[PATCH] Avoid console spam with ext3 aborted journal.
[linux-2.6/verdex.git] / fs / ntfs / mft.c
blobdfa85ac2f8bad8d5f861f3da79025adf3730739b
1 /**
2 * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2004 Anton Altaparmakov
5 * Copyright (c) 2002 Richard Russon
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/buffer_head.h>
24 #include <linux/swap.h>
26 #include "attrib.h"
27 #include "aops.h"
28 #include "bitmap.h"
29 #include "debug.h"
30 #include "dir.h"
31 #include "lcnalloc.h"
32 #include "malloc.h"
33 #include "mft.h"
34 #include "ntfs.h"
36 /**
37 * map_mft_record_page - map the page in which a specific mft record resides
38 * @ni: ntfs inode whose mft record page to map
40 * This maps the page in which the mft record of the ntfs inode @ni is situated
41 * and returns a pointer to the mft record within the mapped page.
43 * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
44 * contains the negative error code returned.
46 static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni)
48 ntfs_volume *vol = ni->vol;
49 struct inode *mft_vi = vol->mft_ino;
50 struct page *page;
51 unsigned long index, ofs, end_index;
53 BUG_ON(ni->page);
55 * The index into the page cache and the offset within the page cache
56 * page of the wanted mft record. FIXME: We need to check for
57 * overflowing the unsigned long, but I don't think we would ever get
58 * here if the volume was that big...
60 index = ni->mft_no << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
61 ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
63 /* The maximum valid index into the page cache for $MFT's data. */
64 end_index = mft_vi->i_size >> PAGE_CACHE_SHIFT;
66 /* If the wanted index is out of bounds the mft record doesn't exist. */
67 if (unlikely(index >= end_index)) {
68 if (index > end_index || (mft_vi->i_size & ~PAGE_CACHE_MASK) <
69 ofs + vol->mft_record_size) {
70 page = ERR_PTR(-ENOENT);
71 ntfs_error(vol->sb, "Attemt to read mft record 0x%lx, "
72 "which is beyond the end of the mft. "
73 "This is probably a bug in the ntfs "
74 "driver.", ni->mft_no);
75 goto err_out;
78 /* Read, map, and pin the page. */
79 page = ntfs_map_page(mft_vi->i_mapping, index);
80 if (likely(!IS_ERR(page))) {
81 /* Catch multi sector transfer fixup errors. */
82 if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) +
83 ofs)))) {
84 ni->page = page;
85 ni->page_ofs = ofs;
86 return page_address(page) + ofs;
88 ntfs_error(vol->sb, "Mft record 0x%lx is corrupt. "
89 "Run chkdsk.", ni->mft_no);
90 ntfs_unmap_page(page);
91 page = ERR_PTR(-EIO);
93 err_out:
94 ni->page = NULL;
95 ni->page_ofs = 0;
96 return (void*)page;
99 /**
100 * map_mft_record - map, pin and lock an mft record
101 * @ni: ntfs inode whose MFT record to map
103 * First, take the mrec_lock semaphore. We might now be sleeping, while waiting
104 * for the semaphore if it was already locked by someone else.
106 * The page of the record is mapped using map_mft_record_page() before being
107 * returned to the caller.
109 * This in turn uses ntfs_map_page() to get the page containing the wanted mft
110 * record (it in turn calls read_cache_page() which reads it in from disk if
111 * necessary, increments the use count on the page so that it cannot disappear
112 * under us and returns a reference to the page cache page).
114 * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
115 * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
116 * and the post-read mst fixups on each mft record in the page have been
117 * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
118 * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
119 * ntfs_map_page() waits for PG_locked to become clear and checks if
120 * PG_uptodate is set and returns an error code if not. This provides
121 * sufficient protection against races when reading/using the page.
123 * However there is the write mapping to think about. Doing the above described
124 * checking here will be fine, because when initiating the write we will set
125 * PG_locked and clear PG_uptodate making sure nobody is touching the page
126 * contents. Doing the locking this way means that the commit to disk code in
127 * the page cache code paths is automatically sufficiently locked with us as
128 * we will not touch a page that has been locked or is not uptodate. The only
129 * locking problem then is them locking the page while we are accessing it.
131 * So that code will end up having to own the mrec_lock of all mft
132 * records/inodes present in the page before I/O can proceed. In that case we
133 * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
134 * accessing anything without owning the mrec_lock semaphore. But we do need
135 * to use them because of the read_cache_page() invocation and the code becomes
136 * so much simpler this way that it is well worth it.
138 * The mft record is now ours and we return a pointer to it. You need to check
139 * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
140 * the error code.
142 * NOTE: Caller is responsible for setting the mft record dirty before calling
143 * unmap_mft_record(). This is obviously only necessary if the caller really
144 * modified the mft record...
145 * Q: Do we want to recycle one of the VFS inode state bits instead?
146 * A: No, the inode ones mean we want to change the mft record, not we want to
147 * write it out.
149 MFT_RECORD *map_mft_record(ntfs_inode *ni)
151 MFT_RECORD *m;
153 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
155 /* Make sure the ntfs inode doesn't go away. */
156 atomic_inc(&ni->count);
158 /* Serialize access to this mft record. */
159 down(&ni->mrec_lock);
161 m = map_mft_record_page(ni);
162 if (likely(!IS_ERR(m)))
163 return m;
165 up(&ni->mrec_lock);
166 atomic_dec(&ni->count);
167 ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m));
168 return m;
172 * unmap_mft_record_page - unmap the page in which a specific mft record resides
173 * @ni: ntfs inode whose mft record page to unmap
175 * This unmaps the page in which the mft record of the ntfs inode @ni is
176 * situated and returns. This is a NOOP if highmem is not configured.
178 * The unmap happens via ntfs_unmap_page() which in turn decrements the use
179 * count on the page thus releasing it from the pinned state.
181 * We do not actually unmap the page from memory of course, as that will be
182 * done by the page cache code itself when memory pressure increases or
183 * whatever.
185 static inline void unmap_mft_record_page(ntfs_inode *ni)
187 BUG_ON(!ni->page);
189 // TODO: If dirty, blah...
190 ntfs_unmap_page(ni->page);
191 ni->page = NULL;
192 ni->page_ofs = 0;
193 return;
197 * unmap_mft_record - release a mapped mft record
198 * @ni: ntfs inode whose MFT record to unmap
200 * We release the page mapping and the mrec_lock mutex which unmaps the mft
201 * record and releases it for others to get hold of. We also release the ntfs
202 * inode by decrementing the ntfs inode reference count.
204 * NOTE: If caller has modified the mft record, it is imperative to set the mft
205 * record dirty BEFORE calling unmap_mft_record().
207 void unmap_mft_record(ntfs_inode *ni)
209 struct page *page = ni->page;
211 BUG_ON(!page);
213 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
215 unmap_mft_record_page(ni);
216 up(&ni->mrec_lock);
217 atomic_dec(&ni->count);
219 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
220 * ntfs_clear_extent_inode() in the extent inode case, and to the
221 * caller in the non-extent, yet pure ntfs inode case, to do the actual
222 * tear down of all structures and freeing of all allocated memory.
224 return;
228 * map_extent_mft_record - load an extent inode and attach it to its base
229 * @base_ni: base ntfs inode
230 * @mref: mft reference of the extent inode to load
231 * @ntfs_ino: on successful return, pointer to the ntfs_inode structure
233 * Load the extent mft record @mref and attach it to its base inode @base_ni.
234 * Return the mapped extent mft record if IS_ERR(result) is false. Otherwise
235 * PTR_ERR(result) gives the negative error code.
237 * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
238 * structure of the mapped extent inode.
240 MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref,
241 ntfs_inode **ntfs_ino)
243 MFT_RECORD *m;
244 ntfs_inode *ni = NULL;
245 ntfs_inode **extent_nis = NULL;
246 int i;
247 unsigned long mft_no = MREF(mref);
248 u16 seq_no = MSEQNO(mref);
249 BOOL destroy_ni = FALSE;
251 ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
252 mft_no, base_ni->mft_no);
253 /* Make sure the base ntfs inode doesn't go away. */
254 atomic_inc(&base_ni->count);
256 * Check if this extent inode has already been added to the base inode,
257 * in which case just return it. If not found, add it to the base
258 * inode before returning it.
260 down(&base_ni->extent_lock);
261 if (base_ni->nr_extents > 0) {
262 extent_nis = base_ni->ext.extent_ntfs_inos;
263 for (i = 0; i < base_ni->nr_extents; i++) {
264 if (mft_no != extent_nis[i]->mft_no)
265 continue;
266 ni = extent_nis[i];
267 /* Make sure the ntfs inode doesn't go away. */
268 atomic_inc(&ni->count);
269 break;
272 if (likely(ni != NULL)) {
273 up(&base_ni->extent_lock);
274 atomic_dec(&base_ni->count);
275 /* We found the record; just have to map and return it. */
276 m = map_mft_record(ni);
277 /* map_mft_record() has incremented this on success. */
278 atomic_dec(&ni->count);
279 if (likely(!IS_ERR(m))) {
280 /* Verify the sequence number. */
281 if (likely(le16_to_cpu(m->sequence_number) == seq_no)) {
282 ntfs_debug("Done 1.");
283 *ntfs_ino = ni;
284 return m;
286 unmap_mft_record(ni);
287 ntfs_error(base_ni->vol->sb, "Found stale extent mft "
288 "reference! Corrupt file system. "
289 "Run chkdsk.");
290 return ERR_PTR(-EIO);
292 map_err_out:
293 ntfs_error(base_ni->vol->sb, "Failed to map extent "
294 "mft record, error code %ld.", -PTR_ERR(m));
295 return m;
297 /* Record wasn't there. Get a new ntfs inode and initialize it. */
298 ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no);
299 if (unlikely(!ni)) {
300 up(&base_ni->extent_lock);
301 atomic_dec(&base_ni->count);
302 return ERR_PTR(-ENOMEM);
304 ni->vol = base_ni->vol;
305 ni->seq_no = seq_no;
306 ni->nr_extents = -1;
307 ni->ext.base_ntfs_ino = base_ni;
308 /* Now map the record. */
309 m = map_mft_record(ni);
310 if (IS_ERR(m)) {
311 up(&base_ni->extent_lock);
312 atomic_dec(&base_ni->count);
313 ntfs_clear_extent_inode(ni);
314 goto map_err_out;
316 /* Verify the sequence number if it is present. */
317 if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) {
318 ntfs_error(base_ni->vol->sb, "Found stale extent mft "
319 "reference! Corrupt file system. Run chkdsk.");
320 destroy_ni = TRUE;
321 m = ERR_PTR(-EIO);
322 goto unm_err_out;
324 /* Attach extent inode to base inode, reallocating memory if needed. */
325 if (!(base_ni->nr_extents & 3)) {
326 ntfs_inode **tmp;
327 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *);
329 tmp = (ntfs_inode **)kmalloc(new_size, GFP_NOFS);
330 if (unlikely(!tmp)) {
331 ntfs_error(base_ni->vol->sb, "Failed to allocate "
332 "internal buffer.");
333 destroy_ni = TRUE;
334 m = ERR_PTR(-ENOMEM);
335 goto unm_err_out;
337 if (base_ni->nr_extents) {
338 BUG_ON(!base_ni->ext.extent_ntfs_inos);
339 memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size -
340 4 * sizeof(ntfs_inode *));
341 kfree(base_ni->ext.extent_ntfs_inos);
343 base_ni->ext.extent_ntfs_inos = tmp;
345 base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni;
346 up(&base_ni->extent_lock);
347 atomic_dec(&base_ni->count);
348 ntfs_debug("Done 2.");
349 *ntfs_ino = ni;
350 return m;
351 unm_err_out:
352 unmap_mft_record(ni);
353 up(&base_ni->extent_lock);
354 atomic_dec(&base_ni->count);
356 * If the extent inode was not attached to the base inode we need to
357 * release it or we will leak memory.
359 if (destroy_ni)
360 ntfs_clear_extent_inode(ni);
361 return m;
364 #ifdef NTFS_RW
367 * __mark_mft_record_dirty - set the mft record and the page containing it dirty
368 * @ni: ntfs inode describing the mapped mft record
370 * Internal function. Users should call mark_mft_record_dirty() instead.
372 * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
373 * as well as the page containing the mft record, dirty. Also, mark the base
374 * vfs inode dirty. This ensures that any changes to the mft record are
375 * written out to disk.
377 * NOTE: We only set I_DIRTY_SYNC and I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
378 * on the base vfs inode, because even though file data may have been modified,
379 * it is dirty in the inode meta data rather than the data page cache of the
380 * inode, and thus there are no data pages that need writing out. Therefore, a
381 * full mark_inode_dirty() is overkill. A mark_inode_dirty_sync(), on the
382 * other hand, is not sufficient, because I_DIRTY_DATASYNC needs to be set to
383 * ensure ->write_inode is called from generic_osync_inode() and this needs to
384 * happen or the file data would not necessarily hit the device synchronously,
385 * even though the vfs inode has the O_SYNC flag set. Also, I_DIRTY_DATASYNC
386 * simply "feels" better than just I_DIRTY_SYNC, since the file data has not
387 * actually hit the block device yet, which is not what I_DIRTY_SYNC on its own
388 * would suggest.
390 void __mark_mft_record_dirty(ntfs_inode *ni)
392 ntfs_inode *base_ni;
394 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
395 BUG_ON(NInoAttr(ni));
396 mark_ntfs_record_dirty(ni->page, ni->page_ofs);
397 /* Determine the base vfs inode and mark it dirty, too. */
398 down(&ni->extent_lock);
399 if (likely(ni->nr_extents >= 0))
400 base_ni = ni;
401 else
402 base_ni = ni->ext.base_ntfs_ino;
403 up(&ni->extent_lock);
404 __mark_inode_dirty(VFS_I(base_ni), I_DIRTY_SYNC | I_DIRTY_DATASYNC);
407 static const char *ntfs_please_email = "Please email "
408 "linux-ntfs-dev@lists.sourceforge.net and say that you saw "
409 "this message. Thank you.";
412 * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
413 * @vol: ntfs volume on which the mft record to synchronize resides
414 * @mft_no: mft record number of mft record to synchronize
415 * @m: mapped, mst protected (extent) mft record to synchronize
417 * Write the mapped, mst protected (extent) mft record @m with mft record
418 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
419 * bypassing the page cache and the $MFTMirr inode itself.
421 * This function is only for use at umount time when the mft mirror inode has
422 * already been disposed off. We BUG() if we are called while the mft mirror
423 * inode is still attached to the volume.
425 * On success return 0. On error return -errno.
427 * NOTE: This function is not implemented yet as I am not convinced it can
428 * actually be triggered considering the sequence of commits we do in super.c::
429 * ntfs_put_super(). But just in case we provide this place holder as the
430 * alternative would be either to BUG() or to get a NULL pointer dereference
431 * and Oops.
433 static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol,
434 const unsigned long mft_no, MFT_RECORD *m)
436 BUG_ON(vol->mftmirr_ino);
437 ntfs_error(vol->sb, "Umount time mft mirror syncing is not "
438 "implemented yet. %s", ntfs_please_email);
439 return -EOPNOTSUPP;
443 * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
444 * @vol: ntfs volume on which the mft record to synchronize resides
445 * @mft_no: mft record number of mft record to synchronize
446 * @m: mapped, mst protected (extent) mft record to synchronize
447 * @sync: if true, wait for i/o completion
449 * Write the mapped, mst protected (extent) mft record @m with mft record
450 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
452 * On success return 0. On error return -errno and set the volume errors flag
453 * in the ntfs volume @vol.
455 * NOTE: We always perform synchronous i/o and ignore the @sync parameter.
457 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just
458 * schedule i/o via ->writepage or do it via kntfsd or whatever.
460 int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no,
461 MFT_RECORD *m, int sync)
463 struct page *page;
464 unsigned int blocksize = vol->sb->s_blocksize;
465 int max_bhs = vol->mft_record_size / blocksize;
466 struct buffer_head *bhs[max_bhs];
467 struct buffer_head *bh, *head;
468 u8 *kmirr;
469 runlist_element *rl;
470 unsigned int block_start, block_end, m_start, m_end, page_ofs;
471 int i_bhs, nr_bhs, err = 0;
472 unsigned char blocksize_bits = vol->mftmirr_ino->i_blkbits;
474 ntfs_debug("Entering for inode 0x%lx.", mft_no);
475 BUG_ON(!max_bhs);
476 if (unlikely(!vol->mftmirr_ino)) {
477 /* This could happen during umount... */
478 err = ntfs_sync_mft_mirror_umount(vol, mft_no, m);
479 if (likely(!err))
480 return err;
481 goto err_out;
483 /* Get the page containing the mirror copy of the mft record @m. */
484 page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >>
485 (PAGE_CACHE_SHIFT - vol->mft_record_size_bits));
486 if (IS_ERR(page)) {
487 ntfs_error(vol->sb, "Failed to map mft mirror page.");
488 err = PTR_ERR(page);
489 goto err_out;
491 lock_page(page);
492 BUG_ON(!PageUptodate(page));
493 ClearPageUptodate(page);
494 /* Offset of the mft mirror record inside the page. */
495 page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
496 /* The address in the page of the mirror copy of the mft record @m. */
497 kmirr = page_address(page) + page_ofs;
498 /* Copy the mst protected mft record to the mirror. */
499 memcpy(kmirr, m, vol->mft_record_size);
500 /* Create uptodate buffers if not present. */
501 if (unlikely(!page_has_buffers(page))) {
502 struct buffer_head *tail;
504 bh = head = alloc_page_buffers(page, blocksize, 1);
505 do {
506 set_buffer_uptodate(bh);
507 tail = bh;
508 bh = bh->b_this_page;
509 } while (bh);
510 tail->b_this_page = head;
511 attach_page_buffers(page, head);
512 BUG_ON(!page_has_buffers(page));
514 bh = head = page_buffers(page);
515 BUG_ON(!bh);
516 rl = NULL;
517 nr_bhs = 0;
518 block_start = 0;
519 m_start = kmirr - (u8*)page_address(page);
520 m_end = m_start + vol->mft_record_size;
521 do {
522 block_end = block_start + blocksize;
523 /* If the buffer is outside the mft record, skip it. */
524 if (block_end <= m_start)
525 continue;
526 if (unlikely(block_start >= m_end))
527 break;
528 /* Need to map the buffer if it is not mapped already. */
529 if (unlikely(!buffer_mapped(bh))) {
530 VCN vcn;
531 LCN lcn;
532 unsigned int vcn_ofs;
534 /* Obtain the vcn and offset of the current block. */
535 vcn = ((VCN)mft_no << vol->mft_record_size_bits) +
536 (block_start - m_start);
537 vcn_ofs = vcn & vol->cluster_size_mask;
538 vcn >>= vol->cluster_size_bits;
539 if (!rl) {
540 down_read(&NTFS_I(vol->mftmirr_ino)->
541 runlist.lock);
542 rl = NTFS_I(vol->mftmirr_ino)->runlist.rl;
544 * $MFTMirr always has the whole of its runlist
545 * in memory.
547 BUG_ON(!rl);
549 /* Seek to element containing target vcn. */
550 while (rl->length && rl[1].vcn <= vcn)
551 rl++;
552 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
553 /* For $MFTMirr, only lcn >= 0 is a successful remap. */
554 if (likely(lcn >= 0)) {
555 /* Setup buffer head to correct block. */
556 bh->b_blocknr = ((lcn <<
557 vol->cluster_size_bits) +
558 vcn_ofs) >> blocksize_bits;
559 set_buffer_mapped(bh);
560 } else {
561 bh->b_blocknr = -1;
562 ntfs_error(vol->sb, "Cannot write mft mirror "
563 "record 0x%lx because its "
564 "location on disk could not "
565 "be determined (error code "
566 "%lli).", mft_no,
567 (long long)lcn);
568 err = -EIO;
571 BUG_ON(!buffer_uptodate(bh));
572 BUG_ON(!nr_bhs && (m_start != block_start));
573 BUG_ON(nr_bhs >= max_bhs);
574 bhs[nr_bhs++] = bh;
575 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
576 } while (block_start = block_end, (bh = bh->b_this_page) != head);
577 if (unlikely(rl))
578 up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock);
579 if (likely(!err)) {
580 /* Lock buffers and start synchronous write i/o on them. */
581 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
582 struct buffer_head *tbh = bhs[i_bhs];
584 if (unlikely(test_set_buffer_locked(tbh)))
585 BUG();
586 BUG_ON(!buffer_uptodate(tbh));
587 clear_buffer_dirty(tbh);
588 get_bh(tbh);
589 tbh->b_end_io = end_buffer_write_sync;
590 submit_bh(WRITE, tbh);
592 /* Wait on i/o completion of buffers. */
593 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
594 struct buffer_head *tbh = bhs[i_bhs];
596 wait_on_buffer(tbh);
597 if (unlikely(!buffer_uptodate(tbh))) {
598 err = -EIO;
600 * Set the buffer uptodate so the page and
601 * buffer states do not become out of sync.
603 set_buffer_uptodate(tbh);
606 } else /* if (unlikely(err)) */ {
607 /* Clean the buffers. */
608 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
609 clear_buffer_dirty(bhs[i_bhs]);
611 /* Current state: all buffers are clean, unlocked, and uptodate. */
612 /* Remove the mst protection fixups again. */
613 post_write_mst_fixup((NTFS_RECORD*)kmirr);
614 flush_dcache_page(page);
615 SetPageUptodate(page);
616 unlock_page(page);
617 ntfs_unmap_page(page);
618 if (likely(!err)) {
619 ntfs_debug("Done.");
620 } else {
621 ntfs_error(vol->sb, "I/O error while writing mft mirror "
622 "record 0x%lx!", mft_no);
623 err_out:
624 ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error "
625 "code %i). Volume will be left marked dirty "
626 "on umount. Run ntfsfix on the partition "
627 "after umounting to correct this.", -err);
628 NVolSetErrors(vol);
630 return err;
634 * write_mft_record_nolock - write out a mapped (extent) mft record
635 * @ni: ntfs inode describing the mapped (extent) mft record
636 * @m: mapped (extent) mft record to write
637 * @sync: if true, wait for i/o completion
639 * Write the mapped (extent) mft record @m described by the (regular or extent)
640 * ntfs inode @ni to backing store. If the mft record @m has a counterpart in
641 * the mft mirror, that is also updated.
643 * We only write the mft record if the ntfs inode @ni is dirty and the first
644 * buffer belonging to its mft record is dirty, too. We ignore the dirty state
645 * of subsequent buffers because we could have raced with
646 * fs/ntfs/aops.c::mark_ntfs_record_dirty().
648 * On success, clean the mft record and return 0. On error, leave the mft
649 * record dirty and return -errno. The caller should call make_bad_inode() on
650 * the base inode to ensure no more access happens to this inode. We do not do
651 * it here as the caller may want to finish writing other extent mft records
652 * first to minimize on-disk metadata inconsistencies.
654 * NOTE: We always perform synchronous i/o and ignore the @sync parameter.
655 * However, if the mft record has a counterpart in the mft mirror and @sync is
656 * true, we write the mft record, wait for i/o completion, and only then write
657 * the mft mirror copy. This ensures that if the system crashes either the mft
658 * or the mft mirror will contain a self-consistent mft record @m. If @sync is
659 * false on the other hand, we start i/o on both and then wait for completion
660 * on them. This provides a speedup but no longer guarantees that you will end
661 * up with a self-consistent mft record in the case of a crash but if you asked
662 * for asynchronous writing you probably do not care about that anyway.
664 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just
665 * schedule i/o via ->writepage or do it via kntfsd or whatever.
667 int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync)
669 ntfs_volume *vol = ni->vol;
670 struct page *page = ni->page;
671 unsigned char blocksize_bits = vol->mft_ino->i_blkbits;
672 unsigned int blocksize = 1 << blocksize_bits;
673 int max_bhs = vol->mft_record_size / blocksize;
674 struct buffer_head *bhs[max_bhs];
675 struct buffer_head *bh, *head;
676 runlist_element *rl;
677 unsigned int block_start, block_end, m_start, m_end;
678 int i_bhs, nr_bhs, err = 0;
680 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
681 BUG_ON(NInoAttr(ni));
682 BUG_ON(!max_bhs);
683 BUG_ON(!PageLocked(page));
685 * If the ntfs_inode is clean no need to do anything. If it is dirty,
686 * mark it as clean now so that it can be redirtied later on if needed.
687 * There is no danger of races since the caller is holding the locks
688 * for the mft record @m and the page it is in.
690 if (!NInoTestClearDirty(ni))
691 goto done;
692 BUG_ON(!page_has_buffers(page));
693 bh = head = page_buffers(page);
694 BUG_ON(!bh);
695 rl = NULL;
696 nr_bhs = 0;
697 block_start = 0;
698 m_start = ni->page_ofs;
699 m_end = m_start + vol->mft_record_size;
700 do {
701 block_end = block_start + blocksize;
702 /* If the buffer is outside the mft record, skip it. */
703 if (block_end <= m_start)
704 continue;
705 if (unlikely(block_start >= m_end))
706 break;
708 * If this block is not the first one in the record, we ignore
709 * the buffer's dirty state because we could have raced with a
710 * parallel mark_ntfs_record_dirty().
712 if (block_start == m_start) {
713 /* This block is the first one in the record. */
714 if (!buffer_dirty(bh)) {
715 BUG_ON(nr_bhs);
716 /* Clean records are not written out. */
717 break;
720 /* Need to map the buffer if it is not mapped already. */
721 if (unlikely(!buffer_mapped(bh))) {
722 VCN vcn;
723 LCN lcn;
724 unsigned int vcn_ofs;
726 /* Obtain the vcn and offset of the current block. */
727 vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) +
728 (block_start - m_start);
729 vcn_ofs = vcn & vol->cluster_size_mask;
730 vcn >>= vol->cluster_size_bits;
731 if (!rl) {
732 down_read(&NTFS_I(vol->mft_ino)->runlist.lock);
733 rl = NTFS_I(vol->mft_ino)->runlist.rl;
734 BUG_ON(!rl);
736 /* Seek to element containing target vcn. */
737 while (rl->length && rl[1].vcn <= vcn)
738 rl++;
739 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
740 /* For $MFT, only lcn >= 0 is a successful remap. */
741 if (likely(lcn >= 0)) {
742 /* Setup buffer head to correct block. */
743 bh->b_blocknr = ((lcn <<
744 vol->cluster_size_bits) +
745 vcn_ofs) >> blocksize_bits;
746 set_buffer_mapped(bh);
747 } else {
748 bh->b_blocknr = -1;
749 ntfs_error(vol->sb, "Cannot write mft record "
750 "0x%lx because its location "
751 "on disk could not be "
752 "determined (error code %lli).",
753 ni->mft_no, (long long)lcn);
754 err = -EIO;
757 BUG_ON(!buffer_uptodate(bh));
758 BUG_ON(!nr_bhs && (m_start != block_start));
759 BUG_ON(nr_bhs >= max_bhs);
760 bhs[nr_bhs++] = bh;
761 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
762 } while (block_start = block_end, (bh = bh->b_this_page) != head);
763 if (unlikely(rl))
764 up_read(&NTFS_I(vol->mft_ino)->runlist.lock);
765 if (!nr_bhs)
766 goto done;
767 if (unlikely(err))
768 goto cleanup_out;
769 /* Apply the mst protection fixups. */
770 err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size);
771 if (err) {
772 ntfs_error(vol->sb, "Failed to apply mst fixups!");
773 goto cleanup_out;
775 flush_dcache_mft_record_page(ni);
776 /* Lock buffers and start synchronous write i/o on them. */
777 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
778 struct buffer_head *tbh = bhs[i_bhs];
780 if (unlikely(test_set_buffer_locked(tbh)))
781 BUG();
782 BUG_ON(!buffer_uptodate(tbh));
783 clear_buffer_dirty(tbh);
784 get_bh(tbh);
785 tbh->b_end_io = end_buffer_write_sync;
786 submit_bh(WRITE, tbh);
788 /* Synchronize the mft mirror now if not @sync. */
789 if (!sync && ni->mft_no < vol->mftmirr_size)
790 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
791 /* Wait on i/o completion of buffers. */
792 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
793 struct buffer_head *tbh = bhs[i_bhs];
795 wait_on_buffer(tbh);
796 if (unlikely(!buffer_uptodate(tbh))) {
797 err = -EIO;
799 * Set the buffer uptodate so the page and buffer
800 * states do not become out of sync.
802 if (PageUptodate(page))
803 set_buffer_uptodate(tbh);
806 /* If @sync, now synchronize the mft mirror. */
807 if (sync && ni->mft_no < vol->mftmirr_size)
808 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
809 /* Remove the mst protection fixups again. */
810 post_write_mst_fixup((NTFS_RECORD*)m);
811 flush_dcache_mft_record_page(ni);
812 if (unlikely(err)) {
813 /* I/O error during writing. This is really bad! */
814 ntfs_error(vol->sb, "I/O error while writing mft record "
815 "0x%lx! Marking base inode as bad. You "
816 "should unmount the volume and run chkdsk.",
817 ni->mft_no);
818 goto err_out;
820 done:
821 ntfs_debug("Done.");
822 return 0;
823 cleanup_out:
824 /* Clean the buffers. */
825 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
826 clear_buffer_dirty(bhs[i_bhs]);
827 err_out:
829 * Current state: all buffers are clean, unlocked, and uptodate.
830 * The caller should mark the base inode as bad so that no more i/o
831 * happens. ->clear_inode() will still be invoked so all extent inodes
832 * and other allocated memory will be freed.
834 if (err == -ENOMEM) {
835 ntfs_error(vol->sb, "Not enough memory to write mft record. "
836 "Redirtying so the write is retried later.");
837 mark_mft_record_dirty(ni);
838 err = 0;
839 } else
840 NVolSetErrors(vol);
841 return err;
845 * ntfs_may_write_mft_record - check if an mft record may be written out
846 * @vol: [IN] ntfs volume on which the mft record to check resides
847 * @mft_no: [IN] mft record number of the mft record to check
848 * @m: [IN] mapped mft record to check
849 * @locked_ni: [OUT] caller has to unlock this ntfs inode if one is returned
851 * Check if the mapped (base or extent) mft record @m with mft record number
852 * @mft_no belonging to the ntfs volume @vol may be written out. If necessary
853 * and possible the ntfs inode of the mft record is locked and the base vfs
854 * inode is pinned. The locked ntfs inode is then returned in @locked_ni. The
855 * caller is responsible for unlocking the ntfs inode and unpinning the base
856 * vfs inode.
858 * Return TRUE if the mft record may be written out and FALSE if not.
860 * The caller has locked the page and cleared the uptodate flag on it which
861 * means that we can safely write out any dirty mft records that do not have
862 * their inodes in icache as determined by ilookup5() as anyone
863 * opening/creating such an inode would block when attempting to map the mft
864 * record in read_cache_page() until we are finished with the write out.
866 * Here is a description of the tests we perform:
868 * If the inode is found in icache we know the mft record must be a base mft
869 * record. If it is dirty, we do not write it and return FALSE as the vfs
870 * inode write paths will result in the access times being updated which would
871 * cause the base mft record to be redirtied and written out again. (We know
872 * the access time update will modify the base mft record because Windows
873 * chkdsk complains if the standard information attribute is not in the base
874 * mft record.)
876 * If the inode is in icache and not dirty, we attempt to lock the mft record
877 * and if we find the lock was already taken, it is not safe to write the mft
878 * record and we return FALSE.
880 * If we manage to obtain the lock we have exclusive access to the mft record,
881 * which also allows us safe writeout of the mft record. We then set
882 * @locked_ni to the locked ntfs inode and return TRUE.
884 * Note we cannot just lock the mft record and sleep while waiting for the lock
885 * because this would deadlock due to lock reversal (normally the mft record is
886 * locked before the page is locked but we already have the page locked here
887 * when we try to lock the mft record).
889 * If the inode is not in icache we need to perform further checks.
891 * If the mft record is not a FILE record or it is a base mft record, we can
892 * safely write it and return TRUE.
894 * We now know the mft record is an extent mft record. We check if the inode
895 * corresponding to its base mft record is in icache and obtain a reference to
896 * it if it is. If it is not, we can safely write it and return TRUE.
898 * We now have the base inode for the extent mft record. We check if it has an
899 * ntfs inode for the extent mft record attached and if not it is safe to write
900 * the extent mft record and we return TRUE.
902 * The ntfs inode for the extent mft record is attached to the base inode so we
903 * attempt to lock the extent mft record and if we find the lock was already
904 * taken, it is not safe to write the extent mft record and we return FALSE.
906 * If we manage to obtain the lock we have exclusive access to the extent mft
907 * record, which also allows us safe writeout of the extent mft record. We
908 * set the ntfs inode of the extent mft record clean and then set @locked_ni to
909 * the now locked ntfs inode and return TRUE.
911 * Note, the reason for actually writing dirty mft records here and not just
912 * relying on the vfs inode dirty code paths is that we can have mft records
913 * modified without them ever having actual inodes in memory. Also we can have
914 * dirty mft records with clean ntfs inodes in memory. None of the described
915 * cases would result in the dirty mft records being written out if we only
916 * relied on the vfs inode dirty code paths. And these cases can really occur
917 * during allocation of new mft records and in particular when the
918 * initialized_size of the $MFT/$DATA attribute is extended and the new space
919 * is initialized using ntfs_mft_record_format(). The clean inode can then
920 * appear if the mft record is reused for a new inode before it got written
921 * out.
923 BOOL ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no,
924 const MFT_RECORD *m, ntfs_inode **locked_ni)
926 struct super_block *sb = vol->sb;
927 struct inode *mft_vi = vol->mft_ino;
928 struct inode *vi;
929 ntfs_inode *ni, *eni, **extent_nis;
930 int i;
931 ntfs_attr na;
933 ntfs_debug("Entering for inode 0x%lx.", mft_no);
935 * Normally we do not return a locked inode so set @locked_ni to NULL.
937 BUG_ON(!locked_ni);
938 *locked_ni = NULL;
940 * Check if the inode corresponding to this mft record is in the VFS
941 * inode cache and obtain a reference to it if it is.
943 ntfs_debug("Looking for inode 0x%lx in icache.", mft_no);
944 na.mft_no = mft_no;
945 na.name = NULL;
946 na.name_len = 0;
947 na.type = AT_UNUSED;
949 * For inode 0, i.e. $MFT itself, we cannot use ilookup5() from here or
950 * we deadlock because the inode is already locked by the kernel
951 * (fs/fs-writeback.c::__sync_single_inode()) and ilookup5() waits
952 * until the inode is unlocked before returning it and it never gets
953 * unlocked because ntfs_should_write_mft_record() never returns. )-:
954 * Fortunately, we have inode 0 pinned in icache for the duration of
955 * the mount so we can access it directly.
957 if (!mft_no) {
958 /* Balance the below iput(). */
959 vi = igrab(mft_vi);
960 BUG_ON(vi != mft_vi);
961 } else
962 vi = ilookup5(sb, mft_no, (test_t)ntfs_test_inode, &na);
963 if (vi) {
964 ntfs_debug("Base inode 0x%lx is in icache.", mft_no);
965 /* The inode is in icache. */
966 ni = NTFS_I(vi);
967 /* Take a reference to the ntfs inode. */
968 atomic_inc(&ni->count);
969 /* If the inode is dirty, do not write this record. */
970 if (NInoDirty(ni)) {
971 ntfs_debug("Inode 0x%lx is dirty, do not write it.",
972 mft_no);
973 atomic_dec(&ni->count);
974 iput(vi);
975 return FALSE;
977 ntfs_debug("Inode 0x%lx is not dirty.", mft_no);
978 /* The inode is not dirty, try to take the mft record lock. */
979 if (unlikely(down_trylock(&ni->mrec_lock))) {
980 ntfs_debug("Mft record 0x%lx is already locked, do "
981 "not write it.", mft_no);
982 atomic_dec(&ni->count);
983 iput(vi);
984 return FALSE;
986 ntfs_debug("Managed to lock mft record 0x%lx, write it.",
987 mft_no);
989 * The write has to occur while we hold the mft record lock so
990 * return the locked ntfs inode.
992 *locked_ni = ni;
993 return TRUE;
995 ntfs_debug("Inode 0x%lx is not in icache.", mft_no);
996 /* The inode is not in icache. */
997 /* Write the record if it is not a mft record (type "FILE"). */
998 if (!ntfs_is_mft_record(m->magic)) {
999 ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
1000 mft_no);
1001 return TRUE;
1003 /* Write the mft record if it is a base inode. */
1004 if (!m->base_mft_record) {
1005 ntfs_debug("Mft record 0x%lx is a base record, write it.",
1006 mft_no);
1007 return TRUE;
1010 * This is an extent mft record. Check if the inode corresponding to
1011 * its base mft record is in icache and obtain a reference to it if it
1012 * is.
1014 na.mft_no = MREF_LE(m->base_mft_record);
1015 ntfs_debug("Mft record 0x%lx is an extent record. Looking for base "
1016 "inode 0x%lx in icache.", mft_no, na.mft_no);
1017 vi = ilookup5(sb, na.mft_no, (test_t)ntfs_test_inode, &na);
1018 if (!vi) {
1020 * The base inode is not in icache, write this extent mft
1021 * record.
1023 ntfs_debug("Base inode 0x%lx is not in icache, write the "
1024 "extent record.", na.mft_no);
1025 return TRUE;
1027 ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no);
1029 * The base inode is in icache. Check if it has the extent inode
1030 * corresponding to this extent mft record attached.
1032 ni = NTFS_I(vi);
1033 down(&ni->extent_lock);
1034 if (ni->nr_extents <= 0) {
1036 * The base inode has no attached extent inodes, write this
1037 * extent mft record.
1039 up(&ni->extent_lock);
1040 iput(vi);
1041 ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
1042 "write the extent record.", na.mft_no);
1043 return TRUE;
1045 /* Iterate over the attached extent inodes. */
1046 extent_nis = ni->ext.extent_ntfs_inos;
1047 for (eni = NULL, i = 0; i < ni->nr_extents; ++i) {
1048 if (mft_no == extent_nis[i]->mft_no) {
1050 * Found the extent inode corresponding to this extent
1051 * mft record.
1053 eni = extent_nis[i];
1054 break;
1058 * If the extent inode was not attached to the base inode, write this
1059 * extent mft record.
1061 if (!eni) {
1062 up(&ni->extent_lock);
1063 iput(vi);
1064 ntfs_debug("Extent inode 0x%lx is not attached to its base "
1065 "inode 0x%lx, write the extent record.",
1066 mft_no, na.mft_no);
1067 return TRUE;
1069 ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
1070 mft_no, na.mft_no);
1071 /* Take a reference to the extent ntfs inode. */
1072 atomic_inc(&eni->count);
1073 up(&ni->extent_lock);
1075 * Found the extent inode coresponding to this extent mft record.
1076 * Try to take the mft record lock.
1078 if (unlikely(down_trylock(&eni->mrec_lock))) {
1079 atomic_dec(&eni->count);
1080 iput(vi);
1081 ntfs_debug("Extent mft record 0x%lx is already locked, do "
1082 "not write it.", mft_no);
1083 return FALSE;
1085 ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
1086 mft_no);
1087 if (NInoTestClearDirty(eni))
1088 ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
1089 mft_no);
1091 * The write has to occur while we hold the mft record lock so return
1092 * the locked extent ntfs inode.
1094 *locked_ni = eni;
1095 return TRUE;
1098 static const char *es = " Leaving inconsistent metadata. Unmount and run "
1099 "chkdsk.";
1102 * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
1103 * @vol: volume on which to search for a free mft record
1104 * @base_ni: open base inode if allocating an extent mft record or NULL
1106 * Search for a free mft record in the mft bitmap attribute on the ntfs volume
1107 * @vol.
1109 * If @base_ni is NULL start the search at the default allocator position.
1111 * If @base_ni is not NULL start the search at the mft record after the base
1112 * mft record @base_ni.
1114 * Return the free mft record on success and -errno on error. An error code of
1115 * -ENOSPC means that there are no free mft records in the currently
1116 * initialized mft bitmap.
1118 * Locking: Caller must hold vol->mftbmp_lock for writing.
1120 static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol,
1121 ntfs_inode *base_ni)
1123 s64 pass_end, ll, data_pos, pass_start, ofs, bit;
1124 struct address_space *mftbmp_mapping;
1125 u8 *buf, *byte;
1126 struct page *page;
1127 unsigned int page_ofs, size;
1128 u8 pass, b;
1130 ntfs_debug("Searching for free mft record in the currently "
1131 "initialized mft bitmap.");
1132 mftbmp_mapping = vol->mftbmp_ino->i_mapping;
1134 * Set the end of the pass making sure we do not overflow the mft
1135 * bitmap.
1137 pass_end = NTFS_I(vol->mft_ino)->allocated_size >>
1138 vol->mft_record_size_bits;
1139 ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3;
1140 if (pass_end > ll)
1141 pass_end = ll;
1142 pass = 1;
1143 if (!base_ni)
1144 data_pos = vol->mft_data_pos;
1145 else
1146 data_pos = base_ni->mft_no + 1;
1147 if (data_pos < 24)
1148 data_pos = 24;
1149 if (data_pos >= pass_end) {
1150 data_pos = 24;
1151 pass = 2;
1152 /* This happens on a freshly formatted volume. */
1153 if (data_pos >= pass_end)
1154 return -ENOSPC;
1156 pass_start = data_pos;
1157 ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
1158 "pass_end 0x%llx, data_pos 0x%llx.", pass,
1159 (long long)pass_start, (long long)pass_end,
1160 (long long)data_pos);
1161 /* Loop until a free mft record is found. */
1162 for (; pass <= 2;) {
1163 /* Cap size to pass_end. */
1164 ofs = data_pos >> 3;
1165 page_ofs = ofs & ~PAGE_CACHE_MASK;
1166 size = PAGE_CACHE_SIZE - page_ofs;
1167 ll = ((pass_end + 7) >> 3) - ofs;
1168 if (size > ll)
1169 size = ll;
1170 size <<= 3;
1172 * If we are still within the active pass, search the next page
1173 * for a zero bit.
1175 if (size) {
1176 page = ntfs_map_page(mftbmp_mapping,
1177 ofs >> PAGE_CACHE_SHIFT);
1178 if (unlikely(IS_ERR(page))) {
1179 ntfs_error(vol->sb, "Failed to read mft "
1180 "bitmap, aborting.");
1181 return PTR_ERR(page);
1183 buf = (u8*)page_address(page) + page_ofs;
1184 bit = data_pos & 7;
1185 data_pos &= ~7ull;
1186 ntfs_debug("Before inner for loop: size 0x%x, "
1187 "data_pos 0x%llx, bit 0x%llx", size,
1188 (long long)data_pos, (long long)bit);
1189 for (; bit < size && data_pos + bit < pass_end;
1190 bit &= ~7ull, bit += 8) {
1191 byte = buf + (bit >> 3);
1192 if (*byte == 0xff)
1193 continue;
1194 b = ffz((unsigned long)*byte);
1195 if (b < 8 && b >= (bit & 7)) {
1196 ll = data_pos + (bit & ~7ull) + b;
1197 if (unlikely(ll > (1ll << 32))) {
1198 ntfs_unmap_page(page);
1199 return -ENOSPC;
1201 *byte |= 1 << b;
1202 flush_dcache_page(page);
1203 set_page_dirty(page);
1204 ntfs_unmap_page(page);
1205 ntfs_debug("Done. (Found and "
1206 "allocated mft record "
1207 "0x%llx.)",
1208 (long long)ll);
1209 return ll;
1212 ntfs_debug("After inner for loop: size 0x%x, "
1213 "data_pos 0x%llx, bit 0x%llx", size,
1214 (long long)data_pos, (long long)bit);
1215 data_pos += size;
1216 ntfs_unmap_page(page);
1218 * If the end of the pass has not been reached yet,
1219 * continue searching the mft bitmap for a zero bit.
1221 if (data_pos < pass_end)
1222 continue;
1224 /* Do the next pass. */
1225 if (++pass == 2) {
1227 * Starting the second pass, in which we scan the first
1228 * part of the zone which we omitted earlier.
1230 pass_end = pass_start;
1231 data_pos = pass_start = 24;
1232 ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
1233 "0x%llx.", pass, (long long)pass_start,
1234 (long long)pass_end);
1235 if (data_pos >= pass_end)
1236 break;
1239 /* No free mft records in currently initialized mft bitmap. */
1240 ntfs_debug("Done. (No free mft records left in currently initialized "
1241 "mft bitmap.)");
1242 return -ENOSPC;
1246 * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
1247 * @vol: volume on which to extend the mft bitmap attribute
1249 * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
1251 * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1252 * data_size.
1254 * Return 0 on success and -errno on error.
1256 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1257 * - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
1258 * writing and releases it before returning.
1259 * - This function takes vol->lcnbmp_lock for writing and releases it
1260 * before returning.
1262 static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol)
1264 LCN lcn;
1265 s64 ll;
1266 struct page *page;
1267 ntfs_inode *mft_ni, *mftbmp_ni;
1268 runlist_element *rl, *rl2 = NULL;
1269 ntfs_attr_search_ctx *ctx = NULL;
1270 MFT_RECORD *mrec;
1271 ATTR_RECORD *a = NULL;
1272 int ret, mp_size;
1273 u32 old_alen = 0;
1274 u8 *b, tb;
1275 struct {
1276 u8 added_cluster:1;
1277 u8 added_run:1;
1278 u8 mp_rebuilt:1;
1279 } status = { 0, 0, 0 };
1281 ntfs_debug("Extending mft bitmap allocation.");
1282 mft_ni = NTFS_I(vol->mft_ino);
1283 mftbmp_ni = NTFS_I(vol->mftbmp_ino);
1285 * Determine the last lcn of the mft bitmap. The allocated size of the
1286 * mft bitmap cannot be zero so we are ok to do this.
1287 * ntfs_find_vcn() returns the runlist locked on success.
1289 rl = ntfs_find_vcn(mftbmp_ni, (mftbmp_ni->allocated_size - 1) >>
1290 vol->cluster_size_bits, TRUE);
1291 if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1292 ntfs_error(vol->sb, "Failed to determine last allocated "
1293 "cluster of mft bitmap attribute.");
1294 if (!IS_ERR(rl)) {
1295 up_write(&mftbmp_ni->runlist.lock);
1296 ret = -EIO;
1297 } else
1298 ret = PTR_ERR(rl);
1299 return ret;
1301 lcn = rl->lcn + rl->length;
1302 ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
1303 (long long)lcn);
1305 * Attempt to get the cluster following the last allocated cluster by
1306 * hand as it may be in the MFT zone so the allocator would not give it
1307 * to us.
1309 ll = lcn >> 3;
1310 page = ntfs_map_page(vol->lcnbmp_ino->i_mapping,
1311 ll >> PAGE_CACHE_SHIFT);
1312 if (IS_ERR(page)) {
1313 up_write(&mftbmp_ni->runlist.lock);
1314 ntfs_error(vol->sb, "Failed to read from lcn bitmap.");
1315 return PTR_ERR(page);
1317 b = (u8*)page_address(page) + (ll & ~PAGE_CACHE_MASK);
1318 tb = 1 << (lcn & 7ull);
1319 down_write(&vol->lcnbmp_lock);
1320 if (*b != 0xff && !(*b & tb)) {
1321 /* Next cluster is free, allocate it. */
1322 *b |= tb;
1323 flush_dcache_page(page);
1324 set_page_dirty(page);
1325 up_write(&vol->lcnbmp_lock);
1326 ntfs_unmap_page(page);
1327 /* Update the mft bitmap runlist. */
1328 rl->length++;
1329 rl[1].vcn++;
1330 status.added_cluster = 1;
1331 ntfs_debug("Appending one cluster to mft bitmap.");
1332 } else {
1333 up_write(&vol->lcnbmp_lock);
1334 ntfs_unmap_page(page);
1335 /* Allocate a cluster from the DATA_ZONE. */
1336 rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE);
1337 if (IS_ERR(rl2)) {
1338 up_write(&mftbmp_ni->runlist.lock);
1339 ntfs_error(vol->sb, "Failed to allocate a cluster for "
1340 "the mft bitmap.");
1341 return PTR_ERR(rl2);
1343 rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2);
1344 if (IS_ERR(rl)) {
1345 up_write(&mftbmp_ni->runlist.lock);
1346 ntfs_error(vol->sb, "Failed to merge runlists for mft "
1347 "bitmap.");
1348 if (ntfs_cluster_free_from_rl(vol, rl2)) {
1349 ntfs_error(vol->sb, "Failed to dealocate "
1350 "allocated cluster.%s", es);
1351 NVolSetErrors(vol);
1353 ntfs_free(rl2);
1354 return PTR_ERR(rl);
1356 mftbmp_ni->runlist.rl = rl;
1357 status.added_run = 1;
1358 ntfs_debug("Adding one run to mft bitmap.");
1359 /* Find the last run in the new runlist. */
1360 for (; rl[1].length; rl++)
1364 * Update the attribute record as well. Note: @rl is the last
1365 * (non-terminator) runlist element of mft bitmap.
1367 mrec = map_mft_record(mft_ni);
1368 if (IS_ERR(mrec)) {
1369 ntfs_error(vol->sb, "Failed to map mft record.");
1370 ret = PTR_ERR(mrec);
1371 goto undo_alloc;
1373 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1374 if (unlikely(!ctx)) {
1375 ntfs_error(vol->sb, "Failed to get search context.");
1376 ret = -ENOMEM;
1377 goto undo_alloc;
1379 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1380 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1381 0, ctx);
1382 if (unlikely(ret)) {
1383 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1384 "mft bitmap attribute.");
1385 if (ret == -ENOENT)
1386 ret = -EIO;
1387 goto undo_alloc;
1389 a = ctx->attr;
1390 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1391 /* Search back for the previous last allocated cluster of mft bitmap. */
1392 for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) {
1393 if (ll >= rl2->vcn)
1394 break;
1396 BUG_ON(ll < rl2->vcn);
1397 BUG_ON(ll >= rl2->vcn + rl2->length);
1398 /* Get the size for the new mapping pairs array for this extent. */
1399 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll);
1400 if (unlikely(mp_size <= 0)) {
1401 ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1402 "mft bitmap attribute extent.");
1403 ret = mp_size;
1404 if (!ret)
1405 ret = -EIO;
1406 goto undo_alloc;
1408 /* Expand the attribute record if necessary. */
1409 old_alen = le32_to_cpu(a->length);
1410 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1411 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1412 if (unlikely(ret)) {
1413 if (ret != -ENOSPC) {
1414 ntfs_error(vol->sb, "Failed to resize attribute "
1415 "record for mft bitmap attribute.");
1416 goto undo_alloc;
1418 // TODO: Deal with this by moving this extent to a new mft
1419 // record or by starting a new extent in a new mft record or by
1420 // moving other attributes out of this mft record.
1421 ntfs_error(vol->sb, "Not enough space in this mft record to "
1422 "accomodate extended mft bitmap attribute "
1423 "extent. Cannot handle this yet.");
1424 ret = -EOPNOTSUPP;
1425 goto undo_alloc;
1427 status.mp_rebuilt = 1;
1428 /* Generate the mapping pairs array directly into the attr record. */
1429 ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1430 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1431 mp_size, rl2, ll, NULL);
1432 if (unlikely(ret)) {
1433 ntfs_error(vol->sb, "Failed to build mapping pairs array for "
1434 "mft bitmap attribute.");
1435 goto undo_alloc;
1437 /* Update the highest_vcn. */
1438 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1440 * We now have extended the mft bitmap allocated_size by one cluster.
1441 * Reflect this in the ntfs_inode structure and the attribute record.
1443 if (a->data.non_resident.lowest_vcn) {
1445 * We are not in the first attribute extent, switch to it, but
1446 * first ensure the changes will make it to disk later.
1448 flush_dcache_mft_record_page(ctx->ntfs_ino);
1449 mark_mft_record_dirty(ctx->ntfs_ino);
1450 ntfs_attr_reinit_search_ctx(ctx);
1451 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1452 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL,
1453 0, ctx);
1454 if (unlikely(ret)) {
1455 ntfs_error(vol->sb, "Failed to find first attribute "
1456 "extent of mft bitmap attribute.");
1457 goto restore_undo_alloc;
1459 a = ctx->attr;
1461 mftbmp_ni->allocated_size += vol->cluster_size;
1462 a->data.non_resident.allocated_size =
1463 cpu_to_sle64(mftbmp_ni->allocated_size);
1464 /* Ensure the changes make it to disk. */
1465 flush_dcache_mft_record_page(ctx->ntfs_ino);
1466 mark_mft_record_dirty(ctx->ntfs_ino);
1467 ntfs_attr_put_search_ctx(ctx);
1468 unmap_mft_record(mft_ni);
1469 up_write(&mftbmp_ni->runlist.lock);
1470 ntfs_debug("Done.");
1471 return 0;
1472 restore_undo_alloc:
1473 ntfs_attr_reinit_search_ctx(ctx);
1474 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1475 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1476 0, ctx)) {
1477 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1478 "mft bitmap attribute.%s", es);
1479 mftbmp_ni->allocated_size += vol->cluster_size;
1480 ntfs_attr_put_search_ctx(ctx);
1481 unmap_mft_record(mft_ni);
1482 up_write(&mftbmp_ni->runlist.lock);
1484 * The only thing that is now wrong is ->allocated_size of the
1485 * base attribute extent which chkdsk should be able to fix.
1487 NVolSetErrors(vol);
1488 return ret;
1490 a = ctx->attr;
1491 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2);
1492 undo_alloc:
1493 if (status.added_cluster) {
1494 /* Truncate the last run in the runlist by one cluster. */
1495 rl->length--;
1496 rl[1].vcn--;
1497 } else if (status.added_run) {
1498 lcn = rl->lcn;
1499 /* Remove the last run from the runlist. */
1500 rl->lcn = rl[1].lcn;
1501 rl->length = 0;
1503 /* Deallocate the cluster. */
1504 down_write(&vol->lcnbmp_lock);
1505 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1506 ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es);
1507 NVolSetErrors(vol);
1509 up_write(&vol->lcnbmp_lock);
1510 if (status.mp_rebuilt) {
1511 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1512 a->data.non_resident.mapping_pairs_offset),
1513 old_alen - le16_to_cpu(
1514 a->data.non_resident.mapping_pairs_offset),
1515 rl2, ll, NULL)) {
1516 ntfs_error(vol->sb, "Failed to restore mapping pairs "
1517 "array.%s", es);
1518 NVolSetErrors(vol);
1520 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1521 ntfs_error(vol->sb, "Failed to restore attribute "
1522 "record.%s", es);
1523 NVolSetErrors(vol);
1525 flush_dcache_mft_record_page(ctx->ntfs_ino);
1526 mark_mft_record_dirty(ctx->ntfs_ino);
1528 if (ctx)
1529 ntfs_attr_put_search_ctx(ctx);
1530 if (!IS_ERR(mrec))
1531 unmap_mft_record(mft_ni);
1532 up_write(&mftbmp_ni->runlist.lock);
1533 return ret;
1537 * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
1538 * @vol: volume on which to extend the mft bitmap attribute
1540 * Extend the initialized portion of the mft bitmap attribute on the ntfs
1541 * volume @vol by 8 bytes.
1543 * Note: Only changes initialized_size and data_size, i.e. requires that
1544 * allocated_size is big enough to fit the new initialized_size.
1546 * Return 0 on success and -error on error.
1548 * Locking: Caller must hold vol->mftbmp_lock for writing.
1550 static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol)
1552 s64 old_data_size, old_initialized_size;
1553 struct inode *mftbmp_vi;
1554 ntfs_inode *mft_ni, *mftbmp_ni;
1555 ntfs_attr_search_ctx *ctx;
1556 MFT_RECORD *mrec;
1557 ATTR_RECORD *a;
1558 int ret;
1560 ntfs_debug("Extending mft bitmap initiailized (and data) size.");
1561 mft_ni = NTFS_I(vol->mft_ino);
1562 mftbmp_vi = vol->mftbmp_ino;
1563 mftbmp_ni = NTFS_I(mftbmp_vi);
1564 /* Get the attribute record. */
1565 mrec = map_mft_record(mft_ni);
1566 if (IS_ERR(mrec)) {
1567 ntfs_error(vol->sb, "Failed to map mft record.");
1568 return PTR_ERR(mrec);
1570 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1571 if (unlikely(!ctx)) {
1572 ntfs_error(vol->sb, "Failed to get search context.");
1573 ret = -ENOMEM;
1574 goto unm_err_out;
1576 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1577 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx);
1578 if (unlikely(ret)) {
1579 ntfs_error(vol->sb, "Failed to find first attribute extent of "
1580 "mft bitmap attribute.");
1581 if (ret == -ENOENT)
1582 ret = -EIO;
1583 goto put_err_out;
1585 a = ctx->attr;
1586 old_data_size = mftbmp_vi->i_size;
1587 old_initialized_size = mftbmp_ni->initialized_size;
1589 * We can simply update the initialized_size before filling the space
1590 * with zeroes because the caller is holding the mft bitmap lock for
1591 * writing which ensures that no one else is trying to access the data.
1593 mftbmp_ni->initialized_size += 8;
1594 a->data.non_resident.initialized_size =
1595 cpu_to_sle64(mftbmp_ni->initialized_size);
1596 if (mftbmp_ni->initialized_size > mftbmp_vi->i_size) {
1597 mftbmp_vi->i_size = mftbmp_ni->initialized_size;
1598 a->data.non_resident.data_size =
1599 cpu_to_sle64(mftbmp_vi->i_size);
1601 /* Ensure the changes make it to disk. */
1602 flush_dcache_mft_record_page(ctx->ntfs_ino);
1603 mark_mft_record_dirty(ctx->ntfs_ino);
1604 ntfs_attr_put_search_ctx(ctx);
1605 unmap_mft_record(mft_ni);
1606 /* Initialize the mft bitmap attribute value with zeroes. */
1607 ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0);
1608 if (likely(!ret)) {
1609 ntfs_debug("Done. (Wrote eight initialized bytes to mft "
1610 "bitmap.");
1611 return 0;
1613 ntfs_error(vol->sb, "Failed to write to mft bitmap.");
1614 /* Try to recover from the error. */
1615 mrec = map_mft_record(mft_ni);
1616 if (IS_ERR(mrec)) {
1617 ntfs_error(vol->sb, "Failed to map mft record.%s", es);
1618 NVolSetErrors(vol);
1619 return ret;
1621 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1622 if (unlikely(!ctx)) {
1623 ntfs_error(vol->sb, "Failed to get search context.%s", es);
1624 NVolSetErrors(vol);
1625 goto unm_err_out;
1627 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1628 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) {
1629 ntfs_error(vol->sb, "Failed to find first attribute extent of "
1630 "mft bitmap attribute.%s", es);
1631 NVolSetErrors(vol);
1632 put_err_out:
1633 ntfs_attr_put_search_ctx(ctx);
1634 unm_err_out:
1635 unmap_mft_record(mft_ni);
1636 goto err_out;
1638 a = ctx->attr;
1639 mftbmp_ni->initialized_size = old_initialized_size;
1640 a->data.non_resident.initialized_size =
1641 cpu_to_sle64(old_initialized_size);
1642 if (mftbmp_vi->i_size != old_data_size) {
1643 mftbmp_vi->i_size = old_data_size;
1644 a->data.non_resident.data_size = cpu_to_sle64(old_data_size);
1646 flush_dcache_mft_record_page(ctx->ntfs_ino);
1647 mark_mft_record_dirty(ctx->ntfs_ino);
1648 ntfs_attr_put_search_ctx(ctx);
1649 unmap_mft_record(mft_ni);
1650 ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
1651 "data_size 0x%llx, initialized_size 0x%llx.",
1652 (long long)mftbmp_ni->allocated_size,
1653 (long long)mftbmp_vi->i_size,
1654 (long long)mftbmp_ni->initialized_size);
1655 err_out:
1656 return ret;
1660 * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
1661 * @vol: volume on which to extend the mft data attribute
1663 * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
1664 * worth of clusters or if not enough space for this by one mft record worth
1665 * of clusters.
1667 * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1668 * data_size.
1670 * Return 0 on success and -errno on error.
1672 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1673 * - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
1674 * writing and releases it before returning.
1675 * - This function calls functions which take vol->lcnbmp_lock for
1676 * writing and release it before returning.
1678 static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol)
1680 LCN lcn;
1681 VCN old_last_vcn;
1682 s64 min_nr, nr, ll = 0;
1683 ntfs_inode *mft_ni;
1684 runlist_element *rl, *rl2;
1685 ntfs_attr_search_ctx *ctx = NULL;
1686 MFT_RECORD *mrec;
1687 ATTR_RECORD *a = NULL;
1688 int ret, mp_size;
1689 u32 old_alen = 0;
1690 BOOL mp_rebuilt = FALSE;
1692 ntfs_debug("Extending mft data allocation.");
1693 mft_ni = NTFS_I(vol->mft_ino);
1695 * Determine the preferred allocation location, i.e. the last lcn of
1696 * the mft data attribute. The allocated size of the mft data
1697 * attribute cannot be zero so we are ok to do this.
1698 * ntfs_find_vcn() returns the runlist locked on success.
1700 rl = ntfs_find_vcn(mft_ni, (mft_ni->allocated_size - 1) >>
1701 vol->cluster_size_bits, TRUE);
1702 if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1703 ntfs_error(vol->sb, "Failed to determine last allocated "
1704 "cluster of mft data attribute.");
1705 if (!IS_ERR(rl)) {
1706 up_write(&mft_ni->runlist.lock);
1707 ret = -EIO;
1708 } else
1709 ret = PTR_ERR(rl);
1710 return ret;
1712 lcn = rl->lcn + rl->length;
1713 ntfs_debug("Last lcn of mft data attribute is 0x%llx.",
1714 (long long)lcn);
1715 /* Minimum allocation is one mft record worth of clusters. */
1716 min_nr = vol->mft_record_size >> vol->cluster_size_bits;
1717 if (!min_nr)
1718 min_nr = 1;
1719 /* Want to allocate 16 mft records worth of clusters. */
1720 nr = vol->mft_record_size << 4 >> vol->cluster_size_bits;
1721 if (!nr)
1722 nr = min_nr;
1723 /* Ensure we do not go above 2^32-1 mft records. */
1724 if (unlikely((mft_ni->allocated_size +
1725 (nr << vol->cluster_size_bits)) >>
1726 vol->mft_record_size_bits >= (1ll << 32))) {
1727 nr = min_nr;
1728 if (unlikely((mft_ni->allocated_size +
1729 (nr << vol->cluster_size_bits)) >>
1730 vol->mft_record_size_bits >= (1ll << 32))) {
1731 ntfs_warning(vol->sb, "Cannot allocate mft record "
1732 "because the maximum number of inodes "
1733 "(2^32) has already been reached.");
1734 up_write(&mft_ni->runlist.lock);
1735 return -ENOSPC;
1738 ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
1739 nr > min_nr ? "default" : "minimal", (long long)nr);
1740 old_last_vcn = rl[1].vcn;
1741 do {
1742 rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE);
1743 if (likely(!IS_ERR(rl2)))
1744 break;
1745 if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
1746 ntfs_error(vol->sb, "Failed to allocate the minimal "
1747 "number of clusters (%lli) for the "
1748 "mft data attribute.", (long long)nr);
1749 up_write(&mft_ni->runlist.lock);
1750 return PTR_ERR(rl2);
1753 * There is not enough space to do the allocation, but there
1754 * might be enough space to do a minimal allocation so try that
1755 * before failing.
1757 nr = min_nr;
1758 ntfs_debug("Retrying mft data allocation with minimal cluster "
1759 "count %lli.", (long long)nr);
1760 } while (1);
1761 rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2);
1762 if (IS_ERR(rl)) {
1763 up_write(&mft_ni->runlist.lock);
1764 ntfs_error(vol->sb, "Failed to merge runlists for mft data "
1765 "attribute.");
1766 if (ntfs_cluster_free_from_rl(vol, rl2)) {
1767 ntfs_error(vol->sb, "Failed to dealocate clusters "
1768 "from the mft data attribute.%s", es);
1769 NVolSetErrors(vol);
1771 ntfs_free(rl2);
1772 return PTR_ERR(rl);
1774 mft_ni->runlist.rl = rl;
1775 ntfs_debug("Allocated %lli clusters.", nr);
1776 /* Find the last run in the new runlist. */
1777 for (; rl[1].length; rl++)
1779 /* Update the attribute record as well. */
1780 mrec = map_mft_record(mft_ni);
1781 if (IS_ERR(mrec)) {
1782 ntfs_error(vol->sb, "Failed to map mft record.");
1783 ret = PTR_ERR(mrec);
1784 goto undo_alloc;
1786 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1787 if (unlikely(!ctx)) {
1788 ntfs_error(vol->sb, "Failed to get search context.");
1789 ret = -ENOMEM;
1790 goto undo_alloc;
1792 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1793 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx);
1794 if (unlikely(ret)) {
1795 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1796 "mft data attribute.");
1797 if (ret == -ENOENT)
1798 ret = -EIO;
1799 goto undo_alloc;
1801 a = ctx->attr;
1802 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1803 /* Search back for the previous last allocated cluster of mft bitmap. */
1804 for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) {
1805 if (ll >= rl2->vcn)
1806 break;
1808 BUG_ON(ll < rl2->vcn);
1809 BUG_ON(ll >= rl2->vcn + rl2->length);
1810 /* Get the size for the new mapping pairs array for this extent. */
1811 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll);
1812 if (unlikely(mp_size <= 0)) {
1813 ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1814 "mft data attribute extent.");
1815 ret = mp_size;
1816 if (!ret)
1817 ret = -EIO;
1818 goto undo_alloc;
1820 /* Expand the attribute record if necessary. */
1821 old_alen = le32_to_cpu(a->length);
1822 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1823 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1824 if (unlikely(ret)) {
1825 if (ret != -ENOSPC) {
1826 ntfs_error(vol->sb, "Failed to resize attribute "
1827 "record for mft data attribute.");
1828 goto undo_alloc;
1830 // TODO: Deal with this by moving this extent to a new mft
1831 // record or by starting a new extent in a new mft record or by
1832 // moving other attributes out of this mft record.
1833 // Note: Use the special reserved mft records and ensure that
1834 // this extent is not required to find the mft record in
1835 // question.
1836 ntfs_error(vol->sb, "Not enough space in this mft record to "
1837 "accomodate extended mft data attribute "
1838 "extent. Cannot handle this yet.");
1839 ret = -EOPNOTSUPP;
1840 goto undo_alloc;
1842 mp_rebuilt = TRUE;
1843 /* Generate the mapping pairs array directly into the attr record. */
1844 ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1845 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1846 mp_size, rl2, ll, NULL);
1847 if (unlikely(ret)) {
1848 ntfs_error(vol->sb, "Failed to build mapping pairs array of "
1849 "mft data attribute.");
1850 goto undo_alloc;
1852 /* Update the highest_vcn. */
1853 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1855 * We now have extended the mft data allocated_size by nr clusters.
1856 * Reflect this in the ntfs_inode structure and the attribute record.
1857 * @rl is the last (non-terminator) runlist element of mft data
1858 * attribute.
1860 if (a->data.non_resident.lowest_vcn) {
1862 * We are not in the first attribute extent, switch to it, but
1863 * first ensure the changes will make it to disk later.
1865 flush_dcache_mft_record_page(ctx->ntfs_ino);
1866 mark_mft_record_dirty(ctx->ntfs_ino);
1867 ntfs_attr_reinit_search_ctx(ctx);
1868 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name,
1869 mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0,
1870 ctx);
1871 if (unlikely(ret)) {
1872 ntfs_error(vol->sb, "Failed to find first attribute "
1873 "extent of mft data attribute.");
1874 goto restore_undo_alloc;
1876 a = ctx->attr;
1878 mft_ni->allocated_size += nr << vol->cluster_size_bits;
1879 a->data.non_resident.allocated_size =
1880 cpu_to_sle64(mft_ni->allocated_size);
1881 /* Ensure the changes make it to disk. */
1882 flush_dcache_mft_record_page(ctx->ntfs_ino);
1883 mark_mft_record_dirty(ctx->ntfs_ino);
1884 ntfs_attr_put_search_ctx(ctx);
1885 unmap_mft_record(mft_ni);
1886 up_write(&mft_ni->runlist.lock);
1887 ntfs_debug("Done.");
1888 return 0;
1889 restore_undo_alloc:
1890 ntfs_attr_reinit_search_ctx(ctx);
1891 if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1892 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) {
1893 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1894 "mft data attribute.%s", es);
1895 mft_ni->allocated_size += nr << vol->cluster_size_bits;
1896 ntfs_attr_put_search_ctx(ctx);
1897 unmap_mft_record(mft_ni);
1898 up_write(&mft_ni->runlist.lock);
1900 * The only thing that is now wrong is ->allocated_size of the
1901 * base attribute extent which chkdsk should be able to fix.
1903 NVolSetErrors(vol);
1904 return ret;
1906 a = ctx->attr;
1907 a->data.non_resident.highest_vcn = cpu_to_sle64(old_last_vcn - 1);
1908 undo_alloc:
1909 if (ntfs_cluster_free(vol->mft_ino, old_last_vcn, -1) < 0) {
1910 ntfs_error(vol->sb, "Failed to free clusters from mft data "
1911 "attribute.%s", es);
1912 NVolSetErrors(vol);
1914 if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
1915 ntfs_error(vol->sb, "Failed to truncate mft data attribute "
1916 "runlist.%s", es);
1917 NVolSetErrors(vol);
1919 if (mp_rebuilt) {
1920 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1921 a->data.non_resident.mapping_pairs_offset),
1922 old_alen - le16_to_cpu(
1923 a->data.non_resident.mapping_pairs_offset),
1924 rl2, ll, NULL)) {
1925 ntfs_error(vol->sb, "Failed to restore mapping pairs "
1926 "array.%s", es);
1927 NVolSetErrors(vol);
1929 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1930 ntfs_error(vol->sb, "Failed to restore attribute "
1931 "record.%s", es);
1932 NVolSetErrors(vol);
1934 flush_dcache_mft_record_page(ctx->ntfs_ino);
1935 mark_mft_record_dirty(ctx->ntfs_ino);
1937 if (ctx)
1938 ntfs_attr_put_search_ctx(ctx);
1939 if (!IS_ERR(mrec))
1940 unmap_mft_record(mft_ni);
1941 up_write(&mft_ni->runlist.lock);
1942 return ret;
1946 * ntfs_mft_record_layout - layout an mft record into a memory buffer
1947 * @vol: volume to which the mft record will belong
1948 * @mft_no: mft reference specifying the mft record number
1949 * @m: destination buffer of size >= @vol->mft_record_size bytes
1951 * Layout an empty, unused mft record with the mft record number @mft_no into
1952 * the buffer @m. The volume @vol is needed because the mft record structure
1953 * was modified in NTFS 3.1 so we need to know which volume version this mft
1954 * record will be used on.
1956 * Return 0 on success and -errno on error.
1958 static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no,
1959 MFT_RECORD *m)
1961 ATTR_RECORD *a;
1963 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
1964 if (mft_no >= (1ll << 32)) {
1965 ntfs_error(vol->sb, "Mft record number 0x%llx exceeds "
1966 "maximum of 2^32.", (long long)mft_no);
1967 return -ERANGE;
1969 /* Start by clearing the whole mft record to gives us a clean slate. */
1970 memset(m, 0, vol->mft_record_size);
1971 /* Aligned to 2-byte boundary. */
1972 if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver))
1973 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1);
1974 else {
1975 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1);
1977 * Set the NTFS 3.1+ specific fields while we know that the
1978 * volume version is 3.1+.
1980 m->reserved = 0;
1981 m->mft_record_number = cpu_to_le32((u32)mft_no);
1983 m->magic = magic_FILE;
1984 if (vol->mft_record_size >= NTFS_BLOCK_SIZE)
1985 m->usa_count = cpu_to_le16(vol->mft_record_size /
1986 NTFS_BLOCK_SIZE + 1);
1987 else {
1988 m->usa_count = cpu_to_le16(1);
1989 ntfs_warning(vol->sb, "Sector size is bigger than mft record "
1990 "size. Setting usa_count to 1. If chkdsk "
1991 "reports this as corruption, please email "
1992 "linux-ntfs-dev@lists.sourceforge.net stating "
1993 "that you saw this message and that the "
1994 "modified file system created was corrupt. "
1995 "Thank you.");
1997 /* Set the update sequence number to 1. */
1998 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1);
1999 m->lsn = 0;
2000 m->sequence_number = cpu_to_le16(1);
2001 m->link_count = 0;
2003 * Place the attributes straight after the update sequence array,
2004 * aligned to 8-byte boundary.
2006 m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) +
2007 (le16_to_cpu(m->usa_count) << 1) + 7) & ~7);
2008 m->flags = 0;
2010 * Using attrs_offset plus eight bytes (for the termination attribute).
2011 * attrs_offset is already aligned to 8-byte boundary, so no need to
2012 * align again.
2014 m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8);
2015 m->bytes_allocated = cpu_to_le32(vol->mft_record_size);
2016 m->base_mft_record = 0;
2017 m->next_attr_instance = 0;
2018 /* Add the termination attribute. */
2019 a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset));
2020 a->type = AT_END;
2021 a->length = 0;
2022 ntfs_debug("Done.");
2023 return 0;
2027 * ntfs_mft_record_format - format an mft record on an ntfs volume
2028 * @vol: volume on which to format the mft record
2029 * @mft_no: mft record number to format
2031 * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
2032 * mft record into the appropriate place of the mft data attribute. This is
2033 * used when extending the mft data attribute.
2035 * Return 0 on success and -errno on error.
2037 static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no)
2039 struct inode *mft_vi = vol->mft_ino;
2040 struct page *page;
2041 MFT_RECORD *m;
2042 pgoff_t index, end_index;
2043 unsigned int ofs;
2044 int err;
2046 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2048 * The index into the page cache and the offset within the page cache
2049 * page of the wanted mft record.
2051 index = mft_no << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
2052 ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
2053 /* The maximum valid index into the page cache for $MFT's data. */
2054 end_index = mft_vi->i_size >> PAGE_CACHE_SHIFT;
2055 if (unlikely(index >= end_index)) {
2056 if (unlikely(index > end_index || ofs + vol->mft_record_size >=
2057 (mft_vi->i_size & ~PAGE_CACHE_MASK))) {
2058 ntfs_error(vol->sb, "Tried to format non-existing mft "
2059 "record 0x%llx.", (long long)mft_no);
2060 return -ENOENT;
2063 /* Read, map, and pin the page containing the mft record. */
2064 page = ntfs_map_page(mft_vi->i_mapping, index);
2065 if (unlikely(IS_ERR(page))) {
2066 ntfs_error(vol->sb, "Failed to map page containing mft record "
2067 "to format 0x%llx.", (long long)mft_no);
2068 return PTR_ERR(page);
2070 lock_page(page);
2071 BUG_ON(!PageUptodate(page));
2072 ClearPageUptodate(page);
2073 m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2074 err = ntfs_mft_record_layout(vol, mft_no, m);
2075 if (unlikely(err)) {
2076 ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.",
2077 (long long)mft_no);
2078 SetPageUptodate(page);
2079 unlock_page(page);
2080 ntfs_unmap_page(page);
2081 return err;
2083 flush_dcache_page(page);
2084 SetPageUptodate(page);
2085 unlock_page(page);
2087 * Make sure the mft record is written out to disk. We could use
2088 * ilookup5() to check if an inode is in icache and so on but this is
2089 * unnecessary as ntfs_writepage() will write the dirty record anyway.
2091 mark_ntfs_record_dirty(page, ofs);
2092 ntfs_unmap_page(page);
2093 ntfs_debug("Done.");
2094 return 0;
2098 * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
2099 * @vol: [IN] volume on which to allocate the mft record
2100 * @mode: [IN] mode if want a file or directory, i.e. base inode or 0
2101 * @base_ni: [IN] open base inode if allocating an extent mft record or NULL
2102 * @mrec: [OUT] on successful return this is the mapped mft record
2104 * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
2106 * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
2107 * direvctory inode, and allocate it at the default allocator position. In
2108 * this case @mode is the file mode as given to us by the caller. We in
2109 * particular use @mode to distinguish whether a file or a directory is being
2110 * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
2112 * If @base_ni is not NULL make the allocated mft record an extent record,
2113 * allocate it starting at the mft record after the base mft record and attach
2114 * the allocated and opened ntfs inode to the base inode @base_ni. In this
2115 * case @mode must be 0 as it is meaningless for extent inodes.
2117 * You need to check the return value with IS_ERR(). If false, the function
2118 * was successful and the return value is the now opened ntfs inode of the
2119 * allocated mft record. *@mrec is then set to the allocated, mapped, pinned,
2120 * and locked mft record. If IS_ERR() is true, the function failed and the
2121 * error code is obtained from PTR_ERR(return value). *@mrec is undefined in
2122 * this case.
2124 * Allocation strategy:
2126 * To find a free mft record, we scan the mft bitmap for a zero bit. To
2127 * optimize this we start scanning at the place specified by @base_ni or if
2128 * @base_ni is NULL we start where we last stopped and we perform wrap around
2129 * when we reach the end. Note, we do not try to allocate mft records below
2130 * number 24 because numbers 0 to 15 are the defined system files anyway and 16
2131 * to 24 are special in that they are used for storing extension mft records
2132 * for the $DATA attribute of $MFT. This is required to avoid the possibility
2133 * of creating a runlist with a circular dependency which once written to disk
2134 * can never be read in again. Windows will only use records 16 to 24 for
2135 * normal files if the volume is completely out of space. We never use them
2136 * which means that when the volume is really out of space we cannot create any
2137 * more files while Windows can still create up to 8 small files. We can start
2138 * doing this at some later time, it does not matter much for now.
2140 * When scanning the mft bitmap, we only search up to the last allocated mft
2141 * record. If there are no free records left in the range 24 to number of
2142 * allocated mft records, then we extend the $MFT/$DATA attribute in order to
2143 * create free mft records. We extend the allocated size of $MFT/$DATA by 16
2144 * records at a time or one cluster, if cluster size is above 16kiB. If there
2145 * is not sufficient space to do this, we try to extend by a single mft record
2146 * or one cluster, if cluster size is above the mft record size.
2148 * No matter how many mft records we allocate, we initialize only the first
2149 * allocated mft record, incrementing mft data size and initialized size
2150 * accordingly, open an ntfs_inode for it and return it to the caller, unless
2151 * there are less than 24 mft records, in which case we allocate and initialize
2152 * mft records until we reach record 24 which we consider as the first free mft
2153 * record for use by normal files.
2155 * If during any stage we overflow the initialized data in the mft bitmap, we
2156 * extend the initialized size (and data size) by 8 bytes, allocating another
2157 * cluster if required. The bitmap data size has to be at least equal to the
2158 * number of mft records in the mft, but it can be bigger, in which case the
2159 * superflous bits are padded with zeroes.
2161 * Thus, when we return successfully (IS_ERR() is false), we will have:
2162 * - initialized / extended the mft bitmap if necessary,
2163 * - initialized / extended the mft data if necessary,
2164 * - set the bit corresponding to the mft record being allocated in the
2165 * mft bitmap,
2166 * - opened an ntfs_inode for the allocated mft record, and we will have
2167 * - returned the ntfs_inode as well as the allocated mapped, pinned, and
2168 * locked mft record.
2170 * On error, the volume will be left in a consistent state and no record will
2171 * be allocated. If rolling back a partial operation fails, we may leave some
2172 * inconsistent metadata in which case we set NVolErrors() so the volume is
2173 * left dirty when unmounted.
2175 * Note, this function cannot make use of most of the normal functions, like
2176 * for example for attribute resizing, etc, because when the run list overflows
2177 * the base mft record and an attribute list is used, it is very important that
2178 * the extension mft records used to store the $DATA attribute of $MFT can be
2179 * reached without having to read the information contained inside them, as
2180 * this would make it impossible to find them in the first place after the
2181 * volume is unmounted. $MFT/$BITMAP probably does not need to follow this
2182 * rule because the bitmap is not essential for finding the mft records, but on
2183 * the other hand, handling the bitmap in this special way would make life
2184 * easier because otherwise there might be circular invocations of functions
2185 * when reading the bitmap.
2187 ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode,
2188 ntfs_inode *base_ni, MFT_RECORD **mrec)
2190 s64 ll, bit, old_data_initialized, old_data_size;
2191 struct inode *vi;
2192 struct page *page;
2193 ntfs_inode *mft_ni, *mftbmp_ni, *ni;
2194 ntfs_attr_search_ctx *ctx;
2195 MFT_RECORD *m;
2196 ATTR_RECORD *a;
2197 pgoff_t index;
2198 unsigned int ofs;
2199 int err;
2200 le16 seq_no, usn;
2201 BOOL record_formatted = FALSE;
2203 if (base_ni) {
2204 ntfs_debug("Entering (allocating an extent mft record for "
2205 "base mft record 0x%llx).",
2206 (long long)base_ni->mft_no);
2207 /* @mode and @base_ni are mutually exclusive. */
2208 BUG_ON(mode);
2209 } else
2210 ntfs_debug("Entering (allocating a base mft record).");
2211 if (mode) {
2212 /* @mode and @base_ni are mutually exclusive. */
2213 BUG_ON(base_ni);
2214 /* We only support creation of normal files and directories. */
2215 if (!S_ISREG(mode) && !S_ISDIR(mode))
2216 return ERR_PTR(-EOPNOTSUPP);
2218 BUG_ON(!mrec);
2219 mft_ni = NTFS_I(vol->mft_ino);
2220 mftbmp_ni = NTFS_I(vol->mftbmp_ino);
2221 down_write(&vol->mftbmp_lock);
2222 bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni);
2223 if (bit >= 0) {
2224 ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
2225 (long long)bit);
2226 goto have_alloc_rec;
2228 if (bit != -ENOSPC) {
2229 up_write(&vol->mftbmp_lock);
2230 return ERR_PTR(bit);
2233 * No free mft records left. If the mft bitmap already covers more
2234 * than the currently used mft records, the next records are all free,
2235 * so we can simply allocate the first unused mft record.
2236 * Note: We also have to make sure that the mft bitmap at least covers
2237 * the first 24 mft records as they are special and whilst they may not
2238 * be in use, we do not allocate from them.
2240 ll = mft_ni->initialized_size >> vol->mft_record_size_bits;
2241 if (mftbmp_ni->initialized_size << 3 > ll &&
2242 mftbmp_ni->initialized_size > 3) {
2243 bit = ll;
2244 if (bit < 24)
2245 bit = 24;
2246 if (unlikely(bit >= (1ll << 32)))
2247 goto max_err_out;
2248 ntfs_debug("Found free record (#2), bit 0x%llx.",
2249 (long long)bit);
2250 goto found_free_rec;
2253 * The mft bitmap needs to be expanded until it covers the first unused
2254 * mft record that we can allocate.
2255 * Note: The smallest mft record we allocate is mft record 24.
2257 bit = mftbmp_ni->initialized_size << 3;
2258 if (unlikely(bit >= (1ll << 32)))
2259 goto max_err_out;
2260 ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
2261 "data_size 0x%llx, initialized_size 0x%llx.",
2262 (long long)mftbmp_ni->allocated_size,
2263 (long long)vol->mftbmp_ino->i_size,
2264 (long long)mftbmp_ni->initialized_size);
2265 if (mftbmp_ni->initialized_size + 8 > mftbmp_ni->allocated_size) {
2266 /* Need to extend bitmap by one more cluster. */
2267 ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
2268 err = ntfs_mft_bitmap_extend_allocation_nolock(vol);
2269 if (unlikely(err)) {
2270 up_write(&vol->mftbmp_lock);
2271 goto err_out;
2273 ntfs_debug("Status of mftbmp after allocation extension: "
2274 "allocated_size 0x%llx, data_size 0x%llx, "
2275 "initialized_size 0x%llx.",
2276 (long long)mftbmp_ni->allocated_size,
2277 (long long)vol->mftbmp_ino->i_size,
2278 (long long)mftbmp_ni->initialized_size);
2281 * We now have sufficient allocated space, extend the initialized_size
2282 * as well as the data_size if necessary and fill the new space with
2283 * zeroes.
2285 err = ntfs_mft_bitmap_extend_initialized_nolock(vol);
2286 if (unlikely(err)) {
2287 up_write(&vol->mftbmp_lock);
2288 goto err_out;
2290 ntfs_debug("Status of mftbmp after initialized extention: "
2291 "allocated_size 0x%llx, data_size 0x%llx, "
2292 "initialized_size 0x%llx.",
2293 (long long)mftbmp_ni->allocated_size,
2294 (long long)vol->mftbmp_ino->i_size,
2295 (long long)mftbmp_ni->initialized_size);
2296 ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit);
2297 found_free_rec:
2298 /* @bit is the found free mft record, allocate it in the mft bitmap. */
2299 ntfs_debug("At found_free_rec.");
2300 err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit);
2301 if (unlikely(err)) {
2302 ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap.");
2303 up_write(&vol->mftbmp_lock);
2304 goto err_out;
2306 ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit);
2307 have_alloc_rec:
2309 * The mft bitmap is now uptodate. Deal with mft data attribute now.
2310 * Note, we keep hold of the mft bitmap lock for writing until all
2311 * modifications to the mft data attribute are complete, too, as they
2312 * will impact decisions for mft bitmap and mft record allocation done
2313 * by a parallel allocation and if the lock is not maintained a
2314 * parallel allocation could allocate the same mft record as this one.
2316 ll = (bit + 1) << vol->mft_record_size_bits;
2317 if (ll <= mft_ni->initialized_size) {
2318 ntfs_debug("Allocated mft record already initialized.");
2319 goto mft_rec_already_initialized;
2321 ntfs_debug("Initializing allocated mft record.");
2323 * The mft record is outside the initialized data. Extend the mft data
2324 * attribute until it covers the allocated record. The loop is only
2325 * actually traversed more than once when a freshly formatted volume is
2326 * first written to so it optimizes away nicely in the common case.
2328 ntfs_debug("Status of mft data before extension: "
2329 "allocated_size 0x%llx, data_size 0x%llx, "
2330 "initialized_size 0x%llx.",
2331 (long long)mft_ni->allocated_size,
2332 (long long)vol->mft_ino->i_size,
2333 (long long)mft_ni->initialized_size);
2334 while (ll > mft_ni->allocated_size) {
2335 err = ntfs_mft_data_extend_allocation_nolock(vol);
2336 if (unlikely(err)) {
2337 ntfs_error(vol->sb, "Failed to extend mft data "
2338 "allocation.");
2339 goto undo_mftbmp_alloc_nolock;
2341 ntfs_debug("Status of mft data after allocation extension: "
2342 "allocated_size 0x%llx, data_size 0x%llx, "
2343 "initialized_size 0x%llx.",
2344 (long long)mft_ni->allocated_size,
2345 (long long)vol->mft_ino->i_size,
2346 (long long)mft_ni->initialized_size);
2349 * Extend mft data initialized size (and data size of course) to reach
2350 * the allocated mft record, formatting the mft records allong the way.
2351 * Note: We only modify the ntfs_inode structure as that is all that is
2352 * needed by ntfs_mft_record_format(). We will update the attribute
2353 * record itself in one fell swoop later on.
2355 old_data_initialized = mft_ni->initialized_size;
2356 old_data_size = vol->mft_ino->i_size;
2357 while (ll > mft_ni->initialized_size) {
2358 s64 new_initialized_size, mft_no;
2360 new_initialized_size = mft_ni->initialized_size +
2361 vol->mft_record_size;
2362 mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits;
2363 if (new_initialized_size > vol->mft_ino->i_size)
2364 vol->mft_ino->i_size = new_initialized_size;
2365 ntfs_debug("Initializing mft record 0x%llx.",
2366 (long long)mft_no);
2367 err = ntfs_mft_record_format(vol, mft_no);
2368 if (unlikely(err)) {
2369 ntfs_error(vol->sb, "Failed to format mft record.");
2370 goto undo_data_init;
2372 mft_ni->initialized_size = new_initialized_size;
2374 record_formatted = TRUE;
2375 /* Update the mft data attribute record to reflect the new sizes. */
2376 m = map_mft_record(mft_ni);
2377 if (IS_ERR(m)) {
2378 ntfs_error(vol->sb, "Failed to map mft record.");
2379 err = PTR_ERR(m);
2380 goto undo_data_init;
2382 ctx = ntfs_attr_get_search_ctx(mft_ni, m);
2383 if (unlikely(!ctx)) {
2384 ntfs_error(vol->sb, "Failed to get search context.");
2385 err = -ENOMEM;
2386 unmap_mft_record(mft_ni);
2387 goto undo_data_init;
2389 err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
2390 CASE_SENSITIVE, 0, NULL, 0, ctx);
2391 if (unlikely(err)) {
2392 ntfs_error(vol->sb, "Failed to find first attribute extent of "
2393 "mft data attribute.");
2394 ntfs_attr_put_search_ctx(ctx);
2395 unmap_mft_record(mft_ni);
2396 goto undo_data_init;
2398 a = ctx->attr;
2399 a->data.non_resident.initialized_size =
2400 cpu_to_sle64(mft_ni->initialized_size);
2401 a->data.non_resident.data_size = cpu_to_sle64(vol->mft_ino->i_size);
2402 /* Ensure the changes make it to disk. */
2403 flush_dcache_mft_record_page(ctx->ntfs_ino);
2404 mark_mft_record_dirty(ctx->ntfs_ino);
2405 ntfs_attr_put_search_ctx(ctx);
2406 unmap_mft_record(mft_ni);
2407 ntfs_debug("Status of mft data after mft record initialization: "
2408 "allocated_size 0x%llx, data_size 0x%llx, "
2409 "initialized_size 0x%llx.",
2410 (long long)mft_ni->allocated_size,
2411 (long long)vol->mft_ino->i_size,
2412 (long long)mft_ni->initialized_size);
2413 BUG_ON(vol->mft_ino->i_size > mft_ni->allocated_size);
2414 BUG_ON(mft_ni->initialized_size > vol->mft_ino->i_size);
2415 mft_rec_already_initialized:
2417 * We can finally drop the mft bitmap lock as the mft data attribute
2418 * has been fully updated. The only disparity left is that the
2419 * allocated mft record still needs to be marked as in use to match the
2420 * set bit in the mft bitmap but this is actually not a problem since
2421 * this mft record is not referenced from anywhere yet and the fact
2422 * that it is allocated in the mft bitmap means that no-one will try to
2423 * allocate it either.
2425 up_write(&vol->mftbmp_lock);
2427 * We now have allocated and initialized the mft record. Calculate the
2428 * index of and the offset within the page cache page the record is in.
2430 index = bit << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
2431 ofs = (bit << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
2432 /* Read, map, and pin the page containing the mft record. */
2433 page = ntfs_map_page(vol->mft_ino->i_mapping, index);
2434 if (unlikely(IS_ERR(page))) {
2435 ntfs_error(vol->sb, "Failed to map page containing allocated "
2436 "mft record 0x%llx.", (long long)bit);
2437 err = PTR_ERR(page);
2438 goto undo_mftbmp_alloc;
2440 lock_page(page);
2441 BUG_ON(!PageUptodate(page));
2442 ClearPageUptodate(page);
2443 m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2444 /* If we just formatted the mft record no need to do it again. */
2445 if (!record_formatted) {
2446 /* Sanity check that the mft record is really not in use. */
2447 if (ntfs_is_file_record(m->magic) &&
2448 (m->flags & MFT_RECORD_IN_USE)) {
2449 ntfs_error(vol->sb, "Mft record 0x%llx was marked "
2450 "free in mft bitmap but is marked "
2451 "used itself. Corrupt filesystem. "
2452 "Unmount and run chkdsk.",
2453 (long long)bit);
2454 err = -EIO;
2455 SetPageUptodate(page);
2456 unlock_page(page);
2457 ntfs_unmap_page(page);
2458 NVolSetErrors(vol);
2459 goto undo_mftbmp_alloc;
2462 * We need to (re-)format the mft record, preserving the
2463 * sequence number if it is not zero as well as the update
2464 * sequence number if it is not zero or -1 (0xffff). This
2465 * means we do not need to care whether or not something went
2466 * wrong with the previous mft record.
2468 seq_no = m->sequence_number;
2469 usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs));
2470 err = ntfs_mft_record_layout(vol, bit, m);
2471 if (unlikely(err)) {
2472 ntfs_error(vol->sb, "Failed to layout allocated mft "
2473 "record 0x%llx.", (long long)bit);
2474 SetPageUptodate(page);
2475 unlock_page(page);
2476 ntfs_unmap_page(page);
2477 goto undo_mftbmp_alloc;
2479 if (seq_no)
2480 m->sequence_number = seq_no;
2481 if (usn && le16_to_cpu(usn) != 0xffff)
2482 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn;
2484 /* Set the mft record itself in use. */
2485 m->flags |= MFT_RECORD_IN_USE;
2486 if (S_ISDIR(mode))
2487 m->flags |= MFT_RECORD_IS_DIRECTORY;
2488 flush_dcache_page(page);
2489 SetPageUptodate(page);
2490 if (base_ni) {
2492 * Setup the base mft record in the extent mft record. This
2493 * completes initialization of the allocated extent mft record
2494 * and we can simply use it with map_extent_mft_record().
2496 m->base_mft_record = MK_LE_MREF(base_ni->mft_no,
2497 base_ni->seq_no);
2499 * Allocate an extent inode structure for the new mft record,
2500 * attach it to the base inode @base_ni and map, pin, and lock
2501 * its, i.e. the allocated, mft record.
2503 m = map_extent_mft_record(base_ni, bit, &ni);
2504 if (IS_ERR(m)) {
2505 ntfs_error(vol->sb, "Failed to map allocated extent "
2506 "mft record 0x%llx.", (long long)bit);
2507 err = PTR_ERR(m);
2508 /* Set the mft record itself not in use. */
2509 m->flags &= cpu_to_le16(
2510 ~le16_to_cpu(MFT_RECORD_IN_USE));
2511 flush_dcache_page(page);
2512 /* Make sure the mft record is written out to disk. */
2513 mark_ntfs_record_dirty(page, ofs);
2514 unlock_page(page);
2515 ntfs_unmap_page(page);
2516 goto undo_mftbmp_alloc;
2519 * Make sure the allocated mft record is written out to disk.
2520 * No need to set the inode dirty because the caller is going
2521 * to do that anyway after finishing with the new extent mft
2522 * record (e.g. at a minimum a new attribute will be added to
2523 * the mft record.
2525 mark_ntfs_record_dirty(page, ofs);
2526 unlock_page(page);
2528 * Need to unmap the page since map_extent_mft_record() mapped
2529 * it as well so we have it mapped twice at the moment.
2531 ntfs_unmap_page(page);
2532 } else {
2534 * Allocate a new VFS inode and set it up. NOTE: @vi->i_nlink
2535 * is set to 1 but the mft record->link_count is 0. The caller
2536 * needs to bear this in mind.
2538 vi = new_inode(vol->sb);
2539 if (unlikely(!vi)) {
2540 err = -ENOMEM;
2541 /* Set the mft record itself not in use. */
2542 m->flags &= cpu_to_le16(
2543 ~le16_to_cpu(MFT_RECORD_IN_USE));
2544 flush_dcache_page(page);
2545 /* Make sure the mft record is written out to disk. */
2546 mark_ntfs_record_dirty(page, ofs);
2547 unlock_page(page);
2548 ntfs_unmap_page(page);
2549 goto undo_mftbmp_alloc;
2551 vi->i_ino = bit;
2553 * This is the optimal IO size (for stat), not the fs block
2554 * size.
2556 vi->i_blksize = PAGE_CACHE_SIZE;
2558 * This is for checking whether an inode has changed w.r.t. a
2559 * file so that the file can be updated if necessary (compare
2560 * with f_version).
2562 vi->i_version = 1;
2564 /* The owner and group come from the ntfs volume. */
2565 vi->i_uid = vol->uid;
2566 vi->i_gid = vol->gid;
2568 /* Initialize the ntfs specific part of @vi. */
2569 ntfs_init_big_inode(vi);
2570 ni = NTFS_I(vi);
2572 * Set the appropriate mode, attribute type, and name. For
2573 * directories, also setup the index values to the defaults.
2575 if (S_ISDIR(mode)) {
2576 vi->i_mode = S_IFDIR | S_IRWXUGO;
2577 vi->i_mode &= ~vol->dmask;
2579 NInoSetMstProtected(ni);
2580 ni->type = AT_INDEX_ALLOCATION;
2581 ni->name = I30;
2582 ni->name_len = 4;
2584 ni->itype.index.block_size = 4096;
2585 ni->itype.index.block_size_bits = generic_ffs(4096) - 1;
2586 ni->itype.index.collation_rule = COLLATION_FILE_NAME;
2587 if (vol->cluster_size <= ni->itype.index.block_size) {
2588 ni->itype.index.vcn_size = vol->cluster_size;
2589 ni->itype.index.vcn_size_bits =
2590 vol->cluster_size_bits;
2591 } else {
2592 ni->itype.index.vcn_size = vol->sector_size;
2593 ni->itype.index.vcn_size_bits =
2594 vol->sector_size_bits;
2596 } else {
2597 vi->i_mode = S_IFREG | S_IRWXUGO;
2598 vi->i_mode &= ~vol->fmask;
2600 ni->type = AT_DATA;
2601 ni->name = NULL;
2602 ni->name_len = 0;
2604 if (IS_RDONLY(vi))
2605 vi->i_mode &= ~S_IWUGO;
2607 /* Set the inode times to the current time. */
2608 vi->i_atime = vi->i_mtime = vi->i_ctime =
2609 current_fs_time(vi->i_sb);
2611 * Set the file size to 0, the ntfs inode sizes are set to 0 by
2612 * the call to ntfs_init_big_inode() below.
2614 vi->i_size = 0;
2615 vi->i_blocks = 0;
2617 /* Set the sequence number. */
2618 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
2620 * Manually map, pin, and lock the mft record as we already
2621 * have its page mapped and it is very easy to do.
2623 atomic_inc(&ni->count);
2624 down(&ni->mrec_lock);
2625 ni->page = page;
2626 ni->page_ofs = ofs;
2628 * Make sure the allocated mft record is written out to disk.
2629 * NOTE: We do not set the ntfs inode dirty because this would
2630 * fail in ntfs_write_inode() because the inode does not have a
2631 * standard information attribute yet. Also, there is no need
2632 * to set the inode dirty because the caller is going to do
2633 * that anyway after finishing with the new mft record (e.g. at
2634 * a minimum some new attributes will be added to the mft
2635 * record.
2637 mark_ntfs_record_dirty(page, ofs);
2638 unlock_page(page);
2640 /* Add the inode to the inode hash for the superblock. */
2641 insert_inode_hash(vi);
2643 /* Update the default mft allocation position. */
2644 vol->mft_data_pos = bit + 1;
2647 * Return the opened, allocated inode of the allocated mft record as
2648 * well as the mapped, pinned, and locked mft record.
2650 ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
2651 base_ni ? "extent " : "", (long long)bit);
2652 *mrec = m;
2653 return ni;
2654 undo_data_init:
2655 mft_ni->initialized_size = old_data_initialized;
2656 vol->mft_ino->i_size = old_data_size;
2657 goto undo_mftbmp_alloc_nolock;
2658 undo_mftbmp_alloc:
2659 down_write(&vol->mftbmp_lock);
2660 undo_mftbmp_alloc_nolock:
2661 if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) {
2662 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2663 NVolSetErrors(vol);
2665 up_write(&vol->mftbmp_lock);
2666 err_out:
2667 return ERR_PTR(err);
2668 max_err_out:
2669 ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum "
2670 "number of inodes (2^32) has already been reached.");
2671 up_write(&vol->mftbmp_lock);
2672 return ERR_PTR(-ENOSPC);
2676 * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
2677 * @ni: ntfs inode of the mapped extent mft record to free
2678 * @m: mapped extent mft record of the ntfs inode @ni
2680 * Free the mapped extent mft record @m of the extent ntfs inode @ni.
2682 * Note that this function unmaps the mft record and closes and destroys @ni
2683 * internally and hence you cannot use either @ni nor @m any more after this
2684 * function returns success.
2686 * On success return 0 and on error return -errno. @ni and @m are still valid
2687 * in this case and have not been freed.
2689 * For some errors an error message is displayed and the success code 0 is
2690 * returned and the volume is then left dirty on umount. This makes sense in
2691 * case we could not rollback the changes that were already done since the
2692 * caller no longer wants to reference this mft record so it does not matter to
2693 * the caller if something is wrong with it as long as it is properly detached
2694 * from the base inode.
2696 int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m)
2698 unsigned long mft_no = ni->mft_no;
2699 ntfs_volume *vol = ni->vol;
2700 ntfs_inode *base_ni;
2701 ntfs_inode **extent_nis;
2702 int i, err;
2703 le16 old_seq_no;
2704 u16 seq_no;
2706 BUG_ON(NInoAttr(ni));
2707 BUG_ON(ni->nr_extents != -1);
2709 down(&ni->extent_lock);
2710 base_ni = ni->ext.base_ntfs_ino;
2711 up(&ni->extent_lock);
2713 BUG_ON(base_ni->nr_extents <= 0);
2715 ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
2716 mft_no, base_ni->mft_no);
2718 down(&base_ni->extent_lock);
2720 /* Make sure we are holding the only reference to the extent inode. */
2721 if (atomic_read(&ni->count) > 2) {
2722 ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, "
2723 "not freeing.", base_ni->mft_no);
2724 up(&base_ni->extent_lock);
2725 return -EBUSY;
2728 /* Dissociate the ntfs inode from the base inode. */
2729 extent_nis = base_ni->ext.extent_ntfs_inos;
2730 err = -ENOENT;
2731 for (i = 0; i < base_ni->nr_extents; i++) {
2732 if (ni != extent_nis[i])
2733 continue;
2734 extent_nis += i;
2735 base_ni->nr_extents--;
2736 memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) *
2737 sizeof(ntfs_inode*));
2738 err = 0;
2739 break;
2742 up(&base_ni->extent_lock);
2744 if (unlikely(err)) {
2745 ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to "
2746 "its base inode 0x%lx.", mft_no,
2747 base_ni->mft_no);
2748 BUG();
2752 * The extent inode is no longer attached to the base inode so no one
2753 * can get a reference to it any more.
2756 /* Mark the mft record as not in use. */
2757 m->flags &= const_cpu_to_le16(~const_le16_to_cpu(MFT_RECORD_IN_USE));
2759 /* Increment the sequence number, skipping zero, if it is not zero. */
2760 old_seq_no = m->sequence_number;
2761 seq_no = le16_to_cpu(old_seq_no);
2762 if (seq_no == 0xffff)
2763 seq_no = 1;
2764 else if (seq_no)
2765 seq_no++;
2766 m->sequence_number = cpu_to_le16(seq_no);
2769 * Set the ntfs inode dirty and write it out. We do not need to worry
2770 * about the base inode here since whatever caused the extent mft
2771 * record to be freed is guaranteed to do it already.
2773 NInoSetDirty(ni);
2774 err = write_mft_record(ni, m, 0);
2775 if (unlikely(err)) {
2776 ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not "
2777 "freeing.", mft_no);
2778 goto rollback;
2780 rollback_error:
2781 /* Unmap and throw away the now freed extent inode. */
2782 unmap_extent_mft_record(ni);
2783 ntfs_clear_extent_inode(ni);
2785 /* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
2786 down_write(&vol->mftbmp_lock);
2787 err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no);
2788 up_write(&vol->mftbmp_lock);
2789 if (unlikely(err)) {
2791 * The extent inode is gone but we failed to deallocate it in
2792 * the mft bitmap. Just emit a warning and leave the volume
2793 * dirty on umount.
2795 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2796 NVolSetErrors(vol);
2798 return 0;
2799 rollback:
2800 /* Rollback what we did... */
2801 down(&base_ni->extent_lock);
2802 extent_nis = base_ni->ext.extent_ntfs_inos;
2803 if (!(base_ni->nr_extents & 3)) {
2804 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*);
2806 extent_nis = (ntfs_inode**)kmalloc(new_size, GFP_NOFS);
2807 if (unlikely(!extent_nis)) {
2808 ntfs_error(vol->sb, "Failed to allocate internal "
2809 "buffer during rollback.%s", es);
2810 up(&base_ni->extent_lock);
2811 NVolSetErrors(vol);
2812 goto rollback_error;
2814 if (base_ni->nr_extents) {
2815 BUG_ON(!base_ni->ext.extent_ntfs_inos);
2816 memcpy(extent_nis, base_ni->ext.extent_ntfs_inos,
2817 new_size - 4 * sizeof(ntfs_inode*));
2818 kfree(base_ni->ext.extent_ntfs_inos);
2820 base_ni->ext.extent_ntfs_inos = extent_nis;
2822 m->flags |= MFT_RECORD_IN_USE;
2823 m->sequence_number = old_seq_no;
2824 extent_nis[base_ni->nr_extents++] = ni;
2825 up(&base_ni->extent_lock);
2826 mark_mft_record_dirty(ni);
2827 return err;
2829 #endif /* NTFS_RW */