1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2004, 2005 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
37 #include "heartbeat.h"
39 #include "nodemanager.h"
46 * The first heartbeat pass had one global thread that would serialize all hb
47 * callback calls. This global serializing sem should only be removed once
48 * we've made sure that all callees can deal with being called concurrently
49 * from multiple hb region threads.
51 static DECLARE_RWSEM(o2hb_callback_sem
);
54 * multiple hb threads are watching multiple regions. A node is live
55 * whenever any of the threads sees activity from the node in its region.
57 static spinlock_t o2hb_live_lock
= SPIN_LOCK_UNLOCKED
;
58 static struct list_head o2hb_live_slots
[O2NM_MAX_NODES
];
59 static unsigned long o2hb_live_node_bitmap
[BITS_TO_LONGS(O2NM_MAX_NODES
)];
60 static LIST_HEAD(o2hb_node_events
);
61 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue
);
63 static LIST_HEAD(o2hb_all_regions
);
65 static struct o2hb_callback
{
66 struct list_head list
;
67 } o2hb_callbacks
[O2HB_NUM_CB
];
69 static struct o2hb_callback
*hbcall_from_type(enum o2hb_callback_type type
);
71 #define O2HB_DEFAULT_BLOCK_BITS 9
73 unsigned int o2hb_dead_threshold
= O2HB_DEFAULT_DEAD_THRESHOLD
;
75 /* Only sets a new threshold if there are no active regions.
77 * No locking or otherwise interesting code is required for reading
78 * o2hb_dead_threshold as it can't change once regions are active and
79 * it's not interesting to anyone until then anyway. */
80 static void o2hb_dead_threshold_set(unsigned int threshold
)
82 if (threshold
> O2HB_MIN_DEAD_THRESHOLD
) {
83 spin_lock(&o2hb_live_lock
);
84 if (list_empty(&o2hb_all_regions
))
85 o2hb_dead_threshold
= threshold
;
86 spin_unlock(&o2hb_live_lock
);
90 struct o2hb_node_event
{
91 struct list_head hn_item
;
92 enum o2hb_callback_type hn_event_type
;
93 struct o2nm_node
*hn_node
;
97 struct o2hb_disk_slot
{
98 struct o2hb_disk_heartbeat_block
*ds_raw_block
;
101 u64 ds_last_generation
;
102 u16 ds_equal_samples
;
103 u16 ds_changed_samples
;
104 struct list_head ds_live_item
;
107 /* each thread owns a region.. when we're asked to tear down the region
108 * we ask the thread to stop, who cleans up the region */
110 struct config_item hr_item
;
112 struct list_head hr_all_item
;
113 unsigned hr_unclean_stop
:1;
115 /* protected by the hr_callback_sem */
116 struct task_struct
*hr_task
;
118 unsigned int hr_blocks
;
119 unsigned long long hr_start_block
;
121 unsigned int hr_block_bits
;
122 unsigned int hr_block_bytes
;
124 unsigned int hr_slots_per_page
;
125 unsigned int hr_num_pages
;
127 struct page
**hr_slot_data
;
128 struct block_device
*hr_bdev
;
129 struct o2hb_disk_slot
*hr_slots
;
131 /* let the person setting up hb wait for it to return until it
132 * has reached a 'steady' state. This will be fixed when we have
133 * a more complete api that doesn't lead to this sort of fragility. */
134 atomic_t hr_steady_iterations
;
136 char hr_dev_name
[BDEVNAME_SIZE
];
138 unsigned int hr_timeout_ms
;
140 /* randomized as the region goes up and down so that a node
141 * recognizes a node going up and down in one iteration */
144 struct work_struct hr_write_timeout_work
;
145 unsigned long hr_last_timeout_start
;
147 /* Used during o2hb_check_slot to hold a copy of the block
148 * being checked because we temporarily have to zero out the
150 struct o2hb_disk_heartbeat_block
*hr_tmp_block
;
153 struct o2hb_bio_wait_ctxt
{
154 atomic_t wc_num_reqs
;
155 struct completion wc_io_complete
;
159 static void o2hb_write_timeout(void *arg
)
161 struct o2hb_region
*reg
= arg
;
163 mlog(ML_ERROR
, "Heartbeat write timeout to device %s after %u "
164 "milliseconds\n", reg
->hr_dev_name
,
165 jiffies_to_msecs(jiffies
- reg
->hr_last_timeout_start
));
166 o2quo_disk_timeout();
169 static void o2hb_arm_write_timeout(struct o2hb_region
*reg
)
171 mlog(0, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS
);
173 cancel_delayed_work(®
->hr_write_timeout_work
);
174 reg
->hr_last_timeout_start
= jiffies
;
175 schedule_delayed_work(®
->hr_write_timeout_work
,
176 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS
));
179 static void o2hb_disarm_write_timeout(struct o2hb_region
*reg
)
181 cancel_delayed_work(®
->hr_write_timeout_work
);
182 flush_scheduled_work();
185 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt
*wc
,
186 unsigned int num_ios
)
188 atomic_set(&wc
->wc_num_reqs
, num_ios
);
189 init_completion(&wc
->wc_io_complete
);
193 /* Used in error paths too */
194 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt
*wc
,
197 /* sadly atomic_sub_and_test() isn't available on all platforms. The
198 * good news is that the fast path only completes one at a time */
200 if (atomic_dec_and_test(&wc
->wc_num_reqs
)) {
202 complete(&wc
->wc_io_complete
);
207 static void o2hb_wait_on_io(struct o2hb_region
*reg
,
208 struct o2hb_bio_wait_ctxt
*wc
)
210 struct address_space
*mapping
= reg
->hr_bdev
->bd_inode
->i_mapping
;
212 blk_run_address_space(mapping
);
214 wait_for_completion(&wc
->wc_io_complete
);
217 static int o2hb_bio_end_io(struct bio
*bio
,
218 unsigned int bytes_done
,
221 struct o2hb_bio_wait_ctxt
*wc
= bio
->bi_private
;
224 mlog(ML_ERROR
, "IO Error %d\n", error
);
225 wc
->wc_error
= error
;
231 o2hb_bio_wait_dec(wc
, 1);
235 /* Setup a Bio to cover I/O against num_slots slots starting at
237 static struct bio
*o2hb_setup_one_bio(struct o2hb_region
*reg
,
238 struct o2hb_bio_wait_ctxt
*wc
,
239 unsigned int start_slot
,
240 unsigned int num_slots
)
242 int i
, nr_vecs
, len
, first_page
, last_page
;
243 unsigned int vec_len
, vec_start
;
244 unsigned int bits
= reg
->hr_block_bits
;
245 unsigned int spp
= reg
->hr_slots_per_page
;
249 nr_vecs
= (num_slots
+ spp
- 1) / spp
;
251 /* Testing has shown this allocation to take long enough under
252 * GFP_KERNEL that the local node can get fenced. It would be
253 * nicest if we could pre-allocate these bios and avoid this
255 bio
= bio_alloc(GFP_ATOMIC
, nr_vecs
);
257 mlog(ML_ERROR
, "Could not alloc slots BIO!\n");
258 bio
= ERR_PTR(-ENOMEM
);
262 /* Must put everything in 512 byte sectors for the bio... */
263 bio
->bi_sector
= (reg
->hr_start_block
+ start_slot
) << (bits
- 9);
264 bio
->bi_bdev
= reg
->hr_bdev
;
265 bio
->bi_private
= wc
;
266 bio
->bi_end_io
= o2hb_bio_end_io
;
268 first_page
= start_slot
/ spp
;
269 last_page
= first_page
+ nr_vecs
;
270 vec_start
= (start_slot
<< bits
) % PAGE_CACHE_SIZE
;
271 for(i
= first_page
; i
< last_page
; i
++) {
272 page
= reg
->hr_slot_data
[i
];
274 vec_len
= PAGE_CACHE_SIZE
;
275 /* last page might be short */
276 if (((i
+ 1) * spp
) > (start_slot
+ num_slots
))
277 vec_len
= ((num_slots
+ start_slot
) % spp
) << bits
;
278 vec_len
-= vec_start
;
280 mlog(ML_HB_BIO
, "page %d, vec_len = %u, vec_start = %u\n",
281 i
, vec_len
, vec_start
);
283 len
= bio_add_page(bio
, page
, vec_len
, vec_start
);
284 if (len
!= vec_len
) {
288 mlog(ML_ERROR
, "Error adding page to bio i = %d, "
289 "vec_len = %u, len = %d\n, start = %u\n",
290 i
, vec_len
, len
, vec_start
);
302 * Compute the maximum number of sectors the bdev can handle in one bio,
305 * Stolen from oracleasm, thanks Joel!
307 static int compute_max_sectors(struct block_device
*bdev
)
309 int max_pages
, max_sectors
, pow_two_sectors
;
311 struct request_queue
*q
;
313 q
= bdev_get_queue(bdev
);
314 max_pages
= q
->max_sectors
>> (PAGE_SHIFT
- 9);
315 if (max_pages
> BIO_MAX_PAGES
)
316 max_pages
= BIO_MAX_PAGES
;
317 if (max_pages
> q
->max_phys_segments
)
318 max_pages
= q
->max_phys_segments
;
319 if (max_pages
> q
->max_hw_segments
)
320 max_pages
= q
->max_hw_segments
;
321 max_pages
--; /* Handle I/Os that straddle a page */
323 max_sectors
= max_pages
<< (PAGE_SHIFT
- 9);
325 /* Why is fls() 1-based???? */
326 pow_two_sectors
= 1 << (fls(max_sectors
) - 1);
328 return pow_two_sectors
;
331 static inline void o2hb_compute_request_limits(struct o2hb_region
*reg
,
332 unsigned int num_slots
,
333 unsigned int *num_bios
,
334 unsigned int *slots_per_bio
)
336 unsigned int max_sectors
, io_sectors
;
338 max_sectors
= compute_max_sectors(reg
->hr_bdev
);
340 io_sectors
= num_slots
<< (reg
->hr_block_bits
- 9);
342 *num_bios
= (io_sectors
+ max_sectors
- 1) / max_sectors
;
343 *slots_per_bio
= max_sectors
>> (reg
->hr_block_bits
- 9);
345 mlog(ML_HB_BIO
, "My io size is %u sectors for %u slots. This "
346 "device can handle %u sectors of I/O\n", io_sectors
, num_slots
,
348 mlog(ML_HB_BIO
, "Will need %u bios holding %u slots each\n",
349 *num_bios
, *slots_per_bio
);
352 static int o2hb_read_slots(struct o2hb_region
*reg
,
353 unsigned int max_slots
)
355 unsigned int num_bios
, slots_per_bio
, start_slot
, num_slots
;
357 struct o2hb_bio_wait_ctxt wc
;
361 o2hb_compute_request_limits(reg
, max_slots
, &num_bios
, &slots_per_bio
);
363 bios
= kcalloc(num_bios
, sizeof(struct bio
*), GFP_KERNEL
);
370 o2hb_bio_wait_init(&wc
, num_bios
);
372 num_slots
= slots_per_bio
;
373 for(i
= 0; i
< num_bios
; i
++) {
374 start_slot
= i
* slots_per_bio
;
376 /* adjust num_slots at last bio */
377 if (max_slots
< (start_slot
+ num_slots
))
378 num_slots
= max_slots
- start_slot
;
380 bio
= o2hb_setup_one_bio(reg
, &wc
, start_slot
, num_slots
);
382 o2hb_bio_wait_dec(&wc
, num_bios
- i
);
384 status
= PTR_ERR(bio
);
390 submit_bio(READ
, bio
);
396 o2hb_wait_on_io(reg
, &wc
);
397 if (wc
.wc_error
&& !status
)
398 status
= wc
.wc_error
;
401 for(i
= 0; i
< num_bios
; i
++)
410 static int o2hb_issue_node_write(struct o2hb_region
*reg
,
411 struct bio
**write_bio
,
412 struct o2hb_bio_wait_ctxt
*write_wc
)
418 o2hb_bio_wait_init(write_wc
, 1);
420 slot
= o2nm_this_node();
422 bio
= o2hb_setup_one_bio(reg
, write_wc
, slot
, 1);
424 status
= PTR_ERR(bio
);
429 submit_bio(WRITE
, bio
);
437 static u32
o2hb_compute_block_crc_le(struct o2hb_region
*reg
,
438 struct o2hb_disk_heartbeat_block
*hb_block
)
443 /* We want to compute the block crc with a 0 value in the
444 * hb_cksum field. Save it off here and replace after the
446 old_cksum
= hb_block
->hb_cksum
;
447 hb_block
->hb_cksum
= 0;
449 ret
= crc32_le(0, (unsigned char *) hb_block
, reg
->hr_block_bytes
);
451 hb_block
->hb_cksum
= old_cksum
;
456 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block
*hb_block
)
458 mlog(ML_ERROR
, "Dump slot information: seq = 0x%llx, node = %u, "
459 "cksum = 0x%x, generation 0x%llx\n",
460 (long long)le64_to_cpu(hb_block
->hb_seq
),
461 hb_block
->hb_node
, le32_to_cpu(hb_block
->hb_cksum
),
462 (long long)le64_to_cpu(hb_block
->hb_generation
));
465 static int o2hb_verify_crc(struct o2hb_region
*reg
,
466 struct o2hb_disk_heartbeat_block
*hb_block
)
470 read
= le32_to_cpu(hb_block
->hb_cksum
);
471 computed
= o2hb_compute_block_crc_le(reg
, hb_block
);
473 return read
== computed
;
476 /* We want to make sure that nobody is heartbeating on top of us --
477 * this will help detect an invalid configuration. */
478 static int o2hb_check_last_timestamp(struct o2hb_region
*reg
)
481 struct o2hb_disk_slot
*slot
;
482 struct o2hb_disk_heartbeat_block
*hb_block
;
484 node_num
= o2nm_this_node();
487 slot
= ®
->hr_slots
[node_num
];
488 /* Don't check on our 1st timestamp */
489 if (slot
->ds_last_time
) {
490 hb_block
= slot
->ds_raw_block
;
492 if (le64_to_cpu(hb_block
->hb_seq
) != slot
->ds_last_time
)
499 static inline void o2hb_prepare_block(struct o2hb_region
*reg
,
504 struct o2hb_disk_slot
*slot
;
505 struct o2hb_disk_heartbeat_block
*hb_block
;
507 node_num
= o2nm_this_node();
508 slot
= ®
->hr_slots
[node_num
];
510 hb_block
= (struct o2hb_disk_heartbeat_block
*)slot
->ds_raw_block
;
511 memset(hb_block
, 0, reg
->hr_block_bytes
);
512 /* TODO: time stuff */
513 cputime
= CURRENT_TIME
.tv_sec
;
517 hb_block
->hb_seq
= cpu_to_le64(cputime
);
518 hb_block
->hb_node
= node_num
;
519 hb_block
->hb_generation
= cpu_to_le64(generation
);
521 /* This step must always happen last! */
522 hb_block
->hb_cksum
= cpu_to_le32(o2hb_compute_block_crc_le(reg
,
525 mlog(ML_HB_BIO
, "our node generation = 0x%llx, cksum = 0x%x\n",
526 (long long)cpu_to_le64(generation
),
527 le32_to_cpu(hb_block
->hb_cksum
));
530 static void o2hb_fire_callbacks(struct o2hb_callback
*hbcall
,
531 struct o2nm_node
*node
,
534 struct list_head
*iter
;
535 struct o2hb_callback_func
*f
;
537 list_for_each(iter
, &hbcall
->list
) {
538 f
= list_entry(iter
, struct o2hb_callback_func
, hc_item
);
539 mlog(ML_HEARTBEAT
, "calling funcs %p\n", f
);
540 (f
->hc_func
)(node
, idx
, f
->hc_data
);
544 /* Will run the list in order until we process the passed event */
545 static void o2hb_run_event_list(struct o2hb_node_event
*queued_event
)
548 struct o2hb_callback
*hbcall
;
549 struct o2hb_node_event
*event
;
551 spin_lock(&o2hb_live_lock
);
552 empty
= list_empty(&queued_event
->hn_item
);
553 spin_unlock(&o2hb_live_lock
);
557 /* Holding callback sem assures we don't alter the callback
558 * lists when doing this, and serializes ourselves with other
559 * processes wanting callbacks. */
560 down_write(&o2hb_callback_sem
);
562 spin_lock(&o2hb_live_lock
);
563 while (!list_empty(&o2hb_node_events
)
564 && !list_empty(&queued_event
->hn_item
)) {
565 event
= list_entry(o2hb_node_events
.next
,
566 struct o2hb_node_event
,
568 list_del_init(&event
->hn_item
);
569 spin_unlock(&o2hb_live_lock
);
571 mlog(ML_HEARTBEAT
, "Node %s event for %d\n",
572 event
->hn_event_type
== O2HB_NODE_UP_CB
? "UP" : "DOWN",
575 hbcall
= hbcall_from_type(event
->hn_event_type
);
577 /* We should *never* have gotten on to the list with a
578 * bad type... This isn't something that we should try
579 * to recover from. */
580 BUG_ON(IS_ERR(hbcall
));
582 o2hb_fire_callbacks(hbcall
, event
->hn_node
, event
->hn_node_num
);
584 spin_lock(&o2hb_live_lock
);
586 spin_unlock(&o2hb_live_lock
);
588 up_write(&o2hb_callback_sem
);
591 static void o2hb_queue_node_event(struct o2hb_node_event
*event
,
592 enum o2hb_callback_type type
,
593 struct o2nm_node
*node
,
596 assert_spin_locked(&o2hb_live_lock
);
598 event
->hn_event_type
= type
;
599 event
->hn_node
= node
;
600 event
->hn_node_num
= node_num
;
602 mlog(ML_HEARTBEAT
, "Queue node %s event for node %d\n",
603 type
== O2HB_NODE_UP_CB
? "UP" : "DOWN", node_num
);
605 list_add_tail(&event
->hn_item
, &o2hb_node_events
);
608 static void o2hb_shutdown_slot(struct o2hb_disk_slot
*slot
)
610 struct o2hb_node_event event
=
611 { .hn_item
= LIST_HEAD_INIT(event
.hn_item
), };
612 struct o2nm_node
*node
;
614 node
= o2nm_get_node_by_num(slot
->ds_node_num
);
618 spin_lock(&o2hb_live_lock
);
619 if (!list_empty(&slot
->ds_live_item
)) {
620 mlog(ML_HEARTBEAT
, "Shutdown, node %d leaves region\n",
623 list_del_init(&slot
->ds_live_item
);
625 if (list_empty(&o2hb_live_slots
[slot
->ds_node_num
])) {
626 clear_bit(slot
->ds_node_num
, o2hb_live_node_bitmap
);
628 o2hb_queue_node_event(&event
, O2HB_NODE_DOWN_CB
, node
,
632 spin_unlock(&o2hb_live_lock
);
634 o2hb_run_event_list(&event
);
639 static int o2hb_check_slot(struct o2hb_region
*reg
,
640 struct o2hb_disk_slot
*slot
)
642 int changed
= 0, gen_changed
= 0;
643 struct o2hb_node_event event
=
644 { .hn_item
= LIST_HEAD_INIT(event
.hn_item
), };
645 struct o2nm_node
*node
;
646 struct o2hb_disk_heartbeat_block
*hb_block
= reg
->hr_tmp_block
;
649 memcpy(hb_block
, slot
->ds_raw_block
, reg
->hr_block_bytes
);
651 /* Is this correct? Do we assume that the node doesn't exist
652 * if we're not configured for him? */
653 node
= o2nm_get_node_by_num(slot
->ds_node_num
);
657 if (!o2hb_verify_crc(reg
, hb_block
)) {
658 /* all paths from here will drop o2hb_live_lock for
660 spin_lock(&o2hb_live_lock
);
662 /* Don't print an error on the console in this case -
663 * a freshly formatted heartbeat area will not have a
665 if (list_empty(&slot
->ds_live_item
))
668 /* The node is live but pushed out a bad crc. We
669 * consider it a transient miss but don't populate any
670 * other values as they may be junk. */
671 mlog(ML_ERROR
, "Node %d has written a bad crc to %s\n",
672 slot
->ds_node_num
, reg
->hr_dev_name
);
673 o2hb_dump_slot(hb_block
);
675 slot
->ds_equal_samples
++;
679 /* we don't care if these wrap.. the state transitions below
680 * clear at the right places */
681 cputime
= le64_to_cpu(hb_block
->hb_seq
);
682 if (slot
->ds_last_time
!= cputime
)
683 slot
->ds_changed_samples
++;
685 slot
->ds_equal_samples
++;
686 slot
->ds_last_time
= cputime
;
688 /* The node changed heartbeat generations. We assume this to
689 * mean it dropped off but came back before we timed out. We
690 * want to consider it down for the time being but don't want
691 * to lose any changed_samples state we might build up to
692 * considering it live again. */
693 if (slot
->ds_last_generation
!= le64_to_cpu(hb_block
->hb_generation
)) {
695 slot
->ds_equal_samples
= 0;
696 mlog(ML_HEARTBEAT
, "Node %d changed generation (0x%llx "
697 "to 0x%llx)\n", slot
->ds_node_num
,
698 (long long)slot
->ds_last_generation
,
699 (long long)le64_to_cpu(hb_block
->hb_generation
));
702 slot
->ds_last_generation
= le64_to_cpu(hb_block
->hb_generation
);
704 mlog(ML_HEARTBEAT
, "Slot %d gen 0x%llx cksum 0x%x "
705 "seq %llu last %llu changed %u equal %u\n",
706 slot
->ds_node_num
, (long long)slot
->ds_last_generation
,
707 le32_to_cpu(hb_block
->hb_cksum
),
708 (unsigned long long)le64_to_cpu(hb_block
->hb_seq
),
709 (unsigned long long)slot
->ds_last_time
, slot
->ds_changed_samples
,
710 slot
->ds_equal_samples
);
712 spin_lock(&o2hb_live_lock
);
715 /* dead nodes only come to life after some number of
716 * changes at any time during their dead time */
717 if (list_empty(&slot
->ds_live_item
) &&
718 slot
->ds_changed_samples
>= O2HB_LIVE_THRESHOLD
) {
719 mlog(ML_HEARTBEAT
, "Node %d (id 0x%llx) joined my region\n",
720 slot
->ds_node_num
, (long long)slot
->ds_last_generation
);
722 /* first on the list generates a callback */
723 if (list_empty(&o2hb_live_slots
[slot
->ds_node_num
])) {
724 set_bit(slot
->ds_node_num
, o2hb_live_node_bitmap
);
726 o2hb_queue_node_event(&event
, O2HB_NODE_UP_CB
, node
,
732 list_add_tail(&slot
->ds_live_item
,
733 &o2hb_live_slots
[slot
->ds_node_num
]);
735 slot
->ds_equal_samples
= 0;
739 /* if the list is dead, we're done.. */
740 if (list_empty(&slot
->ds_live_item
))
743 /* live nodes only go dead after enough consequtive missed
744 * samples.. reset the missed counter whenever we see
746 if (slot
->ds_equal_samples
>= o2hb_dead_threshold
|| gen_changed
) {
747 mlog(ML_HEARTBEAT
, "Node %d left my region\n",
750 /* last off the live_slot generates a callback */
751 list_del_init(&slot
->ds_live_item
);
752 if (list_empty(&o2hb_live_slots
[slot
->ds_node_num
])) {
753 clear_bit(slot
->ds_node_num
, o2hb_live_node_bitmap
);
755 o2hb_queue_node_event(&event
, O2HB_NODE_DOWN_CB
, node
,
761 /* We don't clear this because the node is still
762 * actually writing new blocks. */
764 slot
->ds_changed_samples
= 0;
767 if (slot
->ds_changed_samples
) {
768 slot
->ds_changed_samples
= 0;
769 slot
->ds_equal_samples
= 0;
772 spin_unlock(&o2hb_live_lock
);
774 o2hb_run_event_list(&event
);
780 /* This could be faster if we just implmented a find_last_bit, but I
781 * don't think the circumstances warrant it. */
782 static int o2hb_highest_node(unsigned long *nodes
,
789 while ((node
= find_next_bit(nodes
, numbits
, node
+ 1)) != -1) {
799 static int o2hb_do_disk_heartbeat(struct o2hb_region
*reg
)
801 int i
, ret
, highest_node
, change
= 0;
802 unsigned long configured_nodes
[BITS_TO_LONGS(O2NM_MAX_NODES
)];
803 struct bio
*write_bio
;
804 struct o2hb_bio_wait_ctxt write_wc
;
806 ret
= o2nm_configured_node_map(configured_nodes
,
807 sizeof(configured_nodes
));
813 highest_node
= o2hb_highest_node(configured_nodes
, O2NM_MAX_NODES
);
814 if (highest_node
>= O2NM_MAX_NODES
) {
815 mlog(ML_NOTICE
, "ocfs2_heartbeat: no configured nodes found!\n");
819 /* No sense in reading the slots of nodes that don't exist
820 * yet. Of course, if the node definitions have holes in them
821 * then we're reading an empty slot anyway... Consider this
823 ret
= o2hb_read_slots(reg
, highest_node
+ 1);
829 /* With an up to date view of the slots, we can check that no
830 * other node has been improperly configured to heartbeat in
832 if (!o2hb_check_last_timestamp(reg
))
833 mlog(ML_ERROR
, "Device \"%s\": another node is heartbeating "
834 "in our slot!\n", reg
->hr_dev_name
);
836 /* fill in the proper info for our next heartbeat */
837 o2hb_prepare_block(reg
, reg
->hr_generation
);
839 /* And fire off the write. Note that we don't wait on this I/O
841 ret
= o2hb_issue_node_write(reg
, &write_bio
, &write_wc
);
848 while((i
= find_next_bit(configured_nodes
, O2NM_MAX_NODES
, i
+ 1)) < O2NM_MAX_NODES
) {
850 change
|= o2hb_check_slot(reg
, ®
->hr_slots
[i
]);
854 * We have to be sure we've advertised ourselves on disk
855 * before we can go to steady state. This ensures that
856 * people we find in our steady state have seen us.
858 o2hb_wait_on_io(reg
, &write_wc
);
860 if (write_wc
.wc_error
) {
861 /* Do not re-arm the write timeout on I/O error - we
862 * can't be sure that the new block ever made it to
864 mlog(ML_ERROR
, "Write error %d on device \"%s\"\n",
865 write_wc
.wc_error
, reg
->hr_dev_name
);
866 return write_wc
.wc_error
;
869 o2hb_arm_write_timeout(reg
);
871 /* let the person who launched us know when things are steady */
872 if (!change
&& (atomic_read(®
->hr_steady_iterations
) != 0)) {
873 if (atomic_dec_and_test(®
->hr_steady_iterations
))
874 wake_up(&o2hb_steady_queue
);
880 /* Subtract b from a, storing the result in a. a *must* have a larger
882 static void o2hb_tv_subtract(struct timeval
*a
,
885 /* just return 0 when a is after b */
886 if (a
->tv_sec
< b
->tv_sec
||
887 (a
->tv_sec
== b
->tv_sec
&& a
->tv_usec
< b
->tv_usec
)) {
893 a
->tv_sec
-= b
->tv_sec
;
894 a
->tv_usec
-= b
->tv_usec
;
895 while ( a
->tv_usec
< 0 ) {
897 a
->tv_usec
+= 1000000;
901 static unsigned int o2hb_elapsed_msecs(struct timeval
*start
,
904 struct timeval res
= *end
;
906 o2hb_tv_subtract(&res
, start
);
908 return res
.tv_sec
* 1000 + res
.tv_usec
/ 1000;
912 * we ride the region ref that the region dir holds. before the region
913 * dir is removed and drops it ref it will wait to tear down this
916 static int o2hb_thread(void *data
)
919 struct o2hb_region
*reg
= data
;
920 struct bio
*write_bio
;
921 struct o2hb_bio_wait_ctxt write_wc
;
922 struct timeval before_hb
, after_hb
;
923 unsigned int elapsed_msec
;
925 mlog(ML_HEARTBEAT
|ML_KTHREAD
, "hb thread running\n");
927 set_user_nice(current
, -20);
929 while (!kthread_should_stop() && !reg
->hr_unclean_stop
) {
930 /* We track the time spent inside
931 * o2hb_do_disk_heartbeat so that we avoid more then
932 * hr_timeout_ms between disk writes. On busy systems
933 * this should result in a heartbeat which is less
934 * likely to time itself out. */
935 do_gettimeofday(&before_hb
);
939 ret
= o2hb_do_disk_heartbeat(reg
);
940 } while (ret
&& ++i
< 2);
942 do_gettimeofday(&after_hb
);
943 elapsed_msec
= o2hb_elapsed_msecs(&before_hb
, &after_hb
);
945 mlog(0, "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
946 before_hb
.tv_sec
, (unsigned long) before_hb
.tv_usec
,
947 after_hb
.tv_sec
, (unsigned long) after_hb
.tv_usec
,
950 if (elapsed_msec
< reg
->hr_timeout_ms
) {
951 /* the kthread api has blocked signals for us so no
952 * need to record the return value. */
953 msleep_interruptible(reg
->hr_timeout_ms
- elapsed_msec
);
957 o2hb_disarm_write_timeout(reg
);
959 /* unclean stop is only used in very bad situation */
960 for(i
= 0; !reg
->hr_unclean_stop
&& i
< reg
->hr_blocks
; i
++)
961 o2hb_shutdown_slot(®
->hr_slots
[i
]);
963 /* Explicit down notification - avoid forcing the other nodes
964 * to timeout on this region when we could just as easily
965 * write a clear generation - thus indicating to them that
966 * this node has left this region.
968 * XXX: Should we skip this on unclean_stop? */
969 o2hb_prepare_block(reg
, 0);
970 ret
= o2hb_issue_node_write(reg
, &write_bio
, &write_wc
);
972 o2hb_wait_on_io(reg
, &write_wc
);
978 mlog(ML_HEARTBEAT
|ML_KTHREAD
, "hb thread exiting\n");
987 for (i
= 0; i
< ARRAY_SIZE(o2hb_callbacks
); i
++)
988 INIT_LIST_HEAD(&o2hb_callbacks
[i
].list
);
990 for (i
= 0; i
< ARRAY_SIZE(o2hb_live_slots
); i
++)
991 INIT_LIST_HEAD(&o2hb_live_slots
[i
]);
993 INIT_LIST_HEAD(&o2hb_node_events
);
995 memset(o2hb_live_node_bitmap
, 0, sizeof(o2hb_live_node_bitmap
));
998 /* if we're already in a callback then we're already serialized by the sem */
999 static void o2hb_fill_node_map_from_callback(unsigned long *map
,
1002 BUG_ON(bytes
< (BITS_TO_LONGS(O2NM_MAX_NODES
) * sizeof(unsigned long)));
1004 memcpy(map
, &o2hb_live_node_bitmap
, bytes
);
1008 * get a map of all nodes that are heartbeating in any regions
1010 void o2hb_fill_node_map(unsigned long *map
, unsigned bytes
)
1012 /* callers want to serialize this map and callbacks so that they
1013 * can trust that they don't miss nodes coming to the party */
1014 down_read(&o2hb_callback_sem
);
1015 spin_lock(&o2hb_live_lock
);
1016 o2hb_fill_node_map_from_callback(map
, bytes
);
1017 spin_unlock(&o2hb_live_lock
);
1018 up_read(&o2hb_callback_sem
);
1020 EXPORT_SYMBOL_GPL(o2hb_fill_node_map
);
1023 * heartbeat configfs bits. The heartbeat set is a default set under
1024 * the cluster set in nodemanager.c.
1027 static struct o2hb_region
*to_o2hb_region(struct config_item
*item
)
1029 return item
? container_of(item
, struct o2hb_region
, hr_item
) : NULL
;
1032 /* drop_item only drops its ref after killing the thread, nothing should
1033 * be using the region anymore. this has to clean up any state that
1034 * attributes might have built up. */
1035 static void o2hb_region_release(struct config_item
*item
)
1039 struct o2hb_region
*reg
= to_o2hb_region(item
);
1041 if (reg
->hr_tmp_block
)
1042 kfree(reg
->hr_tmp_block
);
1044 if (reg
->hr_slot_data
) {
1045 for (i
= 0; i
< reg
->hr_num_pages
; i
++) {
1046 page
= reg
->hr_slot_data
[i
];
1050 kfree(reg
->hr_slot_data
);
1054 blkdev_put(reg
->hr_bdev
);
1057 kfree(reg
->hr_slots
);
1059 spin_lock(&o2hb_live_lock
);
1060 list_del(®
->hr_all_item
);
1061 spin_unlock(&o2hb_live_lock
);
1066 static int o2hb_read_block_input(struct o2hb_region
*reg
,
1069 unsigned long *ret_bytes
,
1070 unsigned int *ret_bits
)
1072 unsigned long bytes
;
1073 char *p
= (char *)page
;
1075 bytes
= simple_strtoul(p
, &p
, 0);
1076 if (!p
|| (*p
&& (*p
!= '\n')))
1079 /* Heartbeat and fs min / max block sizes are the same. */
1080 if (bytes
> 4096 || bytes
< 512)
1082 if (hweight16(bytes
) != 1)
1088 *ret_bits
= ffs(bytes
) - 1;
1093 static ssize_t
o2hb_region_block_bytes_read(struct o2hb_region
*reg
,
1096 return sprintf(page
, "%u\n", reg
->hr_block_bytes
);
1099 static ssize_t
o2hb_region_block_bytes_write(struct o2hb_region
*reg
,
1104 unsigned long block_bytes
;
1105 unsigned int block_bits
;
1110 status
= o2hb_read_block_input(reg
, page
, count
,
1111 &block_bytes
, &block_bits
);
1115 reg
->hr_block_bytes
= (unsigned int)block_bytes
;
1116 reg
->hr_block_bits
= block_bits
;
1121 static ssize_t
o2hb_region_start_block_read(struct o2hb_region
*reg
,
1124 return sprintf(page
, "%llu\n", reg
->hr_start_block
);
1127 static ssize_t
o2hb_region_start_block_write(struct o2hb_region
*reg
,
1131 unsigned long long tmp
;
1132 char *p
= (char *)page
;
1137 tmp
= simple_strtoull(p
, &p
, 0);
1138 if (!p
|| (*p
&& (*p
!= '\n')))
1141 reg
->hr_start_block
= tmp
;
1146 static ssize_t
o2hb_region_blocks_read(struct o2hb_region
*reg
,
1149 return sprintf(page
, "%d\n", reg
->hr_blocks
);
1152 static ssize_t
o2hb_region_blocks_write(struct o2hb_region
*reg
,
1157 char *p
= (char *)page
;
1162 tmp
= simple_strtoul(p
, &p
, 0);
1163 if (!p
|| (*p
&& (*p
!= '\n')))
1166 if (tmp
> O2NM_MAX_NODES
|| tmp
== 0)
1169 reg
->hr_blocks
= (unsigned int)tmp
;
1174 static ssize_t
o2hb_region_dev_read(struct o2hb_region
*reg
,
1177 unsigned int ret
= 0;
1180 ret
= sprintf(page
, "%s\n", reg
->hr_dev_name
);
1185 static void o2hb_init_region_params(struct o2hb_region
*reg
)
1187 reg
->hr_slots_per_page
= PAGE_CACHE_SIZE
>> reg
->hr_block_bits
;
1188 reg
->hr_timeout_ms
= O2HB_REGION_TIMEOUT_MS
;
1190 mlog(ML_HEARTBEAT
, "hr_start_block = %llu, hr_blocks = %u\n",
1191 reg
->hr_start_block
, reg
->hr_blocks
);
1192 mlog(ML_HEARTBEAT
, "hr_block_bytes = %u, hr_block_bits = %u\n",
1193 reg
->hr_block_bytes
, reg
->hr_block_bits
);
1194 mlog(ML_HEARTBEAT
, "hr_timeout_ms = %u\n", reg
->hr_timeout_ms
);
1195 mlog(ML_HEARTBEAT
, "dead threshold = %u\n", o2hb_dead_threshold
);
1198 static int o2hb_map_slot_data(struct o2hb_region
*reg
)
1201 unsigned int last_slot
;
1202 unsigned int spp
= reg
->hr_slots_per_page
;
1205 struct o2hb_disk_slot
*slot
;
1207 reg
->hr_tmp_block
= kmalloc(reg
->hr_block_bytes
, GFP_KERNEL
);
1208 if (reg
->hr_tmp_block
== NULL
) {
1209 mlog_errno(-ENOMEM
);
1213 reg
->hr_slots
= kcalloc(reg
->hr_blocks
,
1214 sizeof(struct o2hb_disk_slot
), GFP_KERNEL
);
1215 if (reg
->hr_slots
== NULL
) {
1216 mlog_errno(-ENOMEM
);
1220 for(i
= 0; i
< reg
->hr_blocks
; i
++) {
1221 slot
= ®
->hr_slots
[i
];
1222 slot
->ds_node_num
= i
;
1223 INIT_LIST_HEAD(&slot
->ds_live_item
);
1224 slot
->ds_raw_block
= NULL
;
1227 reg
->hr_num_pages
= (reg
->hr_blocks
+ spp
- 1) / spp
;
1228 mlog(ML_HEARTBEAT
, "Going to require %u pages to cover %u blocks "
1229 "at %u blocks per page\n",
1230 reg
->hr_num_pages
, reg
->hr_blocks
, spp
);
1232 reg
->hr_slot_data
= kcalloc(reg
->hr_num_pages
, sizeof(struct page
*),
1234 if (!reg
->hr_slot_data
) {
1235 mlog_errno(-ENOMEM
);
1239 for(i
= 0; i
< reg
->hr_num_pages
; i
++) {
1240 page
= alloc_page(GFP_KERNEL
);
1242 mlog_errno(-ENOMEM
);
1246 reg
->hr_slot_data
[i
] = page
;
1248 last_slot
= i
* spp
;
1249 raw
= page_address(page
);
1251 (j
< spp
) && ((j
+ last_slot
) < reg
->hr_blocks
);
1253 BUG_ON((j
+ last_slot
) >= reg
->hr_blocks
);
1255 slot
= ®
->hr_slots
[j
+ last_slot
];
1256 slot
->ds_raw_block
=
1257 (struct o2hb_disk_heartbeat_block
*) raw
;
1259 raw
+= reg
->hr_block_bytes
;
1266 /* Read in all the slots available and populate the tracking
1267 * structures so that we can start with a baseline idea of what's
1269 static int o2hb_populate_slot_data(struct o2hb_region
*reg
)
1272 struct o2hb_disk_slot
*slot
;
1273 struct o2hb_disk_heartbeat_block
*hb_block
;
1277 ret
= o2hb_read_slots(reg
, reg
->hr_blocks
);
1283 /* We only want to get an idea of the values initially in each
1284 * slot, so we do no verification - o2hb_check_slot will
1285 * actually determine if each configured slot is valid and
1286 * whether any values have changed. */
1287 for(i
= 0; i
< reg
->hr_blocks
; i
++) {
1288 slot
= ®
->hr_slots
[i
];
1289 hb_block
= (struct o2hb_disk_heartbeat_block
*) slot
->ds_raw_block
;
1291 /* Only fill the values that o2hb_check_slot uses to
1292 * determine changing slots */
1293 slot
->ds_last_time
= le64_to_cpu(hb_block
->hb_seq
);
1294 slot
->ds_last_generation
= le64_to_cpu(hb_block
->hb_generation
);
1302 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1303 static ssize_t
o2hb_region_dev_write(struct o2hb_region
*reg
,
1309 char *p
= (char *)page
;
1310 struct file
*filp
= NULL
;
1311 struct inode
*inode
= NULL
;
1312 ssize_t ret
= -EINVAL
;
1317 /* We can't heartbeat without having had our node number
1318 * configured yet. */
1319 if (o2nm_this_node() == O2NM_MAX_NODES
)
1322 fd
= simple_strtol(p
, &p
, 0);
1323 if (!p
|| (*p
&& (*p
!= '\n')))
1326 if (fd
< 0 || fd
>= INT_MAX
)
1333 if (reg
->hr_blocks
== 0 || reg
->hr_start_block
== 0 ||
1334 reg
->hr_block_bytes
== 0)
1337 inode
= igrab(filp
->f_mapping
->host
);
1341 if (!S_ISBLK(inode
->i_mode
))
1344 reg
->hr_bdev
= I_BDEV(filp
->f_mapping
->host
);
1345 ret
= blkdev_get(reg
->hr_bdev
, FMODE_WRITE
| FMODE_READ
, 0);
1347 reg
->hr_bdev
= NULL
;
1352 bdevname(reg
->hr_bdev
, reg
->hr_dev_name
);
1354 sectsize
= bdev_hardsect_size(reg
->hr_bdev
);
1355 if (sectsize
!= reg
->hr_block_bytes
) {
1357 "blocksize %u incorrect for device, expected %d",
1358 reg
->hr_block_bytes
, sectsize
);
1363 o2hb_init_region_params(reg
);
1365 /* Generation of zero is invalid */
1367 get_random_bytes(®
->hr_generation
,
1368 sizeof(reg
->hr_generation
));
1369 } while (reg
->hr_generation
== 0);
1371 ret
= o2hb_map_slot_data(reg
);
1377 ret
= o2hb_populate_slot_data(reg
);
1383 INIT_WORK(®
->hr_write_timeout_work
, o2hb_write_timeout
, reg
);
1386 * A node is considered live after it has beat LIVE_THRESHOLD
1387 * times. We're not steady until we've given them a chance
1388 * _after_ our first read.
1390 atomic_set(®
->hr_steady_iterations
, O2HB_LIVE_THRESHOLD
+ 1);
1392 reg
->hr_task
= kthread_run(o2hb_thread
, reg
, "o2hb-%s",
1393 reg
->hr_item
.ci_name
);
1394 if (IS_ERR(reg
->hr_task
)) {
1395 ret
= PTR_ERR(reg
->hr_task
);
1397 reg
->hr_task
= NULL
;
1401 ret
= wait_event_interruptible(o2hb_steady_queue
,
1402 atomic_read(®
->hr_steady_iterations
) == 0);
1404 kthread_stop(reg
->hr_task
);
1405 reg
->hr_task
= NULL
;
1417 blkdev_put(reg
->hr_bdev
);
1418 reg
->hr_bdev
= NULL
;
1424 struct o2hb_region_attribute
{
1425 struct configfs_attribute attr
;
1426 ssize_t (*show
)(struct o2hb_region
*, char *);
1427 ssize_t (*store
)(struct o2hb_region
*, const char *, size_t);
1430 static struct o2hb_region_attribute o2hb_region_attr_block_bytes
= {
1431 .attr
= { .ca_owner
= THIS_MODULE
,
1432 .ca_name
= "block_bytes",
1433 .ca_mode
= S_IRUGO
| S_IWUSR
},
1434 .show
= o2hb_region_block_bytes_read
,
1435 .store
= o2hb_region_block_bytes_write
,
1438 static struct o2hb_region_attribute o2hb_region_attr_start_block
= {
1439 .attr
= { .ca_owner
= THIS_MODULE
,
1440 .ca_name
= "start_block",
1441 .ca_mode
= S_IRUGO
| S_IWUSR
},
1442 .show
= o2hb_region_start_block_read
,
1443 .store
= o2hb_region_start_block_write
,
1446 static struct o2hb_region_attribute o2hb_region_attr_blocks
= {
1447 .attr
= { .ca_owner
= THIS_MODULE
,
1448 .ca_name
= "blocks",
1449 .ca_mode
= S_IRUGO
| S_IWUSR
},
1450 .show
= o2hb_region_blocks_read
,
1451 .store
= o2hb_region_blocks_write
,
1454 static struct o2hb_region_attribute o2hb_region_attr_dev
= {
1455 .attr
= { .ca_owner
= THIS_MODULE
,
1457 .ca_mode
= S_IRUGO
| S_IWUSR
},
1458 .show
= o2hb_region_dev_read
,
1459 .store
= o2hb_region_dev_write
,
1462 static struct configfs_attribute
*o2hb_region_attrs
[] = {
1463 &o2hb_region_attr_block_bytes
.attr
,
1464 &o2hb_region_attr_start_block
.attr
,
1465 &o2hb_region_attr_blocks
.attr
,
1466 &o2hb_region_attr_dev
.attr
,
1470 static ssize_t
o2hb_region_show(struct config_item
*item
,
1471 struct configfs_attribute
*attr
,
1474 struct o2hb_region
*reg
= to_o2hb_region(item
);
1475 struct o2hb_region_attribute
*o2hb_region_attr
=
1476 container_of(attr
, struct o2hb_region_attribute
, attr
);
1479 if (o2hb_region_attr
->show
)
1480 ret
= o2hb_region_attr
->show(reg
, page
);
1484 static ssize_t
o2hb_region_store(struct config_item
*item
,
1485 struct configfs_attribute
*attr
,
1486 const char *page
, size_t count
)
1488 struct o2hb_region
*reg
= to_o2hb_region(item
);
1489 struct o2hb_region_attribute
*o2hb_region_attr
=
1490 container_of(attr
, struct o2hb_region_attribute
, attr
);
1491 ssize_t ret
= -EINVAL
;
1493 if (o2hb_region_attr
->store
)
1494 ret
= o2hb_region_attr
->store(reg
, page
, count
);
1498 static struct configfs_item_operations o2hb_region_item_ops
= {
1499 .release
= o2hb_region_release
,
1500 .show_attribute
= o2hb_region_show
,
1501 .store_attribute
= o2hb_region_store
,
1504 static struct config_item_type o2hb_region_type
= {
1505 .ct_item_ops
= &o2hb_region_item_ops
,
1506 .ct_attrs
= o2hb_region_attrs
,
1507 .ct_owner
= THIS_MODULE
,
1512 struct o2hb_heartbeat_group
{
1513 struct config_group hs_group
;
1517 static struct o2hb_heartbeat_group
*to_o2hb_heartbeat_group(struct config_group
*group
)
1520 container_of(group
, struct o2hb_heartbeat_group
, hs_group
)
1524 static struct config_item
*o2hb_heartbeat_group_make_item(struct config_group
*group
,
1527 struct o2hb_region
*reg
= NULL
;
1528 struct config_item
*ret
= NULL
;
1530 reg
= kcalloc(1, sizeof(struct o2hb_region
), GFP_KERNEL
);
1532 goto out
; /* ENOMEM */
1534 config_item_init_type_name(®
->hr_item
, name
, &o2hb_region_type
);
1536 ret
= ®
->hr_item
;
1538 spin_lock(&o2hb_live_lock
);
1539 list_add_tail(®
->hr_all_item
, &o2hb_all_regions
);
1540 spin_unlock(&o2hb_live_lock
);
1548 static void o2hb_heartbeat_group_drop_item(struct config_group
*group
,
1549 struct config_item
*item
)
1551 struct o2hb_region
*reg
= to_o2hb_region(item
);
1553 /* stop the thread when the user removes the region dir */
1555 kthread_stop(reg
->hr_task
);
1556 reg
->hr_task
= NULL
;
1559 config_item_put(item
);
1562 struct o2hb_heartbeat_group_attribute
{
1563 struct configfs_attribute attr
;
1564 ssize_t (*show
)(struct o2hb_heartbeat_group
*, char *);
1565 ssize_t (*store
)(struct o2hb_heartbeat_group
*, const char *, size_t);
1568 static ssize_t
o2hb_heartbeat_group_show(struct config_item
*item
,
1569 struct configfs_attribute
*attr
,
1572 struct o2hb_heartbeat_group
*reg
= to_o2hb_heartbeat_group(to_config_group(item
));
1573 struct o2hb_heartbeat_group_attribute
*o2hb_heartbeat_group_attr
=
1574 container_of(attr
, struct o2hb_heartbeat_group_attribute
, attr
);
1577 if (o2hb_heartbeat_group_attr
->show
)
1578 ret
= o2hb_heartbeat_group_attr
->show(reg
, page
);
1582 static ssize_t
o2hb_heartbeat_group_store(struct config_item
*item
,
1583 struct configfs_attribute
*attr
,
1584 const char *page
, size_t count
)
1586 struct o2hb_heartbeat_group
*reg
= to_o2hb_heartbeat_group(to_config_group(item
));
1587 struct o2hb_heartbeat_group_attribute
*o2hb_heartbeat_group_attr
=
1588 container_of(attr
, struct o2hb_heartbeat_group_attribute
, attr
);
1589 ssize_t ret
= -EINVAL
;
1591 if (o2hb_heartbeat_group_attr
->store
)
1592 ret
= o2hb_heartbeat_group_attr
->store(reg
, page
, count
);
1596 static ssize_t
o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group
*group
,
1599 return sprintf(page
, "%u\n", o2hb_dead_threshold
);
1602 static ssize_t
o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group
*group
,
1607 char *p
= (char *)page
;
1609 tmp
= simple_strtoul(p
, &p
, 10);
1610 if (!p
|| (*p
&& (*p
!= '\n')))
1613 /* this will validate ranges for us. */
1614 o2hb_dead_threshold_set((unsigned int) tmp
);
1619 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold
= {
1620 .attr
= { .ca_owner
= THIS_MODULE
,
1621 .ca_name
= "dead_threshold",
1622 .ca_mode
= S_IRUGO
| S_IWUSR
},
1623 .show
= o2hb_heartbeat_group_threshold_show
,
1624 .store
= o2hb_heartbeat_group_threshold_store
,
1627 static struct configfs_attribute
*o2hb_heartbeat_group_attrs
[] = {
1628 &o2hb_heartbeat_group_attr_threshold
.attr
,
1632 static struct configfs_item_operations o2hb_hearbeat_group_item_ops
= {
1633 .show_attribute
= o2hb_heartbeat_group_show
,
1634 .store_attribute
= o2hb_heartbeat_group_store
,
1637 static struct configfs_group_operations o2hb_heartbeat_group_group_ops
= {
1638 .make_item
= o2hb_heartbeat_group_make_item
,
1639 .drop_item
= o2hb_heartbeat_group_drop_item
,
1642 static struct config_item_type o2hb_heartbeat_group_type
= {
1643 .ct_group_ops
= &o2hb_heartbeat_group_group_ops
,
1644 .ct_item_ops
= &o2hb_hearbeat_group_item_ops
,
1645 .ct_attrs
= o2hb_heartbeat_group_attrs
,
1646 .ct_owner
= THIS_MODULE
,
1649 /* this is just here to avoid touching group in heartbeat.h which the
1650 * entire damn world #includes */
1651 struct config_group
*o2hb_alloc_hb_set(void)
1653 struct o2hb_heartbeat_group
*hs
= NULL
;
1654 struct config_group
*ret
= NULL
;
1656 hs
= kcalloc(1, sizeof(struct o2hb_heartbeat_group
), GFP_KERNEL
);
1660 config_group_init_type_name(&hs
->hs_group
, "heartbeat",
1661 &o2hb_heartbeat_group_type
);
1663 ret
= &hs
->hs_group
;
1670 void o2hb_free_hb_set(struct config_group
*group
)
1672 struct o2hb_heartbeat_group
*hs
= to_o2hb_heartbeat_group(group
);
1676 /* hb callback registration and issueing */
1678 static struct o2hb_callback
*hbcall_from_type(enum o2hb_callback_type type
)
1680 if (type
== O2HB_NUM_CB
)
1681 return ERR_PTR(-EINVAL
);
1683 return &o2hb_callbacks
[type
];
1686 void o2hb_setup_callback(struct o2hb_callback_func
*hc
,
1687 enum o2hb_callback_type type
,
1692 INIT_LIST_HEAD(&hc
->hc_item
);
1695 hc
->hc_priority
= priority
;
1697 hc
->hc_magic
= O2HB_CB_MAGIC
;
1699 EXPORT_SYMBOL_GPL(o2hb_setup_callback
);
1701 int o2hb_register_callback(struct o2hb_callback_func
*hc
)
1703 struct o2hb_callback_func
*tmp
;
1704 struct list_head
*iter
;
1705 struct o2hb_callback
*hbcall
;
1708 BUG_ON(hc
->hc_magic
!= O2HB_CB_MAGIC
);
1709 BUG_ON(!list_empty(&hc
->hc_item
));
1711 hbcall
= hbcall_from_type(hc
->hc_type
);
1712 if (IS_ERR(hbcall
)) {
1713 ret
= PTR_ERR(hbcall
);
1717 down_write(&o2hb_callback_sem
);
1719 list_for_each(iter
, &hbcall
->list
) {
1720 tmp
= list_entry(iter
, struct o2hb_callback_func
, hc_item
);
1721 if (hc
->hc_priority
< tmp
->hc_priority
) {
1722 list_add_tail(&hc
->hc_item
, iter
);
1726 if (list_empty(&hc
->hc_item
))
1727 list_add_tail(&hc
->hc_item
, &hbcall
->list
);
1729 up_write(&o2hb_callback_sem
);
1732 mlog(ML_HEARTBEAT
, "returning %d on behalf of %p for funcs %p\n",
1733 ret
, __builtin_return_address(0), hc
);
1736 EXPORT_SYMBOL_GPL(o2hb_register_callback
);
1738 int o2hb_unregister_callback(struct o2hb_callback_func
*hc
)
1740 BUG_ON(hc
->hc_magic
!= O2HB_CB_MAGIC
);
1742 mlog(ML_HEARTBEAT
, "on behalf of %p for funcs %p\n",
1743 __builtin_return_address(0), hc
);
1745 if (list_empty(&hc
->hc_item
))
1748 down_write(&o2hb_callback_sem
);
1750 list_del_init(&hc
->hc_item
);
1752 up_write(&o2hb_callback_sem
);
1756 EXPORT_SYMBOL_GPL(o2hb_unregister_callback
);
1758 int o2hb_check_node_heartbeating(u8 node_num
)
1760 unsigned long testing_map
[BITS_TO_LONGS(O2NM_MAX_NODES
)];
1762 o2hb_fill_node_map(testing_map
, sizeof(testing_map
));
1763 if (!test_bit(node_num
, testing_map
)) {
1765 "node (%u) does not have heartbeating enabled.\n",
1772 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating
);
1774 int o2hb_check_node_heartbeating_from_callback(u8 node_num
)
1776 unsigned long testing_map
[BITS_TO_LONGS(O2NM_MAX_NODES
)];
1778 o2hb_fill_node_map_from_callback(testing_map
, sizeof(testing_map
));
1779 if (!test_bit(node_num
, testing_map
)) {
1781 "node (%u) does not have heartbeating enabled.\n",
1788 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback
);
1790 /* Makes sure our local node is configured with a node number, and is
1792 int o2hb_check_local_node_heartbeating(void)
1796 /* if this node was set then we have networking */
1797 node_num
= o2nm_this_node();
1798 if (node_num
== O2NM_MAX_NODES
) {
1799 mlog(ML_HEARTBEAT
, "this node has not been configured.\n");
1803 return o2hb_check_node_heartbeating(node_num
);
1805 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating
);
1808 * this is just a hack until we get the plumbing which flips file systems
1809 * read only and drops the hb ref instead of killing the node dead.
1811 void o2hb_stop_all_regions(void)
1813 struct o2hb_region
*reg
;
1815 mlog(ML_ERROR
, "stopping heartbeat on all active regions.\n");
1817 spin_lock(&o2hb_live_lock
);
1819 list_for_each_entry(reg
, &o2hb_all_regions
, hr_all_item
)
1820 reg
->hr_unclean_stop
= 1;
1822 spin_unlock(&o2hb_live_lock
);
1824 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions
);