2 * Extensible Firmware Interface
4 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2003 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
12 * All EFI Runtime Services are not implemented yet as EFI only
13 * supports physical mode addressing on SoftSDV. This is to be fixed
14 * in a future version. --drummond 1999-07-20
16 * Implemented EFI runtime services and virtual mode calls. --davidm
18 * Goutham Rao: <goutham.rao@intel.com>
19 * Skip non-WB memory and ignore empty memory ranges.
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/time.h>
27 #include <linux/efi.h>
30 #include <asm/kregs.h>
31 #include <asm/meminit.h>
32 #include <asm/pgtable.h>
33 #include <asm/processor.h>
38 extern efi_status_t
efi_call_phys (void *, ...);
42 static efi_runtime_services_t
*runtime
;
43 static unsigned long mem_limit
= ~0UL, max_addr
= ~0UL;
45 #define efi_call_virt(f, args...) (*(f))(args)
47 #define STUB_GET_TIME(prefix, adjust_arg) \
49 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
51 struct ia64_fpreg fr[6]; \
52 efi_time_cap_t *atc = NULL; \
56 atc = adjust_arg(tc); \
57 ia64_save_scratch_fpregs(fr); \
58 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
59 ia64_load_scratch_fpregs(fr); \
63 #define STUB_SET_TIME(prefix, adjust_arg) \
65 prefix##_set_time (efi_time_t *tm) \
67 struct ia64_fpreg fr[6]; \
70 ia64_save_scratch_fpregs(fr); \
71 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
72 ia64_load_scratch_fpregs(fr); \
76 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
78 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
80 struct ia64_fpreg fr[6]; \
83 ia64_save_scratch_fpregs(fr); \
84 ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
85 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
86 ia64_load_scratch_fpregs(fr); \
90 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
92 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
94 struct ia64_fpreg fr[6]; \
95 efi_time_t *atm = NULL; \
99 atm = adjust_arg(tm); \
100 ia64_save_scratch_fpregs(fr); \
101 ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
103 ia64_load_scratch_fpregs(fr); \
107 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
108 static efi_status_t \
109 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
110 unsigned long *data_size, void *data) \
112 struct ia64_fpreg fr[6]; \
117 aattr = adjust_arg(attr); \
118 ia64_save_scratch_fpregs(fr); \
119 ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
120 adjust_arg(name), adjust_arg(vendor), aattr, \
121 adjust_arg(data_size), adjust_arg(data)); \
122 ia64_load_scratch_fpregs(fr); \
126 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
127 static efi_status_t \
128 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
130 struct ia64_fpreg fr[6]; \
133 ia64_save_scratch_fpregs(fr); \
134 ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
135 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
136 ia64_load_scratch_fpregs(fr); \
140 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
141 static efi_status_t \
142 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
143 unsigned long data_size, void *data) \
145 struct ia64_fpreg fr[6]; \
148 ia64_save_scratch_fpregs(fr); \
149 ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
150 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
152 ia64_load_scratch_fpregs(fr); \
156 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
157 static efi_status_t \
158 prefix##_get_next_high_mono_count (u32 *count) \
160 struct ia64_fpreg fr[6]; \
163 ia64_save_scratch_fpregs(fr); \
164 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
165 __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
166 ia64_load_scratch_fpregs(fr); \
170 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
172 prefix##_reset_system (int reset_type, efi_status_t status, \
173 unsigned long data_size, efi_char16_t *data) \
175 struct ia64_fpreg fr[6]; \
176 efi_char16_t *adata = NULL; \
179 adata = adjust_arg(data); \
181 ia64_save_scratch_fpregs(fr); \
182 efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
183 reset_type, status, data_size, adata); \
184 /* should not return, but just in case... */ \
185 ia64_load_scratch_fpregs(fr); \
188 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
190 STUB_GET_TIME(phys
, phys_ptr
)
191 STUB_SET_TIME(phys
, phys_ptr
)
192 STUB_GET_WAKEUP_TIME(phys
, phys_ptr
)
193 STUB_SET_WAKEUP_TIME(phys
, phys_ptr
)
194 STUB_GET_VARIABLE(phys
, phys_ptr
)
195 STUB_GET_NEXT_VARIABLE(phys
, phys_ptr
)
196 STUB_SET_VARIABLE(phys
, phys_ptr
)
197 STUB_GET_NEXT_HIGH_MONO_COUNT(phys
, phys_ptr
)
198 STUB_RESET_SYSTEM(phys
, phys_ptr
)
202 STUB_GET_TIME(virt
, id
)
203 STUB_SET_TIME(virt
, id
)
204 STUB_GET_WAKEUP_TIME(virt
, id
)
205 STUB_SET_WAKEUP_TIME(virt
, id
)
206 STUB_GET_VARIABLE(virt
, id
)
207 STUB_GET_NEXT_VARIABLE(virt
, id
)
208 STUB_SET_VARIABLE(virt
, id
)
209 STUB_GET_NEXT_HIGH_MONO_COUNT(virt
, id
)
210 STUB_RESET_SYSTEM(virt
, id
)
213 efi_gettimeofday (struct timespec
*ts
)
217 memset(ts
, 0, sizeof(ts
));
218 if ((*efi
.get_time
)(&tm
, NULL
) != EFI_SUCCESS
)
221 ts
->tv_sec
= mktime(tm
.year
, tm
.month
, tm
.day
, tm
.hour
, tm
.minute
, tm
.second
);
222 ts
->tv_nsec
= tm
.nanosecond
;
226 is_available_memory (efi_memory_desc_t
*md
)
228 if (!(md
->attribute
& EFI_MEMORY_WB
))
232 case EFI_LOADER_CODE
:
233 case EFI_LOADER_DATA
:
234 case EFI_BOOT_SERVICES_CODE
:
235 case EFI_BOOT_SERVICES_DATA
:
236 case EFI_CONVENTIONAL_MEMORY
:
243 * Trim descriptor MD so its starts at address START_ADDR. If the descriptor covers
244 * memory that is normally available to the kernel, issue a warning that some memory
248 trim_bottom (efi_memory_desc_t
*md
, u64 start_addr
)
250 u64 num_skipped_pages
;
252 if (md
->phys_addr
>= start_addr
|| !md
->num_pages
)
255 num_skipped_pages
= (start_addr
- md
->phys_addr
) >> EFI_PAGE_SHIFT
;
256 if (num_skipped_pages
> md
->num_pages
)
257 num_skipped_pages
= md
->num_pages
;
259 if (is_available_memory(md
))
260 printk(KERN_NOTICE
"efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole "
261 "at 0x%lx\n", __FUNCTION__
,
262 (num_skipped_pages
<< EFI_PAGE_SHIFT
) >> 10,
263 md
->phys_addr
, start_addr
- IA64_GRANULE_SIZE
);
265 * NOTE: Don't set md->phys_addr to START_ADDR because that could cause the memory
266 * descriptor list to become unsorted. In such a case, md->num_pages will be
267 * zero, so the Right Thing will happen.
269 md
->phys_addr
+= num_skipped_pages
<< EFI_PAGE_SHIFT
;
270 md
->num_pages
-= num_skipped_pages
;
274 trim_top (efi_memory_desc_t
*md
, u64 end_addr
)
276 u64 num_dropped_pages
, md_end_addr
;
278 md_end_addr
= md
->phys_addr
+ (md
->num_pages
<< EFI_PAGE_SHIFT
);
280 if (md_end_addr
<= end_addr
|| !md
->num_pages
)
283 num_dropped_pages
= (md_end_addr
- end_addr
) >> EFI_PAGE_SHIFT
;
284 if (num_dropped_pages
> md
->num_pages
)
285 num_dropped_pages
= md
->num_pages
;
287 if (is_available_memory(md
))
288 printk(KERN_NOTICE
"efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole "
289 "at 0x%lx\n", __FUNCTION__
,
290 (num_dropped_pages
<< EFI_PAGE_SHIFT
) >> 10,
291 md
->phys_addr
, end_addr
);
292 md
->num_pages
-= num_dropped_pages
;
296 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
297 * has memory that is available for OS use.
300 efi_memmap_walk (efi_freemem_callback_t callback
, void *arg
)
307 void *efi_map_start
, *efi_map_end
, *p
, *q
;
308 efi_memory_desc_t
*md
, *check_md
;
309 u64 efi_desc_size
, start
, end
, granule_addr
, last_granule_addr
, first_non_wb_addr
= 0;
310 unsigned long total_mem
= 0;
312 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
313 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
314 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
316 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
319 /* skip over non-WB memory descriptors; that's all we're interested in... */
320 if (!(md
->attribute
& EFI_MEMORY_WB
))
324 * granule_addr is the base of md's first granule.
325 * [granule_addr - first_non_wb_addr) is guaranteed to
326 * be contiguous WB memory.
328 granule_addr
= GRANULEROUNDDOWN(md
->phys_addr
);
329 first_non_wb_addr
= max(first_non_wb_addr
, granule_addr
);
331 if (first_non_wb_addr
< md
->phys_addr
) {
332 trim_bottom(md
, granule_addr
+ IA64_GRANULE_SIZE
);
333 granule_addr
= GRANULEROUNDDOWN(md
->phys_addr
);
334 first_non_wb_addr
= max(first_non_wb_addr
, granule_addr
);
337 for (q
= p
; q
< efi_map_end
; q
+= efi_desc_size
) {
340 if ((check_md
->attribute
& EFI_MEMORY_WB
) &&
341 (check_md
->phys_addr
== first_non_wb_addr
))
342 first_non_wb_addr
+= check_md
->num_pages
<< EFI_PAGE_SHIFT
;
344 break; /* non-WB or hole */
347 last_granule_addr
= GRANULEROUNDDOWN(first_non_wb_addr
);
348 if (last_granule_addr
< md
->phys_addr
+ (md
->num_pages
<< EFI_PAGE_SHIFT
))
349 trim_top(md
, last_granule_addr
);
351 if (is_available_memory(md
)) {
352 if (md
->phys_addr
+ (md
->num_pages
<< EFI_PAGE_SHIFT
) >= max_addr
) {
353 if (md
->phys_addr
>= max_addr
)
355 md
->num_pages
= (max_addr
- md
->phys_addr
) >> EFI_PAGE_SHIFT
;
356 first_non_wb_addr
= max_addr
;
359 if (total_mem
>= mem_limit
)
362 if (total_mem
+ (md
->num_pages
<< EFI_PAGE_SHIFT
) > mem_limit
) {
363 unsigned long limit_addr
= md
->phys_addr
;
365 limit_addr
+= mem_limit
- total_mem
;
366 limit_addr
= GRANULEROUNDDOWN(limit_addr
);
368 if (md
->phys_addr
> limit_addr
)
371 md
->num_pages
= (limit_addr
- md
->phys_addr
) >>
373 first_non_wb_addr
= max_addr
= md
->phys_addr
+
374 (md
->num_pages
<< EFI_PAGE_SHIFT
);
376 total_mem
+= (md
->num_pages
<< EFI_PAGE_SHIFT
);
378 if (md
->num_pages
== 0)
381 curr
.start
= PAGE_OFFSET
+ md
->phys_addr
;
382 curr
.end
= curr
.start
+ (md
->num_pages
<< EFI_PAGE_SHIFT
);
388 if (curr
.start
< prev
.start
)
389 printk(KERN_ERR
"Oops: EFI memory table not ordered!\n");
391 if (prev
.end
== curr
.start
) {
392 /* merge two consecutive memory ranges */
395 start
= PAGE_ALIGN(prev
.start
);
396 end
= prev
.end
& PAGE_MASK
;
397 if ((end
> start
) && (*callback
)(start
, end
, arg
) < 0)
405 start
= PAGE_ALIGN(prev
.start
);
406 end
= prev
.end
& PAGE_MASK
;
408 (*callback
)(start
, end
, arg
);
413 * Look for the PAL_CODE region reported by EFI and maps it using an
414 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
415 * Abstraction Layer chapter 11 in ADAG
419 efi_get_pal_addr (void)
421 void *efi_map_start
, *efi_map_end
, *p
;
422 efi_memory_desc_t
*md
;
424 int pal_code_count
= 0;
427 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
428 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
429 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
431 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
433 if (md
->type
!= EFI_PAL_CODE
)
436 if (++pal_code_count
> 1) {
437 printk(KERN_ERR
"Too many EFI Pal Code memory ranges, dropped @ %lx\n",
442 * The only ITLB entry in region 7 that is used is the one installed by
443 * __start(). That entry covers a 64MB range.
445 mask
= ~((1 << KERNEL_TR_PAGE_SHIFT
) - 1);
446 vaddr
= PAGE_OFFSET
+ md
->phys_addr
;
449 * We must check that the PAL mapping won't overlap with the kernel
452 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
453 * 256KB and that only one ITR is needed to map it. This implies that the
454 * PAL code is always aligned on its size, i.e., the closest matching page
455 * size supported by the TLB. Therefore PAL code is guaranteed never to
456 * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
457 * now the following test is enough to determine whether or not we need a
458 * dedicated ITR for the PAL code.
460 if ((vaddr
& mask
) == (KERNEL_START
& mask
)) {
461 printk(KERN_INFO
"%s: no need to install ITR for PAL code\n",
466 if (md
->num_pages
<< EFI_PAGE_SHIFT
> IA64_GRANULE_SIZE
)
467 panic("Woah! PAL code size bigger than a granule!");
470 mask
= ~((1 << IA64_GRANULE_SHIFT
) - 1);
472 printk(KERN_INFO
"CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
473 smp_processor_id(), md
->phys_addr
,
474 md
->phys_addr
+ (md
->num_pages
<< EFI_PAGE_SHIFT
),
475 vaddr
& mask
, (vaddr
& mask
) + IA64_GRANULE_SIZE
);
477 return __va(md
->phys_addr
);
479 printk(KERN_WARNING
"%s: no PAL-code memory-descriptor found",
485 efi_map_pal_code (void)
487 void *pal_vaddr
= efi_get_pal_addr ();
494 * Cannot write to CRx with PSR.ic=1
496 psr
= ia64_clear_ic();
497 ia64_itr(0x1, IA64_TR_PALCODE
, GRANULEROUNDDOWN((unsigned long) pal_vaddr
),
498 pte_val(pfn_pte(__pa(pal_vaddr
) >> PAGE_SHIFT
, PAGE_KERNEL
)),
500 ia64_set_psr(psr
); /* restore psr */
507 void *efi_map_start
, *efi_map_end
;
508 efi_config_table_t
*config_tables
;
511 char *cp
, *end
, vendor
[100] = "unknown";
512 extern char saved_command_line
[];
515 /* it's too early to be able to use the standard kernel command line support... */
516 for (cp
= saved_command_line
; *cp
; ) {
517 if (memcmp(cp
, "mem=", 4) == 0) {
519 mem_limit
= memparse(cp
, &end
);
523 } else if (memcmp(cp
, "max_addr=", 9) == 0) {
525 max_addr
= GRANULEROUNDDOWN(memparse(cp
, &end
));
530 while (*cp
!= ' ' && *cp
)
536 if (max_addr
!= ~0UL)
537 printk(KERN_INFO
"Ignoring memory above %luMB\n", max_addr
>> 20);
539 efi
.systab
= __va(ia64_boot_param
->efi_systab
);
542 * Verify the EFI Table
544 if (efi
.systab
== NULL
)
545 panic("Woah! Can't find EFI system table.\n");
546 if (efi
.systab
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
)
547 panic("Woah! EFI system table signature incorrect\n");
548 if ((efi
.systab
->hdr
.revision
^ EFI_SYSTEM_TABLE_REVISION
) >> 16 != 0)
549 printk(KERN_WARNING
"Warning: EFI system table major version mismatch: "
550 "got %d.%02d, expected %d.%02d\n",
551 efi
.systab
->hdr
.revision
>> 16, efi
.systab
->hdr
.revision
& 0xffff,
552 EFI_SYSTEM_TABLE_REVISION
>> 16, EFI_SYSTEM_TABLE_REVISION
& 0xffff);
554 config_tables
= __va(efi
.systab
->tables
);
556 /* Show what we know for posterity */
557 c16
= __va(efi
.systab
->fw_vendor
);
559 for (i
= 0;i
< (int) sizeof(vendor
) && *c16
; ++i
)
564 printk(KERN_INFO
"EFI v%u.%.02u by %s:",
565 efi
.systab
->hdr
.revision
>> 16, efi
.systab
->hdr
.revision
& 0xffff, vendor
);
567 for (i
= 0; i
< (int) efi
.systab
->nr_tables
; i
++) {
568 if (efi_guidcmp(config_tables
[i
].guid
, MPS_TABLE_GUID
) == 0) {
569 efi
.mps
= __va(config_tables
[i
].table
);
570 printk(" MPS=0x%lx", config_tables
[i
].table
);
571 } else if (efi_guidcmp(config_tables
[i
].guid
, ACPI_20_TABLE_GUID
) == 0) {
572 efi
.acpi20
= __va(config_tables
[i
].table
);
573 printk(" ACPI 2.0=0x%lx", config_tables
[i
].table
);
574 } else if (efi_guidcmp(config_tables
[i
].guid
, ACPI_TABLE_GUID
) == 0) {
575 efi
.acpi
= __va(config_tables
[i
].table
);
576 printk(" ACPI=0x%lx", config_tables
[i
].table
);
577 } else if (efi_guidcmp(config_tables
[i
].guid
, SMBIOS_TABLE_GUID
) == 0) {
578 efi
.smbios
= __va(config_tables
[i
].table
);
579 printk(" SMBIOS=0x%lx", config_tables
[i
].table
);
580 } else if (efi_guidcmp(config_tables
[i
].guid
, SAL_SYSTEM_TABLE_GUID
) == 0) {
581 efi
.sal_systab
= __va(config_tables
[i
].table
);
582 printk(" SALsystab=0x%lx", config_tables
[i
].table
);
583 } else if (efi_guidcmp(config_tables
[i
].guid
, HCDP_TABLE_GUID
) == 0) {
584 efi
.hcdp
= __va(config_tables
[i
].table
);
585 printk(" HCDP=0x%lx", config_tables
[i
].table
);
590 runtime
= __va(efi
.systab
->runtime
);
591 efi
.get_time
= phys_get_time
;
592 efi
.set_time
= phys_set_time
;
593 efi
.get_wakeup_time
= phys_get_wakeup_time
;
594 efi
.set_wakeup_time
= phys_set_wakeup_time
;
595 efi
.get_variable
= phys_get_variable
;
596 efi
.get_next_variable
= phys_get_next_variable
;
597 efi
.set_variable
= phys_set_variable
;
598 efi
.get_next_high_mono_count
= phys_get_next_high_mono_count
;
599 efi
.reset_system
= phys_reset_system
;
601 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
602 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
603 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
606 /* print EFI memory map: */
608 efi_memory_desc_t
*md
;
611 for (i
= 0, p
= efi_map_start
; p
< efi_map_end
; ++i
, p
+= efi_desc_size
) {
613 printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
614 i
, md
->type
, md
->attribute
, md
->phys_addr
,
615 md
->phys_addr
+ (md
->num_pages
<< EFI_PAGE_SHIFT
),
616 md
->num_pages
>> (20 - EFI_PAGE_SHIFT
));
622 efi_enter_virtual_mode();
626 efi_enter_virtual_mode (void)
628 void *efi_map_start
, *efi_map_end
, *p
;
629 efi_memory_desc_t
*md
;
633 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
634 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
635 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
637 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
639 if (md
->attribute
& EFI_MEMORY_RUNTIME
) {
641 * Some descriptors have multiple bits set, so the order of
642 * the tests is relevant.
644 if (md
->attribute
& EFI_MEMORY_WB
) {
645 md
->virt_addr
= (u64
) __va(md
->phys_addr
);
646 } else if (md
->attribute
& EFI_MEMORY_UC
) {
647 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
648 } else if (md
->attribute
& EFI_MEMORY_WC
) {
650 md
->virt_addr
= ia64_remap(md
->phys_addr
, (_PAGE_A
| _PAGE_P
656 printk(KERN_INFO
"EFI_MEMORY_WC mapping\n");
657 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
659 } else if (md
->attribute
& EFI_MEMORY_WT
) {
661 md
->virt_addr
= ia64_remap(md
->phys_addr
, (_PAGE_A
| _PAGE_P
662 | _PAGE_D
| _PAGE_MA_WT
666 printk(KERN_INFO
"EFI_MEMORY_WT mapping\n");
667 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
673 status
= efi_call_phys(__va(runtime
->set_virtual_address_map
),
674 ia64_boot_param
->efi_memmap_size
,
675 efi_desc_size
, ia64_boot_param
->efi_memdesc_version
,
676 ia64_boot_param
->efi_memmap
);
677 if (status
!= EFI_SUCCESS
) {
678 printk(KERN_WARNING
"warning: unable to switch EFI into virtual mode "
679 "(status=%lu)\n", status
);
684 * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
686 efi
.get_time
= virt_get_time
;
687 efi
.set_time
= virt_set_time
;
688 efi
.get_wakeup_time
= virt_get_wakeup_time
;
689 efi
.set_wakeup_time
= virt_set_wakeup_time
;
690 efi
.get_variable
= virt_get_variable
;
691 efi
.get_next_variable
= virt_get_next_variable
;
692 efi
.set_variable
= virt_set_variable
;
693 efi
.get_next_high_mono_count
= virt_get_next_high_mono_count
;
694 efi
.reset_system
= virt_reset_system
;
698 * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
699 * this type, other I/O port ranges should be described via ACPI.
702 efi_get_iobase (void)
704 void *efi_map_start
, *efi_map_end
, *p
;
705 efi_memory_desc_t
*md
;
708 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
709 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
710 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
712 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
714 if (md
->type
== EFI_MEMORY_MAPPED_IO_PORT_SPACE
) {
715 if (md
->attribute
& EFI_MEMORY_UC
)
716 return md
->phys_addr
;
723 efi_mem_type (unsigned long phys_addr
)
725 void *efi_map_start
, *efi_map_end
, *p
;
726 efi_memory_desc_t
*md
;
729 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
730 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
731 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
733 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
736 if (phys_addr
- md
->phys_addr
< (md
->num_pages
<< EFI_PAGE_SHIFT
))
743 efi_mem_attributes (unsigned long phys_addr
)
745 void *efi_map_start
, *efi_map_end
, *p
;
746 efi_memory_desc_t
*md
;
749 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
750 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
751 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
753 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
756 if (phys_addr
- md
->phys_addr
< (md
->num_pages
<< EFI_PAGE_SHIFT
))
757 return md
->attribute
;
761 EXPORT_SYMBOL(efi_mem_attributes
);
764 valid_phys_addr_range (unsigned long phys_addr
, unsigned long *size
)
766 void *efi_map_start
, *efi_map_end
, *p
;
767 efi_memory_desc_t
*md
;
770 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
771 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
772 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
774 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
777 if (phys_addr
- md
->phys_addr
< (md
->num_pages
<< EFI_PAGE_SHIFT
)) {
778 if (!(md
->attribute
& EFI_MEMORY_WB
))
781 if (*size
> md
->phys_addr
+ (md
->num_pages
<< EFI_PAGE_SHIFT
) - phys_addr
)
782 *size
= md
->phys_addr
+ (md
->num_pages
<< EFI_PAGE_SHIFT
) - phys_addr
;
790 efi_uart_console_only(void)
793 char *s
, name
[] = "ConOut";
794 efi_guid_t guid
= EFI_GLOBAL_VARIABLE_GUID
;
795 efi_char16_t
*utf16
, name_utf16
[32];
796 unsigned char data
[1024];
797 unsigned long size
= sizeof(data
);
798 struct efi_generic_dev_path
*hdr
, *end_addr
;
801 /* Convert to UTF-16 */
805 *utf16
++ = *s
++ & 0x7f;
808 status
= efi
.get_variable(name_utf16
, &guid
, NULL
, &size
, data
);
809 if (status
!= EFI_SUCCESS
) {
810 printk(KERN_ERR
"No EFI %s variable?\n", name
);
814 hdr
= (struct efi_generic_dev_path
*) data
;
815 end_addr
= (struct efi_generic_dev_path
*) ((u8
*) data
+ size
);
816 while (hdr
< end_addr
) {
817 if (hdr
->type
== EFI_DEV_MSG
&&
818 hdr
->sub_type
== EFI_DEV_MSG_UART
)
820 else if (hdr
->type
== EFI_DEV_END_PATH
||
821 hdr
->type
== EFI_DEV_END_PATH2
) {
824 if (hdr
->sub_type
== EFI_DEV_END_ENTIRE
)
828 hdr
= (struct efi_generic_dev_path
*) ((u8
*) hdr
+ hdr
->length
);
830 printk(KERN_ERR
"Malformed %s value\n", name
);