4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/config.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/capability.h>
14 #include <linux/completion.h>
15 #include <linux/personality.h>
16 #include <linux/tty.h>
17 #include <linux/namespace.h>
18 #include <linux/key.h>
19 #include <linux/security.h>
20 #include <linux/cpu.h>
21 #include <linux/acct.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/ptrace.h>
25 #include <linux/profile.h>
26 #include <linux/mount.h>
27 #include <linux/proc_fs.h>
28 #include <linux/mempolicy.h>
29 #include <linux/cpuset.h>
30 #include <linux/syscalls.h>
31 #include <linux/signal.h>
32 #include <linux/posix-timers.h>
33 #include <linux/cn_proc.h>
34 #include <linux/mutex.h>
35 #include <linux/futex.h>
36 #include <linux/compat.h>
37 #include <linux/pipe_fs_i.h>
38 #include <linux/audit.h> /* for audit_free() */
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/pgtable.h>
43 #include <asm/mmu_context.h>
45 extern void sem_exit (void);
46 extern struct task_struct
*child_reaper
;
48 int getrusage(struct task_struct
*, int, struct rusage __user
*);
50 static void exit_mm(struct task_struct
* tsk
);
52 static void __unhash_process(struct task_struct
*p
)
55 detach_pid(p
, PIDTYPE_PID
);
56 if (thread_group_leader(p
)) {
57 detach_pid(p
, PIDTYPE_PGID
);
58 detach_pid(p
, PIDTYPE_SID
);
60 list_del_rcu(&p
->tasks
);
61 __get_cpu_var(process_counts
)--;
63 list_del_rcu(&p
->thread_group
);
68 * This function expects the tasklist_lock write-locked.
70 static void __exit_signal(struct task_struct
*tsk
)
72 struct signal_struct
*sig
= tsk
->signal
;
73 struct sighand_struct
*sighand
;
76 BUG_ON(!atomic_read(&sig
->count
));
79 sighand
= rcu_dereference(tsk
->sighand
);
80 spin_lock(&sighand
->siglock
);
82 posix_cpu_timers_exit(tsk
);
83 if (atomic_dec_and_test(&sig
->count
))
84 posix_cpu_timers_exit_group(tsk
);
87 * If there is any task waiting for the group exit
90 if (sig
->group_exit_task
&& atomic_read(&sig
->count
) == sig
->notify_count
) {
91 wake_up_process(sig
->group_exit_task
);
92 sig
->group_exit_task
= NULL
;
94 if (tsk
== sig
->curr_target
)
95 sig
->curr_target
= next_thread(tsk
);
97 * Accumulate here the counters for all threads but the
98 * group leader as they die, so they can be added into
99 * the process-wide totals when those are taken.
100 * The group leader stays around as a zombie as long
101 * as there are other threads. When it gets reaped,
102 * the exit.c code will add its counts into these totals.
103 * We won't ever get here for the group leader, since it
104 * will have been the last reference on the signal_struct.
106 sig
->utime
= cputime_add(sig
->utime
, tsk
->utime
);
107 sig
->stime
= cputime_add(sig
->stime
, tsk
->stime
);
108 sig
->min_flt
+= tsk
->min_flt
;
109 sig
->maj_flt
+= tsk
->maj_flt
;
110 sig
->nvcsw
+= tsk
->nvcsw
;
111 sig
->nivcsw
+= tsk
->nivcsw
;
112 sig
->sched_time
+= tsk
->sched_time
;
113 sig
= NULL
; /* Marker for below. */
116 __unhash_process(tsk
);
120 spin_unlock(&sighand
->siglock
);
123 __cleanup_sighand(sighand
);
124 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
125 flush_sigqueue(&tsk
->pending
);
127 flush_sigqueue(&sig
->shared_pending
);
128 __cleanup_signal(sig
);
132 static void delayed_put_task_struct(struct rcu_head
*rhp
)
134 put_task_struct(container_of(rhp
, struct task_struct
, rcu
));
137 void release_task(struct task_struct
* p
)
141 struct dentry
*proc_dentry
;
144 atomic_dec(&p
->user
->processes
);
145 spin_lock(&p
->proc_lock
);
146 proc_dentry
= proc_pid_unhash(p
);
147 write_lock_irq(&tasklist_lock
);
149 BUG_ON(!list_empty(&p
->ptrace_list
) || !list_empty(&p
->ptrace_children
));
153 * If we are the last non-leader member of the thread
154 * group, and the leader is zombie, then notify the
155 * group leader's parent process. (if it wants notification.)
158 leader
= p
->group_leader
;
159 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
160 BUG_ON(leader
->exit_signal
== -1);
161 do_notify_parent(leader
, leader
->exit_signal
);
163 * If we were the last child thread and the leader has
164 * exited already, and the leader's parent ignores SIGCHLD,
165 * then we are the one who should release the leader.
167 * do_notify_parent() will have marked it self-reaping in
170 zap_leader
= (leader
->exit_signal
== -1);
174 write_unlock_irq(&tasklist_lock
);
175 spin_unlock(&p
->proc_lock
);
176 proc_pid_flush(proc_dentry
);
178 call_rcu(&p
->rcu
, delayed_put_task_struct
);
181 if (unlikely(zap_leader
))
186 * This checks not only the pgrp, but falls back on the pid if no
187 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
190 int session_of_pgrp(int pgrp
)
192 struct task_struct
*p
;
195 read_lock(&tasklist_lock
);
196 do_each_task_pid(pgrp
, PIDTYPE_PGID
, p
) {
197 if (p
->signal
->session
> 0) {
198 sid
= p
->signal
->session
;
201 } while_each_task_pid(pgrp
, PIDTYPE_PGID
, p
);
202 p
= find_task_by_pid(pgrp
);
204 sid
= p
->signal
->session
;
206 read_unlock(&tasklist_lock
);
212 * Determine if a process group is "orphaned", according to the POSIX
213 * definition in 2.2.2.52. Orphaned process groups are not to be affected
214 * by terminal-generated stop signals. Newly orphaned process groups are
215 * to receive a SIGHUP and a SIGCONT.
217 * "I ask you, have you ever known what it is to be an orphan?"
219 static int will_become_orphaned_pgrp(int pgrp
, task_t
*ignored_task
)
221 struct task_struct
*p
;
224 do_each_task_pid(pgrp
, PIDTYPE_PGID
, p
) {
225 if (p
== ignored_task
227 || p
->real_parent
->pid
== 1)
229 if (process_group(p
->real_parent
) != pgrp
230 && p
->real_parent
->signal
->session
== p
->signal
->session
) {
234 } while_each_task_pid(pgrp
, PIDTYPE_PGID
, p
);
235 return ret
; /* (sighing) "Often!" */
238 int is_orphaned_pgrp(int pgrp
)
242 read_lock(&tasklist_lock
);
243 retval
= will_become_orphaned_pgrp(pgrp
, NULL
);
244 read_unlock(&tasklist_lock
);
249 static int has_stopped_jobs(int pgrp
)
252 struct task_struct
*p
;
254 do_each_task_pid(pgrp
, PIDTYPE_PGID
, p
) {
255 if (p
->state
!= TASK_STOPPED
)
258 /* If p is stopped by a debugger on a signal that won't
259 stop it, then don't count p as stopped. This isn't
260 perfect but it's a good approximation. */
261 if (unlikely (p
->ptrace
)
262 && p
->exit_code
!= SIGSTOP
263 && p
->exit_code
!= SIGTSTP
264 && p
->exit_code
!= SIGTTOU
265 && p
->exit_code
!= SIGTTIN
)
270 } while_each_task_pid(pgrp
, PIDTYPE_PGID
, p
);
275 * reparent_to_init - Reparent the calling kernel thread to the init task.
277 * If a kernel thread is launched as a result of a system call, or if
278 * it ever exits, it should generally reparent itself to init so that
279 * it is correctly cleaned up on exit.
281 * The various task state such as scheduling policy and priority may have
282 * been inherited from a user process, so we reset them to sane values here.
284 * NOTE that reparent_to_init() gives the caller full capabilities.
286 static void reparent_to_init(void)
288 write_lock_irq(&tasklist_lock
);
290 ptrace_unlink(current
);
291 /* Reparent to init */
292 remove_parent(current
);
293 current
->parent
= child_reaper
;
294 current
->real_parent
= child_reaper
;
297 /* Set the exit signal to SIGCHLD so we signal init on exit */
298 current
->exit_signal
= SIGCHLD
;
300 if ((current
->policy
== SCHED_NORMAL
||
301 current
->policy
== SCHED_BATCH
)
302 && (task_nice(current
) < 0))
303 set_user_nice(current
, 0);
307 security_task_reparent_to_init(current
);
308 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
309 sizeof(current
->signal
->rlim
));
310 atomic_inc(&(INIT_USER
->__count
));
311 write_unlock_irq(&tasklist_lock
);
312 switch_uid(INIT_USER
);
315 void __set_special_pids(pid_t session
, pid_t pgrp
)
317 struct task_struct
*curr
= current
->group_leader
;
319 if (curr
->signal
->session
!= session
) {
320 detach_pid(curr
, PIDTYPE_SID
);
321 curr
->signal
->session
= session
;
322 attach_pid(curr
, PIDTYPE_SID
, session
);
324 if (process_group(curr
) != pgrp
) {
325 detach_pid(curr
, PIDTYPE_PGID
);
326 curr
->signal
->pgrp
= pgrp
;
327 attach_pid(curr
, PIDTYPE_PGID
, pgrp
);
331 void set_special_pids(pid_t session
, pid_t pgrp
)
333 write_lock_irq(&tasklist_lock
);
334 __set_special_pids(session
, pgrp
);
335 write_unlock_irq(&tasklist_lock
);
339 * Let kernel threads use this to say that they
340 * allow a certain signal (since daemonize() will
341 * have disabled all of them by default).
343 int allow_signal(int sig
)
345 if (!valid_signal(sig
) || sig
< 1)
348 spin_lock_irq(¤t
->sighand
->siglock
);
349 sigdelset(¤t
->blocked
, sig
);
351 /* Kernel threads handle their own signals.
352 Let the signal code know it'll be handled, so
353 that they don't get converted to SIGKILL or
354 just silently dropped */
355 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
358 spin_unlock_irq(¤t
->sighand
->siglock
);
362 EXPORT_SYMBOL(allow_signal
);
364 int disallow_signal(int sig
)
366 if (!valid_signal(sig
) || sig
< 1)
369 spin_lock_irq(¤t
->sighand
->siglock
);
370 sigaddset(¤t
->blocked
, sig
);
372 spin_unlock_irq(¤t
->sighand
->siglock
);
376 EXPORT_SYMBOL(disallow_signal
);
379 * Put all the gunge required to become a kernel thread without
380 * attached user resources in one place where it belongs.
383 void daemonize(const char *name
, ...)
386 struct fs_struct
*fs
;
389 va_start(args
, name
);
390 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
394 * If we were started as result of loading a module, close all of the
395 * user space pages. We don't need them, and if we didn't close them
396 * they would be locked into memory.
400 set_special_pids(1, 1);
401 mutex_lock(&tty_mutex
);
402 current
->signal
->tty
= NULL
;
403 mutex_unlock(&tty_mutex
);
405 /* Block and flush all signals */
406 sigfillset(&blocked
);
407 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
408 flush_signals(current
);
410 /* Become as one with the init task */
412 exit_fs(current
); /* current->fs->count--; */
415 atomic_inc(&fs
->count
);
416 exit_namespace(current
);
417 current
->namespace = init_task
.namespace;
418 get_namespace(current
->namespace);
420 current
->files
= init_task
.files
;
421 atomic_inc(¤t
->files
->count
);
426 EXPORT_SYMBOL(daemonize
);
428 static void close_files(struct files_struct
* files
)
436 * It is safe to dereference the fd table without RCU or
437 * ->file_lock because this is the last reference to the
440 fdt
= files_fdtable(files
);
444 if (i
>= fdt
->max_fdset
|| i
>= fdt
->max_fds
)
446 set
= fdt
->open_fds
->fds_bits
[j
++];
449 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
451 filp_close(file
, files
);
459 struct files_struct
*get_files_struct(struct task_struct
*task
)
461 struct files_struct
*files
;
466 atomic_inc(&files
->count
);
472 void fastcall
put_files_struct(struct files_struct
*files
)
476 if (atomic_dec_and_test(&files
->count
)) {
479 * Free the fd and fdset arrays if we expanded them.
480 * If the fdtable was embedded, pass files for freeing
481 * at the end of the RCU grace period. Otherwise,
482 * you can free files immediately.
484 fdt
= files_fdtable(files
);
485 if (fdt
== &files
->fdtab
)
486 fdt
->free_files
= files
;
488 kmem_cache_free(files_cachep
, files
);
493 EXPORT_SYMBOL(put_files_struct
);
495 static inline void __exit_files(struct task_struct
*tsk
)
497 struct files_struct
* files
= tsk
->files
;
503 put_files_struct(files
);
507 void exit_files(struct task_struct
*tsk
)
512 static inline void __put_fs_struct(struct fs_struct
*fs
)
514 /* No need to hold fs->lock if we are killing it */
515 if (atomic_dec_and_test(&fs
->count
)) {
522 mntput(fs
->altrootmnt
);
524 kmem_cache_free(fs_cachep
, fs
);
528 void put_fs_struct(struct fs_struct
*fs
)
533 static inline void __exit_fs(struct task_struct
*tsk
)
535 struct fs_struct
* fs
= tsk
->fs
;
545 void exit_fs(struct task_struct
*tsk
)
550 EXPORT_SYMBOL_GPL(exit_fs
);
553 * Turn us into a lazy TLB process if we
556 static void exit_mm(struct task_struct
* tsk
)
558 struct mm_struct
*mm
= tsk
->mm
;
564 * Serialize with any possible pending coredump.
565 * We must hold mmap_sem around checking core_waiters
566 * and clearing tsk->mm. The core-inducing thread
567 * will increment core_waiters for each thread in the
568 * group with ->mm != NULL.
570 down_read(&mm
->mmap_sem
);
571 if (mm
->core_waiters
) {
572 up_read(&mm
->mmap_sem
);
573 down_write(&mm
->mmap_sem
);
574 if (!--mm
->core_waiters
)
575 complete(mm
->core_startup_done
);
576 up_write(&mm
->mmap_sem
);
578 wait_for_completion(&mm
->core_done
);
579 down_read(&mm
->mmap_sem
);
581 atomic_inc(&mm
->mm_count
);
582 if (mm
!= tsk
->active_mm
) BUG();
583 /* more a memory barrier than a real lock */
586 up_read(&mm
->mmap_sem
);
587 enter_lazy_tlb(mm
, current
);
592 static inline void choose_new_parent(task_t
*p
, task_t
*reaper
)
595 * Make sure we're not reparenting to ourselves and that
596 * the parent is not a zombie.
598 BUG_ON(p
== reaper
|| reaper
->exit_state
);
599 p
->real_parent
= reaper
;
602 static void reparent_thread(task_t
*p
, task_t
*father
, int traced
)
604 /* We don't want people slaying init. */
605 if (p
->exit_signal
!= -1)
606 p
->exit_signal
= SIGCHLD
;
608 if (p
->pdeath_signal
)
609 /* We already hold the tasklist_lock here. */
610 group_send_sig_info(p
->pdeath_signal
, SEND_SIG_NOINFO
, p
);
612 /* Move the child from its dying parent to the new one. */
613 if (unlikely(traced
)) {
614 /* Preserve ptrace links if someone else is tracing this child. */
615 list_del_init(&p
->ptrace_list
);
616 if (p
->parent
!= p
->real_parent
)
617 list_add(&p
->ptrace_list
, &p
->real_parent
->ptrace_children
);
619 /* If this child is being traced, then we're the one tracing it
620 * anyway, so let go of it.
624 p
->parent
= p
->real_parent
;
627 /* If we'd notified the old parent about this child's death,
628 * also notify the new parent.
630 if (p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
!= -1 &&
631 thread_group_empty(p
))
632 do_notify_parent(p
, p
->exit_signal
);
633 else if (p
->state
== TASK_TRACED
) {
635 * If it was at a trace stop, turn it into
636 * a normal stop since it's no longer being
644 * process group orphan check
645 * Case ii: Our child is in a different pgrp
646 * than we are, and it was the only connection
647 * outside, so the child pgrp is now orphaned.
649 if ((process_group(p
) != process_group(father
)) &&
650 (p
->signal
->session
== father
->signal
->session
)) {
651 int pgrp
= process_group(p
);
653 if (will_become_orphaned_pgrp(pgrp
, NULL
) && has_stopped_jobs(pgrp
)) {
654 __kill_pg_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
655 __kill_pg_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
661 * When we die, we re-parent all our children.
662 * Try to give them to another thread in our thread
663 * group, and if no such member exists, give it to
664 * the global child reaper process (ie "init")
666 static void forget_original_parent(struct task_struct
* father
,
667 struct list_head
*to_release
)
669 struct task_struct
*p
, *reaper
= father
;
670 struct list_head
*_p
, *_n
;
673 reaper
= next_thread(reaper
);
674 if (reaper
== father
) {
675 reaper
= child_reaper
;
678 } while (reaper
->exit_state
);
681 * There are only two places where our children can be:
683 * - in our child list
684 * - in our ptraced child list
686 * Search them and reparent children.
688 list_for_each_safe(_p
, _n
, &father
->children
) {
690 p
= list_entry(_p
,struct task_struct
,sibling
);
694 /* if father isn't the real parent, then ptrace must be enabled */
695 BUG_ON(father
!= p
->real_parent
&& !ptrace
);
697 if (father
== p
->real_parent
) {
698 /* reparent with a reaper, real father it's us */
699 choose_new_parent(p
, reaper
);
700 reparent_thread(p
, father
, 0);
702 /* reparent ptraced task to its real parent */
704 if (p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
!= -1 &&
705 thread_group_empty(p
))
706 do_notify_parent(p
, p
->exit_signal
);
710 * if the ptraced child is a zombie with exit_signal == -1
711 * we must collect it before we exit, or it will remain
712 * zombie forever since we prevented it from self-reap itself
713 * while it was being traced by us, to be able to see it in wait4.
715 if (unlikely(ptrace
&& p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
== -1))
716 list_add(&p
->ptrace_list
, to_release
);
718 list_for_each_safe(_p
, _n
, &father
->ptrace_children
) {
719 p
= list_entry(_p
,struct task_struct
,ptrace_list
);
720 choose_new_parent(p
, reaper
);
721 reparent_thread(p
, father
, 1);
726 * Send signals to all our closest relatives so that they know
727 * to properly mourn us..
729 static void exit_notify(struct task_struct
*tsk
)
732 struct task_struct
*t
;
733 struct list_head ptrace_dead
, *_p
, *_n
;
735 if (signal_pending(tsk
) && !(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
)
736 && !thread_group_empty(tsk
)) {
738 * This occurs when there was a race between our exit
739 * syscall and a group signal choosing us as the one to
740 * wake up. It could be that we are the only thread
741 * alerted to check for pending signals, but another thread
742 * should be woken now to take the signal since we will not.
743 * Now we'll wake all the threads in the group just to make
744 * sure someone gets all the pending signals.
746 read_lock(&tasklist_lock
);
747 spin_lock_irq(&tsk
->sighand
->siglock
);
748 for (t
= next_thread(tsk
); t
!= tsk
; t
= next_thread(t
))
749 if (!signal_pending(t
) && !(t
->flags
& PF_EXITING
)) {
750 recalc_sigpending_tsk(t
);
751 if (signal_pending(t
))
752 signal_wake_up(t
, 0);
754 spin_unlock_irq(&tsk
->sighand
->siglock
);
755 read_unlock(&tasklist_lock
);
758 write_lock_irq(&tasklist_lock
);
761 * This does two things:
763 * A. Make init inherit all the child processes
764 * B. Check to see if any process groups have become orphaned
765 * as a result of our exiting, and if they have any stopped
766 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
769 INIT_LIST_HEAD(&ptrace_dead
);
770 forget_original_parent(tsk
, &ptrace_dead
);
771 BUG_ON(!list_empty(&tsk
->children
));
772 BUG_ON(!list_empty(&tsk
->ptrace_children
));
775 * Check to see if any process groups have become orphaned
776 * as a result of our exiting, and if they have any stopped
777 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
779 * Case i: Our father is in a different pgrp than we are
780 * and we were the only connection outside, so our pgrp
781 * is about to become orphaned.
784 t
= tsk
->real_parent
;
786 if ((process_group(t
) != process_group(tsk
)) &&
787 (t
->signal
->session
== tsk
->signal
->session
) &&
788 will_become_orphaned_pgrp(process_group(tsk
), tsk
) &&
789 has_stopped_jobs(process_group(tsk
))) {
790 __kill_pg_info(SIGHUP
, SEND_SIG_PRIV
, process_group(tsk
));
791 __kill_pg_info(SIGCONT
, SEND_SIG_PRIV
, process_group(tsk
));
794 /* Let father know we died
796 * Thread signals are configurable, but you aren't going to use
797 * that to send signals to arbitary processes.
798 * That stops right now.
800 * If the parent exec id doesn't match the exec id we saved
801 * when we started then we know the parent has changed security
804 * If our self_exec id doesn't match our parent_exec_id then
805 * we have changed execution domain as these two values started
806 * the same after a fork.
810 if (tsk
->exit_signal
!= SIGCHLD
&& tsk
->exit_signal
!= -1 &&
811 ( tsk
->parent_exec_id
!= t
->self_exec_id
||
812 tsk
->self_exec_id
!= tsk
->parent_exec_id
)
813 && !capable(CAP_KILL
))
814 tsk
->exit_signal
= SIGCHLD
;
817 /* If something other than our normal parent is ptracing us, then
818 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
819 * only has special meaning to our real parent.
821 if (tsk
->exit_signal
!= -1 && thread_group_empty(tsk
)) {
822 int signal
= tsk
->parent
== tsk
->real_parent
? tsk
->exit_signal
: SIGCHLD
;
823 do_notify_parent(tsk
, signal
);
824 } else if (tsk
->ptrace
) {
825 do_notify_parent(tsk
, SIGCHLD
);
829 if (tsk
->exit_signal
== -1 &&
830 (likely(tsk
->ptrace
== 0) ||
831 unlikely(tsk
->parent
->signal
->flags
& SIGNAL_GROUP_EXIT
)))
833 tsk
->exit_state
= state
;
835 write_unlock_irq(&tasklist_lock
);
837 list_for_each_safe(_p
, _n
, &ptrace_dead
) {
839 t
= list_entry(_p
,struct task_struct
,ptrace_list
);
843 /* If the process is dead, release it - nobody will wait for it */
844 if (state
== EXIT_DEAD
)
848 fastcall NORET_TYPE
void do_exit(long code
)
850 struct task_struct
*tsk
= current
;
853 profile_task_exit(tsk
);
855 WARN_ON(atomic_read(&tsk
->fs_excl
));
857 if (unlikely(in_interrupt()))
858 panic("Aiee, killing interrupt handler!");
859 if (unlikely(!tsk
->pid
))
860 panic("Attempted to kill the idle task!");
861 if (unlikely(tsk
== child_reaper
))
862 panic("Attempted to kill init!");
864 if (unlikely(current
->ptrace
& PT_TRACE_EXIT
)) {
865 current
->ptrace_message
= code
;
866 ptrace_notify((PTRACE_EVENT_EXIT
<< 8) | SIGTRAP
);
870 * We're taking recursive faults here in do_exit. Safest is to just
871 * leave this task alone and wait for reboot.
873 if (unlikely(tsk
->flags
& PF_EXITING
)) {
875 "Fixing recursive fault but reboot is needed!\n");
878 set_current_state(TASK_UNINTERRUPTIBLE
);
882 tsk
->flags
|= PF_EXITING
;
884 if (unlikely(in_atomic()))
885 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
886 current
->comm
, current
->pid
,
889 acct_update_integrals(tsk
);
891 update_hiwater_rss(tsk
->mm
);
892 update_hiwater_vm(tsk
->mm
);
894 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
896 hrtimer_cancel(&tsk
->signal
->real_timer
);
897 exit_itimers(tsk
->signal
);
900 if (unlikely(tsk
->robust_list
))
901 exit_robust_list(tsk
);
903 if (unlikely(tsk
->compat_robust_list
))
904 compat_exit_robust_list(tsk
);
906 if (unlikely(tsk
->audit_context
))
918 if (group_dead
&& tsk
->signal
->leader
)
919 disassociate_ctty(1);
921 module_put(task_thread_info(tsk
)->exec_domain
->module
);
923 module_put(tsk
->binfmt
->module
);
925 tsk
->exit_code
= code
;
926 proc_exit_connector(tsk
);
929 mpol_free(tsk
->mempolicy
);
930 tsk
->mempolicy
= NULL
;
933 * If DEBUG_MUTEXES is on, make sure we are holding no locks:
935 mutex_debug_check_no_locks_held(tsk
);
940 if (tsk
->splice_pipe
)
941 __free_pipe_info(tsk
->splice_pipe
);
943 /* PF_DEAD causes final put_task_struct after we schedule. */
945 BUG_ON(tsk
->flags
& PF_DEAD
);
946 tsk
->flags
|= PF_DEAD
;
950 /* Avoid "noreturn function does return". */
954 EXPORT_SYMBOL_GPL(do_exit
);
956 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
964 EXPORT_SYMBOL(complete_and_exit
);
966 asmlinkage
long sys_exit(int error_code
)
968 do_exit((error_code
&0xff)<<8);
972 * Take down every thread in the group. This is called by fatal signals
973 * as well as by sys_exit_group (below).
976 do_group_exit(int exit_code
)
978 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
980 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
)
981 exit_code
= current
->signal
->group_exit_code
;
982 else if (!thread_group_empty(current
)) {
983 struct signal_struct
*const sig
= current
->signal
;
984 struct sighand_struct
*const sighand
= current
->sighand
;
985 spin_lock_irq(&sighand
->siglock
);
986 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
987 /* Another thread got here before we took the lock. */
988 exit_code
= sig
->group_exit_code
;
990 sig
->group_exit_code
= exit_code
;
991 zap_other_threads(current
);
993 spin_unlock_irq(&sighand
->siglock
);
1001 * this kills every thread in the thread group. Note that any externally
1002 * wait4()-ing process will get the correct exit code - even if this
1003 * thread is not the thread group leader.
1005 asmlinkage
void sys_exit_group(int error_code
)
1007 do_group_exit((error_code
& 0xff) << 8);
1010 static int eligible_child(pid_t pid
, int options
, task_t
*p
)
1016 if (process_group(p
) != process_group(current
))
1018 } else if (pid
!= -1) {
1019 if (process_group(p
) != -pid
)
1024 * Do not consider detached threads that are
1027 if (p
->exit_signal
== -1 && !p
->ptrace
)
1030 /* Wait for all children (clone and not) if __WALL is set;
1031 * otherwise, wait for clone children *only* if __WCLONE is
1032 * set; otherwise, wait for non-clone children *only*. (Note:
1033 * A "clone" child here is one that reports to its parent
1034 * using a signal other than SIGCHLD.) */
1035 if (((p
->exit_signal
!= SIGCHLD
) ^ ((options
& __WCLONE
) != 0))
1036 && !(options
& __WALL
))
1039 * Do not consider thread group leaders that are
1040 * in a non-empty thread group:
1042 if (current
->tgid
!= p
->tgid
&& delay_group_leader(p
))
1045 if (security_task_wait(p
))
1051 static int wait_noreap_copyout(task_t
*p
, pid_t pid
, uid_t uid
,
1052 int why
, int status
,
1053 struct siginfo __user
*infop
,
1054 struct rusage __user
*rusagep
)
1056 int retval
= rusagep
? getrusage(p
, RUSAGE_BOTH
, rusagep
) : 0;
1059 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1061 retval
= put_user(0, &infop
->si_errno
);
1063 retval
= put_user((short)why
, &infop
->si_code
);
1065 retval
= put_user(pid
, &infop
->si_pid
);
1067 retval
= put_user(uid
, &infop
->si_uid
);
1069 retval
= put_user(status
, &infop
->si_status
);
1076 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1077 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1078 * the lock and this task is uninteresting. If we return nonzero, we have
1079 * released the lock and the system call should return.
1081 static int wait_task_zombie(task_t
*p
, int noreap
,
1082 struct siginfo __user
*infop
,
1083 int __user
*stat_addr
, struct rusage __user
*ru
)
1085 unsigned long state
;
1089 if (unlikely(noreap
)) {
1092 int exit_code
= p
->exit_code
;
1095 if (unlikely(p
->exit_state
!= EXIT_ZOMBIE
))
1097 if (unlikely(p
->exit_signal
== -1 && p
->ptrace
== 0))
1100 read_unlock(&tasklist_lock
);
1101 if ((exit_code
& 0x7f) == 0) {
1103 status
= exit_code
>> 8;
1105 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1106 status
= exit_code
& 0x7f;
1108 return wait_noreap_copyout(p
, pid
, uid
, why
,
1113 * Try to move the task's state to DEAD
1114 * only one thread is allowed to do this:
1116 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1117 if (state
!= EXIT_ZOMBIE
) {
1118 BUG_ON(state
!= EXIT_DEAD
);
1121 if (unlikely(p
->exit_signal
== -1 && p
->ptrace
== 0)) {
1123 * This can only happen in a race with a ptraced thread
1124 * dying on another processor.
1129 if (likely(p
->real_parent
== p
->parent
) && likely(p
->signal
)) {
1130 struct signal_struct
*psig
;
1131 struct signal_struct
*sig
;
1134 * The resource counters for the group leader are in its
1135 * own task_struct. Those for dead threads in the group
1136 * are in its signal_struct, as are those for the child
1137 * processes it has previously reaped. All these
1138 * accumulate in the parent's signal_struct c* fields.
1140 * We don't bother to take a lock here to protect these
1141 * p->signal fields, because they are only touched by
1142 * __exit_signal, which runs with tasklist_lock
1143 * write-locked anyway, and so is excluded here. We do
1144 * need to protect the access to p->parent->signal fields,
1145 * as other threads in the parent group can be right
1146 * here reaping other children at the same time.
1148 spin_lock_irq(&p
->parent
->sighand
->siglock
);
1149 psig
= p
->parent
->signal
;
1152 cputime_add(psig
->cutime
,
1153 cputime_add(p
->utime
,
1154 cputime_add(sig
->utime
,
1157 cputime_add(psig
->cstime
,
1158 cputime_add(p
->stime
,
1159 cputime_add(sig
->stime
,
1162 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1164 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1166 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1168 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1169 spin_unlock_irq(&p
->parent
->sighand
->siglock
);
1173 * Now we are sure this task is interesting, and no other
1174 * thread can reap it because we set its state to EXIT_DEAD.
1176 read_unlock(&tasklist_lock
);
1178 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1179 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1180 ? p
->signal
->group_exit_code
: p
->exit_code
;
1181 if (!retval
&& stat_addr
)
1182 retval
= put_user(status
, stat_addr
);
1183 if (!retval
&& infop
)
1184 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1185 if (!retval
&& infop
)
1186 retval
= put_user(0, &infop
->si_errno
);
1187 if (!retval
&& infop
) {
1190 if ((status
& 0x7f) == 0) {
1194 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1197 retval
= put_user((short)why
, &infop
->si_code
);
1199 retval
= put_user(status
, &infop
->si_status
);
1201 if (!retval
&& infop
)
1202 retval
= put_user(p
->pid
, &infop
->si_pid
);
1203 if (!retval
&& infop
)
1204 retval
= put_user(p
->uid
, &infop
->si_uid
);
1206 // TODO: is this safe?
1207 p
->exit_state
= EXIT_ZOMBIE
;
1211 if (p
->real_parent
!= p
->parent
) {
1212 write_lock_irq(&tasklist_lock
);
1213 /* Double-check with lock held. */
1214 if (p
->real_parent
!= p
->parent
) {
1216 // TODO: is this safe?
1217 p
->exit_state
= EXIT_ZOMBIE
;
1219 * If this is not a detached task, notify the parent.
1220 * If it's still not detached after that, don't release
1223 if (p
->exit_signal
!= -1) {
1224 do_notify_parent(p
, p
->exit_signal
);
1225 if (p
->exit_signal
!= -1)
1229 write_unlock_irq(&tasklist_lock
);
1238 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1239 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1240 * the lock and this task is uninteresting. If we return nonzero, we have
1241 * released the lock and the system call should return.
1243 static int wait_task_stopped(task_t
*p
, int delayed_group_leader
, int noreap
,
1244 struct siginfo __user
*infop
,
1245 int __user
*stat_addr
, struct rusage __user
*ru
)
1247 int retval
, exit_code
;
1251 if (delayed_group_leader
&& !(p
->ptrace
& PT_PTRACED
) &&
1252 p
->signal
&& p
->signal
->group_stop_count
> 0)
1254 * A group stop is in progress and this is the group leader.
1255 * We won't report until all threads have stopped.
1260 * Now we are pretty sure this task is interesting.
1261 * Make sure it doesn't get reaped out from under us while we
1262 * give up the lock and then examine it below. We don't want to
1263 * keep holding onto the tasklist_lock while we call getrusage and
1264 * possibly take page faults for user memory.
1267 read_unlock(&tasklist_lock
);
1269 if (unlikely(noreap
)) {
1272 int why
= (p
->ptrace
& PT_PTRACED
) ? CLD_TRAPPED
: CLD_STOPPED
;
1274 exit_code
= p
->exit_code
;
1275 if (unlikely(!exit_code
) ||
1276 unlikely(p
->state
& TASK_TRACED
))
1278 return wait_noreap_copyout(p
, pid
, uid
,
1279 why
, (exit_code
<< 8) | 0x7f,
1283 write_lock_irq(&tasklist_lock
);
1286 * This uses xchg to be atomic with the thread resuming and setting
1287 * it. It must also be done with the write lock held to prevent a
1288 * race with the EXIT_ZOMBIE case.
1290 exit_code
= xchg(&p
->exit_code
, 0);
1291 if (unlikely(p
->exit_state
)) {
1293 * The task resumed and then died. Let the next iteration
1294 * catch it in EXIT_ZOMBIE. Note that exit_code might
1295 * already be zero here if it resumed and did _exit(0).
1296 * The task itself is dead and won't touch exit_code again;
1297 * other processors in this function are locked out.
1299 p
->exit_code
= exit_code
;
1302 if (unlikely(exit_code
== 0)) {
1304 * Another thread in this function got to it first, or it
1305 * resumed, or it resumed and then died.
1307 write_unlock_irq(&tasklist_lock
);
1311 * We are returning to the wait loop without having successfully
1312 * removed the process and having released the lock. We cannot
1313 * continue, since the "p" task pointer is potentially stale.
1315 * Return -EAGAIN, and do_wait() will restart the loop from the
1316 * beginning. Do _not_ re-acquire the lock.
1321 /* move to end of parent's list to avoid starvation */
1325 write_unlock_irq(&tasklist_lock
);
1327 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1328 if (!retval
&& stat_addr
)
1329 retval
= put_user((exit_code
<< 8) | 0x7f, stat_addr
);
1330 if (!retval
&& infop
)
1331 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1332 if (!retval
&& infop
)
1333 retval
= put_user(0, &infop
->si_errno
);
1334 if (!retval
&& infop
)
1335 retval
= put_user((short)((p
->ptrace
& PT_PTRACED
)
1336 ? CLD_TRAPPED
: CLD_STOPPED
),
1338 if (!retval
&& infop
)
1339 retval
= put_user(exit_code
, &infop
->si_status
);
1340 if (!retval
&& infop
)
1341 retval
= put_user(p
->pid
, &infop
->si_pid
);
1342 if (!retval
&& infop
)
1343 retval
= put_user(p
->uid
, &infop
->si_uid
);
1353 * Handle do_wait work for one task in a live, non-stopped state.
1354 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1355 * the lock and this task is uninteresting. If we return nonzero, we have
1356 * released the lock and the system call should return.
1358 static int wait_task_continued(task_t
*p
, int noreap
,
1359 struct siginfo __user
*infop
,
1360 int __user
*stat_addr
, struct rusage __user
*ru
)
1366 if (unlikely(!p
->signal
))
1369 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1372 spin_lock_irq(&p
->sighand
->siglock
);
1373 /* Re-check with the lock held. */
1374 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1375 spin_unlock_irq(&p
->sighand
->siglock
);
1379 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1380 spin_unlock_irq(&p
->sighand
->siglock
);
1385 read_unlock(&tasklist_lock
);
1388 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1390 if (!retval
&& stat_addr
)
1391 retval
= put_user(0xffff, stat_addr
);
1395 retval
= wait_noreap_copyout(p
, pid
, uid
,
1396 CLD_CONTINUED
, SIGCONT
,
1398 BUG_ON(retval
== 0);
1405 static inline int my_ptrace_child(struct task_struct
*p
)
1407 if (!(p
->ptrace
& PT_PTRACED
))
1409 if (!(p
->ptrace
& PT_ATTACHED
))
1412 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1413 * we are the attacher. If we are the real parent, this is a race
1414 * inside ptrace_attach. It is waiting for the tasklist_lock,
1415 * which we have to switch the parent links, but has already set
1416 * the flags in p->ptrace.
1418 return (p
->parent
!= p
->real_parent
);
1421 static long do_wait(pid_t pid
, int options
, struct siginfo __user
*infop
,
1422 int __user
*stat_addr
, struct rusage __user
*ru
)
1424 DECLARE_WAITQUEUE(wait
, current
);
1425 struct task_struct
*tsk
;
1428 add_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1431 * We will set this flag if we see any child that might later
1432 * match our criteria, even if we are not able to reap it yet.
1435 current
->state
= TASK_INTERRUPTIBLE
;
1436 read_lock(&tasklist_lock
);
1439 struct task_struct
*p
;
1440 struct list_head
*_p
;
1443 list_for_each(_p
,&tsk
->children
) {
1444 p
= list_entry(_p
,struct task_struct
,sibling
);
1446 ret
= eligible_child(pid
, options
, p
);
1453 * When we hit the race with PTRACE_ATTACH,
1454 * we will not report this child. But the
1455 * race means it has not yet been moved to
1456 * our ptrace_children list, so we need to
1457 * set the flag here to avoid a spurious ECHILD
1458 * when the race happens with the only child.
1461 if (!my_ptrace_child(p
))
1466 * It's stopped now, so it might later
1467 * continue, exit, or stop again.
1470 if (!(options
& WUNTRACED
) &&
1471 !my_ptrace_child(p
))
1473 retval
= wait_task_stopped(p
, ret
== 2,
1474 (options
& WNOWAIT
),
1477 if (retval
== -EAGAIN
)
1479 if (retval
!= 0) /* He released the lock. */
1484 if (p
->exit_state
== EXIT_DEAD
)
1486 // case EXIT_ZOMBIE:
1487 if (p
->exit_state
== EXIT_ZOMBIE
) {
1489 * Eligible but we cannot release
1493 goto check_continued
;
1494 if (!likely(options
& WEXITED
))
1496 retval
= wait_task_zombie(
1497 p
, (options
& WNOWAIT
),
1498 infop
, stat_addr
, ru
);
1499 /* He released the lock. */
1506 * It's running now, so it might later
1507 * exit, stop, or stop and then continue.
1510 if (!unlikely(options
& WCONTINUED
))
1512 retval
= wait_task_continued(
1513 p
, (options
& WNOWAIT
),
1514 infop
, stat_addr
, ru
);
1515 if (retval
!= 0) /* He released the lock. */
1521 list_for_each(_p
, &tsk
->ptrace_children
) {
1522 p
= list_entry(_p
, struct task_struct
,
1524 if (!eligible_child(pid
, options
, p
))
1530 if (options
& __WNOTHREAD
)
1532 tsk
= next_thread(tsk
);
1533 if (tsk
->signal
!= current
->signal
)
1535 } while (tsk
!= current
);
1537 read_unlock(&tasklist_lock
);
1540 if (options
& WNOHANG
)
1542 retval
= -ERESTARTSYS
;
1543 if (signal_pending(current
))
1550 current
->state
= TASK_RUNNING
;
1551 remove_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1557 * For a WNOHANG return, clear out all the fields
1558 * we would set so the user can easily tell the
1562 retval
= put_user(0, &infop
->si_signo
);
1564 retval
= put_user(0, &infop
->si_errno
);
1566 retval
= put_user(0, &infop
->si_code
);
1568 retval
= put_user(0, &infop
->si_pid
);
1570 retval
= put_user(0, &infop
->si_uid
);
1572 retval
= put_user(0, &infop
->si_status
);
1578 asmlinkage
long sys_waitid(int which
, pid_t pid
,
1579 struct siginfo __user
*infop
, int options
,
1580 struct rusage __user
*ru
)
1584 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1586 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1606 ret
= do_wait(pid
, options
, infop
, NULL
, ru
);
1608 /* avoid REGPARM breakage on x86: */
1609 prevent_tail_call(ret
);
1613 asmlinkage
long sys_wait4(pid_t pid
, int __user
*stat_addr
,
1614 int options
, struct rusage __user
*ru
)
1618 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1619 __WNOTHREAD
|__WCLONE
|__WALL
))
1621 ret
= do_wait(pid
, options
| WEXITED
, NULL
, stat_addr
, ru
);
1623 /* avoid REGPARM breakage on x86: */
1624 prevent_tail_call(ret
);
1628 #ifdef __ARCH_WANT_SYS_WAITPID
1631 * sys_waitpid() remains for compatibility. waitpid() should be
1632 * implemented by calling sys_wait4() from libc.a.
1634 asmlinkage
long sys_waitpid(pid_t pid
, int __user
*stat_addr
, int options
)
1636 return sys_wait4(pid
, stat_addr
, options
, NULL
);