[PATCH] w1: clean up W1_CON dependency.
[linux-2.6/verdex.git] / kernel / kprobes.c
blob1fbf466a29aab6ca0dfe1cf6e5d6ac16fba546d8
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <linux/moduleloader.h>
40 #include <asm-generic/sections.h>
41 #include <asm/cacheflush.h>
42 #include <asm/errno.h>
43 #include <asm/kdebug.h>
45 #define KPROBE_HASH_BITS 6
46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
49 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51 DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
52 DEFINE_SPINLOCK(kretprobe_lock); /* Protects kretprobe_inst_table */
53 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
55 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
57 * kprobe->ainsn.insn points to the copy of the instruction to be
58 * single-stepped. x86_64, POWER4 and above have no-exec support and
59 * stepping on the instruction on a vmalloced/kmalloced/data page
60 * is a recipe for disaster
62 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
64 struct kprobe_insn_page {
65 struct hlist_node hlist;
66 kprobe_opcode_t *insns; /* Page of instruction slots */
67 char slot_used[INSNS_PER_PAGE];
68 int nused;
71 static struct hlist_head kprobe_insn_pages;
73 /**
74 * get_insn_slot() - Find a slot on an executable page for an instruction.
75 * We allocate an executable page if there's no room on existing ones.
77 kprobe_opcode_t __kprobes *get_insn_slot(void)
79 struct kprobe_insn_page *kip;
80 struct hlist_node *pos;
82 hlist_for_each(pos, &kprobe_insn_pages) {
83 kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
84 if (kip->nused < INSNS_PER_PAGE) {
85 int i;
86 for (i = 0; i < INSNS_PER_PAGE; i++) {
87 if (!kip->slot_used[i]) {
88 kip->slot_used[i] = 1;
89 kip->nused++;
90 return kip->insns + (i * MAX_INSN_SIZE);
93 /* Surprise! No unused slots. Fix kip->nused. */
94 kip->nused = INSNS_PER_PAGE;
98 /* All out of space. Need to allocate a new page. Use slot 0.*/
99 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
100 if (!kip) {
101 return NULL;
105 * Use module_alloc so this page is within +/- 2GB of where the
106 * kernel image and loaded module images reside. This is required
107 * so x86_64 can correctly handle the %rip-relative fixups.
109 kip->insns = module_alloc(PAGE_SIZE);
110 if (!kip->insns) {
111 kfree(kip);
112 return NULL;
114 INIT_HLIST_NODE(&kip->hlist);
115 hlist_add_head(&kip->hlist, &kprobe_insn_pages);
116 memset(kip->slot_used, 0, INSNS_PER_PAGE);
117 kip->slot_used[0] = 1;
118 kip->nused = 1;
119 return kip->insns;
122 void __kprobes free_insn_slot(kprobe_opcode_t *slot)
124 struct kprobe_insn_page *kip;
125 struct hlist_node *pos;
127 hlist_for_each(pos, &kprobe_insn_pages) {
128 kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
129 if (kip->insns <= slot &&
130 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
131 int i = (slot - kip->insns) / MAX_INSN_SIZE;
132 kip->slot_used[i] = 0;
133 kip->nused--;
134 if (kip->nused == 0) {
136 * Page is no longer in use. Free it unless
137 * it's the last one. We keep the last one
138 * so as not to have to set it up again the
139 * next time somebody inserts a probe.
141 hlist_del(&kip->hlist);
142 if (hlist_empty(&kprobe_insn_pages)) {
143 INIT_HLIST_NODE(&kip->hlist);
144 hlist_add_head(&kip->hlist,
145 &kprobe_insn_pages);
146 } else {
147 module_free(NULL, kip->insns);
148 kfree(kip);
151 return;
155 #endif
157 /* We have preemption disabled.. so it is safe to use __ versions */
158 static inline void set_kprobe_instance(struct kprobe *kp)
160 __get_cpu_var(kprobe_instance) = kp;
163 static inline void reset_kprobe_instance(void)
165 __get_cpu_var(kprobe_instance) = NULL;
169 * This routine is called either:
170 * - under the kprobe_mutex - during kprobe_[un]register()
171 * OR
172 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
174 struct kprobe __kprobes *get_kprobe(void *addr)
176 struct hlist_head *head;
177 struct hlist_node *node;
178 struct kprobe *p;
180 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
181 hlist_for_each_entry_rcu(p, node, head, hlist) {
182 if (p->addr == addr)
183 return p;
185 return NULL;
189 * Aggregate handlers for multiple kprobes support - these handlers
190 * take care of invoking the individual kprobe handlers on p->list
192 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
194 struct kprobe *kp;
196 list_for_each_entry_rcu(kp, &p->list, list) {
197 if (kp->pre_handler) {
198 set_kprobe_instance(kp);
199 if (kp->pre_handler(kp, regs))
200 return 1;
202 reset_kprobe_instance();
204 return 0;
207 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
208 unsigned long flags)
210 struct kprobe *kp;
212 list_for_each_entry_rcu(kp, &p->list, list) {
213 if (kp->post_handler) {
214 set_kprobe_instance(kp);
215 kp->post_handler(kp, regs, flags);
216 reset_kprobe_instance();
219 return;
222 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
223 int trapnr)
225 struct kprobe *cur = __get_cpu_var(kprobe_instance);
228 * if we faulted "during" the execution of a user specified
229 * probe handler, invoke just that probe's fault handler
231 if (cur && cur->fault_handler) {
232 if (cur->fault_handler(cur, regs, trapnr))
233 return 1;
235 return 0;
238 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
240 struct kprobe *cur = __get_cpu_var(kprobe_instance);
241 int ret = 0;
243 if (cur && cur->break_handler) {
244 if (cur->break_handler(cur, regs))
245 ret = 1;
247 reset_kprobe_instance();
248 return ret;
251 /* Walks the list and increments nmissed count for multiprobe case */
252 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
254 struct kprobe *kp;
255 if (p->pre_handler != aggr_pre_handler) {
256 p->nmissed++;
257 } else {
258 list_for_each_entry_rcu(kp, &p->list, list)
259 kp->nmissed++;
261 return;
264 /* Called with kretprobe_lock held */
265 struct kretprobe_instance __kprobes *get_free_rp_inst(struct kretprobe *rp)
267 struct hlist_node *node;
268 struct kretprobe_instance *ri;
269 hlist_for_each_entry(ri, node, &rp->free_instances, uflist)
270 return ri;
271 return NULL;
274 /* Called with kretprobe_lock held */
275 static struct kretprobe_instance __kprobes *get_used_rp_inst(struct kretprobe
276 *rp)
278 struct hlist_node *node;
279 struct kretprobe_instance *ri;
280 hlist_for_each_entry(ri, node, &rp->used_instances, uflist)
281 return ri;
282 return NULL;
285 /* Called with kretprobe_lock held */
286 void __kprobes add_rp_inst(struct kretprobe_instance *ri)
289 * Remove rp inst off the free list -
290 * Add it back when probed function returns
292 hlist_del(&ri->uflist);
294 /* Add rp inst onto table */
295 INIT_HLIST_NODE(&ri->hlist);
296 hlist_add_head(&ri->hlist,
297 &kretprobe_inst_table[hash_ptr(ri->task, KPROBE_HASH_BITS)]);
299 /* Also add this rp inst to the used list. */
300 INIT_HLIST_NODE(&ri->uflist);
301 hlist_add_head(&ri->uflist, &ri->rp->used_instances);
304 /* Called with kretprobe_lock held */
305 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri)
307 /* remove rp inst off the rprobe_inst_table */
308 hlist_del(&ri->hlist);
309 if (ri->rp) {
310 /* remove rp inst off the used list */
311 hlist_del(&ri->uflist);
312 /* put rp inst back onto the free list */
313 INIT_HLIST_NODE(&ri->uflist);
314 hlist_add_head(&ri->uflist, &ri->rp->free_instances);
315 } else
316 /* Unregistering */
317 kfree(ri);
320 struct hlist_head __kprobes *kretprobe_inst_table_head(struct task_struct *tsk)
322 return &kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)];
326 * This function is called from finish_task_switch when task tk becomes dead,
327 * so that we can recycle any function-return probe instances associated
328 * with this task. These left over instances represent probed functions
329 * that have been called but will never return.
331 void __kprobes kprobe_flush_task(struct task_struct *tk)
333 struct kretprobe_instance *ri;
334 struct hlist_head *head;
335 struct hlist_node *node, *tmp;
336 unsigned long flags = 0;
338 spin_lock_irqsave(&kretprobe_lock, flags);
339 head = kretprobe_inst_table_head(tk);
340 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
341 if (ri->task == tk)
342 recycle_rp_inst(ri);
344 spin_unlock_irqrestore(&kretprobe_lock, flags);
347 static inline void free_rp_inst(struct kretprobe *rp)
349 struct kretprobe_instance *ri;
350 while ((ri = get_free_rp_inst(rp)) != NULL) {
351 hlist_del(&ri->uflist);
352 kfree(ri);
357 * Keep all fields in the kprobe consistent
359 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
361 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
362 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
366 * Add the new probe to old_p->list. Fail if this is the
367 * second jprobe at the address - two jprobes can't coexist
369 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
371 struct kprobe *kp;
373 if (p->break_handler) {
374 list_for_each_entry_rcu(kp, &old_p->list, list) {
375 if (kp->break_handler)
376 return -EEXIST;
378 list_add_tail_rcu(&p->list, &old_p->list);
379 } else
380 list_add_rcu(&p->list, &old_p->list);
381 return 0;
385 * Fill in the required fields of the "manager kprobe". Replace the
386 * earlier kprobe in the hlist with the manager kprobe
388 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
390 copy_kprobe(p, ap);
391 ap->addr = p->addr;
392 ap->pre_handler = aggr_pre_handler;
393 ap->post_handler = aggr_post_handler;
394 ap->fault_handler = aggr_fault_handler;
395 ap->break_handler = aggr_break_handler;
397 INIT_LIST_HEAD(&ap->list);
398 list_add_rcu(&p->list, &ap->list);
400 hlist_replace_rcu(&p->hlist, &ap->hlist);
404 * This is the second or subsequent kprobe at the address - handle
405 * the intricacies
407 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
408 struct kprobe *p)
410 int ret = 0;
411 struct kprobe *ap;
413 if (old_p->pre_handler == aggr_pre_handler) {
414 copy_kprobe(old_p, p);
415 ret = add_new_kprobe(old_p, p);
416 } else {
417 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
418 if (!ap)
419 return -ENOMEM;
420 add_aggr_kprobe(ap, old_p);
421 copy_kprobe(ap, p);
422 ret = add_new_kprobe(ap, p);
424 return ret;
427 static int __kprobes in_kprobes_functions(unsigned long addr)
429 if (addr >= (unsigned long)__kprobes_text_start
430 && addr < (unsigned long)__kprobes_text_end)
431 return -EINVAL;
432 return 0;
435 static int __kprobes __register_kprobe(struct kprobe *p,
436 unsigned long called_from)
438 int ret = 0;
439 struct kprobe *old_p;
440 struct module *probed_mod;
442 if ((!kernel_text_address((unsigned long) p->addr)) ||
443 in_kprobes_functions((unsigned long) p->addr))
444 return -EINVAL;
446 p->mod_refcounted = 0;
447 /* Check are we probing a module */
448 if ((probed_mod = module_text_address((unsigned long) p->addr))) {
449 struct module *calling_mod = module_text_address(called_from);
450 /* We must allow modules to probe themself and
451 * in this case avoid incrementing the module refcount,
452 * so as to allow unloading of self probing modules.
454 if (calling_mod && (calling_mod != probed_mod)) {
455 if (unlikely(!try_module_get(probed_mod)))
456 return -EINVAL;
457 p->mod_refcounted = 1;
458 } else
459 probed_mod = NULL;
462 p->nmissed = 0;
463 mutex_lock(&kprobe_mutex);
464 old_p = get_kprobe(p->addr);
465 if (old_p) {
466 ret = register_aggr_kprobe(old_p, p);
467 goto out;
470 if ((ret = arch_prepare_kprobe(p)) != 0)
471 goto out;
473 INIT_HLIST_NODE(&p->hlist);
474 hlist_add_head_rcu(&p->hlist,
475 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
477 arch_arm_kprobe(p);
479 out:
480 mutex_unlock(&kprobe_mutex);
482 if (ret && probed_mod)
483 module_put(probed_mod);
484 return ret;
487 int __kprobes register_kprobe(struct kprobe *p)
489 return __register_kprobe(p,
490 (unsigned long)__builtin_return_address(0));
493 void __kprobes unregister_kprobe(struct kprobe *p)
495 struct module *mod;
496 struct kprobe *old_p, *list_p;
497 int cleanup_p;
499 mutex_lock(&kprobe_mutex);
500 old_p = get_kprobe(p->addr);
501 if (unlikely(!old_p)) {
502 mutex_unlock(&kprobe_mutex);
503 return;
505 if (p != old_p) {
506 list_for_each_entry_rcu(list_p, &old_p->list, list)
507 if (list_p == p)
508 /* kprobe p is a valid probe */
509 goto valid_p;
510 mutex_unlock(&kprobe_mutex);
511 return;
513 valid_p:
514 if ((old_p == p) || ((old_p->pre_handler == aggr_pre_handler) &&
515 (p->list.next == &old_p->list) &&
516 (p->list.prev == &old_p->list))) {
517 /* Only probe on the hash list */
518 arch_disarm_kprobe(p);
519 hlist_del_rcu(&old_p->hlist);
520 cleanup_p = 1;
521 } else {
522 list_del_rcu(&p->list);
523 cleanup_p = 0;
526 mutex_unlock(&kprobe_mutex);
528 synchronize_sched();
529 if (p->mod_refcounted &&
530 (mod = module_text_address((unsigned long)p->addr)))
531 module_put(mod);
533 if (cleanup_p) {
534 if (p != old_p) {
535 list_del_rcu(&p->list);
536 kfree(old_p);
538 arch_remove_kprobe(p);
542 static struct notifier_block kprobe_exceptions_nb = {
543 .notifier_call = kprobe_exceptions_notify,
544 .priority = 0x7fffffff /* we need to notified first */
547 int __kprobes register_jprobe(struct jprobe *jp)
549 /* Todo: Verify probepoint is a function entry point */
550 jp->kp.pre_handler = setjmp_pre_handler;
551 jp->kp.break_handler = longjmp_break_handler;
553 return __register_kprobe(&jp->kp,
554 (unsigned long)__builtin_return_address(0));
557 void __kprobes unregister_jprobe(struct jprobe *jp)
559 unregister_kprobe(&jp->kp);
562 #ifdef ARCH_SUPPORTS_KRETPROBES
565 * This kprobe pre_handler is registered with every kretprobe. When probe
566 * hits it will set up the return probe.
568 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
569 struct pt_regs *regs)
571 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
572 unsigned long flags = 0;
574 /*TODO: consider to only swap the RA after the last pre_handler fired */
575 spin_lock_irqsave(&kretprobe_lock, flags);
576 arch_prepare_kretprobe(rp, regs);
577 spin_unlock_irqrestore(&kretprobe_lock, flags);
578 return 0;
581 int __kprobes register_kretprobe(struct kretprobe *rp)
583 int ret = 0;
584 struct kretprobe_instance *inst;
585 int i;
587 rp->kp.pre_handler = pre_handler_kretprobe;
588 rp->kp.post_handler = NULL;
589 rp->kp.fault_handler = NULL;
590 rp->kp.break_handler = NULL;
592 /* Pre-allocate memory for max kretprobe instances */
593 if (rp->maxactive <= 0) {
594 #ifdef CONFIG_PREEMPT
595 rp->maxactive = max(10, 2 * NR_CPUS);
596 #else
597 rp->maxactive = NR_CPUS;
598 #endif
600 INIT_HLIST_HEAD(&rp->used_instances);
601 INIT_HLIST_HEAD(&rp->free_instances);
602 for (i = 0; i < rp->maxactive; i++) {
603 inst = kmalloc(sizeof(struct kretprobe_instance), GFP_KERNEL);
604 if (inst == NULL) {
605 free_rp_inst(rp);
606 return -ENOMEM;
608 INIT_HLIST_NODE(&inst->uflist);
609 hlist_add_head(&inst->uflist, &rp->free_instances);
612 rp->nmissed = 0;
613 /* Establish function entry probe point */
614 if ((ret = __register_kprobe(&rp->kp,
615 (unsigned long)__builtin_return_address(0))) != 0)
616 free_rp_inst(rp);
617 return ret;
620 #else /* ARCH_SUPPORTS_KRETPROBES */
622 int __kprobes register_kretprobe(struct kretprobe *rp)
624 return -ENOSYS;
627 #endif /* ARCH_SUPPORTS_KRETPROBES */
629 void __kprobes unregister_kretprobe(struct kretprobe *rp)
631 unsigned long flags;
632 struct kretprobe_instance *ri;
634 unregister_kprobe(&rp->kp);
635 /* No race here */
636 spin_lock_irqsave(&kretprobe_lock, flags);
637 while ((ri = get_used_rp_inst(rp)) != NULL) {
638 ri->rp = NULL;
639 hlist_del(&ri->uflist);
641 spin_unlock_irqrestore(&kretprobe_lock, flags);
642 free_rp_inst(rp);
645 static int __init init_kprobes(void)
647 int i, err = 0;
649 /* FIXME allocate the probe table, currently defined statically */
650 /* initialize all list heads */
651 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
652 INIT_HLIST_HEAD(&kprobe_table[i]);
653 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
656 err = arch_init_kprobes();
657 if (!err)
658 err = register_die_notifier(&kprobe_exceptions_nb);
660 return err;
663 __initcall(init_kprobes);
665 EXPORT_SYMBOL_GPL(register_kprobe);
666 EXPORT_SYMBOL_GPL(unregister_kprobe);
667 EXPORT_SYMBOL_GPL(register_jprobe);
668 EXPORT_SYMBOL_GPL(unregister_jprobe);
669 EXPORT_SYMBOL_GPL(jprobe_return);
670 EXPORT_SYMBOL_GPL(register_kretprobe);
671 EXPORT_SYMBOL_GPL(unregister_kretprobe);