[PATCH] w1: clean up W1_CON dependency.
[linux-2.6/verdex.git] / net / irda / irttp.c
blob8aff254cb41851e7e53e0f96f13bd83d1a6346b2
1 /*********************************************************************
2 *
3 * Filename: irttp.c
4 * Version: 1.2
5 * Description: Tiny Transport Protocol (TTP) implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun Aug 31 20:14:31 1997
9 * Modified at: Wed Jan 5 11:31:27 2000
10 * Modified by: Dag Brattli <dagb@cs.uit.no>
12 * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13 * All Rights Reserved.
14 * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License as
18 * published by the Free Software Foundation; either version 2 of
19 * the License, or (at your option) any later version.
21 * Neither Dag Brattli nor University of Tromsø admit liability nor
22 * provide warranty for any of this software. This material is
23 * provided "AS-IS" and at no charge.
25 ********************************************************************/
27 #include <linux/config.h>
28 #include <linux/skbuff.h>
29 #include <linux/init.h>
30 #include <linux/seq_file.h>
32 #include <asm/byteorder.h>
33 #include <asm/unaligned.h>
35 #include <net/irda/irda.h>
36 #include <net/irda/irlap.h>
37 #include <net/irda/irlmp.h>
38 #include <net/irda/parameters.h>
39 #include <net/irda/irttp.h>
41 static struct irttp_cb *irttp;
43 static void __irttp_close_tsap(struct tsap_cb *self);
45 static int irttp_data_indication(void *instance, void *sap,
46 struct sk_buff *skb);
47 static int irttp_udata_indication(void *instance, void *sap,
48 struct sk_buff *skb);
49 static void irttp_disconnect_indication(void *instance, void *sap,
50 LM_REASON reason, struct sk_buff *);
51 static void irttp_connect_indication(void *instance, void *sap,
52 struct qos_info *qos, __u32 max_sdu_size,
53 __u8 header_size, struct sk_buff *skb);
54 static void irttp_connect_confirm(void *instance, void *sap,
55 struct qos_info *qos, __u32 max_sdu_size,
56 __u8 header_size, struct sk_buff *skb);
57 static void irttp_run_tx_queue(struct tsap_cb *self);
58 static void irttp_run_rx_queue(struct tsap_cb *self);
60 static void irttp_flush_queues(struct tsap_cb *self);
61 static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
62 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
63 static void irttp_todo_expired(unsigned long data);
64 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
65 int get);
67 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
68 static void irttp_status_indication(void *instance,
69 LINK_STATUS link, LOCK_STATUS lock);
71 /* Information for parsing parameters in IrTTP */
72 static pi_minor_info_t pi_minor_call_table[] = {
73 { NULL, 0 }, /* 0x00 */
74 { irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
76 static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
77 static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
79 /************************ GLOBAL PROCEDURES ************************/
82 * Function irttp_init (void)
84 * Initialize the IrTTP layer. Called by module initialization code
87 int __init irttp_init(void)
89 irttp = kmalloc(sizeof(struct irttp_cb), GFP_KERNEL);
90 if (irttp == NULL)
91 return -ENOMEM;
92 memset(irttp, 0, sizeof(struct irttp_cb));
94 irttp->magic = TTP_MAGIC;
96 irttp->tsaps = hashbin_new(HB_LOCK);
97 if (!irttp->tsaps) {
98 IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
99 __FUNCTION__);
100 kfree(irttp);
101 return -ENOMEM;
104 return 0;
108 * Function irttp_cleanup (void)
110 * Called by module destruction/cleanup code
113 void __exit irttp_cleanup(void)
115 /* Check for main structure */
116 IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
119 * Delete hashbin and close all TSAP instances in it
121 hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
123 irttp->magic = 0;
125 /* De-allocate main structure */
126 kfree(irttp);
128 irttp = NULL;
131 /*************************** SUBROUTINES ***************************/
134 * Function irttp_start_todo_timer (self, timeout)
136 * Start todo timer.
138 * Made it more effient and unsensitive to race conditions - Jean II
140 static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
142 /* Set new value for timer */
143 mod_timer(&self->todo_timer, jiffies + timeout);
147 * Function irttp_todo_expired (data)
149 * Todo timer has expired!
151 * One of the restriction of the timer is that it is run only on the timer
152 * interrupt which run every 10ms. This mean that even if you set the timer
153 * with a delay of 0, it may take up to 10ms before it's run.
154 * So, to minimise latency and keep cache fresh, we try to avoid using
155 * it as much as possible.
156 * Note : we can't use tasklets, because they can't be asynchronously
157 * killed (need user context), and we can't guarantee that here...
158 * Jean II
160 static void irttp_todo_expired(unsigned long data)
162 struct tsap_cb *self = (struct tsap_cb *) data;
164 /* Check that we still exist */
165 if (!self || self->magic != TTP_TSAP_MAGIC)
166 return;
168 IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
170 /* Try to make some progress, especially on Tx side - Jean II */
171 irttp_run_rx_queue(self);
172 irttp_run_tx_queue(self);
174 /* Check if time for disconnect */
175 if (test_bit(0, &self->disconnect_pend)) {
176 /* Check if it's possible to disconnect yet */
177 if (skb_queue_empty(&self->tx_queue)) {
178 /* Make sure disconnect is not pending anymore */
179 clear_bit(0, &self->disconnect_pend); /* FALSE */
181 /* Note : self->disconnect_skb may be NULL */
182 irttp_disconnect_request(self, self->disconnect_skb,
183 P_NORMAL);
184 self->disconnect_skb = NULL;
185 } else {
186 /* Try again later */
187 irttp_start_todo_timer(self, HZ/10);
189 /* No reason to try and close now */
190 return;
194 /* Check if it's closing time */
195 if (self->close_pend)
196 /* Finish cleanup */
197 irttp_close_tsap(self);
201 * Function irttp_flush_queues (self)
203 * Flushes (removes all frames) in transitt-buffer (tx_list)
205 void irttp_flush_queues(struct tsap_cb *self)
207 struct sk_buff* skb;
209 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
211 IRDA_ASSERT(self != NULL, return;);
212 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
214 /* Deallocate frames waiting to be sent */
215 while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
216 dev_kfree_skb(skb);
218 /* Deallocate received frames */
219 while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
220 dev_kfree_skb(skb);
222 /* Deallocate received fragments */
223 while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
224 dev_kfree_skb(skb);
228 * Function irttp_reassemble (self)
230 * Makes a new (continuous) skb of all the fragments in the fragment
231 * queue
234 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
236 struct sk_buff *skb, *frag;
237 int n = 0; /* Fragment index */
239 IRDA_ASSERT(self != NULL, return NULL;);
240 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
242 IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __FUNCTION__,
243 self->rx_sdu_size);
245 skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
246 if (!skb)
247 return NULL;
250 * Need to reserve space for TTP header in case this skb needs to
251 * be requeued in case delivery failes
253 skb_reserve(skb, TTP_HEADER);
254 skb_put(skb, self->rx_sdu_size);
257 * Copy all fragments to a new buffer
259 while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
260 memcpy(skb->data+n, frag->data, frag->len);
261 n += frag->len;
263 dev_kfree_skb(frag);
266 IRDA_DEBUG(2,
267 "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
268 __FUNCTION__, n, self->rx_sdu_size, self->rx_max_sdu_size);
269 /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
270 * by summing the size of all fragments, so we should always
271 * have n == self->rx_sdu_size, except in cases where we
272 * droped the last fragment (when self->rx_sdu_size exceed
273 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
274 * Jean II */
275 IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
277 /* Set the new length */
278 skb_trim(skb, n);
280 self->rx_sdu_size = 0;
282 return skb;
286 * Function irttp_fragment_skb (skb)
288 * Fragments a frame and queues all the fragments for transmission
291 static inline void irttp_fragment_skb(struct tsap_cb *self,
292 struct sk_buff *skb)
294 struct sk_buff *frag;
295 __u8 *frame;
297 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
299 IRDA_ASSERT(self != NULL, return;);
300 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
301 IRDA_ASSERT(skb != NULL, return;);
304 * Split frame into a number of segments
306 while (skb->len > self->max_seg_size) {
307 IRDA_DEBUG(2, "%s(), fragmenting ...\n", __FUNCTION__);
309 /* Make new segment */
310 frag = dev_alloc_skb(self->max_seg_size+self->max_header_size);
311 if (!frag)
312 return;
314 skb_reserve(frag, self->max_header_size);
316 /* Copy data from the original skb into this fragment. */
317 memcpy(skb_put(frag, self->max_seg_size), skb->data,
318 self->max_seg_size);
320 /* Insert TTP header, with the more bit set */
321 frame = skb_push(frag, TTP_HEADER);
322 frame[0] = TTP_MORE;
324 /* Hide the copied data from the original skb */
325 skb_pull(skb, self->max_seg_size);
327 /* Queue fragment */
328 skb_queue_tail(&self->tx_queue, frag);
330 /* Queue what is left of the original skb */
331 IRDA_DEBUG(2, "%s(), queuing last segment\n", __FUNCTION__);
333 frame = skb_push(skb, TTP_HEADER);
334 frame[0] = 0x00; /* Clear more bit */
336 /* Queue fragment */
337 skb_queue_tail(&self->tx_queue, skb);
341 * Function irttp_param_max_sdu_size (self, param)
343 * Handle the MaxSduSize parameter in the connect frames, this function
344 * will be called both when this parameter needs to be inserted into, and
345 * extracted from the connect frames
347 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
348 int get)
350 struct tsap_cb *self;
352 self = (struct tsap_cb *) instance;
354 IRDA_ASSERT(self != NULL, return -1;);
355 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
357 if (get)
358 param->pv.i = self->tx_max_sdu_size;
359 else
360 self->tx_max_sdu_size = param->pv.i;
362 IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __FUNCTION__, param->pv.i);
364 return 0;
367 /*************************** CLIENT CALLS ***************************/
368 /************************** LMP CALLBACKS **************************/
369 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
372 * Function irttp_open_tsap (stsap, notify)
374 * Create TSAP connection endpoint,
376 struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
378 struct tsap_cb *self;
379 struct lsap_cb *lsap;
380 notify_t ttp_notify;
382 IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
384 /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
385 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
386 * JeanII */
387 if((stsap_sel != LSAP_ANY) &&
388 ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
389 IRDA_DEBUG(0, "%s(), invalid tsap!\n", __FUNCTION__);
390 return NULL;
393 self = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
394 if (self == NULL) {
395 IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __FUNCTION__);
396 return NULL;
398 memset(self, 0, sizeof(struct tsap_cb));
399 spin_lock_init(&self->lock);
401 /* Initialise todo timer */
402 init_timer(&self->todo_timer);
403 self->todo_timer.data = (unsigned long) self;
404 self->todo_timer.function = &irttp_todo_expired;
406 /* Initialize callbacks for IrLMP to use */
407 irda_notify_init(&ttp_notify);
408 ttp_notify.connect_confirm = irttp_connect_confirm;
409 ttp_notify.connect_indication = irttp_connect_indication;
410 ttp_notify.disconnect_indication = irttp_disconnect_indication;
411 ttp_notify.data_indication = irttp_data_indication;
412 ttp_notify.udata_indication = irttp_udata_indication;
413 ttp_notify.flow_indication = irttp_flow_indication;
414 if(notify->status_indication != NULL)
415 ttp_notify.status_indication = irttp_status_indication;
416 ttp_notify.instance = self;
417 strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
419 self->magic = TTP_TSAP_MAGIC;
420 self->connected = FALSE;
422 skb_queue_head_init(&self->rx_queue);
423 skb_queue_head_init(&self->tx_queue);
424 skb_queue_head_init(&self->rx_fragments);
426 * Create LSAP at IrLMP layer
428 lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
429 if (lsap == NULL) {
430 IRDA_WARNING("%s: unable to allocate LSAP!!\n", __FUNCTION__);
431 return NULL;
435 * If user specified LSAP_ANY as source TSAP selector, then IrLMP
436 * will replace it with whatever source selector which is free, so
437 * the stsap_sel we have might not be valid anymore
439 self->stsap_sel = lsap->slsap_sel;
440 IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __FUNCTION__, self->stsap_sel);
442 self->notify = *notify;
443 self->lsap = lsap;
445 hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
447 if (credit > TTP_RX_MAX_CREDIT)
448 self->initial_credit = TTP_RX_MAX_CREDIT;
449 else
450 self->initial_credit = credit;
452 return self;
454 EXPORT_SYMBOL(irttp_open_tsap);
457 * Function irttp_close (handle)
459 * Remove an instance of a TSAP. This function should only deal with the
460 * deallocation of the TSAP, and resetting of the TSAPs values;
463 static void __irttp_close_tsap(struct tsap_cb *self)
465 /* First make sure we're connected. */
466 IRDA_ASSERT(self != NULL, return;);
467 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
469 irttp_flush_queues(self);
471 del_timer(&self->todo_timer);
473 /* This one won't be cleaned up if we are disconnect_pend + close_pend
474 * and we receive a disconnect_indication */
475 if (self->disconnect_skb)
476 dev_kfree_skb(self->disconnect_skb);
478 self->connected = FALSE;
479 self->magic = ~TTP_TSAP_MAGIC;
481 kfree(self);
485 * Function irttp_close (self)
487 * Remove TSAP from list of all TSAPs and then deallocate all resources
488 * associated with this TSAP
490 * Note : because we *free* the tsap structure, it is the responsibility
491 * of the caller to make sure we are called only once and to deal with
492 * possible race conditions. - Jean II
494 int irttp_close_tsap(struct tsap_cb *self)
496 struct tsap_cb *tsap;
498 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
500 IRDA_ASSERT(self != NULL, return -1;);
501 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
503 /* Make sure tsap has been disconnected */
504 if (self->connected) {
505 /* Check if disconnect is not pending */
506 if (!test_bit(0, &self->disconnect_pend)) {
507 IRDA_WARNING("%s: TSAP still connected!\n",
508 __FUNCTION__);
509 irttp_disconnect_request(self, NULL, P_NORMAL);
511 self->close_pend = TRUE;
512 irttp_start_todo_timer(self, HZ/10);
514 return 0; /* Will be back! */
517 tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
519 IRDA_ASSERT(tsap == self, return -1;);
521 /* Close corresponding LSAP */
522 if (self->lsap) {
523 irlmp_close_lsap(self->lsap);
524 self->lsap = NULL;
527 __irttp_close_tsap(self);
529 return 0;
531 EXPORT_SYMBOL(irttp_close_tsap);
534 * Function irttp_udata_request (self, skb)
536 * Send unreliable data on this TSAP
539 int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
541 IRDA_ASSERT(self != NULL, return -1;);
542 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
543 IRDA_ASSERT(skb != NULL, return -1;);
545 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
547 /* Check that nothing bad happens */
548 if ((skb->len == 0) || (!self->connected)) {
549 IRDA_DEBUG(1, "%s(), No data, or not connected\n",
550 __FUNCTION__);
551 goto err;
554 if (skb->len > self->max_seg_size) {
555 IRDA_DEBUG(1, "%s(), UData is to large for IrLAP!\n",
556 __FUNCTION__);
557 goto err;
560 irlmp_udata_request(self->lsap, skb);
561 self->stats.tx_packets++;
563 return 0;
565 err:
566 dev_kfree_skb(skb);
567 return -1;
569 EXPORT_SYMBOL(irttp_udata_request);
573 * Function irttp_data_request (handle, skb)
575 * Queue frame for transmission. If SAR is enabled, fragement the frame
576 * and queue the fragments for transmission
578 int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
580 __u8 *frame;
581 int ret;
583 IRDA_ASSERT(self != NULL, return -1;);
584 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
585 IRDA_ASSERT(skb != NULL, return -1;);
587 IRDA_DEBUG(2, "%s() : queue len = %d\n", __FUNCTION__,
588 skb_queue_len(&self->tx_queue));
590 /* Check that nothing bad happens */
591 if ((skb->len == 0) || (!self->connected)) {
592 IRDA_WARNING("%s: No data, or not connected\n", __FUNCTION__);
593 ret = -ENOTCONN;
594 goto err;
598 * Check if SAR is disabled, and the frame is larger than what fits
599 * inside an IrLAP frame
601 if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
602 IRDA_ERROR("%s: SAR disabled, and data is to large for IrLAP!\n",
603 __FUNCTION__);
604 ret = -EMSGSIZE;
605 goto err;
609 * Check if SAR is enabled, and the frame is larger than the
610 * TxMaxSduSize
612 if ((self->tx_max_sdu_size != 0) &&
613 (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
614 (skb->len > self->tx_max_sdu_size))
616 IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
617 __FUNCTION__);
618 ret = -EMSGSIZE;
619 goto err;
622 * Check if transmit queue is full
624 if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
626 * Give it a chance to empty itself
628 irttp_run_tx_queue(self);
630 /* Drop packet. This error code should trigger the caller
631 * to resend the data in the client code - Jean II */
632 ret = -ENOBUFS;
633 goto err;
636 /* Queue frame, or queue frame segments */
637 if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
638 /* Queue frame */
639 IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
640 frame = skb_push(skb, TTP_HEADER);
641 frame[0] = 0x00; /* Clear more bit */
643 skb_queue_tail(&self->tx_queue, skb);
644 } else {
646 * Fragment the frame, this function will also queue the
647 * fragments, we don't care about the fact the transmit
648 * queue may be overfilled by all the segments for a little
649 * while
651 irttp_fragment_skb(self, skb);
654 /* Check if we can accept more data from client */
655 if ((!self->tx_sdu_busy) &&
656 (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
657 /* Tx queue filling up, so stop client. */
658 if (self->notify.flow_indication) {
659 self->notify.flow_indication(self->notify.instance,
660 self, FLOW_STOP);
662 /* self->tx_sdu_busy is the state of the client.
663 * Update state after notifying client to avoid
664 * race condition with irttp_flow_indication().
665 * If the queue empty itself after our test but before
666 * we set the flag, we will fix ourselves below in
667 * irttp_run_tx_queue().
668 * Jean II */
669 self->tx_sdu_busy = TRUE;
672 /* Try to make some progress */
673 irttp_run_tx_queue(self);
675 return 0;
677 err:
678 dev_kfree_skb(skb);
679 return ret;
681 EXPORT_SYMBOL(irttp_data_request);
684 * Function irttp_run_tx_queue (self)
686 * Transmit packets queued for transmission (if possible)
689 static void irttp_run_tx_queue(struct tsap_cb *self)
691 struct sk_buff *skb;
692 unsigned long flags;
693 int n;
695 IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
696 __FUNCTION__,
697 self->send_credit, skb_queue_len(&self->tx_queue));
699 /* Get exclusive access to the tx queue, otherwise don't touch it */
700 if (irda_lock(&self->tx_queue_lock) == FALSE)
701 return;
703 /* Try to send out frames as long as we have credits
704 * and as long as LAP is not full. If LAP is full, it will
705 * poll us through irttp_flow_indication() - Jean II */
706 while ((self->send_credit > 0) &&
707 (!irlmp_lap_tx_queue_full(self->lsap)) &&
708 (skb = skb_dequeue(&self->tx_queue)))
711 * Since we can transmit and receive frames concurrently,
712 * the code below is a critical region and we must assure that
713 * nobody messes with the credits while we update them.
715 spin_lock_irqsave(&self->lock, flags);
717 n = self->avail_credit;
718 self->avail_credit = 0;
720 /* Only room for 127 credits in frame */
721 if (n > 127) {
722 self->avail_credit = n-127;
723 n = 127;
725 self->remote_credit += n;
726 self->send_credit--;
728 spin_unlock_irqrestore(&self->lock, flags);
731 * More bit must be set by the data_request() or fragment()
732 * functions
734 skb->data[0] |= (n & 0x7f);
736 /* Detach from socket.
737 * The current skb has a reference to the socket that sent
738 * it (skb->sk). When we pass it to IrLMP, the skb will be
739 * stored in in IrLAP (self->wx_list). When we are within
740 * IrLAP, we lose the notion of socket, so we should not
741 * have a reference to a socket. So, we drop it here.
743 * Why does it matter ?
744 * When the skb is freed (kfree_skb), if it is associated
745 * with a socket, it release buffer space on the socket
746 * (through sock_wfree() and sock_def_write_space()).
747 * If the socket no longer exist, we may crash. Hard.
748 * When we close a socket, we make sure that associated packets
749 * in IrTTP are freed. However, we have no way to cancel
750 * the packet that we have passed to IrLAP. So, if a packet
751 * remains in IrLAP (retry on the link or else) after we
752 * close the socket, we are dead !
753 * Jean II */
754 if (skb->sk != NULL) {
755 /* IrSOCK application, IrOBEX, ... */
756 skb_orphan(skb);
758 /* IrCOMM over IrTTP, IrLAN, ... */
760 /* Pass the skb to IrLMP - done */
761 irlmp_data_request(self->lsap, skb);
762 self->stats.tx_packets++;
765 /* Check if we can accept more frames from client.
766 * We don't want to wait until the todo timer to do that, and we
767 * can't use tasklets (grr...), so we are obliged to give control
768 * to client. That's ok, this test will be true not too often
769 * (max once per LAP window) and we are called from places
770 * where we can spend a bit of time doing stuff. - Jean II */
771 if ((self->tx_sdu_busy) &&
772 (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
773 (!self->close_pend))
775 if (self->notify.flow_indication)
776 self->notify.flow_indication(self->notify.instance,
777 self, FLOW_START);
779 /* self->tx_sdu_busy is the state of the client.
780 * We don't really have a race here, but it's always safer
781 * to update our state after the client - Jean II */
782 self->tx_sdu_busy = FALSE;
785 /* Reset lock */
786 self->tx_queue_lock = 0;
790 * Function irttp_give_credit (self)
792 * Send a dataless flowdata TTP-PDU and give available credit to peer
793 * TSAP
795 static inline void irttp_give_credit(struct tsap_cb *self)
797 struct sk_buff *tx_skb = NULL;
798 unsigned long flags;
799 int n;
801 IRDA_ASSERT(self != NULL, return;);
802 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
804 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
805 __FUNCTION__,
806 self->send_credit, self->avail_credit, self->remote_credit);
808 /* Give credit to peer */
809 tx_skb = dev_alloc_skb(64);
810 if (!tx_skb)
811 return;
813 /* Reserve space for LMP, and LAP header */
814 skb_reserve(tx_skb, self->max_header_size);
817 * Since we can transmit and receive frames concurrently,
818 * the code below is a critical region and we must assure that
819 * nobody messes with the credits while we update them.
821 spin_lock_irqsave(&self->lock, flags);
823 n = self->avail_credit;
824 self->avail_credit = 0;
826 /* Only space for 127 credits in frame */
827 if (n > 127) {
828 self->avail_credit = n - 127;
829 n = 127;
831 self->remote_credit += n;
833 spin_unlock_irqrestore(&self->lock, flags);
835 skb_put(tx_skb, 1);
836 tx_skb->data[0] = (__u8) (n & 0x7f);
838 irlmp_data_request(self->lsap, tx_skb);
839 self->stats.tx_packets++;
843 * Function irttp_udata_indication (instance, sap, skb)
845 * Received some unit-data (unreliable)
848 static int irttp_udata_indication(void *instance, void *sap,
849 struct sk_buff *skb)
851 struct tsap_cb *self;
852 int err;
854 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
856 self = (struct tsap_cb *) instance;
858 IRDA_ASSERT(self != NULL, return -1;);
859 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
860 IRDA_ASSERT(skb != NULL, return -1;);
862 self->stats.rx_packets++;
864 /* Just pass data to layer above */
865 if (self->notify.udata_indication) {
866 err = self->notify.udata_indication(self->notify.instance,
867 self,skb);
868 /* Same comment as in irttp_do_data_indication() */
869 if (!err)
870 return 0;
872 /* Either no handler, or handler returns an error */
873 dev_kfree_skb(skb);
875 return 0;
879 * Function irttp_data_indication (instance, sap, skb)
881 * Receive segment from IrLMP.
884 static int irttp_data_indication(void *instance, void *sap,
885 struct sk_buff *skb)
887 struct tsap_cb *self;
888 unsigned long flags;
889 int n;
891 self = (struct tsap_cb *) instance;
893 n = skb->data[0] & 0x7f; /* Extract the credits */
895 self->stats.rx_packets++;
897 /* Deal with inbound credit
898 * Since we can transmit and receive frames concurrently,
899 * the code below is a critical region and we must assure that
900 * nobody messes with the credits while we update them.
902 spin_lock_irqsave(&self->lock, flags);
903 self->send_credit += n;
904 if (skb->len > 1)
905 self->remote_credit--;
906 spin_unlock_irqrestore(&self->lock, flags);
909 * Data or dataless packet? Dataless frames contains only the
910 * TTP_HEADER.
912 if (skb->len > 1) {
914 * We don't remove the TTP header, since we must preserve the
915 * more bit, so the defragment routing knows what to do
917 skb_queue_tail(&self->rx_queue, skb);
918 } else {
919 /* Dataless flowdata TTP-PDU */
920 dev_kfree_skb(skb);
924 /* Push data to the higher layer.
925 * We do it synchronously because running the todo timer for each
926 * receive packet would be too much overhead and latency.
927 * By passing control to the higher layer, we run the risk that
928 * it may take time or grab a lock. Most often, the higher layer
929 * will only put packet in a queue.
930 * Anyway, packets are only dripping through the IrDA, so we can
931 * have time before the next packet.
932 * Further, we are run from NET_BH, so the worse that can happen is
933 * us missing the optimal time to send back the PF bit in LAP.
934 * Jean II */
935 irttp_run_rx_queue(self);
937 /* We now give credits to peer in irttp_run_rx_queue().
938 * We need to send credit *NOW*, otherwise we are going
939 * to miss the next Tx window. The todo timer may take
940 * a while before it's run... - Jean II */
943 * If the peer device has given us some credits and we didn't have
944 * anyone from before, then we need to shedule the tx queue.
945 * We need to do that because our Tx have stopped (so we may not
946 * get any LAP flow indication) and the user may be stopped as
947 * well. - Jean II
949 if (self->send_credit == n) {
950 /* Restart pushing stuff to LAP */
951 irttp_run_tx_queue(self);
952 /* Note : we don't want to schedule the todo timer
953 * because it has horrible latency. No tasklets
954 * because the tasklet API is broken. - Jean II */
957 return 0;
961 * Function irttp_status_indication (self, reason)
963 * Status_indication, just pass to the higher layer...
966 static void irttp_status_indication(void *instance,
967 LINK_STATUS link, LOCK_STATUS lock)
969 struct tsap_cb *self;
971 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
973 self = (struct tsap_cb *) instance;
975 IRDA_ASSERT(self != NULL, return;);
976 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
978 /* Check if client has already closed the TSAP and gone away */
979 if (self->close_pend)
980 return;
983 * Inform service user if he has requested it
985 if (self->notify.status_indication != NULL)
986 self->notify.status_indication(self->notify.instance,
987 link, lock);
988 else
989 IRDA_DEBUG(2, "%s(), no handler\n", __FUNCTION__);
993 * Function irttp_flow_indication (self, reason)
995 * Flow_indication : IrLAP tells us to send more data.
998 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
1000 struct tsap_cb *self;
1002 self = (struct tsap_cb *) instance;
1004 IRDA_ASSERT(self != NULL, return;);
1005 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1007 IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
1009 /* We are "polled" directly from LAP, and the LAP want to fill
1010 * its Tx window. We want to do our best to send it data, so that
1011 * we maximise the window. On the other hand, we want to limit the
1012 * amount of work here so that LAP doesn't hang forever waiting
1013 * for packets. - Jean II */
1015 /* Try to send some packets. Currently, LAP calls us every time
1016 * there is one free slot, so we will send only one packet.
1017 * This allow the scheduler to do its round robin - Jean II */
1018 irttp_run_tx_queue(self);
1020 /* Note regarding the interraction with higher layer.
1021 * irttp_run_tx_queue() may call the client when its queue
1022 * start to empty, via notify.flow_indication(). Initially.
1023 * I wanted this to happen in a tasklet, to avoid client
1024 * grabbing the CPU, but we can't use tasklets safely. And timer
1025 * is definitely too slow.
1026 * This will happen only once per LAP window, and usually at
1027 * the third packet (unless window is smaller). LAP is still
1028 * doing mtt and sending first packet so it's sort of OK
1029 * to do that. Jean II */
1031 /* If we need to send disconnect. try to do it now */
1032 if(self->disconnect_pend)
1033 irttp_start_todo_timer(self, 0);
1037 * Function irttp_flow_request (self, command)
1039 * This function could be used by the upper layers to tell IrTTP to stop
1040 * delivering frames if the receive queues are starting to get full, or
1041 * to tell IrTTP to start delivering frames again.
1043 void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
1045 IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
1047 IRDA_ASSERT(self != NULL, return;);
1048 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1050 switch (flow) {
1051 case FLOW_STOP:
1052 IRDA_DEBUG(1, "%s(), flow stop\n", __FUNCTION__);
1053 self->rx_sdu_busy = TRUE;
1054 break;
1055 case FLOW_START:
1056 IRDA_DEBUG(1, "%s(), flow start\n", __FUNCTION__);
1057 self->rx_sdu_busy = FALSE;
1059 /* Client say he can accept more data, try to free our
1060 * queues ASAP - Jean II */
1061 irttp_run_rx_queue(self);
1063 break;
1064 default:
1065 IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __FUNCTION__);
1068 EXPORT_SYMBOL(irttp_flow_request);
1071 * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1073 * Try to connect to remote destination TSAP selector
1076 int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
1077 __u32 saddr, __u32 daddr,
1078 struct qos_info *qos, __u32 max_sdu_size,
1079 struct sk_buff *userdata)
1081 struct sk_buff *tx_skb;
1082 __u8 *frame;
1083 __u8 n;
1085 IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __FUNCTION__, max_sdu_size);
1087 IRDA_ASSERT(self != NULL, return -EBADR;);
1088 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
1090 if (self->connected) {
1091 if(userdata)
1092 dev_kfree_skb(userdata);
1093 return -EISCONN;
1096 /* Any userdata supplied? */
1097 if (userdata == NULL) {
1098 tx_skb = dev_alloc_skb(64);
1099 if (!tx_skb)
1100 return -ENOMEM;
1102 /* Reserve space for MUX_CONTROL and LAP header */
1103 skb_reserve(tx_skb, TTP_MAX_HEADER);
1104 } else {
1105 tx_skb = userdata;
1107 * Check that the client has reserved enough space for
1108 * headers
1110 IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1111 { dev_kfree_skb(userdata); return -1; } );
1114 /* Initialize connection parameters */
1115 self->connected = FALSE;
1116 self->avail_credit = 0;
1117 self->rx_max_sdu_size = max_sdu_size;
1118 self->rx_sdu_size = 0;
1119 self->rx_sdu_busy = FALSE;
1120 self->dtsap_sel = dtsap_sel;
1122 n = self->initial_credit;
1124 self->remote_credit = 0;
1125 self->send_credit = 0;
1128 * Give away max 127 credits for now
1130 if (n > 127) {
1131 self->avail_credit=n-127;
1132 n = 127;
1135 self->remote_credit = n;
1137 /* SAR enabled? */
1138 if (max_sdu_size > 0) {
1139 IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1140 { dev_kfree_skb(tx_skb); return -1; } );
1142 /* Insert SAR parameters */
1143 frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1145 frame[0] = TTP_PARAMETERS | n;
1146 frame[1] = 0x04; /* Length */
1147 frame[2] = 0x01; /* MaxSduSize */
1148 frame[3] = 0x02; /* Value length */
1150 put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1151 (__u16 *)(frame+4));
1152 } else {
1153 /* Insert plain TTP header */
1154 frame = skb_push(tx_skb, TTP_HEADER);
1156 /* Insert initial credit in frame */
1157 frame[0] = n & 0x7f;
1160 /* Connect with IrLMP. No QoS parameters for now */
1161 return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
1162 tx_skb);
1164 EXPORT_SYMBOL(irttp_connect_request);
1167 * Function irttp_connect_confirm (handle, qos, skb)
1169 * Sevice user confirms TSAP connection with peer.
1172 static void irttp_connect_confirm(void *instance, void *sap,
1173 struct qos_info *qos, __u32 max_seg_size,
1174 __u8 max_header_size, struct sk_buff *skb)
1176 struct tsap_cb *self;
1177 int parameters;
1178 int ret;
1179 __u8 plen;
1180 __u8 n;
1182 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1184 self = (struct tsap_cb *) instance;
1186 IRDA_ASSERT(self != NULL, return;);
1187 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1188 IRDA_ASSERT(skb != NULL, return;);
1190 self->max_seg_size = max_seg_size - TTP_HEADER;
1191 self->max_header_size = max_header_size + TTP_HEADER;
1194 * Check if we have got some QoS parameters back! This should be the
1195 * negotiated QoS for the link.
1197 if (qos) {
1198 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1199 qos->baud_rate.bits);
1200 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1201 qos->baud_rate.value);
1204 n = skb->data[0] & 0x7f;
1206 IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __FUNCTION__, n);
1208 self->send_credit = n;
1209 self->tx_max_sdu_size = 0;
1210 self->connected = TRUE;
1212 parameters = skb->data[0] & 0x80;
1214 IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1215 skb_pull(skb, TTP_HEADER);
1217 if (parameters) {
1218 plen = skb->data[0];
1220 ret = irda_param_extract_all(self, skb->data+1,
1221 IRDA_MIN(skb->len-1, plen),
1222 &param_info);
1224 /* Any errors in the parameter list? */
1225 if (ret < 0) {
1226 IRDA_WARNING("%s: error extracting parameters\n",
1227 __FUNCTION__);
1228 dev_kfree_skb(skb);
1230 /* Do not accept this connection attempt */
1231 return;
1233 /* Remove parameters */
1234 skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1237 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
1238 self->send_credit, self->avail_credit, self->remote_credit);
1240 IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __FUNCTION__,
1241 self->tx_max_sdu_size);
1243 if (self->notify.connect_confirm) {
1244 self->notify.connect_confirm(self->notify.instance, self, qos,
1245 self->tx_max_sdu_size,
1246 self->max_header_size, skb);
1247 } else
1248 dev_kfree_skb(skb);
1252 * Function irttp_connect_indication (handle, skb)
1254 * Some other device is connecting to this TSAP
1257 void irttp_connect_indication(void *instance, void *sap, struct qos_info *qos,
1258 __u32 max_seg_size, __u8 max_header_size,
1259 struct sk_buff *skb)
1261 struct tsap_cb *self;
1262 struct lsap_cb *lsap;
1263 int parameters;
1264 int ret;
1265 __u8 plen;
1266 __u8 n;
1268 self = (struct tsap_cb *) instance;
1270 IRDA_ASSERT(self != NULL, return;);
1271 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1272 IRDA_ASSERT(skb != NULL, return;);
1274 lsap = (struct lsap_cb *) sap;
1276 self->max_seg_size = max_seg_size - TTP_HEADER;
1277 self->max_header_size = max_header_size+TTP_HEADER;
1279 IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __FUNCTION__, self->stsap_sel);
1281 /* Need to update dtsap_sel if its equal to LSAP_ANY */
1282 self->dtsap_sel = lsap->dlsap_sel;
1284 n = skb->data[0] & 0x7f;
1286 self->send_credit = n;
1287 self->tx_max_sdu_size = 0;
1289 parameters = skb->data[0] & 0x80;
1291 IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1292 skb_pull(skb, TTP_HEADER);
1294 if (parameters) {
1295 plen = skb->data[0];
1297 ret = irda_param_extract_all(self, skb->data+1,
1298 IRDA_MIN(skb->len-1, plen),
1299 &param_info);
1301 /* Any errors in the parameter list? */
1302 if (ret < 0) {
1303 IRDA_WARNING("%s: error extracting parameters\n",
1304 __FUNCTION__);
1305 dev_kfree_skb(skb);
1307 /* Do not accept this connection attempt */
1308 return;
1311 /* Remove parameters */
1312 skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1315 if (self->notify.connect_indication) {
1316 self->notify.connect_indication(self->notify.instance, self,
1317 qos, self->tx_max_sdu_size,
1318 self->max_header_size, skb);
1319 } else
1320 dev_kfree_skb(skb);
1324 * Function irttp_connect_response (handle, userdata)
1326 * Service user is accepting the connection, just pass it down to
1327 * IrLMP!
1330 int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
1331 struct sk_buff *userdata)
1333 struct sk_buff *tx_skb;
1334 __u8 *frame;
1335 int ret;
1336 __u8 n;
1338 IRDA_ASSERT(self != NULL, return -1;);
1339 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1341 IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __FUNCTION__,
1342 self->stsap_sel);
1344 /* Any userdata supplied? */
1345 if (userdata == NULL) {
1346 tx_skb = dev_alloc_skb(64);
1347 if (!tx_skb)
1348 return -ENOMEM;
1350 /* Reserve space for MUX_CONTROL and LAP header */
1351 skb_reserve(tx_skb, TTP_MAX_HEADER);
1352 } else {
1353 tx_skb = userdata;
1355 * Check that the client has reserved enough space for
1356 * headers
1358 IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1359 { dev_kfree_skb(userdata); return -1; } );
1362 self->avail_credit = 0;
1363 self->remote_credit = 0;
1364 self->rx_max_sdu_size = max_sdu_size;
1365 self->rx_sdu_size = 0;
1366 self->rx_sdu_busy = FALSE;
1368 n = self->initial_credit;
1370 /* Frame has only space for max 127 credits (7 bits) */
1371 if (n > 127) {
1372 self->avail_credit = n - 127;
1373 n = 127;
1376 self->remote_credit = n;
1377 self->connected = TRUE;
1379 /* SAR enabled? */
1380 if (max_sdu_size > 0) {
1381 IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1382 { dev_kfree_skb(tx_skb); return -1; } );
1384 /* Insert TTP header with SAR parameters */
1385 frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1387 frame[0] = TTP_PARAMETERS | n;
1388 frame[1] = 0x04; /* Length */
1390 /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
1391 /* TTP_SAR_HEADER, &param_info) */
1393 frame[2] = 0x01; /* MaxSduSize */
1394 frame[3] = 0x02; /* Value length */
1396 put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1397 (__u16 *)(frame+4));
1398 } else {
1399 /* Insert TTP header */
1400 frame = skb_push(tx_skb, TTP_HEADER);
1402 frame[0] = n & 0x7f;
1405 ret = irlmp_connect_response(self->lsap, tx_skb);
1407 return ret;
1409 EXPORT_SYMBOL(irttp_connect_response);
1412 * Function irttp_dup (self, instance)
1414 * Duplicate TSAP, can be used by servers to confirm a connection on a
1415 * new TSAP so it can keep listening on the old one.
1417 struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
1419 struct tsap_cb *new;
1420 unsigned long flags;
1422 IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
1424 /* Protect our access to the old tsap instance */
1425 spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
1427 /* Find the old instance */
1428 if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
1429 IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __FUNCTION__);
1430 spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1431 return NULL;
1434 /* Allocate a new instance */
1435 new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
1436 if (!new) {
1437 IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __FUNCTION__);
1438 spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1439 return NULL;
1441 /* Dup */
1442 memcpy(new, orig, sizeof(struct tsap_cb));
1444 /* We don't need the old instance any more */
1445 spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1447 /* Try to dup the LSAP (may fail if we were too slow) */
1448 new->lsap = irlmp_dup(orig->lsap, new);
1449 if (!new->lsap) {
1450 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
1451 kfree(new);
1452 return NULL;
1455 /* Not everything should be copied */
1456 new->notify.instance = instance;
1457 init_timer(&new->todo_timer);
1459 skb_queue_head_init(&new->rx_queue);
1460 skb_queue_head_init(&new->tx_queue);
1461 skb_queue_head_init(&new->rx_fragments);
1463 /* This is locked */
1464 hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
1466 return new;
1468 EXPORT_SYMBOL(irttp_dup);
1471 * Function irttp_disconnect_request (self)
1473 * Close this connection please! If priority is high, the queued data
1474 * segments, if any, will be deallocated first
1477 int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
1478 int priority)
1480 int ret;
1482 IRDA_ASSERT(self != NULL, return -1;);
1483 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1485 /* Already disconnected? */
1486 if (!self->connected) {
1487 IRDA_DEBUG(4, "%s(), already disconnected!\n", __FUNCTION__);
1488 if (userdata)
1489 dev_kfree_skb(userdata);
1490 return -1;
1493 /* Disconnect already pending ?
1494 * We need to use an atomic operation to prevent reentry. This
1495 * function may be called from various context, like user, timer
1496 * for following a disconnect_indication() (i.e. net_bh).
1497 * Jean II */
1498 if(test_and_set_bit(0, &self->disconnect_pend)) {
1499 IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1500 __FUNCTION__);
1501 if (userdata)
1502 dev_kfree_skb(userdata);
1504 /* Try to make some progress */
1505 irttp_run_tx_queue(self);
1506 return -1;
1510 * Check if there is still data segments in the transmit queue
1512 if (!skb_queue_empty(&self->tx_queue)) {
1513 if (priority == P_HIGH) {
1515 * No need to send the queued data, if we are
1516 * disconnecting right now since the data will
1517 * not have any usable connection to be sent on
1519 IRDA_DEBUG(1, "%s(): High priority!!()\n", __FUNCTION__);
1520 irttp_flush_queues(self);
1521 } else if (priority == P_NORMAL) {
1523 * Must delay disconnect until after all data segments
1524 * have been sent and the tx_queue is empty
1526 /* We'll reuse this one later for the disconnect */
1527 self->disconnect_skb = userdata; /* May be NULL */
1529 irttp_run_tx_queue(self);
1531 irttp_start_todo_timer(self, HZ/10);
1532 return -1;
1535 /* Note : we don't need to check if self->rx_queue is full and the
1536 * state of self->rx_sdu_busy because the disconnect response will
1537 * be sent at the LMP level (so even if the peer has its Tx queue
1538 * full of data). - Jean II */
1540 IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __FUNCTION__);
1541 self->connected = FALSE;
1543 if (!userdata) {
1544 struct sk_buff *tx_skb;
1545 tx_skb = dev_alloc_skb(64);
1546 if (!tx_skb)
1547 return -ENOMEM;
1550 * Reserve space for MUX and LAP header
1552 skb_reserve(tx_skb, TTP_MAX_HEADER);
1554 userdata = tx_skb;
1556 ret = irlmp_disconnect_request(self->lsap, userdata);
1558 /* The disconnect is no longer pending */
1559 clear_bit(0, &self->disconnect_pend); /* FALSE */
1561 return ret;
1563 EXPORT_SYMBOL(irttp_disconnect_request);
1566 * Function irttp_disconnect_indication (self, reason)
1568 * Disconnect indication, TSAP disconnected by peer?
1571 void irttp_disconnect_indication(void *instance, void *sap, LM_REASON reason,
1572 struct sk_buff *skb)
1574 struct tsap_cb *self;
1576 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1578 self = (struct tsap_cb *) instance;
1580 IRDA_ASSERT(self != NULL, return;);
1581 IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1583 /* Prevent higher layer to send more data */
1584 self->connected = FALSE;
1586 /* Check if client has already tried to close the TSAP */
1587 if (self->close_pend) {
1588 /* In this case, the higher layer is probably gone. Don't
1589 * bother it and clean up the remains - Jean II */
1590 if (skb)
1591 dev_kfree_skb(skb);
1592 irttp_close_tsap(self);
1593 return;
1596 /* If we are here, we assume that is the higher layer is still
1597 * waiting for the disconnect notification and able to process it,
1598 * even if he tried to disconnect. Otherwise, it would have already
1599 * attempted to close the tsap and self->close_pend would be TRUE.
1600 * Jean II */
1602 /* No need to notify the client if has already tried to disconnect */
1603 if(self->notify.disconnect_indication)
1604 self->notify.disconnect_indication(self->notify.instance, self,
1605 reason, skb);
1606 else
1607 if (skb)
1608 dev_kfree_skb(skb);
1612 * Function irttp_do_data_indication (self, skb)
1614 * Try to deliver reassembled skb to layer above, and requeue it if that
1615 * for some reason should fail. We mark rx sdu as busy to apply back
1616 * pressure is necessary.
1618 static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
1620 int err;
1622 /* Check if client has already closed the TSAP and gone away */
1623 if (self->close_pend) {
1624 dev_kfree_skb(skb);
1625 return;
1628 err = self->notify.data_indication(self->notify.instance, self, skb);
1630 /* Usually the layer above will notify that it's input queue is
1631 * starting to get filled by using the flow request, but this may
1632 * be difficult, so it can instead just refuse to eat it and just
1633 * give an error back
1635 if (err) {
1636 IRDA_DEBUG(0, "%s() requeueing skb!\n", __FUNCTION__);
1638 /* Make sure we take a break */
1639 self->rx_sdu_busy = TRUE;
1641 /* Need to push the header in again */
1642 skb_push(skb, TTP_HEADER);
1643 skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
1645 /* Put skb back on queue */
1646 skb_queue_head(&self->rx_queue, skb);
1651 * Function irttp_run_rx_queue (self)
1653 * Check if we have any frames to be transmitted, or if we have any
1654 * available credit to give away.
1656 void irttp_run_rx_queue(struct tsap_cb *self)
1658 struct sk_buff *skb;
1659 int more = 0;
1661 IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
1662 self->send_credit, self->avail_credit, self->remote_credit);
1664 /* Get exclusive access to the rx queue, otherwise don't touch it */
1665 if (irda_lock(&self->rx_queue_lock) == FALSE)
1666 return;
1669 * Reassemble all frames in receive queue and deliver them
1671 while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
1672 /* This bit will tell us if it's the last fragment or not */
1673 more = skb->data[0] & 0x80;
1675 /* Remove TTP header */
1676 skb_pull(skb, TTP_HEADER);
1678 /* Add the length of the remaining data */
1679 self->rx_sdu_size += skb->len;
1682 * If SAR is disabled, or user has requested no reassembly
1683 * of received fragments then we just deliver them
1684 * immediately. This can be requested by clients that
1685 * implements byte streams without any message boundaries
1687 if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
1688 irttp_do_data_indication(self, skb);
1689 self->rx_sdu_size = 0;
1691 continue;
1694 /* Check if this is a fragment, and not the last fragment */
1695 if (more) {
1697 * Queue the fragment if we still are within the
1698 * limits of the maximum size of the rx_sdu
1700 if (self->rx_sdu_size <= self->rx_max_sdu_size) {
1701 IRDA_DEBUG(4, "%s(), queueing frag\n",
1702 __FUNCTION__);
1703 skb_queue_tail(&self->rx_fragments, skb);
1704 } else {
1705 /* Free the part of the SDU that is too big */
1706 dev_kfree_skb(skb);
1708 continue;
1711 * This is the last fragment, so time to reassemble!
1713 if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
1714 (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
1717 * A little optimizing. Only queue the fragment if
1718 * there are other fragments. Since if this is the
1719 * last and only fragment, there is no need to
1720 * reassemble :-)
1722 if (!skb_queue_empty(&self->rx_fragments)) {
1723 skb_queue_tail(&self->rx_fragments,
1724 skb);
1726 skb = irttp_reassemble_skb(self);
1729 /* Now we can deliver the reassembled skb */
1730 irttp_do_data_indication(self, skb);
1731 } else {
1732 IRDA_DEBUG(1, "%s(), Truncated frame\n", __FUNCTION__);
1734 /* Free the part of the SDU that is too big */
1735 dev_kfree_skb(skb);
1737 /* Deliver only the valid but truncated part of SDU */
1738 skb = irttp_reassemble_skb(self);
1740 irttp_do_data_indication(self, skb);
1742 self->rx_sdu_size = 0;
1746 * It's not trivial to keep track of how many credits are available
1747 * by incrementing at each packet, because delivery may fail
1748 * (irttp_do_data_indication() may requeue the frame) and because
1749 * we need to take care of fragmentation.
1750 * We want the other side to send up to initial_credit packets.
1751 * We have some frames in our queues, and we have already allowed it
1752 * to send remote_credit.
1753 * No need to spinlock, write is atomic and self correcting...
1754 * Jean II
1756 self->avail_credit = (self->initial_credit -
1757 (self->remote_credit +
1758 skb_queue_len(&self->rx_queue) +
1759 skb_queue_len(&self->rx_fragments)));
1761 /* Do we have too much credits to send to peer ? */
1762 if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
1763 (self->avail_credit > 0)) {
1764 /* Send explicit credit frame */
1765 irttp_give_credit(self);
1766 /* Note : do *NOT* check if tx_queue is non-empty, that
1767 * will produce deadlocks. I repeat : send a credit frame
1768 * even if we have something to send in our Tx queue.
1769 * If we have credits, it means that our Tx queue is blocked.
1771 * Let's suppose the peer can't keep up with our Tx. He will
1772 * flow control us by not sending us any credits, and we
1773 * will stop Tx and start accumulating credits here.
1774 * Up to the point where the peer will stop its Tx queue,
1775 * for lack of credits.
1776 * Let's assume the peer application is single threaded.
1777 * It will block on Tx and never consume any Rx buffer.
1778 * Deadlock. Guaranteed. - Jean II
1782 /* Reset lock */
1783 self->rx_queue_lock = 0;
1786 #ifdef CONFIG_PROC_FS
1787 struct irttp_iter_state {
1788 int id;
1791 static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
1793 struct irttp_iter_state *iter = seq->private;
1794 struct tsap_cb *self;
1796 /* Protect our access to the tsap list */
1797 spin_lock_irq(&irttp->tsaps->hb_spinlock);
1798 iter->id = 0;
1800 for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
1801 self != NULL;
1802 self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
1803 if (iter->id == *pos)
1804 break;
1805 ++iter->id;
1808 return self;
1811 static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1813 struct irttp_iter_state *iter = seq->private;
1815 ++*pos;
1816 ++iter->id;
1817 return (void *) hashbin_get_next(irttp->tsaps);
1820 static void irttp_seq_stop(struct seq_file *seq, void *v)
1822 spin_unlock_irq(&irttp->tsaps->hb_spinlock);
1825 static int irttp_seq_show(struct seq_file *seq, void *v)
1827 const struct irttp_iter_state *iter = seq->private;
1828 const struct tsap_cb *self = v;
1830 seq_printf(seq, "TSAP %d, ", iter->id);
1831 seq_printf(seq, "stsap_sel: %02x, ",
1832 self->stsap_sel);
1833 seq_printf(seq, "dtsap_sel: %02x\n",
1834 self->dtsap_sel);
1835 seq_printf(seq, " connected: %s, ",
1836 self->connected? "TRUE":"FALSE");
1837 seq_printf(seq, "avail credit: %d, ",
1838 self->avail_credit);
1839 seq_printf(seq, "remote credit: %d, ",
1840 self->remote_credit);
1841 seq_printf(seq, "send credit: %d\n",
1842 self->send_credit);
1843 seq_printf(seq, " tx packets: %ld, ",
1844 self->stats.tx_packets);
1845 seq_printf(seq, "rx packets: %ld, ",
1846 self->stats.rx_packets);
1847 seq_printf(seq, "tx_queue len: %d ",
1848 skb_queue_len(&self->tx_queue));
1849 seq_printf(seq, "rx_queue len: %d\n",
1850 skb_queue_len(&self->rx_queue));
1851 seq_printf(seq, " tx_sdu_busy: %s, ",
1852 self->tx_sdu_busy? "TRUE":"FALSE");
1853 seq_printf(seq, "rx_sdu_busy: %s\n",
1854 self->rx_sdu_busy? "TRUE":"FALSE");
1855 seq_printf(seq, " max_seg_size: %d, ",
1856 self->max_seg_size);
1857 seq_printf(seq, "tx_max_sdu_size: %d, ",
1858 self->tx_max_sdu_size);
1859 seq_printf(seq, "rx_max_sdu_size: %d\n",
1860 self->rx_max_sdu_size);
1862 seq_printf(seq, " Used by (%s)\n\n",
1863 self->notify.name);
1864 return 0;
1867 static struct seq_operations irttp_seq_ops = {
1868 .start = irttp_seq_start,
1869 .next = irttp_seq_next,
1870 .stop = irttp_seq_stop,
1871 .show = irttp_seq_show,
1874 static int irttp_seq_open(struct inode *inode, struct file *file)
1876 struct seq_file *seq;
1877 int rc = -ENOMEM;
1878 struct irttp_iter_state *s;
1880 s = kmalloc(sizeof(*s), GFP_KERNEL);
1881 if (!s)
1882 goto out;
1884 rc = seq_open(file, &irttp_seq_ops);
1885 if (rc)
1886 goto out_kfree;
1888 seq = file->private_data;
1889 seq->private = s;
1890 memset(s, 0, sizeof(*s));
1891 out:
1892 return rc;
1893 out_kfree:
1894 kfree(s);
1895 goto out;
1898 struct file_operations irttp_seq_fops = {
1899 .owner = THIS_MODULE,
1900 .open = irttp_seq_open,
1901 .read = seq_read,
1902 .llseek = seq_lseek,
1903 .release = seq_release_private,
1906 #endif /* PROC_FS */