2 * sparse memory mappings.
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
14 * Permanent SPARSEMEM data:
16 * 1) mem_section - memory sections, mem_map's for valid memory
18 #ifdef CONFIG_SPARSEMEM_EXTREME
19 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
20 ____cacheline_internodealigned_in_smp
;
22 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
23 ____cacheline_internodealigned_in_smp
;
25 EXPORT_SYMBOL(mem_section
);
27 #ifdef NODE_NOT_IN_PAGE_FLAGS
29 * If we did not store the node number in the page then we have to
30 * do a lookup in the section_to_node_table in order to find which
31 * node the page belongs to.
33 #if MAX_NUMNODES <= 256
34 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
36 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
39 int page_to_nid(struct page
*page
)
41 return section_to_node_table
[page_to_section(page
)];
43 EXPORT_SYMBOL(page_to_nid
);
46 #ifdef CONFIG_SPARSEMEM_EXTREME
47 static struct mem_section noinline
*sparse_index_alloc(int nid
)
49 struct mem_section
*section
= NULL
;
50 unsigned long array_size
= SECTIONS_PER_ROOT
*
51 sizeof(struct mem_section
);
53 if (slab_is_available())
54 section
= kmalloc_node(array_size
, GFP_KERNEL
, nid
);
56 section
= alloc_bootmem_node(NODE_DATA(nid
), array_size
);
59 memset(section
, 0, array_size
);
64 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
66 static DEFINE_SPINLOCK(index_init_lock
);
67 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
68 struct mem_section
*section
;
71 #ifdef NODE_NOT_IN_PAGE_FLAGS
72 section_to_node_table
[section_nr
] = nid
;
75 if (mem_section
[root
])
78 section
= sparse_index_alloc(nid
);
80 * This lock keeps two different sections from
81 * reallocating for the same index
83 spin_lock(&index_init_lock
);
85 if (mem_section
[root
]) {
90 mem_section
[root
] = section
;
92 spin_unlock(&index_init_lock
);
95 #else /* !SPARSEMEM_EXTREME */
96 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
103 * Although written for the SPARSEMEM_EXTREME case, this happens
104 * to also work for the flat array case becase
105 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
107 int __section_nr(struct mem_section
* ms
)
109 unsigned long root_nr
;
110 struct mem_section
* root
;
112 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
113 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
117 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
121 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
125 * During early boot, before section_mem_map is used for an actual
126 * mem_map, we use section_mem_map to store the section's NUMA
127 * node. This keeps us from having to use another data structure. The
128 * node information is cleared just before we store the real mem_map.
130 static inline unsigned long sparse_encode_early_nid(int nid
)
132 return (nid
<< SECTION_NID_SHIFT
);
135 static inline int sparse_early_nid(struct mem_section
*section
)
137 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
140 /* Record a memory area against a node. */
141 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
145 start
&= PAGE_SECTION_MASK
;
146 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
147 unsigned long section
= pfn_to_section_nr(pfn
);
148 struct mem_section
*ms
;
150 sparse_index_init(section
, nid
);
152 ms
= __nr_to_section(section
);
153 if (!ms
->section_mem_map
)
154 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
155 SECTION_MARKED_PRESENT
;
160 * Only used by the i386 NUMA architecures, but relatively
163 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
164 unsigned long end_pfn
)
167 unsigned long nr_pages
= 0;
169 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
170 if (nid
!= early_pfn_to_nid(pfn
))
174 nr_pages
+= PAGES_PER_SECTION
;
177 return nr_pages
* sizeof(struct page
);
181 * Subtle, we encode the real pfn into the mem_map such that
182 * the identity pfn - section_mem_map will return the actual
183 * physical page frame number.
185 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
187 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
191 * We need this if we ever free the mem_maps. While not implemented yet,
192 * this function is included for parity with its sibling.
194 static __attribute((unused
))
195 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
197 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
200 static int __meminit
sparse_init_one_section(struct mem_section
*ms
,
201 unsigned long pnum
, struct page
*mem_map
)
203 if (!valid_section(ms
))
206 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
207 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
);
212 static struct page __init
*sparse_early_mem_map_alloc(unsigned long pnum
)
215 struct mem_section
*ms
= __nr_to_section(pnum
);
216 int nid
= sparse_early_nid(ms
);
218 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
222 map
= alloc_bootmem_node(NODE_DATA(nid
),
223 sizeof(struct page
) * PAGES_PER_SECTION
);
227 printk(KERN_WARNING
"%s: allocation failed\n", __FUNCTION__
);
228 ms
->section_mem_map
= 0;
232 static struct page
*__kmalloc_section_memmap(unsigned long nr_pages
)
234 struct page
*page
, *ret
;
235 unsigned long memmap_size
= sizeof(struct page
) * nr_pages
;
237 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
241 ret
= vmalloc(memmap_size
);
247 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
249 memset(ret
, 0, memmap_size
);
254 static int vaddr_in_vmalloc_area(void *addr
)
256 if (addr
>= (void *)VMALLOC_START
&&
257 addr
< (void *)VMALLOC_END
)
262 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
264 if (vaddr_in_vmalloc_area(memmap
))
267 free_pages((unsigned long)memmap
,
268 get_order(sizeof(struct page
) * nr_pages
));
272 * Allocate the accumulated non-linear sections, allocate a mem_map
273 * for each and record the physical to section mapping.
275 void __init
sparse_init(void)
280 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
281 if (!valid_section_nr(pnum
))
284 map
= sparse_early_mem_map_alloc(pnum
);
287 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
);
291 #ifdef CONFIG_MEMORY_HOTPLUG
293 * returns the number of sections whose mem_maps were properly
294 * set. If this is <=0, then that means that the passed-in
295 * map was not consumed and must be freed.
297 int sparse_add_one_section(struct zone
*zone
, unsigned long start_pfn
,
300 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
301 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
302 struct mem_section
*ms
;
308 * no locking for this, because it does its own
309 * plus, it does a kmalloc
311 sparse_index_init(section_nr
, pgdat
->node_id
);
312 memmap
= __kmalloc_section_memmap(nr_pages
);
314 pgdat_resize_lock(pgdat
, &flags
);
316 ms
= __pfn_to_section(start_pfn
);
317 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
321 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
323 ret
= sparse_init_one_section(ms
, section_nr
, memmap
);
326 pgdat_resize_unlock(pgdat
, &flags
);
328 __kfree_section_memmap(memmap
, nr_pages
);