2 * linux/arch/arm/vfp/vfp.h
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 static inline u32
vfp_shiftright32jamming(u32 val
, unsigned int shift
)
16 val
= val
>> shift
| ((val
<< (32 - shift
)) != 0);
23 static inline u64
vfp_shiftright64jamming(u64 val
, unsigned int shift
)
27 val
= val
>> shift
| ((val
<< (64 - shift
)) != 0);
34 static inline u32
vfp_hi64to32jamming(u64 val
)
39 "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t"
42 : "=r" (v
) : "r" (val
) : "cc");
47 static inline void add128(u64
*resh
, u64
*resl
, u64 nh
, u64 nl
, u64 mh
, u64 ml
)
49 asm( "adds %Q0, %Q2, %Q4\n\t"
50 "adcs %R0, %R2, %R4\n\t"
51 "adcs %Q1, %Q3, %Q5\n\t"
53 : "=r" (nl
), "=r" (nh
)
54 : "0" (nl
), "1" (nh
), "r" (ml
), "r" (mh
)
60 static inline void sub128(u64
*resh
, u64
*resl
, u64 nh
, u64 nl
, u64 mh
, u64 ml
)
62 asm( "subs %Q0, %Q2, %Q4\n\t"
63 "sbcs %R0, %R2, %R4\n\t"
64 "sbcs %Q1, %Q3, %Q5\n\t"
65 "sbc %R1, %R3, %R5\n\t"
66 : "=r" (nl
), "=r" (nh
)
67 : "0" (nl
), "1" (nh
), "r" (ml
), "r" (mh
)
73 static inline void mul64to128(u64
*resh
, u64
*resl
, u64 n
, u64 m
)
90 rh
+= ((u64
)(rma
< rmb
) << 32) + (rma
>> 32);
100 static inline void shift64left(u64
*resh
, u64
*resl
, u64 n
)
106 static inline u64
vfp_hi64multiply64(u64 n
, u64 m
)
109 mul64to128(&rh
, &rl
, n
, m
);
110 return rh
| (rl
!= 0);
113 static inline u64
vfp_estimate_div128to64(u64 nh
, u64 nl
, u64 m
)
115 u64 mh
, ml
, remh
, reml
, termh
, terml
, z
;
120 z
= (mh
<< 32 <= nh
) ? 0xffffffff00000000ULL
: (nh
/ mh
) << 32;
121 mul64to128(&termh
, &terml
, m
, z
);
122 sub128(&remh
, &reml
, nh
, nl
, termh
, terml
);
124 while ((s64
)remh
< 0) {
126 add128(&remh
, &reml
, remh
, reml
, mh
, ml
);
128 remh
= (remh
<< 32) | (reml
>> 32);
129 z
|= (mh
<< 32 <= remh
) ? 0xffffffff : remh
/ mh
;
134 * Operations on unpacked elements
136 #define vfp_sign_negate(sign) (sign ^ 0x8000)
147 extern s32
vfp_get_float(unsigned int reg
);
148 extern void vfp_put_float(unsigned int reg
, s32 val
);
151 * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
152 * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
153 * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
154 * which are not propagated to the float upon packing.
156 #define VFP_SINGLE_MANTISSA_BITS (23)
157 #define VFP_SINGLE_EXPONENT_BITS (8)
158 #define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
159 #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
162 * The bit in an unpacked float which indicates that it is a quiet NaN
164 #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
167 * Operations on packed single-precision numbers
169 #define vfp_single_packed_sign(v) ((v) & 0x80000000)
170 #define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
171 #define vfp_single_packed_abs(v) ((v) & ~0x80000000)
172 #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
173 #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
176 * Unpack a single-precision float. Note that this returns the magnitude
177 * of the single-precision float mantissa with the 1. if necessary,
180 static inline void vfp_single_unpack(struct vfp_single
*s
, s32 val
)
184 s
->sign
= vfp_single_packed_sign(val
) >> 16,
185 s
->exponent
= vfp_single_packed_exponent(val
);
187 significand
= (u32
) val
;
188 significand
= (significand
<< (32 - VFP_SINGLE_MANTISSA_BITS
)) >> 2;
189 if (s
->exponent
&& s
->exponent
!= 255)
190 significand
|= 0x40000000;
191 s
->significand
= significand
;
195 * Re-pack a single-precision float. This assumes that the float is
196 * already normalised such that the MSB is bit 30, _not_ bit 31.
198 static inline s32
vfp_single_pack(struct vfp_single
*s
)
201 val
= (s
->sign
<< 16) +
202 (s
->exponent
<< VFP_SINGLE_MANTISSA_BITS
) +
203 (s
->significand
>> VFP_SINGLE_LOW_BITS
);
207 #define VFP_NUMBER (1<<0)
208 #define VFP_ZERO (1<<1)
209 #define VFP_DENORMAL (1<<2)
210 #define VFP_INFINITY (1<<3)
211 #define VFP_NAN (1<<4)
212 #define VFP_NAN_SIGNAL (1<<5)
214 #define VFP_QNAN (VFP_NAN)
215 #define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL)
217 static inline int vfp_single_type(struct vfp_single
*s
)
219 int type
= VFP_NUMBER
;
220 if (s
->exponent
== 255) {
221 if (s
->significand
== 0)
223 else if (s
->significand
& VFP_SINGLE_SIGNIFICAND_QNAN
)
227 } else if (s
->exponent
== 0) {
228 if (s
->significand
== 0)
231 type
|= VFP_DENORMAL
;
237 #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
238 u32
__vfp_single_normaliseround(int sd
, struct vfp_single
*vs
, u32 fpscr
, u32 exceptions
);
240 u32
vfp_single_normaliseround(int sd
, struct vfp_single
*vs
, u32 fpscr
, u32 exceptions
, const char *func
);
253 * VFP_REG_ZERO is a special register number for vfp_get_double
254 * which returns (double)0.0. This is useful for the compare with
257 #define VFP_REG_ZERO 16
258 extern u64
vfp_get_double(unsigned int reg
);
259 extern void vfp_put_double(unsigned int reg
, u64 val
);
261 #define VFP_DOUBLE_MANTISSA_BITS (52)
262 #define VFP_DOUBLE_EXPONENT_BITS (11)
263 #define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
264 #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
267 * The bit in an unpacked double which indicates that it is a quiet NaN
269 #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
272 * Operations on packed single-precision numbers
274 #define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
275 #define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
276 #define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
277 #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
278 #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
281 * Unpack a double-precision float. Note that this returns the magnitude
282 * of the double-precision float mantissa with the 1. if necessary,
285 static inline void vfp_double_unpack(struct vfp_double
*s
, s64 val
)
289 s
->sign
= vfp_double_packed_sign(val
) >> 48;
290 s
->exponent
= vfp_double_packed_exponent(val
);
292 significand
= (u64
) val
;
293 significand
= (significand
<< (64 - VFP_DOUBLE_MANTISSA_BITS
)) >> 2;
294 if (s
->exponent
&& s
->exponent
!= 2047)
295 significand
|= (1ULL << 62);
296 s
->significand
= significand
;
300 * Re-pack a double-precision float. This assumes that the float is
301 * already normalised such that the MSB is bit 30, _not_ bit 31.
303 static inline s64
vfp_double_pack(struct vfp_double
*s
)
306 val
= ((u64
)s
->sign
<< 48) +
307 ((u64
)s
->exponent
<< VFP_DOUBLE_MANTISSA_BITS
) +
308 (s
->significand
>> VFP_DOUBLE_LOW_BITS
);
312 static inline int vfp_double_type(struct vfp_double
*s
)
314 int type
= VFP_NUMBER
;
315 if (s
->exponent
== 2047) {
316 if (s
->significand
== 0)
318 else if (s
->significand
& VFP_DOUBLE_SIGNIFICAND_QNAN
)
322 } else if (s
->exponent
== 0) {
323 if (s
->significand
== 0)
326 type
|= VFP_DENORMAL
;
331 u32
vfp_double_normaliseround(int dd
, struct vfp_double
*vd
, u32 fpscr
, u32 exceptions
, const char *func
);
336 extern u32
vfp_get_sys(unsigned int reg
);
337 extern void vfp_put_sys(unsigned int reg
, u32 val
);
339 u32
vfp_estimate_sqrt_significand(u32 exponent
, u32 significand
);
342 * A special flag to tell the normalisation code not to normalise.
344 #define VFP_NAN_FLAG 0x100