[PATCH] ipw2100: Fix a gcc compile warning
[linux-2.6/verdex.git] / Documentation / vm / hugetlbpage.txt
blob1ad9af1ca4d0b1f2c58b49009c139a69c6124f2d
2 The intent of this file is to give a brief summary of hugetlbpage support in
3 the Linux kernel.  This support is built on top of multiple page size support
4 that is provided by most modern architectures.  For example, i386
5 architecture supports 4K and 4M (2M in PAE mode) page sizes, ia64
6 architecture supports multiple page sizes 4K, 8K, 64K, 256K, 1M, 4M, 16M,
7 256M and ppc64 supports 4K and 16M.  A TLB is a cache of virtual-to-physical
8 translations.  Typically this is a very scarce resource on processor.
9 Operating systems try to make best use of limited number of TLB resources.
10 This optimization is more critical now as bigger and bigger physical memories
11 (several GBs) are more readily available.
13 Users can use the huge page support in Linux kernel by either using the mmap
14 system call or standard SYSv shared memory system calls (shmget, shmat).
16 First the Linux kernel needs to be built with the CONFIG_HUGETLBFS
17 (present under "File systems") and CONFIG_HUGETLB_PAGE (selected
18 automatically when CONFIG_HUGETLBFS is selected) configuration
19 options.
21 The kernel built with hugepage support should show the number of configured
22 hugepages in the system by running the "cat /proc/meminfo" command.
24 /proc/meminfo also provides information about the total number of hugetlb
25 pages configured in the kernel.  It also displays information about the
26 number of free hugetlb pages at any time.  It also displays information about
27 the configured hugepage size - this is needed for generating the proper
28 alignment and size of the arguments to the above system calls.
30 The output of "cat /proc/meminfo" will have output like:
32 .....
33 HugePages_Total: xxx
34 HugePages_Free:  yyy
35 Hugepagesize:    zzz KB
37 /proc/filesystems should also show a filesystem of type "hugetlbfs" configured
38 in the kernel.
40 /proc/sys/vm/nr_hugepages indicates the current number of configured hugetlb
41 pages in the kernel.  Super user can dynamically request more (or free some
42 pre-configured) hugepages.
43 The allocation (or deallocation) of hugetlb pages is possible only if there are
44 enough physically contiguous free pages in system (freeing of hugepages is
45 possible only if there are enough hugetlb pages free that can be transfered
46 back to regular memory pool).
48 Pages that are used as hugetlb pages are reserved inside the kernel and can
49 not be used for other purposes.
51 Once the kernel with Hugetlb page support is built and running, a user can
52 use either the mmap system call or shared memory system calls to start using
53 the huge pages.  It is required that the system administrator preallocate
54 enough memory for huge page purposes.
56 Use the following command to dynamically allocate/deallocate hugepages:
58         echo 20 > /proc/sys/vm/nr_hugepages
60 This command will try to configure 20 hugepages in the system.  The success
61 or failure of allocation depends on the amount of physically contiguous
62 memory that is preset in system at this time.  System administrators may want
63 to put this command in one of the local rc init file.  This will enable the
64 kernel to request huge pages early in the boot process (when the possibility
65 of getting physical contiguous pages is still very high).
67 If the user applications are going to request hugepages using mmap system
68 call, then it is required that system administrator mount a file system of
69 type hugetlbfs:
71         mount none /mnt/huge -t hugetlbfs <uid=value> <gid=value> <mode=value>
72                  <size=value> <nr_inodes=value>
74 This command mounts a (pseudo) filesystem of type hugetlbfs on the directory
75 /mnt/huge.  Any files created on /mnt/huge uses hugepages.  The uid and gid
76 options sets the owner and group of the root of the file system.  By default
77 the uid and gid of the current process are taken.  The mode option sets the
78 mode of root of file system to value & 0777.  This value is given in octal.
79 By default the value 0755 is picked. The size option sets the maximum value of
80 memory (huge pages) allowed for that filesystem (/mnt/huge). The size is
81 rounded down to HPAGE_SIZE.  The option nr_inode sets the maximum number of
82 inodes that /mnt/huge can use.  If the size or nr_inode options are not
83 provided on command line then no limits are set.  For size and nr_inodes
84 options, you can use [G|g]/[M|m]/[K|k] to represent giga/mega/kilo. For
85 example, size=2K has the same meaning as size=2048. An example is given at
86 the end of this document.
88 read and write system calls are not supported on files that reside on hugetlb
89 file systems.
91 A regular chown, chgrp and chmod commands (with right permissions) could be
92 used to change the file attributes on hugetlbfs.
94 Also, it is important to note that no such mount command is required if the
95 applications are going to use only shmat/shmget system calls.  Users who
96 wish to use hugetlb page via shared memory segment should be a member of
97 a supplementary group and system admin needs to configure that gid into
98 /proc/sys/vm/hugetlb_shm_group.  It is possible for same or different
99 applications to use any combination of mmaps and shm* calls.  Though the
100 mount of filesystem will be required for using mmaps.
102 *******************************************************************
105  * Example of using hugepage memory in a user application using Sys V shared
106  * memory system calls.  In this example the app is requesting 256MB of
107  * memory that is backed by huge pages.  The application uses the flag
108  * SHM_HUGETLB in the shmget system call to inform the kernel that it is
109  * requesting hugepages.
111  * For the ia64 architecture, the Linux kernel reserves Region number 4 for
112  * hugepages.  That means the addresses starting with 0x800000... will need
113  * to be specified.  Specifying a fixed address is not required on ppc64,
114  * i386 or x86_64.
116  * Note: The default shared memory limit is quite low on many kernels,
117  * you may need to increase it via:
119  * echo 268435456 > /proc/sys/kernel/shmmax
121  * This will increase the maximum size per shared memory segment to 256MB.
122  * The other limit that you will hit eventually is shmall which is the
123  * total amount of shared memory in pages. To set it to 16GB on a system
124  * with a 4kB pagesize do:
126  * echo 4194304 > /proc/sys/kernel/shmall
127  */
128 #include <stdlib.h>
129 #include <stdio.h>
130 #include <sys/types.h>
131 #include <sys/ipc.h>
132 #include <sys/shm.h>
133 #include <sys/mman.h>
135 #ifndef SHM_HUGETLB
136 #define SHM_HUGETLB 04000
137 #endif
139 #define LENGTH (256UL*1024*1024)
141 #define dprintf(x)  printf(x)
143 /* Only ia64 requires this */
144 #ifdef __ia64__
145 #define ADDR (void *)(0x8000000000000000UL)
146 #define SHMAT_FLAGS (SHM_RND)
147 #else
148 #define ADDR (void *)(0x0UL)
149 #define SHMAT_FLAGS (0)
150 #endif
152 int main(void)
154         int shmid;
155         unsigned long i;
156         char *shmaddr;
158         if ((shmid = shmget(2, LENGTH,
159                             SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W)) < 0) {
160                 perror("shmget");
161                 exit(1);
162         }
163         printf("shmid: 0x%x\n", shmid);
165         shmaddr = shmat(shmid, ADDR, SHMAT_FLAGS);
166         if (shmaddr == (char *)-1) {
167                 perror("Shared memory attach failure");
168                 shmctl(shmid, IPC_RMID, NULL);
169                 exit(2);
170         }
171         printf("shmaddr: %p\n", shmaddr);
173         dprintf("Starting the writes:\n");
174         for (i = 0; i < LENGTH; i++) {
175                 shmaddr[i] = (char)(i);
176                 if (!(i % (1024 * 1024)))
177                         dprintf(".");
178         }
179         dprintf("\n");
181         dprintf("Starting the Check...");
182         for (i = 0; i < LENGTH; i++)
183                 if (shmaddr[i] != (char)i)
184                         printf("\nIndex %lu mismatched\n", i);
185         dprintf("Done.\n");
187         if (shmdt((const void *)shmaddr) != 0) {
188                 perror("Detach failure");
189                 shmctl(shmid, IPC_RMID, NULL);
190                 exit(3);
191         }
193         shmctl(shmid, IPC_RMID, NULL);
195         return 0;
198 *******************************************************************
201  * Example of using hugepage memory in a user application using the mmap
202  * system call.  Before running this application, make sure that the
203  * administrator has mounted the hugetlbfs filesystem (on some directory
204  * like /mnt) using the command mount -t hugetlbfs nodev /mnt. In this
205  * example, the app is requesting memory of size 256MB that is backed by
206  * huge pages.
208  * For ia64 architecture, Linux kernel reserves Region number 4 for hugepages.
209  * That means the addresses starting with 0x800000... will need to be
210  * specified.  Specifying a fixed address is not required on ppc64, i386
211  * or x86_64.
212  */
213 #include <stdlib.h>
214 #include <stdio.h>
215 #include <unistd.h>
216 #include <sys/mman.h>
217 #include <fcntl.h>
219 #define FILE_NAME "/mnt/hugepagefile"
220 #define LENGTH (256UL*1024*1024)
221 #define PROTECTION (PROT_READ | PROT_WRITE)
223 /* Only ia64 requires this */
224 #ifdef __ia64__
225 #define ADDR (void *)(0x8000000000000000UL)
226 #define FLAGS (MAP_SHARED | MAP_FIXED)
227 #else
228 #define ADDR (void *)(0x0UL)
229 #define FLAGS (MAP_SHARED)
230 #endif
232 void check_bytes(char *addr)
234         printf("First hex is %x\n", *((unsigned int *)addr));
237 void write_bytes(char *addr)
239         unsigned long i;
241         for (i = 0; i < LENGTH; i++)
242                 *(addr + i) = (char)i;
245 void read_bytes(char *addr)
247         unsigned long i;
249         check_bytes(addr);
250         for (i = 0; i < LENGTH; i++)
251                 if (*(addr + i) != (char)i) {
252                         printf("Mismatch at %lu\n", i);
253                         break;
254                 }
257 int main(void)
259         void *addr;
260         int fd;
262         fd = open(FILE_NAME, O_CREAT | O_RDWR, 0755);
263         if (fd < 0) {
264                 perror("Open failed");
265                 exit(1);
266         }
268         addr = mmap(ADDR, LENGTH, PROTECTION, FLAGS, fd, 0);
269         if (addr == MAP_FAILED) {
270                 perror("mmap");
271                 unlink(FILE_NAME);
272                 exit(1);
273         }
275         printf("Returned address is %p\n", addr);
276         check_bytes(addr);
277         write_bytes(addr);
278         read_bytes(addr);
280         munmap(addr, LENGTH);
281         close(fd);
282         unlink(FILE_NAME);
284         return 0;