[PATCH] Avoid console spam with ext3 aborted journal.
[linux-2.6/verdex.git] / arch / mips / sgi-ip27 / ip27-irq.c
blob61817a18aed2a7666b45d870687e6ef89300561b
1 /*
2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
7 */
8 #include <linux/config.h>
9 #include <linux/init.h>
10 #include <linux/irq.h>
11 #include <linux/errno.h>
12 #include <linux/signal.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/interrupt.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/timex.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/smp_lock.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/delay.h>
24 #include <linux/bitops.h>
26 #include <asm/bootinfo.h>
27 #include <asm/io.h>
28 #include <asm/mipsregs.h>
29 #include <asm/system.h>
31 #include <asm/ptrace.h>
32 #include <asm/processor.h>
33 #include <asm/pci/bridge.h>
34 #include <asm/sn/addrs.h>
35 #include <asm/sn/agent.h>
36 #include <asm/sn/arch.h>
37 #include <asm/sn/hub.h>
38 #include <asm/sn/intr.h>
40 #undef DEBUG_IRQ
41 #ifdef DEBUG_IRQ
42 #define DBG(x...) printk(x)
43 #else
44 #define DBG(x...)
45 #endif
48 * Linux has a controller-independent x86 interrupt architecture.
49 * every controller has a 'controller-template', that is used
50 * by the main code to do the right thing. Each driver-visible
51 * interrupt source is transparently wired to the apropriate
52 * controller. Thus drivers need not be aware of the
53 * interrupt-controller.
55 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
56 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
57 * (IO-APICs assumed to be messaging to Pentium local-APICs)
59 * the code is designed to be easily extended with new/different
60 * interrupt controllers, without having to do assembly magic.
63 extern asmlinkage void ip27_irq(void);
65 extern struct bridge_controller *irq_to_bridge[];
66 extern int irq_to_slot[];
69 * use these macros to get the encoded nasid and widget id
70 * from the irq value
72 #define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
73 #define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
75 static inline int alloc_level(int cpu, int irq)
77 struct slice_data *si = cpu_data[cpu].data;
78 int level; /* pre-allocated entries */
80 level = find_first_zero_bit(si->irq_alloc_mask, LEVELS_PER_SLICE);
81 if (level >= LEVELS_PER_SLICE)
82 panic("Cpu %d flooded with devices\n", cpu);
84 __set_bit(level, si->irq_alloc_mask);
85 si->level_to_irq[level] = irq;
87 return level;
90 static inline int find_level(cpuid_t *cpunum, int irq)
92 int cpu, i;
94 for (cpu = 0; cpu <= NR_CPUS; cpu++) {
95 struct slice_data *si = cpu_data[cpu].data;
97 if (!cpu_online(cpu))
98 continue;
100 for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
101 if (si->level_to_irq[i] == irq) {
102 *cpunum = cpu;
104 return i;
108 panic("Could not identify cpu/level for irq %d\n", irq);
112 * Find first bit set
114 static int ms1bit(unsigned long x)
116 int b = 0, s;
118 s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
119 s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s;
120 s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s;
121 s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s;
122 s = 1; if (x >> 1 == 0) s = 0; b += s;
124 return b;
128 * This code is unnecessarily complex, because we do SA_INTERRUPT
129 * intr enabling. Basically, once we grab the set of intrs we need
130 * to service, we must mask _all_ these interrupts; firstly, to make
131 * sure the same intr does not intr again, causing recursion that
132 * can lead to stack overflow. Secondly, we can not just mask the
133 * one intr we are do_IRQing, because the non-masked intrs in the
134 * first set might intr again, causing multiple servicings of the
135 * same intr. This effect is mostly seen for intercpu intrs.
136 * Kanoj 05.13.00
139 void ip27_do_irq_mask0(struct pt_regs *regs)
141 int irq, swlevel;
142 hubreg_t pend0, mask0;
143 cpuid_t cpu = smp_processor_id();
144 int pi_int_mask0 =
145 (cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B;
147 /* copied from Irix intpend0() */
148 pend0 = LOCAL_HUB_L(PI_INT_PEND0);
149 mask0 = LOCAL_HUB_L(pi_int_mask0);
151 pend0 &= mask0; /* Pick intrs we should look at */
152 if (!pend0)
153 return;
155 swlevel = ms1bit(pend0);
156 #ifdef CONFIG_SMP
157 if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
158 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
159 } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
160 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
161 } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
162 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
163 smp_call_function_interrupt();
164 } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
165 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
166 smp_call_function_interrupt();
167 } else
168 #endif
170 /* "map" swlevel to irq */
171 struct slice_data *si = cpu_data[cpu].data;
173 irq = si->level_to_irq[swlevel];
174 do_IRQ(irq, regs);
177 LOCAL_HUB_L(PI_INT_PEND0);
180 void ip27_do_irq_mask1(struct pt_regs *regs)
182 int irq, swlevel;
183 hubreg_t pend1, mask1;
184 cpuid_t cpu = smp_processor_id();
185 int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B;
186 struct slice_data *si = cpu_data[cpu].data;
188 /* copied from Irix intpend0() */
189 pend1 = LOCAL_HUB_L(PI_INT_PEND1);
190 mask1 = LOCAL_HUB_L(pi_int_mask1);
192 pend1 &= mask1; /* Pick intrs we should look at */
193 if (!pend1)
194 return;
196 swlevel = ms1bit(pend1);
197 /* "map" swlevel to irq */
198 irq = si->level_to_irq[swlevel];
199 LOCAL_HUB_CLR_INTR(swlevel);
200 do_IRQ(irq, regs);
202 LOCAL_HUB_L(PI_INT_PEND1);
205 void ip27_prof_timer(struct pt_regs *regs)
207 panic("CPU %d got a profiling interrupt", smp_processor_id());
210 void ip27_hub_error(struct pt_regs *regs)
212 panic("CPU %d got a hub error interrupt", smp_processor_id());
215 static int intr_connect_level(int cpu, int bit)
217 nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
218 struct slice_data *si = cpu_data[cpu].data;
220 __set_bit(bit, si->irq_enable_mask);
222 if (!cputoslice(cpu)) {
223 REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
224 REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
225 } else {
226 REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
227 REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
230 return 0;
233 static int intr_disconnect_level(int cpu, int bit)
235 nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
236 struct slice_data *si = cpu_data[cpu].data;
238 __clear_bit(bit, si->irq_enable_mask);
240 if (!cputoslice(cpu)) {
241 REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
242 REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
243 } else {
244 REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
245 REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
248 return 0;
251 /* Startup one of the (PCI ...) IRQs routes over a bridge. */
252 static unsigned int startup_bridge_irq(unsigned int irq)
254 struct bridge_controller *bc;
255 bridgereg_t device;
256 bridge_t *bridge;
257 int pin, swlevel;
258 cpuid_t cpu;
260 pin = SLOT_FROM_PCI_IRQ(irq);
261 bc = IRQ_TO_BRIDGE(irq);
262 bridge = bc->base;
264 DBG("bridge_startup(): irq= 0x%x pin=%d\n", irq, pin);
266 * "map" irq to a swlevel greater than 6 since the first 6 bits
267 * of INT_PEND0 are taken
269 swlevel = find_level(&cpu, irq);
270 bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
271 bridge->b_int_enable |= (1 << pin);
272 bridge->b_int_enable |= 0x7ffffe00; /* more stuff in int_enable */
275 * Enable sending of an interrupt clear packt to the hub on a high to
276 * low transition of the interrupt pin.
278 * IRIX sets additional bits in the address which are documented as
279 * reserved in the bridge docs.
281 bridge->b_int_mode |= (1UL << pin);
284 * We assume the bridge to have a 1:1 mapping between devices
285 * (slots) and intr pins.
287 device = bridge->b_int_device;
288 device &= ~(7 << (pin*3));
289 device |= (pin << (pin*3));
290 bridge->b_int_device = device;
292 bridge->b_wid_tflush;
294 return 0; /* Never anything pending. */
297 /* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
298 static void shutdown_bridge_irq(unsigned int irq)
300 struct bridge_controller *bc = IRQ_TO_BRIDGE(irq);
301 bridge_t *bridge = bc->base;
302 struct slice_data *si = cpu_data[bc->irq_cpu].data;
303 int pin, swlevel;
304 cpuid_t cpu;
306 DBG("bridge_shutdown: irq 0x%x\n", irq);
307 pin = SLOT_FROM_PCI_IRQ(irq);
310 * map irq to a swlevel greater than 6 since the first 6 bits
311 * of INT_PEND0 are taken
313 swlevel = find_level(&cpu, irq);
314 intr_disconnect_level(cpu, swlevel);
316 __clear_bit(swlevel, si->irq_alloc_mask);
317 si->level_to_irq[swlevel] = -1;
319 bridge->b_int_enable &= ~(1 << pin);
320 bridge->b_wid_tflush;
323 static inline void enable_bridge_irq(unsigned int irq)
325 cpuid_t cpu;
326 int swlevel;
328 swlevel = find_level(&cpu, irq); /* Criminal offence */
329 intr_connect_level(cpu, swlevel);
332 static inline void disable_bridge_irq(unsigned int irq)
334 cpuid_t cpu;
335 int swlevel;
337 swlevel = find_level(&cpu, irq); /* Criminal offence */
338 intr_disconnect_level(cpu, swlevel);
341 static void mask_and_ack_bridge_irq(unsigned int irq)
343 disable_bridge_irq(irq);
346 static void end_bridge_irq(unsigned int irq)
348 if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)) &&
349 irq_desc[irq].action)
350 enable_bridge_irq(irq);
353 static struct hw_interrupt_type bridge_irq_type = {
354 .typename = "bridge",
355 .startup = startup_bridge_irq,
356 .shutdown = shutdown_bridge_irq,
357 .enable = enable_bridge_irq,
358 .disable = disable_bridge_irq,
359 .ack = mask_and_ack_bridge_irq,
360 .end = end_bridge_irq,
363 static unsigned long irq_map[NR_IRQS / BITS_PER_LONG];
365 static int allocate_irqno(void)
367 int irq;
369 again:
370 irq = find_first_zero_bit(irq_map, NR_IRQS);
372 if (irq >= NR_IRQS)
373 return -ENOSPC;
375 if (test_and_set_bit(irq, irq_map))
376 goto again;
378 return irq;
381 void free_irqno(unsigned int irq)
383 clear_bit(irq, irq_map);
386 void __devinit register_bridge_irq(unsigned int irq)
388 irq_desc[irq].status = IRQ_DISABLED;
389 irq_desc[irq].action = 0;
390 irq_desc[irq].depth = 1;
391 irq_desc[irq].handler = &bridge_irq_type;
394 int __devinit request_bridge_irq(struct bridge_controller *bc)
396 int irq = allocate_irqno();
397 int swlevel, cpu;
398 nasid_t nasid;
400 if (irq < 0)
401 return irq;
404 * "map" irq to a swlevel greater than 6 since the first 6 bits
405 * of INT_PEND0 are taken
407 cpu = bc->irq_cpu;
408 swlevel = alloc_level(cpu, irq);
409 if (unlikely(swlevel < 0)) {
410 free_irqno(irq);
412 return -EAGAIN;
415 /* Make sure it's not already pending when we connect it. */
416 nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
417 REMOTE_HUB_CLR_INTR(nasid, swlevel);
419 intr_connect_level(cpu, swlevel);
421 register_bridge_irq(irq);
423 return irq;
426 void __init arch_init_irq(void)
428 set_except_vector(0, ip27_irq);
431 void install_ipi(void)
433 int slice = LOCAL_HUB_L(PI_CPU_NUM);
434 int cpu = smp_processor_id();
435 struct slice_data *si = cpu_data[cpu].data;
436 hubreg_t mask, set;
438 if (slice == 0) {
439 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
440 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
441 mask = LOCAL_HUB_L(PI_INT_MASK0_A); /* Slice A */
442 set = (1UL << CPU_RESCHED_A_IRQ) | (1UL << CPU_CALL_A_IRQ);
443 mask |= set;
444 si->irq_enable_mask[0] |= set;
445 si->irq_alloc_mask[0] |= set;
446 LOCAL_HUB_S(PI_INT_MASK0_A, mask);
447 } else {
448 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
449 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
450 mask = LOCAL_HUB_L(PI_INT_MASK0_B); /* Slice B */
451 set = (1UL << CPU_RESCHED_B_IRQ) | (1UL << CPU_CALL_B_IRQ);
452 mask |= set;
453 si->irq_enable_mask[1] |= set;
454 si->irq_alloc_mask[1] |= set;
455 LOCAL_HUB_S(PI_INT_MASK0_B, mask);