3712 EXPORT_SYMBOL(__kmalloc
);
3716 * krealloc - reallocate memory. The contents will remain unchanged.
3717 * @p: object to reallocate memory for.
3718 * @new_size: how many bytes of memory are required.
3719 * @flags: the type of memory to allocate.
3721 * The contents of the object pointed to are preserved up to the
3722 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3723 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3724 * %NULL pointer, the object pointed to is freed.
3726 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
3728 struct kmem_cache
*cache
, *new_cache
;
3732 return kmalloc_track_caller(new_size
, flags
);
3734 if (unlikely(!new_size
)) {
3739 cache
= virt_to_cache(p
);
3740 new_cache
= __find_general_cachep(new_size
, flags
);
3743 * If new size fits in the current cache, bail out.
3745 if (likely(cache
== new_cache
))
3749 * We are on the slow-path here so do not use __cache_alloc
3750 * because it bloats kernel text.
3752 ret
= kmalloc_track_caller(new_size
, flags
);
3754 memcpy(ret
, p
, min(new_size
, ksize(p
)));
3759 EXPORT_SYMBOL(krealloc
);
3762 * kmem_cache_free - Deallocate an object
3763 * @cachep: The cache the allocation was from.
3764 * @objp: The previously allocated object.
3766 * Free an object which was previously allocated from this
3769 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3771 unsigned long flags
;
3773 BUG_ON(virt_to_cache(objp
) != cachep
);
3775 local_irq_save(flags
);
3776 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3777 __cache_free(cachep
, objp
);
3778 local_irq_restore(flags
);
3780 EXPORT_SYMBOL(kmem_cache_free
);
3783 * kfree - free previously allocated memory
3784 * @objp: pointer returned by kmalloc.
3786 * If @objp is NULL, no operation is performed.
3788 * Don't free memory not originally allocated by kmalloc()
3789 * or you will run into trouble.
3791 void kfree(const void *objp
)
3793 struct kmem_cache
*c
;
3794 unsigned long flags
;
3796 if (unlikely(!objp
))
3798 local_irq_save(flags
);
3799 kfree_debugcheck(objp
);
3800 c
= virt_to_cache(objp
);
3801 debug_check_no_locks_freed(objp
, obj_size(c
));
3802 __cache_free(c
, (void *)objp
);
3803 local_irq_restore(flags
);
3805 EXPORT_SYMBOL(kfree
);
3807 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3809 return obj_size(cachep
);
3811 EXPORT_SYMBOL(kmem_cache_size
);
3813 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3815 return cachep
->name
;
3817 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3820 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3822 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3825 struct kmem_list3
*l3
;
3826 struct array_cache
*new_shared
;
3827 struct array_cache
**new_alien
= NULL
;
3829 for_each_online_node(node
) {
3831 if (use_alien_caches
) {
3832 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3838 if (cachep
->shared
) {
3839 new_shared
= alloc_arraycache(node
,
3840 cachep
->shared
*cachep
->batchcount
,
3843 free_alien_cache(new_alien
);
3848 l3
= cachep
->nodelists
[node
];
3850 struct array_cache
*shared
= l3
->shared
;
3852 spin_lock_irq(&l3
->list_lock
);
3855 free_block(cachep
, shared
->entry
,
3856 shared
->avail
, node
);
3858 l3
->shared
= new_shared
;
3860 l3
->alien
= new_alien
;
3863 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3864 cachep
->batchcount
+ cachep
->num
;
3865 spin_unlock_irq(&l3
->list_lock
);
3867 free_alien_cache(new_alien
);
3870 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3872 free_alien_cache(new_alien
);
3877 kmem_list3_init(l3
);
3878 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3879 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3880 l3
->shared
= new_shared
;
3881 l3
->alien
= new_alien
;
3882 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3883 cachep
->batchcount
+ cachep
->num
;
3884 cachep
->nodelists
[node
] = l3
;
3889 if (!cachep
->next
.next
) {
3890 /* Cache is not active yet. Roll back what we did */
3893 if (cachep
->nodelists
[node
]) {
3894 l3
= cachep
->nodelists
[node
];
3897 free_alien_cache(l3
->alien
);
3899 cachep
->nodelists
[node
] = NULL
;
3907 struct ccupdate_struct
{
3908 struct kmem_cache
*cachep
;
3909 struct array_cache
*new[NR_CPUS
];
3912 static void do_ccupdate_local(void *info
)
3914 struct ccupdate_struct
*new = info
;
3915 struct array_cache
*old
;
3918 old
= cpu_cache_get(new->cachep
);
3920 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3921 new->new[smp_processor_id()] = old
;
3924 /* Always called with the cache_chain_mutex held */
3925 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3926 int batchcount
, int shared
)
3928 struct ccupdate_struct
*new;
3931 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3935 for_each_online_cpu(i
) {
3936 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3939 for (i
--; i
>= 0; i
--)
3945 new->cachep
= cachep
;
3947 on_each_cpu(do_ccupdate_local
, (void *)new, 1, 1);
3950 cachep
->batchcount
= batchcount
;
3951 cachep
->limit
= limit
;
3952 cachep
->shared
= shared
;
3954 for_each_online_cpu(i
) {
3955 struct array_cache
*ccold
= new->new[i
];
3958 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3959 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3960 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3964 return alloc_kmemlist(cachep
);
3967 /* Called with cache_chain_mutex held always */
3968 static int enable_cpucache(struct kmem_cache
*cachep
)
3974 * The head array serves three purposes:
3975 * - create a LIFO ordering, i.e. return objects that are cache-warm
3976 * - reduce the number of spinlock operations.
3977 * - reduce the number of linked list operations on the slab and
3978 * bufctl chains: array operations are cheaper.
3979 * The numbers are guessed, we should auto-tune as described by
3982 if (cachep
->buffer_size
> 131072)
3984 else if (cachep
->buffer_size
> PAGE_SIZE
)
3986 else if (cachep
->buffer_size
> 1024)
3988 else if (cachep
->buffer_size
> 256)
3994 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3995 * allocation behaviour: Most allocs on one cpu, most free operations
3996 * on another cpu. For these cases, an efficient object passing between
3997 * cpus is necessary. This is provided by a shared array. The array
3998 * replaces Bonwick's magazine layer.
3999 * On uniprocessor, it's functionally equivalent (but less efficient)
4000 * to a larger limit. Thus disabled by default.
4003 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4008 * With debugging enabled, large batchcount lead to excessively long
4009 * periods with disabled local interrupts. Limit the batchcount
4014 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
4016 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4017 cachep
->name
, -err
);
4022 * Drain an array if it contains any elements taking the l3 lock only if
4023 * necessary. Note that the l3 listlock also protects the array_cache
4024 * if drain_array() is used on the shared array.
4026 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4027 struct array_cache
*ac
, int force
, int node
)
4031 if (!ac
|| !ac
->avail
)
4033 if (ac
->touched
&& !force
) {
4036 spin_lock_irq(&l3
->list_lock
);
4038 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4039 if (tofree
> ac
->avail
)
4040 tofree
= (ac
->avail
+ 1) / 2;
4041 free_block(cachep
, ac
->entry
, tofree
, node
);
4042 ac
->avail
-= tofree
;
4043 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4044 sizeof(void *) * ac
->avail
);
4046 spin_unlock_irq(&l3
->list_lock
);
4051 * cache_reap - Reclaim memory from caches.
4052 * @w: work descriptor
4054 * Called from workqueue/eventd every few seconds.
4056 * - clear the per-cpu caches for this CPU.
4057 * - return freeable pages to the main free memory pool.
4059 * If we cannot acquire the cache chain mutex then just give up - we'll try
4060 * again on the next iteration.
4062 static void cache_reap(struct work_struct
*w
)
4064 struct kmem_cache
*searchp
;
4065 struct kmem_list3
*l3
;
4066 int node
= numa_node_id();
4067 struct delayed_work
*work
=
4068 container_of(w
, struct delayed_work
, work
);
4070 if (!mutex_trylock(&cache_chain_mutex
))
4071 /* Give up. Setup the next iteration. */
4074 list_for_each_entry(searchp
, &cache_chain
, next
) {
4078 * We only take the l3 lock if absolutely necessary and we
4079 * have established with reasonable certainty that
4080 * we can do some work if the lock was obtained.
4082 l3
= searchp
->nodelists
[node
];
4084 reap_alien(searchp
, l3
);
4086 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4089 * These are racy checks but it does not matter
4090 * if we skip one check or scan twice.
4092 if (time_after(l3
->next_reap
, jiffies
))
4095 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4097 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4099 if (l3
->free_touched
)
4100 l3
->free_touched
= 0;
4104 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4105 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4106 STATS_ADD_REAPED(searchp
, freed
);
4112 mutex_unlock(&cache_chain_mutex
);
4115 /* Set up the next iteration */
4116 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4119 #ifdef CONFIG_PROC_FS
4121 static void print_slabinfo_header(struct seq_file
*m
)
4124 * Output format version, so at least we can change it
4125 * without _too_ many complaints.
4128 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4130 seq_puts(m
, "slabinfo - version: 2.1\n");
4132 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4133 "<objperslab> <pagesperslab>");
4134 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4135 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4137 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4138 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4139 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4144 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4147 struct list_head
*p
;
4149 mutex_lock(&cache_chain_mutex
);
4151 print_slabinfo_header(m
);
4152 p
= cache_chain
.next
;
4155 if (p
== &cache_chain
)
4158 return list_entry(p
, struct kmem_cache
, next
);
4161 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4163 struct kmem_cache
*cachep
= p
;
4165 return cachep
->next
.next
== &cache_chain
?
4166 NULL
: list_entry(cachep
->next
.next
, struct kmem_cache
, next
);
4169 static void s_stop(struct seq_file
*m
, void *p
)
4171 mutex_unlock(&cache_chain_mutex
);
4174 static int s_show(struct seq_file
*m
, void *p
)
4176 struct kmem_cache
*cachep
= p
;
4178 unsigned long active_objs
;
4179 unsigned long num_objs
;
4180 unsigned long active_slabs
= 0;
4181 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4185 struct kmem_list3
*l3
;
4189 for_each_online_node(node
) {
4190 l3
= cachep
->nodelists
[node
];
4195 spin_lock_irq(&l3
->list_lock
);
4197 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4198 if (slabp
->inuse
!= cachep
->num
&& !error
)
4199 error
= "slabs_full accounting error";
4200 active_objs
+= cachep
->num
;
4203 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4204 if (slabp
->inuse
== cachep
->num
&& !error
)
4205 error
= "slabs_partial inuse accounting error";
4206 if (!slabp
->inuse
&& !error
)
4207 error
= "slabs_partial/inuse accounting error";
4208 active_objs
+= slabp
->inuse
;
4211 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4212 if (slabp
->inuse
&& !error
)
4213 error
= "slabs_free/inuse accounting error";
4216 free_objects
+= l3
->free_objects
;
4218 shared_avail
+= l3
->shared
->avail
;
4220 spin_unlock_irq(&l3
->list_lock
);
4222 num_slabs
+= active_slabs
;
4223 num_objs
= num_slabs
* cachep
->num
;
4224 if (num_objs
- active_objs
!= free_objects
&& !error
)
4225 error
= "free_objects accounting error";
4227 name
= cachep
->name
;
4229 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4231 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4232 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4233 cachep
->num
, (1 << cachep
->gfporder
));
4234 seq_printf(m
, " : tunables %4u %4u %4u",
4235 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4236 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4237 active_slabs
, num_slabs
, shared_avail
);
4240 unsigned long high
= cachep
->high_mark
;
4241 unsigned long allocs
= cachep
->num_allocations
;
4242 unsigned long grown
= cachep
->grown
;
4243 unsigned long reaped
= cachep
->reaped
;
4244 unsigned long errors
= cachep
->errors
;
4245 unsigned long max_freeable
= cachep
->max_freeable
;
4246 unsigned long node_allocs
= cachep
->node_allocs
;
4247 unsigned long node_frees
= cachep
->node_frees
;
4248 unsigned long overflows
= cachep
->node_overflow
;
4250 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4251 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4252 reaped
, errors
, max_freeable
, node_allocs
,
4253 node_frees
, overflows
);
4257 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4258 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4259 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4260 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4262 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4263 allochit
, allocmiss
, freehit
, freemiss
);
4271 * slabinfo_op - iterator that generates /proc/slabinfo
4280 * num-pages-per-slab
4281 * + further values on SMP and with statistics enabled
4284 const struct seq_operations slabinfo_op
= {
4291 #define MAX_SLABINFO_WRITE 128
4293 * slabinfo_write - Tuning for the slab allocator
4295 * @buffer: user buffer
4296 * @count: data length
4299 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4300 size_t count
, loff_t
*ppos
)
4302 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4303 int limit
, batchcount
, shared
, res
;
4304 struct kmem_cache
*cachep
;
4306 if (count
> MAX_SLABINFO_WRITE
)
4308 if (copy_from_user(&kbuf
, buffer
, count
))
4310 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4312 tmp
= strchr(kbuf
, ' ');
4317 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4320 /* Find the cache in the chain of caches. */
4321 mutex_lock(&cache_chain_mutex
);
4323 list_for_each_entry(cachep
, &cache_chain
, next
) {
4324 if (!strcmp(cachep
->name
, kbuf
)) {
4325 if (limit
< 1 || batchcount
< 1 ||
4326 batchcount
> limit
|| shared
< 0) {
4329 res
= do_tune_cpucache(cachep
, limit
,
4330 batchcount
, shared
);
4335 mutex_unlock(&cache_chain_mutex
);
4341 #ifdef CONFIG_DEBUG_SLAB_LEAK
4343 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4346 struct list_head
*p
;
4348 mutex_lock(&cache_chain_mutex
);
4349 p
= cache_chain
.next
;
4352 if (p
== &cache_chain
)
4355 return list_entry(p
, struct kmem_cache
, next
);
4358 static inline int add_caller(unsigned long *n
, unsigned long v
)
4368 unsigned long *q
= p
+ 2 * i
;
4382 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4388 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4394 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4395 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4397 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4402 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4404 #ifdef CONFIG_KALLSYMS
4405 unsigned long offset
, size
;
4406 char modname
[MODULE_NAME_LEN
+ 1], name
[KSYM_NAME_LEN
+ 1];
4408 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4409 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4411 seq_printf(m
, " [%s]", modname
);
4415 seq_printf(m
, "%p", (void *)address
);
4418 static int leaks_show(struct seq_file
*m
, void *p
)
4420 struct kmem_cache
*cachep
= p
;
4422 struct kmem_list3
*l3
;
4424 unsigned long *n
= m
->private;
4428 if (!(cachep
->flags
& SLAB_STORE_USER
))
4430 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4433 /* OK, we can do it */
4437 for_each_online_node(node
) {
4438 l3
= cachep
->nodelists
[node
];
4443 spin_lock_irq(&l3
->list_lock
);
4445 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4446 handle_slab(n
, cachep
, slabp
);
4447 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4448 handle_slab(n
, cachep
, slabp
);
4449 spin_unlock_irq(&l3
->list_lock
);
4451 name
= cachep
->name
;
4453 /* Increase the buffer size */
4454 mutex_unlock(&cache_chain_mutex
);
4455 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4457 /* Too bad, we are really out */
4459 mutex_lock(&cache_chain_mutex
);
4462 *(unsigned long *)m
->private = n
[0] * 2;
4464 mutex_lock(&cache_chain_mutex
);
4465 /* Now make sure this entry will be retried */
4469 for (i
= 0; i
< n
[1]; i
++) {
4470 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4471 show_symbol(m
, n
[2*i
+2]);
4478 const struct seq_operations slabstats_op
= {
4479 .start
= leaks_start
,
4488 * ksize - get the actual amount of memory allocated for a given object
4489 * @objp: Pointer to the object
4491 * kmalloc may internally round up allocations and return more memory
4492 * than requested. ksize() can be used to determine the actual amount of
4493 * memory allocated. The caller may use this additional memory, even though
4494 * a smaller amount of memory was initially specified with the kmalloc call.
4495 * The caller must guarantee that objp points to a valid object previously
4496 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4497 * must not be freed during the duration of the call.
4499 size_t ksize(const void *objp
)
4501 if (unlikely(objp
== NULL
))
4504 return obj_size(virt_to_cache(objp
));