1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* Copyright (C) 1999,2001
5 * Author: J.E.J.Bottomley@HansenPartnership.com
7 * linux/arch/i386/kernel/voyager_smp.c
9 * This file provides all the same external entries as smp.c but uses
10 * the voyager hal to provide the functionality
12 #include <linux/config.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/mc146818rtc.h>
17 #include <linux/cache.h>
18 #include <linux/interrupt.h>
19 #include <linux/smp_lock.h>
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/bootmem.h>
23 #include <linux/completion.h>
25 #include <asm/voyager.h>
28 #include <asm/pgalloc.h>
29 #include <asm/tlbflush.h>
30 #include <asm/arch_hooks.h>
32 #include <linux/irq.h>
34 /* TLB state -- visible externally, indexed physically */
35 DEFINE_PER_CPU(struct tlb_state
, cpu_tlbstate
) ____cacheline_aligned
= { &init_mm
, 0 };
37 /* CPU IRQ affinity -- set to all ones initially */
38 static unsigned long cpu_irq_affinity
[NR_CPUS
] __cacheline_aligned
= { [0 ... NR_CPUS
-1] = ~0UL };
40 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
41 * indexed physically */
42 struct cpuinfo_x86 cpu_data
[NR_CPUS
] __cacheline_aligned
;
44 /* physical ID of the CPU used to boot the system */
45 unsigned char boot_cpu_id
;
47 /* The memory line addresses for the Quad CPIs */
48 struct voyager_qic_cpi
*voyager_quad_cpi_addr
[NR_CPUS
] __cacheline_aligned
;
50 /* The masks for the Extended VIC processors, filled in by cat_init */
51 __u32 voyager_extended_vic_processors
= 0;
53 /* Masks for the extended Quad processors which cannot be VIC booted */
54 __u32 voyager_allowed_boot_processors
= 0;
56 /* The mask for the Quad Processors (both extended and non-extended) */
57 __u32 voyager_quad_processors
= 0;
59 /* Total count of live CPUs, used in process.c to display
60 * the CPU information and in irq.c for the per CPU irq
61 * activity count. Finally exported by i386_ksyms.c */
62 static int voyager_extended_cpus
= 1;
64 /* Have we found an SMP box - used by time.c to do the profiling
65 interrupt for timeslicing; do not set to 1 until the per CPU timer
66 interrupt is active */
67 int smp_found_config
= 0;
69 /* Used for the invalidate map that's also checked in the spinlock */
70 static volatile unsigned long smp_invalidate_needed
;
72 /* Bitmask of currently online CPUs - used by setup.c for
73 /proc/cpuinfo, visible externally but still physical */
74 cpumask_t cpu_online_map
= CPU_MASK_NONE
;
76 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
77 * by scheduler but indexed physically */
78 cpumask_t phys_cpu_present_map
= CPU_MASK_NONE
;
81 /* The internal functions */
82 static void send_CPI(__u32 cpuset
, __u8 cpi
);
83 static void ack_CPI(__u8 cpi
);
84 static int ack_QIC_CPI(__u8 cpi
);
85 static void ack_special_QIC_CPI(__u8 cpi
);
86 static void ack_VIC_CPI(__u8 cpi
);
87 static void send_CPI_allbutself(__u8 cpi
);
88 static void enable_vic_irq(unsigned int irq
);
89 static void disable_vic_irq(unsigned int irq
);
90 static unsigned int startup_vic_irq(unsigned int irq
);
91 static void enable_local_vic_irq(unsigned int irq
);
92 static void disable_local_vic_irq(unsigned int irq
);
93 static void before_handle_vic_irq(unsigned int irq
);
94 static void after_handle_vic_irq(unsigned int irq
);
95 static void set_vic_irq_affinity(unsigned int irq
, cpumask_t mask
);
96 static void ack_vic_irq(unsigned int irq
);
97 static void vic_enable_cpi(void);
98 static void do_boot_cpu(__u8 cpuid
);
99 static void do_quad_bootstrap(void);
100 static inline void wrapper_smp_local_timer_interrupt(struct pt_regs
*);
102 int hard_smp_processor_id(void);
104 /* Inline functions */
106 send_one_QIC_CPI(__u8 cpu
, __u8 cpi
)
108 voyager_quad_cpi_addr
[cpu
]->qic_cpi
[cpi
].cpi
=
109 (smp_processor_id() << 16) + cpi
;
113 send_QIC_CPI(__u32 cpuset
, __u8 cpi
)
117 for_each_online_cpu(cpu
) {
118 if(cpuset
& (1<<cpu
)) {
120 if(!cpu_isset(cpu
, cpu_online_map
))
121 VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi
, cpu
));
123 send_one_QIC_CPI(cpu
, cpi
- QIC_CPI_OFFSET
);
129 send_one_CPI(__u8 cpu
, __u8 cpi
)
131 if(voyager_quad_processors
& (1<<cpu
))
132 send_one_QIC_CPI(cpu
, cpi
- QIC_CPI_OFFSET
);
134 send_CPI(1<<cpu
, cpi
);
138 send_CPI_allbutself(__u8 cpi
)
140 __u8 cpu
= smp_processor_id();
141 __u32 mask
= cpus_addr(cpu_online_map
)[0] & ~(1 << cpu
);
148 __u8 cpumask
= inb(VIC_PROC_WHO_AM_I
);
149 return ((cpumask
& QUAD_IDENTIFIER
) == QUAD_IDENTIFIER
);
153 is_cpu_extended(void)
155 __u8 cpu
= hard_smp_processor_id();
157 return(voyager_extended_vic_processors
& (1<<cpu
));
161 is_cpu_vic_boot(void)
163 __u8 cpu
= hard_smp_processor_id();
165 return(voyager_extended_vic_processors
166 & voyager_allowed_boot_processors
& (1<<cpu
));
174 case VIC_CPU_BOOT_CPI
:
175 if(is_cpu_quad() && !is_cpu_vic_boot())
182 /* These are slightly strange. Even on the Quad card,
183 * They are vectored as VIC CPIs */
185 ack_special_QIC_CPI(cpi
);
190 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi
);
195 /* local variables */
197 /* The VIC IRQ descriptors -- these look almost identical to the
198 * 8259 IRQs except that masks and things must be kept per processor
200 static struct hw_interrupt_type vic_irq_type
= {
201 .typename
= "VIC-level",
202 .startup
= startup_vic_irq
,
203 .shutdown
= disable_vic_irq
,
204 .enable
= enable_vic_irq
,
205 .disable
= disable_vic_irq
,
206 .ack
= before_handle_vic_irq
,
207 .end
= after_handle_vic_irq
,
208 .set_affinity
= set_vic_irq_affinity
,
211 /* used to count up as CPUs are brought on line (starts at 0) */
212 static int cpucount
= 0;
214 /* steal a page from the bottom of memory for the trampoline and
215 * squirrel its address away here. This will be in kernel virtual
217 static __u32 trampoline_base
;
219 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
220 static DEFINE_PER_CPU(int, prof_multiplier
) = 1;
221 static DEFINE_PER_CPU(int, prof_old_multiplier
) = 1;
222 static DEFINE_PER_CPU(int, prof_counter
) = 1;
224 /* the map used to check if a CPU has booted */
225 static __u32 cpu_booted_map
;
227 /* the synchronize flag used to hold all secondary CPUs spinning in
228 * a tight loop until the boot sequence is ready for them */
229 static cpumask_t smp_commenced_mask
= CPU_MASK_NONE
;
231 /* This is for the new dynamic CPU boot code */
232 cpumask_t cpu_callin_map
= CPU_MASK_NONE
;
233 cpumask_t cpu_callout_map
= CPU_MASK_NONE
;
235 /* The per processor IRQ masks (these are usually kept in sync) */
236 static __u16 vic_irq_mask
[NR_CPUS
] __cacheline_aligned
;
238 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
239 static __u16 vic_irq_enable_mask
[NR_CPUS
] __cacheline_aligned
= { 0 };
241 /* Lock for enable/disable of VIC interrupts */
242 static __cacheline_aligned
DEFINE_SPINLOCK(vic_irq_lock
);
244 /* The boot processor is correctly set up in PC mode when it
245 * comes up, but the secondaries need their master/slave 8259
246 * pairs initializing correctly */
248 /* Interrupt counters (per cpu) and total - used to try to
249 * even up the interrupt handling routines */
250 static long vic_intr_total
= 0;
251 static long vic_intr_count
[NR_CPUS
] __cacheline_aligned
= { 0 };
252 static unsigned long vic_tick
[NR_CPUS
] __cacheline_aligned
= { 0 };
254 /* Since we can only use CPI0, we fake all the other CPIs */
255 static unsigned long vic_cpi_mailbox
[NR_CPUS
] __cacheline_aligned
;
257 /* debugging routine to read the isr of the cpu's pic */
264 isr
= inb(0xa0) << 8;
275 /* not a quad, no setup */
278 outb(QIC_DEFAULT_MASK0
, QIC_MASK_REGISTER0
);
279 outb(QIC_CPI_ENABLE
, QIC_MASK_REGISTER1
);
281 if(is_cpu_extended()) {
282 /* the QIC duplicate of the VIC base register */
283 outb(VIC_DEFAULT_CPI_BASE
, QIC_VIC_CPI_BASE_REGISTER
);
284 outb(QIC_DEFAULT_CPI_BASE
, QIC_CPI_BASE_REGISTER
);
286 /* FIXME: should set up the QIC timer and memory parity
287 * error vectors here */
294 outb(1, VIC_REDIRECT_REGISTER_1
);
295 /* clear the claim registers for dynamic routing */
296 outb(0, VIC_CLAIM_REGISTER_0
);
297 outb(0, VIC_CLAIM_REGISTER_1
);
299 outb(0, VIC_PRIORITY_REGISTER
);
300 /* Set the Primary and Secondary Microchannel vector
301 * bases to be the same as the ordinary interrupts
303 * FIXME: This would be more efficient using separate
305 outb(FIRST_EXTERNAL_VECTOR
, VIC_PRIMARY_MC_BASE
);
306 outb(FIRST_EXTERNAL_VECTOR
, VIC_SECONDARY_MC_BASE
);
307 /* Now initiallise the master PIC belonging to this CPU by
308 * sending the four ICWs */
310 /* ICW1: level triggered, ICW4 needed */
313 /* ICW2: vector base */
314 outb(FIRST_EXTERNAL_VECTOR
, 0x21);
316 /* ICW3: slave at line 2 */
319 /* ICW4: 8086 mode */
322 /* now the same for the slave PIC */
324 /* ICW1: level trigger, ICW4 needed */
327 /* ICW2: slave vector base */
328 outb(FIRST_EXTERNAL_VECTOR
+ 8, 0xA1);
333 /* ICW4: 8086 mode */
338 do_quad_bootstrap(void)
340 if(is_cpu_quad() && is_cpu_vic_boot()) {
343 __u8 cpuid
= hard_smp_processor_id();
345 local_irq_save(flags
);
347 for(i
= 0; i
<4; i
++) {
348 /* FIXME: this would be >>3 &0x7 on the 32 way */
349 if(((cpuid
>> 2) & 0x03) == i
)
350 /* don't lower our own mask! */
353 /* masquerade as local Quad CPU */
354 outb(QIC_CPUID_ENABLE
| i
, QIC_PROCESSOR_ID
);
355 /* enable the startup CPI */
356 outb(QIC_BOOT_CPI_MASK
, QIC_MASK_REGISTER1
);
358 outb(0, QIC_PROCESSOR_ID
);
360 local_irq_restore(flags
);
365 /* Set up all the basic stuff: read the SMP config and make all the
366 * SMP information reflect only the boot cpu. All others will be
367 * brought on-line later. */
369 find_smp_config(void)
373 boot_cpu_id
= hard_smp_processor_id();
375 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id
);
377 /* initialize the CPU structures (moved from smp_boot_cpus) */
378 for(i
=0; i
<NR_CPUS
; i
++) {
379 cpu_irq_affinity
[i
] = ~0;
381 cpu_online_map
= cpumask_of_cpu(boot_cpu_id
);
383 /* The boot CPU must be extended */
384 voyager_extended_vic_processors
= 1<<boot_cpu_id
;
385 /* initially, all of the first 8 cpu's can boot */
386 voyager_allowed_boot_processors
= 0xff;
387 /* set up everything for just this CPU, we can alter
388 * this as we start the other CPUs later */
389 /* now get the CPU disposition from the extended CMOS */
390 cpus_addr(phys_cpu_present_map
)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK
);
391 cpus_addr(phys_cpu_present_map
)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK
+ 1) << 8;
392 cpus_addr(phys_cpu_present_map
)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK
+ 2) << 16;
393 cpus_addr(phys_cpu_present_map
)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK
+ 3) << 24;
394 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map
)[0]);
395 /* Here we set up the VIC to enable SMP */
396 /* enable the CPIs by writing the base vector to their register */
397 outb(VIC_DEFAULT_CPI_BASE
, VIC_CPI_BASE_REGISTER
);
398 outb(1, VIC_REDIRECT_REGISTER_1
);
399 /* set the claim registers for static routing --- Boot CPU gets
400 * all interrupts untill all other CPUs started */
401 outb(0xff, VIC_CLAIM_REGISTER_0
);
402 outb(0xff, VIC_CLAIM_REGISTER_1
);
403 /* Set the Primary and Secondary Microchannel vector
404 * bases to be the same as the ordinary interrupts
406 * FIXME: This would be more efficient using separate
408 outb(FIRST_EXTERNAL_VECTOR
, VIC_PRIMARY_MC_BASE
);
409 outb(FIRST_EXTERNAL_VECTOR
, VIC_SECONDARY_MC_BASE
);
411 /* Finally tell the firmware that we're driving */
412 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT
) | VOYAGER_IN_CONTROL_FLAG
,
413 VOYAGER_SUS_IN_CONTROL_PORT
);
415 current_thread_info()->cpu
= boot_cpu_id
;
419 * The bootstrap kernel entry code has set these up. Save them
420 * for a given CPU, id is physical */
422 smp_store_cpu_info(int id
)
424 struct cpuinfo_x86
*c
=&cpu_data
[id
];
431 /* set up the trampoline and return the physical address of the code */
433 setup_trampoline(void)
435 /* these two are global symbols in trampoline.S */
436 extern __u8 trampoline_end
[];
437 extern __u8 trampoline_data
[];
439 memcpy((__u8
*)trampoline_base
, trampoline_data
,
440 trampoline_end
- trampoline_data
);
441 return virt_to_phys((__u8
*)trampoline_base
);
444 /* Routine initially called when a non-boot CPU is brought online */
446 start_secondary(void *unused
)
448 __u8 cpuid
= hard_smp_processor_id();
449 /* external functions not defined in the headers */
450 extern void calibrate_delay(void);
454 /* OK, we're in the routine */
455 ack_CPI(VIC_CPU_BOOT_CPI
);
457 /* setup the 8259 master slave pair belonging to this CPU ---
458 * we won't actually receive any until the boot CPU
459 * relinquishes it's static routing mask */
464 if(is_cpu_quad() && !is_cpu_vic_boot()) {
465 /* clear the boot CPI */
468 dummy
= voyager_quad_cpi_addr
[cpuid
]->qic_cpi
[VIC_CPU_BOOT_CPI
].cpi
;
469 printk("read dummy %d\n", dummy
);
472 /* lower the mask to receive CPIs */
475 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid
, &cpuid
));
477 /* enable interrupts */
480 /* get our bogomips */
483 /* save our processor parameters */
484 smp_store_cpu_info(cpuid
);
486 /* if we're a quad, we may need to bootstrap other CPUs */
489 /* FIXME: this is rather a poor hack to prevent the CPU
490 * activating softirqs while it's supposed to be waiting for
491 * permission to proceed. Without this, the new per CPU stuff
492 * in the softirqs will fail */
494 cpu_set(cpuid
, cpu_callin_map
);
496 /* signal that we're done */
499 while (!cpu_isset(cpuid
, smp_commenced_mask
))
505 cpu_set(cpuid
, cpu_online_map
);
511 /* Routine to kick start the given CPU and wait for it to report ready
512 * (or timeout in startup). When this routine returns, the requested
513 * CPU is either fully running and configured or known to be dead.
515 * We call this routine sequentially 1 CPU at a time, so no need for
519 do_boot_cpu(__u8 cpu
)
521 struct task_struct
*idle
;
524 int quad_boot
= (1<<cpu
) & voyager_quad_processors
525 & ~( voyager_extended_vic_processors
526 & voyager_allowed_boot_processors
);
528 /* For the 486, we can't use the 4Mb page table trick, so
529 * must map a region of memory */
532 unsigned long *page_table_copies
= (unsigned long *)
533 __get_free_page(GFP_KERNEL
);
535 pgd_t orig_swapper_pg_dir0
;
537 /* This is an area in head.S which was used to set up the
538 * initial kernel stack. We need to alter this to give the
539 * booting CPU a new stack (taken from its idle process) */
544 /* This is the format of the CPI IDT gate (in real mode) which
545 * we're hijacking to boot the CPU */
554 __u32
*hijack_vector
;
555 __u32 start_phys_address
= setup_trampoline();
557 /* There's a clever trick to this: The linux trampoline is
558 * compiled to begin at absolute location zero, so make the
559 * address zero but have the data segment selector compensate
560 * for the actual address */
561 hijack_source
.idt
.Offset
= start_phys_address
& 0x000F;
562 hijack_source
.idt
.Segment
= (start_phys_address
>> 4) & 0xFFFF;
565 idle
= fork_idle(cpu
);
567 panic("failed fork for CPU%d", cpu
);
568 idle
->thread
.eip
= (unsigned long) start_secondary
;
569 /* init_tasks (in sched.c) is indexed logically */
570 stack_start
.esp
= (void *) idle
->thread
.esp
;
574 /* Note: Don't modify initial ss override */
575 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu
,
576 (unsigned long)hijack_source
.val
, hijack_source
.idt
.Segment
,
577 hijack_source
.idt
.Offset
, stack_start
.esp
));
578 /* set the original swapper_pg_dir[0] to map 0 to 4Mb transparently
579 * (so that the booting CPU can find start_32 */
580 orig_swapper_pg_dir0
= swapper_pg_dir
[0];
582 if(page_table_copies
== NULL
)
583 panic("No free memory for 486 page tables\n");
584 for(i
= 0; i
< PAGE_SIZE
/sizeof(unsigned long); i
++)
585 page_table_copies
[i
] = (i
* PAGE_SIZE
)
586 | _PAGE_RW
| _PAGE_USER
| _PAGE_PRESENT
;
588 ((unsigned long *)swapper_pg_dir
)[0] =
589 ((virt_to_phys(page_table_copies
)) & PAGE_MASK
)
590 | _PAGE_RW
| _PAGE_USER
| _PAGE_PRESENT
;
592 ((unsigned long *)swapper_pg_dir
)[0] =
593 (virt_to_phys(pg0
) & PAGE_MASK
)
594 | _PAGE_RW
| _PAGE_USER
| _PAGE_PRESENT
;
598 printk("CPU %d: non extended Quad boot\n", cpu
);
599 hijack_vector
= (__u32
*)phys_to_virt((VIC_CPU_BOOT_CPI
+ QIC_DEFAULT_CPI_BASE
)*4);
600 *hijack_vector
= hijack_source
.val
;
602 printk("CPU%d: extended VIC boot\n", cpu
);
603 hijack_vector
= (__u32
*)phys_to_virt((VIC_CPU_BOOT_CPI
+ VIC_DEFAULT_CPI_BASE
)*4);
604 *hijack_vector
= hijack_source
.val
;
605 /* VIC errata, may also receive interrupt at this address */
606 hijack_vector
= (__u32
*)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI
+ VIC_DEFAULT_CPI_BASE
)*4);
607 *hijack_vector
= hijack_source
.val
;
609 /* All non-boot CPUs start with interrupts fully masked. Need
610 * to lower the mask of the CPI we're about to send. We do
611 * this in the VIC by masquerading as the processor we're
612 * about to boot and lowering its interrupt mask */
613 local_irq_save(flags
);
615 send_one_QIC_CPI(cpu
, VIC_CPU_BOOT_CPI
);
617 outb(VIC_CPU_MASQUERADE_ENABLE
| cpu
, VIC_PROCESSOR_ID
);
618 /* here we're altering registers belonging to `cpu' */
620 outb(VIC_BOOT_INTERRUPT_MASK
, 0x21);
621 /* now go back to our original identity */
622 outb(boot_cpu_id
, VIC_PROCESSOR_ID
);
624 /* and boot the CPU */
626 send_CPI((1<<cpu
), VIC_CPU_BOOT_CPI
);
629 local_irq_restore(flags
);
631 /* now wait for it to become ready (or timeout) */
632 for(timeout
= 0; timeout
< 50000; timeout
++) {
637 /* reset the page table */
638 swapper_pg_dir
[0] = orig_swapper_pg_dir0
;
641 free_page((unsigned long)page_table_copies
);
644 if (cpu_booted_map
) {
645 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
646 cpu
, smp_processor_id()));
648 printk("CPU%d: ", cpu
);
649 print_cpu_info(&cpu_data
[cpu
]);
651 cpu_set(cpu
, cpu_callout_map
);
654 printk("CPU%d FAILED TO BOOT: ", cpu
);
655 if (*((volatile unsigned char *)phys_to_virt(start_phys_address
))==0xA5)
658 printk("Not responding.\n");
669 /* CAT BUS initialisation must be done after the memory */
670 /* FIXME: The L4 has a catbus too, it just needs to be
671 * accessed in a totally different way */
672 if(voyager_level
== 5) {
675 /* now that the cat has probed the Voyager System Bus, sanity
676 * check the cpu map */
677 if( ((voyager_quad_processors
| voyager_extended_vic_processors
)
678 & cpus_addr(phys_cpu_present_map
)[0]) != cpus_addr(phys_cpu_present_map
)[0]) {
680 printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n");
682 } else if(voyager_level
== 4)
683 voyager_extended_vic_processors
= cpus_addr(phys_cpu_present_map
)[0];
685 /* this sets up the idle task to run on the current cpu */
686 voyager_extended_cpus
= 1;
687 /* Remove the global_irq_holder setting, it triggers a BUG() on
688 * schedule at the moment */
689 //global_irq_holder = boot_cpu_id;
691 /* FIXME: Need to do something about this but currently only works
692 * on CPUs with a tsc which none of mine have.
693 smp_tune_scheduling();
695 smp_store_cpu_info(boot_cpu_id
);
696 printk("CPU%d: ", boot_cpu_id
);
697 print_cpu_info(&cpu_data
[boot_cpu_id
]);
700 /* booting on a Quad CPU */
701 printk("VOYAGER SMP: Boot CPU is Quad\n");
706 /* enable our own CPIs */
709 cpu_set(boot_cpu_id
, cpu_online_map
);
710 cpu_set(boot_cpu_id
, cpu_callout_map
);
712 /* loop over all the extended VIC CPUs and boot them. The
713 * Quad CPUs must be bootstrapped by their extended VIC cpu */
714 for(i
= 0; i
< NR_CPUS
; i
++) {
715 if(i
== boot_cpu_id
|| !cpu_isset(i
, phys_cpu_present_map
))
718 /* This udelay seems to be needed for the Quad boots
719 * don't remove unless you know what you're doing */
722 /* we could compute the total bogomips here, but why bother?,
723 * Code added from smpboot.c */
725 unsigned long bogosum
= 0;
726 for (i
= 0; i
< NR_CPUS
; i
++)
727 if (cpu_isset(i
, cpu_online_map
))
728 bogosum
+= cpu_data
[i
].loops_per_jiffy
;
729 printk(KERN_INFO
"Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
732 (bogosum
/(5000/HZ
))%100);
734 voyager_extended_cpus
= hweight32(voyager_extended_vic_processors
);
735 printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus
, num_booting_cpus() - voyager_extended_cpus
);
736 /* that's it, switch to symmetric mode */
737 outb(0, VIC_PRIORITY_REGISTER
);
738 outb(0, VIC_CLAIM_REGISTER_0
);
739 outb(0, VIC_CLAIM_REGISTER_1
);
741 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
744 /* Reload the secondary CPUs task structure (this function does not
747 initialize_secondary(void)
751 set_current(hard_get_current());
755 * We don't actually need to load the full TSS,
756 * basically just the stack pointer and the eip.
763 :"r" (current
->thread
.esp
),"r" (current
->thread
.eip
));
766 /* handle a Voyager SYS_INT -- If we don't, the base board will
769 * System interrupts occur because some problem was detected on the
770 * various busses. To find out what you have to probe all the
771 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
773 smp_vic_sys_interrupt(struct pt_regs
*regs
)
775 ack_CPI(VIC_SYS_INT
);
776 printk("Voyager SYSTEM INTERRUPT\n");
779 /* Handle a voyager CMN_INT; These interrupts occur either because of
780 * a system status change or because a single bit memory error
781 * occurred. FIXME: At the moment, ignore all this. */
783 smp_vic_cmn_interrupt(struct pt_regs
*regs
)
785 static __u8 in_cmn_int
= 0;
786 static DEFINE_SPINLOCK(cmn_int_lock
);
788 /* common ints are broadcast, so make sure we only do this once */
789 _raw_spin_lock(&cmn_int_lock
);
794 _raw_spin_unlock(&cmn_int_lock
);
796 VDEBUG(("Voyager COMMON INTERRUPT\n"));
798 if(voyager_level
== 5)
799 voyager_cat_do_common_interrupt();
801 _raw_spin_lock(&cmn_int_lock
);
804 _raw_spin_unlock(&cmn_int_lock
);
805 ack_CPI(VIC_CMN_INT
);
809 * Reschedule call back. Nothing to do, all the work is done
810 * automatically when we return from the interrupt. */
812 smp_reschedule_interrupt(void)
817 static struct mm_struct
* flush_mm
;
818 static unsigned long flush_va
;
819 static DEFINE_SPINLOCK(tlbstate_lock
);
820 #define FLUSH_ALL 0xffffffff
823 * We cannot call mmdrop() because we are in interrupt context,
824 * instead update mm->cpu_vm_mask.
826 * We need to reload %cr3 since the page tables may be going
827 * away from under us..
830 leave_mm (unsigned long cpu
)
832 if (per_cpu(cpu_tlbstate
, cpu
).state
== TLBSTATE_OK
)
834 cpu_clear(cpu
, per_cpu(cpu_tlbstate
, cpu
).active_mm
->cpu_vm_mask
);
835 load_cr3(swapper_pg_dir
);
840 * Invalidate call-back
843 smp_invalidate_interrupt(void)
845 __u8 cpu
= smp_processor_id();
847 if (!test_bit(cpu
, &smp_invalidate_needed
))
849 /* This will flood messages. Don't uncomment unless you see
850 * Problems with cross cpu invalidation
851 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
852 smp_processor_id()));
855 if (flush_mm
== per_cpu(cpu_tlbstate
, cpu
).active_mm
) {
856 if (per_cpu(cpu_tlbstate
, cpu
).state
== TLBSTATE_OK
) {
857 if (flush_va
== FLUSH_ALL
)
860 __flush_tlb_one(flush_va
);
864 smp_mb__before_clear_bit();
865 clear_bit(cpu
, &smp_invalidate_needed
);
866 smp_mb__after_clear_bit();
869 /* All the new flush operations for 2.4 */
872 /* This routine is called with a physical cpu mask */
874 flush_tlb_others (unsigned long cpumask
, struct mm_struct
*mm
,
881 if ((cpumask
& cpus_addr(cpu_online_map
)[0]) != cpumask
)
883 if (cpumask
& (1 << smp_processor_id()))
888 spin_lock(&tlbstate_lock
);
892 atomic_set_mask(cpumask
, &smp_invalidate_needed
);
894 * We have to send the CPI only to
897 send_CPI(cpumask
, VIC_INVALIDATE_CPI
);
899 while (smp_invalidate_needed
) {
902 printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id());
907 /* Uncomment only to debug invalidation problems
908 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
913 spin_unlock(&tlbstate_lock
);
917 flush_tlb_current_task(void)
919 struct mm_struct
*mm
= current
->mm
;
920 unsigned long cpu_mask
;
924 cpu_mask
= cpus_addr(mm
->cpu_vm_mask
)[0] & ~(1 << smp_processor_id());
927 flush_tlb_others(cpu_mask
, mm
, FLUSH_ALL
);
934 flush_tlb_mm (struct mm_struct
* mm
)
936 unsigned long cpu_mask
;
940 cpu_mask
= cpus_addr(mm
->cpu_vm_mask
)[0] & ~(1 << smp_processor_id());
942 if (current
->active_mm
== mm
) {
946 leave_mm(smp_processor_id());
949 flush_tlb_others(cpu_mask
, mm
, FLUSH_ALL
);
954 void flush_tlb_page(struct vm_area_struct
* vma
, unsigned long va
)
956 struct mm_struct
*mm
= vma
->vm_mm
;
957 unsigned long cpu_mask
;
961 cpu_mask
= cpus_addr(mm
->cpu_vm_mask
)[0] & ~(1 << smp_processor_id());
962 if (current
->active_mm
== mm
) {
966 leave_mm(smp_processor_id());
970 flush_tlb_others(cpu_mask
, mm
, va
);
975 /* enable the requested IRQs */
977 smp_enable_irq_interrupt(void)
980 __u8 cpu
= get_cpu();
982 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu
,
983 vic_irq_enable_mask
[cpu
]));
985 spin_lock(&vic_irq_lock
);
986 for(irq
= 0; irq
< 16; irq
++) {
987 if(vic_irq_enable_mask
[cpu
] & (1<<irq
))
988 enable_local_vic_irq(irq
);
990 vic_irq_enable_mask
[cpu
] = 0;
991 spin_unlock(&vic_irq_lock
);
993 put_cpu_no_resched();
1000 smp_stop_cpu_function(void *dummy
)
1002 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
1003 cpu_clear(smp_processor_id(), cpu_online_map
);
1004 local_irq_disable();
1009 static DEFINE_SPINLOCK(call_lock
);
1011 struct call_data_struct
{
1012 void (*func
) (void *info
);
1014 volatile unsigned long started
;
1015 volatile unsigned long finished
;
1019 static struct call_data_struct
* call_data
;
1021 /* execute a thread on a new CPU. The function to be called must be
1022 * previously set up. This is used to schedule a function for
1023 * execution on all CPU's - set up the function then broadcast a
1024 * function_interrupt CPI to come here on each CPU */
1026 smp_call_function_interrupt(void)
1028 void (*func
) (void *info
) = call_data
->func
;
1029 void *info
= call_data
->info
;
1030 /* must take copy of wait because call_data may be replaced
1031 * unless the function is waiting for us to finish */
1032 int wait
= call_data
->wait
;
1033 __u8 cpu
= smp_processor_id();
1036 * Notify initiating CPU that I've grabbed the data and am
1037 * about to execute the function
1040 if(!test_and_clear_bit(cpu
, &call_data
->started
)) {
1041 /* If the bit wasn't set, this could be a replay */
1042 printk(KERN_WARNING
"VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu
);
1046 * At this point the info structure may be out of scope unless wait==1
1053 clear_bit(cpu
, &call_data
->finished
);
1057 /* Call this function on all CPUs using the function_interrupt above
1058 <func> The function to run. This must be fast and non-blocking.
1059 <info> An arbitrary pointer to pass to the function.
1060 <retry> If true, keep retrying until ready.
1061 <wait> If true, wait until function has completed on other CPUs.
1062 [RETURNS] 0 on success, else a negative status code. Does not return until
1063 remote CPUs are nearly ready to execute <<func>> or are or have executed.
1066 smp_call_function (void (*func
) (void *info
), void *info
, int retry
,
1069 struct call_data_struct data
;
1070 __u32 mask
= cpus_addr(cpu_online_map
)[0];
1072 mask
&= ~(1<<smp_processor_id());
1077 /* Can deadlock when called with interrupts disabled */
1078 WARN_ON(irqs_disabled());
1082 data
.started
= mask
;
1085 data
.finished
= mask
;
1087 spin_lock(&call_lock
);
1090 /* Send a message to all other CPUs and wait for them to respond */
1091 send_CPI_allbutself(VIC_CALL_FUNCTION_CPI
);
1093 /* Wait for response */
1094 while (data
.started
)
1098 while (data
.finished
)
1101 spin_unlock(&call_lock
);
1106 /* Sorry about the name. In an APIC based system, the APICs
1107 * themselves are programmed to send a timer interrupt. This is used
1108 * by linux to reschedule the processor. Voyager doesn't have this,
1109 * so we use the system clock to interrupt one processor, which in
1110 * turn, broadcasts a timer CPI to all the others --- we receive that
1111 * CPI here. We don't use this actually for counting so losing
1112 * ticks doesn't matter
1114 * FIXME: For those CPU's which actually have a local APIC, we could
1115 * try to use it to trigger this interrupt instead of having to
1116 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1117 * no local APIC, so I can't do this
1119 * This function is currently a placeholder and is unused in the code */
1121 smp_apic_timer_interrupt(struct pt_regs
*regs
)
1123 wrapper_smp_local_timer_interrupt(regs
);
1126 /* All of the QUAD interrupt GATES */
1128 smp_qic_timer_interrupt(struct pt_regs
*regs
)
1130 ack_QIC_CPI(QIC_TIMER_CPI
);
1131 wrapper_smp_local_timer_interrupt(regs
);
1135 smp_qic_invalidate_interrupt(struct pt_regs
*regs
)
1137 ack_QIC_CPI(QIC_INVALIDATE_CPI
);
1138 smp_invalidate_interrupt();
1142 smp_qic_reschedule_interrupt(struct pt_regs
*regs
)
1144 ack_QIC_CPI(QIC_RESCHEDULE_CPI
);
1145 smp_reschedule_interrupt();
1149 smp_qic_enable_irq_interrupt(struct pt_regs
*regs
)
1151 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI
);
1152 smp_enable_irq_interrupt();
1156 smp_qic_call_function_interrupt(struct pt_regs
*regs
)
1158 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI
);
1159 smp_call_function_interrupt();
1163 smp_vic_cpi_interrupt(struct pt_regs
*regs
)
1165 __u8 cpu
= smp_processor_id();
1168 ack_QIC_CPI(VIC_CPI_LEVEL0
);
1170 ack_VIC_CPI(VIC_CPI_LEVEL0
);
1172 if(test_and_clear_bit(VIC_TIMER_CPI
, &vic_cpi_mailbox
[cpu
]))
1173 wrapper_smp_local_timer_interrupt(regs
);
1174 if(test_and_clear_bit(VIC_INVALIDATE_CPI
, &vic_cpi_mailbox
[cpu
]))
1175 smp_invalidate_interrupt();
1176 if(test_and_clear_bit(VIC_RESCHEDULE_CPI
, &vic_cpi_mailbox
[cpu
]))
1177 smp_reschedule_interrupt();
1178 if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI
, &vic_cpi_mailbox
[cpu
]))
1179 smp_enable_irq_interrupt();
1180 if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI
, &vic_cpi_mailbox
[cpu
]))
1181 smp_call_function_interrupt();
1185 do_flush_tlb_all(void* info
)
1187 unsigned long cpu
= smp_processor_id();
1190 if (per_cpu(cpu_tlbstate
, cpu
).state
== TLBSTATE_LAZY
)
1195 /* flush the TLB of every active CPU in the system */
1199 on_each_cpu(do_flush_tlb_all
, 0, 1, 1);
1202 /* used to set up the trampoline for other CPUs when the memory manager
1205 smp_alloc_memory(void)
1207 trampoline_base
= (__u32
)alloc_bootmem_low_pages(PAGE_SIZE
);
1208 if(__pa(trampoline_base
) >= 0x93000)
1212 /* send a reschedule CPI to one CPU by physical CPU number*/
1214 smp_send_reschedule(int cpu
)
1216 send_one_CPI(cpu
, VIC_RESCHEDULE_CPI
);
1221 hard_smp_processor_id(void)
1224 __u8 cpumask
= inb(VIC_PROC_WHO_AM_I
);
1225 if((cpumask
& QUAD_IDENTIFIER
) == QUAD_IDENTIFIER
)
1226 return cpumask
& 0x1F;
1228 for(i
= 0; i
< 8; i
++) {
1229 if(cpumask
& (1<<i
))
1232 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask
);
1236 /* broadcast a halt to all other CPUs */
1240 smp_call_function(smp_stop_cpu_function
, NULL
, 1, 1);
1243 /* this function is triggered in time.c when a clock tick fires
1244 * we need to re-broadcast the tick to all CPUs */
1246 smp_vic_timer_interrupt(struct pt_regs
*regs
)
1248 send_CPI_allbutself(VIC_TIMER_CPI
);
1249 smp_local_timer_interrupt(regs
);
1253 wrapper_smp_local_timer_interrupt(struct pt_regs
*regs
)
1256 smp_local_timer_interrupt(regs
);
1260 /* local (per CPU) timer interrupt. It does both profiling and
1261 * process statistics/rescheduling.
1263 * We do profiling in every local tick, statistics/rescheduling
1264 * happen only every 'profiling multiplier' ticks. The default
1265 * multiplier is 1 and it can be changed by writing the new multiplier
1266 * value into /proc/profile.
1269 smp_local_timer_interrupt(struct pt_regs
* regs
)
1271 int cpu
= smp_processor_id();
1274 profile_tick(CPU_PROFILING
, regs
);
1275 if (--per_cpu(prof_counter
, cpu
) <= 0) {
1277 * The multiplier may have changed since the last time we got
1278 * to this point as a result of the user writing to
1279 * /proc/profile. In this case we need to adjust the APIC
1280 * timer accordingly.
1282 * Interrupts are already masked off at this point.
1284 per_cpu(prof_counter
,cpu
) = per_cpu(prof_multiplier
, cpu
);
1285 if (per_cpu(prof_counter
, cpu
) !=
1286 per_cpu(prof_old_multiplier
, cpu
)) {
1287 /* FIXME: need to update the vic timer tick here */
1288 per_cpu(prof_old_multiplier
, cpu
) =
1289 per_cpu(prof_counter
, cpu
);
1292 update_process_times(user_mode(regs
));
1295 if( ((1<<cpu
) & voyager_extended_vic_processors
) == 0)
1296 /* only extended VIC processors participate in
1297 * interrupt distribution */
1301 * We take the 'long' return path, and there every subsystem
1302 * grabs the apropriate locks (kernel lock/ irq lock).
1304 * we might want to decouple profiling from the 'long path',
1305 * and do the profiling totally in assembly.
1307 * Currently this isn't too much of an issue (performance wise),
1308 * we can take more than 100K local irqs per second on a 100 MHz P5.
1311 if((++vic_tick
[cpu
] & 0x7) != 0)
1313 /* get here every 16 ticks (about every 1/6 of a second) */
1315 /* Change our priority to give someone else a chance at getting
1316 * the IRQ. The algorithm goes like this:
1318 * In the VIC, the dynamically routed interrupt is always
1319 * handled by the lowest priority eligible (i.e. receiving
1320 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1321 * lowest processor number gets it.
1323 * The priority of a CPU is controlled by a special per-CPU
1324 * VIC priority register which is 3 bits wide 0 being lowest
1325 * and 7 highest priority..
1327 * Therefore we subtract the average number of interrupts from
1328 * the number we've fielded. If this number is negative, we
1329 * lower the activity count and if it is positive, we raise
1332 * I'm afraid this still leads to odd looking interrupt counts:
1333 * the totals are all roughly equal, but the individual ones
1334 * look rather skewed.
1336 * FIXME: This algorithm is total crap when mixed with SMP
1337 * affinity code since we now try to even up the interrupt
1338 * counts when an affinity binding is keeping them on a
1340 weight
= (vic_intr_count
[cpu
]*voyager_extended_cpus
1341 - vic_intr_total
) >> 4;
1348 outb((__u8
)weight
, VIC_PRIORITY_REGISTER
);
1350 #ifdef VOYAGER_DEBUG
1351 if((vic_tick
[cpu
] & 0xFFF) == 0) {
1352 /* print this message roughly every 25 secs */
1353 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1354 cpu
, vic_tick
[cpu
], weight
);
1359 /* setup the profiling timer */
1361 setup_profiling_timer(unsigned int multiplier
)
1369 * Set the new multiplier for each CPU. CPUs don't start using the
1370 * new values until the next timer interrupt in which they do process
1373 for (i
= 0; i
< NR_CPUS
; ++i
)
1374 per_cpu(prof_multiplier
, i
) = multiplier
;
1380 /* The CPIs are handled in the per cpu 8259s, so they must be
1381 * enabled to be received: FIX: enabling the CPIs in the early
1382 * boot sequence interferes with bug checking; enable them later
1384 #define VIC_SET_GATE(cpi, vector) \
1385 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1386 #define QIC_SET_GATE(cpi, vector) \
1387 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1394 /* initialize the per cpu irq mask to all disabled */
1395 for(i
= 0; i
< NR_CPUS
; i
++)
1396 vic_irq_mask
[i
] = 0xFFFF;
1398 VIC_SET_GATE(VIC_CPI_LEVEL0
, vic_cpi_interrupt
);
1400 VIC_SET_GATE(VIC_SYS_INT
, vic_sys_interrupt
);
1401 VIC_SET_GATE(VIC_CMN_INT
, vic_cmn_interrupt
);
1403 QIC_SET_GATE(QIC_TIMER_CPI
, qic_timer_interrupt
);
1404 QIC_SET_GATE(QIC_INVALIDATE_CPI
, qic_invalidate_interrupt
);
1405 QIC_SET_GATE(QIC_RESCHEDULE_CPI
, qic_reschedule_interrupt
);
1406 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI
, qic_enable_irq_interrupt
);
1407 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI
, qic_call_function_interrupt
);
1410 /* now put the VIC descriptor into the first 48 IRQs
1412 * This is for later: first 16 correspond to PC IRQs; next 16
1413 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1414 for(i
= 0; i
< 48; i
++)
1415 irq_desc
[i
].handler
= &vic_irq_type
;
1418 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1419 * processor to receive CPI */
1421 send_CPI(__u32 cpuset
, __u8 cpi
)
1424 __u32 quad_cpuset
= (cpuset
& voyager_quad_processors
);
1426 if(cpi
< VIC_START_FAKE_CPI
) {
1427 /* fake CPI are only used for booting, so send to the
1428 * extended quads as well---Quads must be VIC booted */
1429 outb((__u8
)(cpuset
), VIC_CPI_Registers
[cpi
]);
1433 send_QIC_CPI(quad_cpuset
, cpi
);
1434 cpuset
&= ~quad_cpuset
;
1435 cpuset
&= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1438 for_each_online_cpu(cpu
) {
1439 if(cpuset
& (1<<cpu
))
1440 set_bit(cpi
, &vic_cpi_mailbox
[cpu
]);
1443 outb((__u8
)cpuset
, VIC_CPI_Registers
[VIC_CPI_LEVEL0
]);
1446 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1447 * set the cache line to shared by reading it.
1449 * DON'T make this inline otherwise the cache line read will be
1453 ack_QIC_CPI(__u8 cpi
) {
1454 __u8 cpu
= hard_smp_processor_id();
1458 outb(1<<cpi
, QIC_INTERRUPT_CLEAR1
);
1459 return voyager_quad_cpi_addr
[cpu
]->qic_cpi
[cpi
].cpi
;
1463 ack_special_QIC_CPI(__u8 cpi
)
1467 outb(QIC_CMN_INT
, QIC_INTERRUPT_CLEAR0
);
1470 outb(QIC_SYS_INT
, QIC_INTERRUPT_CLEAR0
);
1473 /* also clear at the VIC, just in case (nop for non-extended proc) */
1477 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1479 ack_VIC_CPI(__u8 cpi
)
1481 #ifdef VOYAGER_DEBUG
1482 unsigned long flags
;
1484 __u8 cpu
= smp_processor_id();
1486 local_irq_save(flags
);
1487 isr
= vic_read_isr();
1488 if((isr
& (1<<(cpi
&7))) == 0) {
1489 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu
, cpi
);
1492 /* send specific EOI; the two system interrupts have
1493 * bit 4 set for a separate vector but behave as the
1494 * corresponding 3 bit intr */
1495 outb_p(0x60|(cpi
& 7),0x20);
1497 #ifdef VOYAGER_DEBUG
1498 if((vic_read_isr() & (1<<(cpi
&7))) != 0) {
1499 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu
, cpi
);
1501 local_irq_restore(flags
);
1505 /* cribbed with thanks from irq.c */
1506 #define __byte(x,y) (((unsigned char *)&(y))[x])
1507 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1508 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1511 startup_vic_irq(unsigned int irq
)
1513 enable_vic_irq(irq
);
1518 /* The enable and disable routines. This is where we run into
1519 * conflicting architectural philosophy. Fundamentally, the voyager
1520 * architecture does not expect to have to disable interrupts globally
1521 * (the IRQ controllers belong to each CPU). The processor masquerade
1522 * which is used to start the system shouldn't be used in a running OS
1523 * since it will cause great confusion if two separate CPUs drive to
1524 * the same IRQ controller (I know, I've tried it).
1526 * The solution is a variant on the NCR lazy SPL design:
1528 * 1) To disable an interrupt, do nothing (other than set the
1529 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1531 * 2) If the interrupt dares to come in, raise the local mask against
1532 * it (this will result in all the CPU masks being raised
1535 * 3) To enable the interrupt, lower the mask on the local CPU and
1536 * broadcast an Interrupt enable CPI which causes all other CPUs to
1537 * adjust their masks accordingly. */
1540 enable_vic_irq(unsigned int irq
)
1542 /* linux doesn't to processor-irq affinity, so enable on
1543 * all CPUs we know about */
1544 int cpu
= smp_processor_id(), real_cpu
;
1545 __u16 mask
= (1<<irq
);
1546 __u32 processorList
= 0;
1547 unsigned long flags
;
1549 VDEBUG(("VOYAGER: enable_vic_irq(%d) CPU%d affinity 0x%lx\n",
1550 irq
, cpu
, cpu_irq_affinity
[cpu
]));
1551 spin_lock_irqsave(&vic_irq_lock
, flags
);
1552 for_each_online_cpu(real_cpu
) {
1553 if(!(voyager_extended_vic_processors
& (1<<real_cpu
)))
1555 if(!(cpu_irq_affinity
[real_cpu
] & mask
)) {
1556 /* irq has no affinity for this CPU, ignore */
1559 if(real_cpu
== cpu
) {
1560 enable_local_vic_irq(irq
);
1562 else if(vic_irq_mask
[real_cpu
] & mask
) {
1563 vic_irq_enable_mask
[real_cpu
] |= mask
;
1564 processorList
|= (1<<real_cpu
);
1567 spin_unlock_irqrestore(&vic_irq_lock
, flags
);
1569 send_CPI(processorList
, VIC_ENABLE_IRQ_CPI
);
1573 disable_vic_irq(unsigned int irq
)
1575 /* lazy disable, do nothing */
1579 enable_local_vic_irq(unsigned int irq
)
1581 __u8 cpu
= smp_processor_id();
1582 __u16 mask
= ~(1 << irq
);
1583 __u16 old_mask
= vic_irq_mask
[cpu
];
1585 vic_irq_mask
[cpu
] &= mask
;
1586 if(vic_irq_mask
[cpu
] == old_mask
)
1589 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1593 outb_p(cached_A1(cpu
),0xA1);
1597 outb_p(cached_21(cpu
),0x21);
1603 disable_local_vic_irq(unsigned int irq
)
1605 __u8 cpu
= smp_processor_id();
1606 __u16 mask
= (1 << irq
);
1607 __u16 old_mask
= vic_irq_mask
[cpu
];
1612 vic_irq_mask
[cpu
] |= mask
;
1613 if(old_mask
== vic_irq_mask
[cpu
])
1616 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1620 outb_p(cached_A1(cpu
),0xA1);
1624 outb_p(cached_21(cpu
),0x21);
1629 /* The VIC is level triggered, so the ack can only be issued after the
1630 * interrupt completes. However, we do Voyager lazy interrupt
1631 * handling here: It is an extremely expensive operation to mask an
1632 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1633 * this interrupt actually comes in, then we mask and ack here to push
1634 * the interrupt off to another CPU */
1636 before_handle_vic_irq(unsigned int irq
)
1638 irq_desc_t
*desc
= irq_desc
+ irq
;
1639 __u8 cpu
= smp_processor_id();
1641 _raw_spin_lock(&vic_irq_lock
);
1643 vic_intr_count
[cpu
]++;
1645 if(!(cpu_irq_affinity
[cpu
] & (1<<irq
))) {
1646 /* The irq is not in our affinity mask, push it off
1647 * onto another CPU */
1648 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n",
1650 disable_local_vic_irq(irq
);
1651 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1652 * actually calling the interrupt routine */
1653 desc
->status
|= IRQ_REPLAY
| IRQ_INPROGRESS
;
1654 } else if(desc
->status
& IRQ_DISABLED
) {
1655 /* Damn, the interrupt actually arrived, do the lazy
1656 * disable thing. The interrupt routine in irq.c will
1657 * not handle a IRQ_DISABLED interrupt, so nothing more
1658 * need be done here */
1659 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1661 disable_local_vic_irq(irq
);
1662 desc
->status
|= IRQ_REPLAY
;
1664 desc
->status
&= ~IRQ_REPLAY
;
1667 _raw_spin_unlock(&vic_irq_lock
);
1670 /* Finish the VIC interrupt: basically mask */
1672 after_handle_vic_irq(unsigned int irq
)
1674 irq_desc_t
*desc
= irq_desc
+ irq
;
1676 _raw_spin_lock(&vic_irq_lock
);
1678 unsigned int status
= desc
->status
& ~IRQ_INPROGRESS
;
1679 #ifdef VOYAGER_DEBUG
1683 desc
->status
= status
;
1684 if ((status
& IRQ_DISABLED
))
1685 disable_local_vic_irq(irq
);
1686 #ifdef VOYAGER_DEBUG
1687 /* DEBUG: before we ack, check what's in progress */
1688 isr
= vic_read_isr();
1689 if((isr
& (1<<irq
) && !(status
& IRQ_REPLAY
)) == 0) {
1691 __u8 cpu
= smp_processor_id();
1693 int mask
; /* Um... initialize me??? --RR */
1695 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1697 for_each_cpu(real_cpu
, mask
) {
1699 outb(VIC_CPU_MASQUERADE_ENABLE
| real_cpu
,
1701 isr
= vic_read_isr();
1702 if(isr
& (1<<irq
)) {
1703 printk("VOYAGER SMP: CPU%d ack irq %d\n",
1707 outb(cpu
, VIC_PROCESSOR_ID
);
1710 #endif /* VOYAGER_DEBUG */
1711 /* as soon as we ack, the interrupt is eligible for
1712 * receipt by another CPU so everything must be in
1715 if(status
& IRQ_REPLAY
) {
1716 /* replay is set if we disable the interrupt
1717 * in the before_handle_vic_irq() routine, so
1718 * clear the in progress bit here to allow the
1719 * next CPU to handle this correctly */
1720 desc
->status
&= ~(IRQ_REPLAY
| IRQ_INPROGRESS
);
1722 #ifdef VOYAGER_DEBUG
1723 isr
= vic_read_isr();
1724 if((isr
& (1<<irq
)) != 0)
1725 printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n",
1727 #endif /* VOYAGER_DEBUG */
1729 _raw_spin_unlock(&vic_irq_lock
);
1731 /* All code after this point is out of the main path - the IRQ
1732 * may be intercepted by another CPU if reasserted */
1736 /* Linux processor - interrupt affinity manipulations.
1738 * For each processor, we maintain a 32 bit irq affinity mask.
1739 * Initially it is set to all 1's so every processor accepts every
1740 * interrupt. In this call, we change the processor's affinity mask:
1742 * Change from enable to disable:
1744 * If the interrupt ever comes in to the processor, we will disable it
1745 * and ack it to push it off to another CPU, so just accept the mask here.
1747 * Change from disable to enable:
1749 * change the mask and then do an interrupt enable CPI to re-enable on
1750 * the selected processors */
1753 set_vic_irq_affinity(unsigned int irq
, cpumask_t mask
)
1755 /* Only extended processors handle interrupts */
1756 unsigned long real_mask
;
1757 unsigned long irq_mask
= 1 << irq
;
1760 real_mask
= cpus_addr(mask
)[0] & voyager_extended_vic_processors
;
1762 if(cpus_addr(mask
)[0] == 0)
1763 /* can't have no cpu's to accept the interrupt -- extremely
1764 * bad things will happen */
1768 /* can't change the affinity of the timer IRQ. This
1769 * is due to the constraint in the voyager
1770 * architecture that the CPI also comes in on and IRQ
1771 * line and we have chosen IRQ0 for this. If you
1772 * raise the mask on this interrupt, the processor
1773 * will no-longer be able to accept VIC CPIs */
1777 /* You can only have 32 interrupts in a voyager system
1778 * (and 32 only if you have a secondary microchannel
1782 for_each_online_cpu(cpu
) {
1783 unsigned long cpu_mask
= 1 << cpu
;
1785 if(cpu_mask
& real_mask
) {
1786 /* enable the interrupt for this cpu */
1787 cpu_irq_affinity
[cpu
] |= irq_mask
;
1789 /* disable the interrupt for this cpu */
1790 cpu_irq_affinity
[cpu
] &= ~irq_mask
;
1793 /* this is magic, we now have the correct affinity maps, so
1794 * enable the interrupt. This will send an enable CPI to
1795 * those cpu's who need to enable it in their local masks,
1796 * causing them to correct for the new affinity . If the
1797 * interrupt is currently globally disabled, it will simply be
1798 * disabled again as it comes in (voyager lazy disable). If
1799 * the affinity map is tightened to disable the interrupt on a
1800 * cpu, it will be pushed off when it comes in */
1801 enable_vic_irq(irq
);
1805 ack_vic_irq(unsigned int irq
)
1808 outb(0x62,0x20); /* Specific EOI to cascade */
1809 outb(0x60|(irq
& 7),0xA0);
1811 outb(0x60 | (irq
& 7),0x20);
1815 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1816 * but are not vectored by it. This means that the 8259 mask must be
1817 * lowered to receive them */
1819 vic_enable_cpi(void)
1821 __u8 cpu
= smp_processor_id();
1823 /* just take a copy of the current mask (nop for boot cpu) */
1824 vic_irq_mask
[cpu
] = vic_irq_mask
[boot_cpu_id
];
1826 enable_local_vic_irq(VIC_CPI_LEVEL0
);
1827 enable_local_vic_irq(VIC_CPI_LEVEL1
);
1828 /* for sys int and cmn int */
1829 enable_local_vic_irq(7);
1832 outb(QIC_DEFAULT_MASK0
, QIC_MASK_REGISTER0
);
1833 outb(QIC_CPI_ENABLE
, QIC_MASK_REGISTER1
);
1834 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1835 cpu
, QIC_CPI_ENABLE
));
1838 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1839 cpu
, vic_irq_mask
[cpu
]));
1845 int old_cpu
= smp_processor_id(), cpu
;
1847 /* dump the interrupt masks of each processor */
1848 for_each_online_cpu(cpu
) {
1849 __u16 imr
, isr
, irr
;
1850 unsigned long flags
;
1852 local_irq_save(flags
);
1853 outb(VIC_CPU_MASQUERADE_ENABLE
| cpu
, VIC_PROCESSOR_ID
);
1854 imr
= (inb(0xa1) << 8) | inb(0x21);
1856 irr
= inb(0xa0) << 8;
1860 isr
= inb(0xa0) << 8;
1863 outb(old_cpu
, VIC_PROCESSOR_ID
);
1864 local_irq_restore(flags
);
1865 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1866 cpu
, vic_irq_mask
[cpu
], imr
, irr
, isr
);
1868 /* These lines are put in to try to unstick an un ack'd irq */
1871 for(irq
=0; irq
<16; irq
++) {
1872 if(isr
& (1<<irq
)) {
1873 printk("\tCPU%d: ack irq %d\n",
1875 local_irq_save(flags
);
1876 outb(VIC_CPU_MASQUERADE_ENABLE
| cpu
,
1879 outb(old_cpu
, VIC_PROCESSOR_ID
);
1880 local_irq_restore(flags
);
1889 smp_voyager_power_off(void *dummy
)
1891 if(smp_processor_id() == boot_cpu_id
)
1892 voyager_power_off();
1894 smp_stop_cpu_function(NULL
);
1898 smp_prepare_cpus(unsigned int max_cpus
)
1900 /* FIXME: ignore max_cpus for now */
1904 void __devinit
smp_prepare_boot_cpu(void)
1906 cpu_set(smp_processor_id(), cpu_online_map
);
1907 cpu_set(smp_processor_id(), cpu_callout_map
);
1911 __cpu_up(unsigned int cpu
)
1913 /* This only works at boot for x86. See "rewrite" above. */
1914 if (cpu_isset(cpu
, smp_commenced_mask
))
1917 /* In case one didn't come up */
1918 if (!cpu_isset(cpu
, cpu_callin_map
))
1920 /* Unleash the CPU! */
1921 cpu_set(cpu
, smp_commenced_mask
);
1922 while (!cpu_isset(cpu
, cpu_online_map
))
1928 smp_cpus_done(unsigned int max_cpus
)