2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
22 #include <linux/sunrpc/clnt.h>
23 #include <linux/sunrpc/xprt.h>
26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 static int rpc_task_id
;
32 * RPC slabs and memory pools
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static kmem_cache_t
*rpc_task_slabp __read_mostly
;
38 static kmem_cache_t
*rpc_buffer_slabp __read_mostly
;
39 static mempool_t
*rpc_task_mempool __read_mostly
;
40 static mempool_t
*rpc_buffer_mempool __read_mostly
;
42 static void __rpc_default_timer(struct rpc_task
*task
);
43 static void rpciod_killall(void);
44 static void rpc_async_schedule(void *);
47 * RPC tasks that create another task (e.g. for contacting the portmapper)
48 * will wait on this queue for their child's completion
50 static RPC_WAITQ(childq
, "childq");
53 * RPC tasks sit here while waiting for conditions to improve.
55 static RPC_WAITQ(delay_queue
, "delayq");
58 * All RPC tasks are linked into this list
60 static LIST_HEAD(all_tasks
);
63 * rpciod-related stuff
65 static DECLARE_MUTEX(rpciod_sema
);
66 static unsigned int rpciod_users
;
67 static struct workqueue_struct
*rpciod_workqueue
;
70 * Spinlock for other critical sections of code.
72 static DEFINE_SPINLOCK(rpc_sched_lock
);
75 * Disable the timer for a given RPC task. Should be called with
76 * queue->lock and bh_disabled in order to avoid races within
80 __rpc_disable_timer(struct rpc_task
*task
)
82 dprintk("RPC: %4d disabling timer\n", task
->tk_pid
);
83 task
->tk_timeout_fn
= NULL
;
88 * Run a timeout function.
89 * We use the callback in order to allow __rpc_wake_up_task()
90 * and friends to disable the timer synchronously on SMP systems
91 * without calling del_timer_sync(). The latter could cause a
92 * deadlock if called while we're holding spinlocks...
94 static void rpc_run_timer(struct rpc_task
*task
)
96 void (*callback
)(struct rpc_task
*);
98 callback
= task
->tk_timeout_fn
;
99 task
->tk_timeout_fn
= NULL
;
100 if (callback
&& RPC_IS_QUEUED(task
)) {
101 dprintk("RPC: %4d running timer\n", task
->tk_pid
);
104 smp_mb__before_clear_bit();
105 clear_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
);
106 smp_mb__after_clear_bit();
110 * Set up a timer for the current task.
113 __rpc_add_timer(struct rpc_task
*task
, rpc_action timer
)
115 if (!task
->tk_timeout
)
118 dprintk("RPC: %4d setting alarm for %lu ms\n",
119 task
->tk_pid
, task
->tk_timeout
* 1000 / HZ
);
122 task
->tk_timeout_fn
= timer
;
124 task
->tk_timeout_fn
= __rpc_default_timer
;
125 set_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
);
126 mod_timer(&task
->tk_timer
, jiffies
+ task
->tk_timeout
);
130 * Delete any timer for the current task. Because we use del_timer_sync(),
131 * this function should never be called while holding queue->lock.
134 rpc_delete_timer(struct rpc_task
*task
)
136 if (RPC_IS_QUEUED(task
))
138 if (test_and_clear_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
)) {
139 del_singleshot_timer_sync(&task
->tk_timer
);
140 dprintk("RPC: %4d deleting timer\n", task
->tk_pid
);
145 * Add new request to a priority queue.
147 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
152 INIT_LIST_HEAD(&task
->u
.tk_wait
.links
);
153 q
= &queue
->tasks
[task
->tk_priority
];
154 if (unlikely(task
->tk_priority
> queue
->maxpriority
))
155 q
= &queue
->tasks
[queue
->maxpriority
];
156 list_for_each_entry(t
, q
, u
.tk_wait
.list
) {
157 if (t
->tk_cookie
== task
->tk_cookie
) {
158 list_add_tail(&task
->u
.tk_wait
.list
, &t
->u
.tk_wait
.links
);
162 list_add_tail(&task
->u
.tk_wait
.list
, q
);
166 * Add new request to wait queue.
168 * Swapper tasks always get inserted at the head of the queue.
169 * This should avoid many nasty memory deadlocks and hopefully
170 * improve overall performance.
171 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
173 static void __rpc_add_wait_queue(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
175 BUG_ON (RPC_IS_QUEUED(task
));
177 if (RPC_IS_PRIORITY(queue
))
178 __rpc_add_wait_queue_priority(queue
, task
);
179 else if (RPC_IS_SWAPPER(task
))
180 list_add(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
182 list_add_tail(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
183 task
->u
.tk_wait
.rpc_waitq
= queue
;
184 rpc_set_queued(task
);
186 dprintk("RPC: %4d added to queue %p \"%s\"\n",
187 task
->tk_pid
, queue
, rpc_qname(queue
));
191 * Remove request from a priority queue.
193 static void __rpc_remove_wait_queue_priority(struct rpc_task
*task
)
197 if (!list_empty(&task
->u
.tk_wait
.links
)) {
198 t
= list_entry(task
->u
.tk_wait
.links
.next
, struct rpc_task
, u
.tk_wait
.list
);
199 list_move(&t
->u
.tk_wait
.list
, &task
->u
.tk_wait
.list
);
200 list_splice_init(&task
->u
.tk_wait
.links
, &t
->u
.tk_wait
.links
);
202 list_del(&task
->u
.tk_wait
.list
);
206 * Remove request from queue.
207 * Note: must be called with spin lock held.
209 static void __rpc_remove_wait_queue(struct rpc_task
*task
)
211 struct rpc_wait_queue
*queue
;
212 queue
= task
->u
.tk_wait
.rpc_waitq
;
214 if (RPC_IS_PRIORITY(queue
))
215 __rpc_remove_wait_queue_priority(task
);
217 list_del(&task
->u
.tk_wait
.list
);
218 dprintk("RPC: %4d removed from queue %p \"%s\"\n",
219 task
->tk_pid
, queue
, rpc_qname(queue
));
222 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue
*queue
, int priority
)
224 queue
->priority
= priority
;
225 queue
->count
= 1 << (priority
* 2);
228 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue
*queue
, unsigned long cookie
)
230 queue
->cookie
= cookie
;
231 queue
->nr
= RPC_BATCH_COUNT
;
234 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue
*queue
)
236 rpc_set_waitqueue_priority(queue
, queue
->maxpriority
);
237 rpc_set_waitqueue_cookie(queue
, 0);
240 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
, int maxprio
)
244 spin_lock_init(&queue
->lock
);
245 for (i
= 0; i
< ARRAY_SIZE(queue
->tasks
); i
++)
246 INIT_LIST_HEAD(&queue
->tasks
[i
]);
247 queue
->maxpriority
= maxprio
;
248 rpc_reset_waitqueue_priority(queue
);
254 void rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
256 __rpc_init_priority_wait_queue(queue
, qname
, RPC_PRIORITY_HIGH
);
259 void rpc_init_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
261 __rpc_init_priority_wait_queue(queue
, qname
, 0);
263 EXPORT_SYMBOL(rpc_init_wait_queue
);
265 static int rpc_wait_bit_interruptible(void *word
)
267 if (signal_pending(current
))
274 * Mark an RPC call as having completed by clearing the 'active' bit
276 static inline void rpc_mark_complete_task(struct rpc_task
*task
)
278 rpc_clear_active(task
);
279 wake_up_bit(&task
->tk_runstate
, RPC_TASK_ACTIVE
);
283 * Allow callers to wait for completion of an RPC call
285 int __rpc_wait_for_completion_task(struct rpc_task
*task
, int (*action
)(void *))
288 action
= rpc_wait_bit_interruptible
;
289 return wait_on_bit(&task
->tk_runstate
, RPC_TASK_ACTIVE
,
290 action
, TASK_INTERRUPTIBLE
);
292 EXPORT_SYMBOL(__rpc_wait_for_completion_task
);
295 * Make an RPC task runnable.
297 * Note: If the task is ASYNC, this must be called with
298 * the spinlock held to protect the wait queue operation.
300 static void rpc_make_runnable(struct rpc_task
*task
)
304 BUG_ON(task
->tk_timeout_fn
);
305 do_ret
= rpc_test_and_set_running(task
);
306 rpc_clear_queued(task
);
309 if (RPC_IS_ASYNC(task
)) {
312 INIT_WORK(&task
->u
.tk_work
, rpc_async_schedule
, (void *)task
);
313 status
= queue_work(task
->tk_workqueue
, &task
->u
.tk_work
);
315 printk(KERN_WARNING
"RPC: failed to add task to queue: error: %d!\n", status
);
316 task
->tk_status
= status
;
320 wake_up_bit(&task
->tk_runstate
, RPC_TASK_QUEUED
);
324 * Place a newly initialized task on the workqueue.
327 rpc_schedule_run(struct rpc_task
*task
)
329 rpc_set_active(task
);
330 rpc_make_runnable(task
);
334 * Prepare for sleeping on a wait queue.
335 * By always appending tasks to the list we ensure FIFO behavior.
336 * NB: An RPC task will only receive interrupt-driven events as long
337 * as it's on a wait queue.
339 static void __rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
340 rpc_action action
, rpc_action timer
)
342 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task
->tk_pid
,
343 rpc_qname(q
), jiffies
);
345 if (!RPC_IS_ASYNC(task
) && !RPC_IS_ACTIVATED(task
)) {
346 printk(KERN_ERR
"RPC: Inactive synchronous task put to sleep!\n");
350 /* Mark the task as being activated if so needed */
351 rpc_set_active(task
);
353 __rpc_add_wait_queue(q
, task
);
355 BUG_ON(task
->tk_callback
!= NULL
);
356 task
->tk_callback
= action
;
357 __rpc_add_timer(task
, timer
);
360 void rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
361 rpc_action action
, rpc_action timer
)
364 * Protect the queue operations.
366 spin_lock_bh(&q
->lock
);
367 __rpc_sleep_on(q
, task
, action
, timer
);
368 spin_unlock_bh(&q
->lock
);
372 * __rpc_do_wake_up_task - wake up a single rpc_task
373 * @task: task to be woken up
375 * Caller must hold queue->lock, and have cleared the task queued flag.
377 static void __rpc_do_wake_up_task(struct rpc_task
*task
)
379 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task
->tk_pid
, jiffies
);
382 BUG_ON(task
->tk_magic
!= RPC_TASK_MAGIC_ID
);
384 /* Has the task been executed yet? If not, we cannot wake it up! */
385 if (!RPC_IS_ACTIVATED(task
)) {
386 printk(KERN_ERR
"RPC: Inactive task (%p) being woken up!\n", task
);
390 __rpc_disable_timer(task
);
391 __rpc_remove_wait_queue(task
);
393 rpc_make_runnable(task
);
395 dprintk("RPC: __rpc_wake_up_task done\n");
399 * Wake up the specified task
401 static void __rpc_wake_up_task(struct rpc_task
*task
)
403 if (rpc_start_wakeup(task
)) {
404 if (RPC_IS_QUEUED(task
))
405 __rpc_do_wake_up_task(task
);
406 rpc_finish_wakeup(task
);
411 * Default timeout handler if none specified by user
414 __rpc_default_timer(struct rpc_task
*task
)
416 dprintk("RPC: %d timeout (default timer)\n", task
->tk_pid
);
417 task
->tk_status
= -ETIMEDOUT
;
418 rpc_wake_up_task(task
);
422 * Wake up the specified task
424 void rpc_wake_up_task(struct rpc_task
*task
)
426 if (rpc_start_wakeup(task
)) {
427 if (RPC_IS_QUEUED(task
)) {
428 struct rpc_wait_queue
*queue
= task
->u
.tk_wait
.rpc_waitq
;
430 spin_lock_bh(&queue
->lock
);
431 __rpc_do_wake_up_task(task
);
432 spin_unlock_bh(&queue
->lock
);
434 rpc_finish_wakeup(task
);
439 * Wake up the next task on a priority queue.
441 static struct rpc_task
* __rpc_wake_up_next_priority(struct rpc_wait_queue
*queue
)
444 struct rpc_task
*task
;
447 * Service a batch of tasks from a single cookie.
449 q
= &queue
->tasks
[queue
->priority
];
450 if (!list_empty(q
)) {
451 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
452 if (queue
->cookie
== task
->tk_cookie
) {
455 list_move_tail(&task
->u
.tk_wait
.list
, q
);
458 * Check if we need to switch queues.
465 * Service the next queue.
468 if (q
== &queue
->tasks
[0])
469 q
= &queue
->tasks
[queue
->maxpriority
];
472 if (!list_empty(q
)) {
473 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
476 } while (q
!= &queue
->tasks
[queue
->priority
]);
478 rpc_reset_waitqueue_priority(queue
);
482 rpc_set_waitqueue_priority(queue
, (unsigned int)(q
- &queue
->tasks
[0]));
484 rpc_set_waitqueue_cookie(queue
, task
->tk_cookie
);
486 __rpc_wake_up_task(task
);
491 * Wake up the next task on the wait queue.
493 struct rpc_task
* rpc_wake_up_next(struct rpc_wait_queue
*queue
)
495 struct rpc_task
*task
= NULL
;
497 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue
, rpc_qname(queue
));
498 spin_lock_bh(&queue
->lock
);
499 if (RPC_IS_PRIORITY(queue
))
500 task
= __rpc_wake_up_next_priority(queue
);
502 task_for_first(task
, &queue
->tasks
[0])
503 __rpc_wake_up_task(task
);
505 spin_unlock_bh(&queue
->lock
);
511 * rpc_wake_up - wake up all rpc_tasks
512 * @queue: rpc_wait_queue on which the tasks are sleeping
516 void rpc_wake_up(struct rpc_wait_queue
*queue
)
518 struct rpc_task
*task
;
520 struct list_head
*head
;
521 spin_lock_bh(&queue
->lock
);
522 head
= &queue
->tasks
[queue
->maxpriority
];
524 while (!list_empty(head
)) {
525 task
= list_entry(head
->next
, struct rpc_task
, u
.tk_wait
.list
);
526 __rpc_wake_up_task(task
);
528 if (head
== &queue
->tasks
[0])
532 spin_unlock_bh(&queue
->lock
);
536 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
537 * @queue: rpc_wait_queue on which the tasks are sleeping
538 * @status: status value to set
542 void rpc_wake_up_status(struct rpc_wait_queue
*queue
, int status
)
544 struct list_head
*head
;
545 struct rpc_task
*task
;
547 spin_lock_bh(&queue
->lock
);
548 head
= &queue
->tasks
[queue
->maxpriority
];
550 while (!list_empty(head
)) {
551 task
= list_entry(head
->next
, struct rpc_task
, u
.tk_wait
.list
);
552 task
->tk_status
= status
;
553 __rpc_wake_up_task(task
);
555 if (head
== &queue
->tasks
[0])
559 spin_unlock_bh(&queue
->lock
);
563 * Run a task at a later time
565 static void __rpc_atrun(struct rpc_task
*);
567 rpc_delay(struct rpc_task
*task
, unsigned long delay
)
569 task
->tk_timeout
= delay
;
570 rpc_sleep_on(&delay_queue
, task
, NULL
, __rpc_atrun
);
574 __rpc_atrun(struct rpc_task
*task
)
577 rpc_wake_up_task(task
);
581 * Helper to call task->tk_ops->rpc_call_prepare
583 static void rpc_prepare_task(struct rpc_task
*task
)
585 task
->tk_ops
->rpc_call_prepare(task
, task
->tk_calldata
);
589 * Helper that calls task->tk_ops->rpc_call_done if it exists
591 void rpc_exit_task(struct rpc_task
*task
)
593 task
->tk_action
= NULL
;
594 if (task
->tk_ops
->rpc_call_done
!= NULL
) {
595 task
->tk_ops
->rpc_call_done(task
, task
->tk_calldata
);
596 if (task
->tk_action
!= NULL
) {
597 WARN_ON(RPC_ASSASSINATED(task
));
598 /* Always release the RPC slot and buffer memory */
603 EXPORT_SYMBOL(rpc_exit_task
);
606 * This is the RPC `scheduler' (or rather, the finite state machine).
608 static int __rpc_execute(struct rpc_task
*task
)
612 dprintk("RPC: %4d rpc_execute flgs %x\n",
613 task
->tk_pid
, task
->tk_flags
);
615 BUG_ON(RPC_IS_QUEUED(task
));
619 * Garbage collection of pending timers...
621 rpc_delete_timer(task
);
624 * Execute any pending callback.
626 if (RPC_DO_CALLBACK(task
)) {
627 /* Define a callback save pointer */
628 void (*save_callback
)(struct rpc_task
*);
631 * If a callback exists, save it, reset it,
633 * The save is needed to stop from resetting
634 * another callback set within the callback handler
637 save_callback
=task
->tk_callback
;
638 task
->tk_callback
=NULL
;
645 * Perform the next FSM step.
646 * tk_action may be NULL when the task has been killed
649 if (!RPC_IS_QUEUED(task
)) {
650 if (task
->tk_action
== NULL
)
653 task
->tk_action(task
);
658 * Lockless check for whether task is sleeping or not.
660 if (!RPC_IS_QUEUED(task
))
662 rpc_clear_running(task
);
663 if (RPC_IS_ASYNC(task
)) {
664 /* Careful! we may have raced... */
665 if (RPC_IS_QUEUED(task
))
667 if (rpc_test_and_set_running(task
))
672 /* sync task: sleep here */
673 dprintk("RPC: %4d sync task going to sleep\n", task
->tk_pid
);
674 /* Note: Caller should be using rpc_clnt_sigmask() */
675 status
= out_of_line_wait_on_bit(&task
->tk_runstate
,
676 RPC_TASK_QUEUED
, rpc_wait_bit_interruptible
,
678 if (status
== -ERESTARTSYS
) {
680 * When a sync task receives a signal, it exits with
681 * -ERESTARTSYS. In order to catch any callbacks that
682 * clean up after sleeping on some queue, we don't
683 * break the loop here, but go around once more.
685 dprintk("RPC: %4d got signal\n", task
->tk_pid
);
686 task
->tk_flags
|= RPC_TASK_KILLED
;
687 rpc_exit(task
, -ERESTARTSYS
);
688 rpc_wake_up_task(task
);
690 rpc_set_running(task
);
691 dprintk("RPC: %4d sync task resuming\n", task
->tk_pid
);
694 dprintk("RPC: %4d, return %d, status %d\n", task
->tk_pid
, status
, task
->tk_status
);
695 /* Wake up anyone who is waiting for task completion */
696 rpc_mark_complete_task(task
);
697 /* Release all resources associated with the task */
698 rpc_release_task(task
);
703 * User-visible entry point to the scheduler.
705 * This may be called recursively if e.g. an async NFS task updates
706 * the attributes and finds that dirty pages must be flushed.
707 * NOTE: Upon exit of this function the task is guaranteed to be
708 * released. In particular note that tk_release() will have
709 * been called, so your task memory may have been freed.
712 rpc_execute(struct rpc_task
*task
)
714 rpc_set_active(task
);
715 rpc_set_running(task
);
716 return __rpc_execute(task
);
719 static void rpc_async_schedule(void *arg
)
721 __rpc_execute((struct rpc_task
*)arg
);
725 * rpc_malloc - allocate an RPC buffer
726 * @task: RPC task that will use this buffer
727 * @size: requested byte size
729 * We try to ensure that some NFS reads and writes can always proceed
730 * by using a mempool when allocating 'small' buffers.
731 * In order to avoid memory starvation triggering more writebacks of
732 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
734 void * rpc_malloc(struct rpc_task
*task
, size_t size
)
736 struct rpc_rqst
*req
= task
->tk_rqstp
;
739 if (task
->tk_flags
& RPC_TASK_SWAPPER
)
744 if (size
> RPC_BUFFER_MAXSIZE
) {
745 req
->rq_buffer
= kmalloc(size
, gfp
);
747 req
->rq_bufsize
= size
;
749 req
->rq_buffer
= mempool_alloc(rpc_buffer_mempool
, gfp
);
751 req
->rq_bufsize
= RPC_BUFFER_MAXSIZE
;
753 return req
->rq_buffer
;
757 * rpc_free - free buffer allocated via rpc_malloc
758 * @task: RPC task with a buffer to be freed
761 void rpc_free(struct rpc_task
*task
)
763 struct rpc_rqst
*req
= task
->tk_rqstp
;
765 if (req
->rq_buffer
) {
766 if (req
->rq_bufsize
== RPC_BUFFER_MAXSIZE
)
767 mempool_free(req
->rq_buffer
, rpc_buffer_mempool
);
769 kfree(req
->rq_buffer
);
770 req
->rq_buffer
= NULL
;
776 * Creation and deletion of RPC task structures
778 void rpc_init_task(struct rpc_task
*task
, struct rpc_clnt
*clnt
, int flags
, const struct rpc_call_ops
*tk_ops
, void *calldata
)
780 memset(task
, 0, sizeof(*task
));
781 init_timer(&task
->tk_timer
);
782 task
->tk_timer
.data
= (unsigned long) task
;
783 task
->tk_timer
.function
= (void (*)(unsigned long)) rpc_run_timer
;
784 atomic_set(&task
->tk_count
, 1);
785 task
->tk_client
= clnt
;
786 task
->tk_flags
= flags
;
787 task
->tk_ops
= tk_ops
;
788 if (tk_ops
->rpc_call_prepare
!= NULL
)
789 task
->tk_action
= rpc_prepare_task
;
790 task
->tk_calldata
= calldata
;
792 /* Initialize retry counters */
793 task
->tk_garb_retry
= 2;
794 task
->tk_cred_retry
= 2;
796 task
->tk_priority
= RPC_PRIORITY_NORMAL
;
797 task
->tk_cookie
= (unsigned long)current
;
799 /* Initialize workqueue for async tasks */
800 task
->tk_workqueue
= rpciod_workqueue
;
803 atomic_inc(&clnt
->cl_users
);
804 if (clnt
->cl_softrtry
)
805 task
->tk_flags
|= RPC_TASK_SOFT
;
807 task
->tk_flags
|= RPC_TASK_NOINTR
;
811 task
->tk_magic
= RPC_TASK_MAGIC_ID
;
812 task
->tk_pid
= rpc_task_id
++;
814 /* Add to global list of all tasks */
815 spin_lock(&rpc_sched_lock
);
816 list_add_tail(&task
->tk_task
, &all_tasks
);
817 spin_unlock(&rpc_sched_lock
);
819 BUG_ON(task
->tk_ops
== NULL
);
821 dprintk("RPC: %4d new task procpid %d\n", task
->tk_pid
,
825 static struct rpc_task
*
828 return (struct rpc_task
*)mempool_alloc(rpc_task_mempool
, GFP_NOFS
);
831 static void rpc_free_task(struct rpc_task
*task
)
833 dprintk("RPC: %4d freeing task\n", task
->tk_pid
);
834 mempool_free(task
, rpc_task_mempool
);
838 * Create a new task for the specified client. We have to
839 * clean up after an allocation failure, as the client may
840 * have specified "oneshot".
842 struct rpc_task
*rpc_new_task(struct rpc_clnt
*clnt
, int flags
, const struct rpc_call_ops
*tk_ops
, void *calldata
)
844 struct rpc_task
*task
;
846 task
= rpc_alloc_task();
850 rpc_init_task(task
, clnt
, flags
, tk_ops
, calldata
);
852 dprintk("RPC: %4d allocated task\n", task
->tk_pid
);
853 task
->tk_flags
|= RPC_TASK_DYNAMIC
;
858 /* Check whether to release the client */
860 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
861 atomic_read(&clnt
->cl_users
), clnt
->cl_oneshot
);
862 atomic_inc(&clnt
->cl_users
); /* pretend we were used ... */
863 rpc_release_client(clnt
);
868 void rpc_release_task(struct rpc_task
*task
)
870 const struct rpc_call_ops
*tk_ops
= task
->tk_ops
;
871 void *calldata
= task
->tk_calldata
;
874 BUG_ON(task
->tk_magic
!= RPC_TASK_MAGIC_ID
);
876 if (!atomic_dec_and_test(&task
->tk_count
))
878 dprintk("RPC: %4d release task\n", task
->tk_pid
);
880 /* Remove from global task list */
881 spin_lock(&rpc_sched_lock
);
882 list_del(&task
->tk_task
);
883 spin_unlock(&rpc_sched_lock
);
885 BUG_ON (RPC_IS_QUEUED(task
));
887 /* Synchronously delete any running timer */
888 rpc_delete_timer(task
);
890 /* Release resources */
893 if (task
->tk_msg
.rpc_cred
)
894 rpcauth_unbindcred(task
);
895 if (task
->tk_client
) {
896 rpc_release_client(task
->tk_client
);
897 task
->tk_client
= NULL
;
903 if (task
->tk_flags
& RPC_TASK_DYNAMIC
)
905 if (tk_ops
->rpc_release
)
906 tk_ops
->rpc_release(calldata
);
910 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
911 * @clnt - pointer to RPC client
913 * @ops - RPC call ops
914 * @data - user call data
916 struct rpc_task
*rpc_run_task(struct rpc_clnt
*clnt
, int flags
,
917 const struct rpc_call_ops
*ops
,
920 struct rpc_task
*task
;
921 task
= rpc_new_task(clnt
, flags
, ops
, data
);
923 return ERR_PTR(-ENOMEM
);
924 atomic_inc(&task
->tk_count
);
928 EXPORT_SYMBOL(rpc_run_task
);
931 * rpc_find_parent - find the parent of a child task.
934 * Checks that the parent task is still sleeping on the
935 * queue 'childq'. If so returns a pointer to the parent.
936 * Upon failure returns NULL.
938 * Caller must hold childq.lock
940 static inline struct rpc_task
*rpc_find_parent(struct rpc_task
*child
, struct rpc_task
*parent
)
942 struct rpc_task
*task
;
943 struct list_head
*le
;
945 task_for_each(task
, le
, &childq
.tasks
[0])
952 static void rpc_child_exit(struct rpc_task
*child
, void *calldata
)
954 struct rpc_task
*parent
;
956 spin_lock_bh(&childq
.lock
);
957 if ((parent
= rpc_find_parent(child
, calldata
)) != NULL
) {
958 parent
->tk_status
= child
->tk_status
;
959 __rpc_wake_up_task(parent
);
961 spin_unlock_bh(&childq
.lock
);
964 static const struct rpc_call_ops rpc_child_ops
= {
965 .rpc_call_done
= rpc_child_exit
,
969 * Note: rpc_new_task releases the client after a failure.
972 rpc_new_child(struct rpc_clnt
*clnt
, struct rpc_task
*parent
)
974 struct rpc_task
*task
;
976 task
= rpc_new_task(clnt
, RPC_TASK_ASYNC
| RPC_TASK_CHILD
, &rpc_child_ops
, parent
);
982 parent
->tk_status
= -ENOMEM
;
986 void rpc_run_child(struct rpc_task
*task
, struct rpc_task
*child
, rpc_action func
)
988 spin_lock_bh(&childq
.lock
);
989 /* N.B. Is it possible for the child to have already finished? */
990 __rpc_sleep_on(&childq
, task
, func
, NULL
);
991 rpc_schedule_run(child
);
992 spin_unlock_bh(&childq
.lock
);
996 * Kill all tasks for the given client.
997 * XXX: kill their descendants as well?
999 void rpc_killall_tasks(struct rpc_clnt
*clnt
)
1001 struct rpc_task
*rovr
;
1002 struct list_head
*le
;
1004 dprintk("RPC: killing all tasks for client %p\n", clnt
);
1007 * Spin lock all_tasks to prevent changes...
1009 spin_lock(&rpc_sched_lock
);
1010 alltask_for_each(rovr
, le
, &all_tasks
) {
1011 if (! RPC_IS_ACTIVATED(rovr
))
1013 if (!clnt
|| rovr
->tk_client
== clnt
) {
1014 rovr
->tk_flags
|= RPC_TASK_KILLED
;
1015 rpc_exit(rovr
, -EIO
);
1016 rpc_wake_up_task(rovr
);
1019 spin_unlock(&rpc_sched_lock
);
1022 static DECLARE_MUTEX_LOCKED(rpciod_running
);
1024 static void rpciod_killall(void)
1026 unsigned long flags
;
1028 while (!list_empty(&all_tasks
)) {
1029 clear_thread_flag(TIF_SIGPENDING
);
1030 rpc_killall_tasks(NULL
);
1031 flush_workqueue(rpciod_workqueue
);
1032 if (!list_empty(&all_tasks
)) {
1033 dprintk("rpciod_killall: waiting for tasks to exit\n");
1038 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
1039 recalc_sigpending();
1040 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
1044 * Start up the rpciod process if it's not already running.
1049 struct workqueue_struct
*wq
;
1053 dprintk("rpciod_up: users %d\n", rpciod_users
);
1055 if (rpciod_workqueue
)
1058 * If there's no pid, we should be the first user.
1060 if (rpciod_users
> 1)
1061 printk(KERN_WARNING
"rpciod_up: no workqueue, %d users??\n", rpciod_users
);
1063 * Create the rpciod thread and wait for it to start.
1066 wq
= create_workqueue("rpciod");
1068 printk(KERN_WARNING
"rpciod_up: create workqueue failed, error=%d\n", error
);
1072 rpciod_workqueue
= wq
;
1083 dprintk("rpciod_down sema %d\n", rpciod_users
);
1088 printk(KERN_WARNING
"rpciod_down: no users??\n");
1090 if (!rpciod_workqueue
) {
1091 dprintk("rpciod_down: Nothing to do!\n");
1096 destroy_workqueue(rpciod_workqueue
);
1097 rpciod_workqueue
= NULL
;
1103 void rpc_show_tasks(void)
1105 struct list_head
*le
;
1108 spin_lock(&rpc_sched_lock
);
1109 if (list_empty(&all_tasks
)) {
1110 spin_unlock(&rpc_sched_lock
);
1113 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1114 "-rpcwait -action- ---ops--\n");
1115 alltask_for_each(t
, le
, &all_tasks
) {
1116 const char *rpc_waitq
= "none";
1118 if (RPC_IS_QUEUED(t
))
1119 rpc_waitq
= rpc_qname(t
->u
.tk_wait
.rpc_waitq
);
1121 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1123 (t
->tk_msg
.rpc_proc
? t
->tk_msg
.rpc_proc
->p_proc
: -1),
1124 t
->tk_flags
, t
->tk_status
,
1126 (t
->tk_client
? t
->tk_client
->cl_prog
: 0),
1127 t
->tk_rqstp
, t
->tk_timeout
,
1129 t
->tk_action
, t
->tk_ops
);
1131 spin_unlock(&rpc_sched_lock
);
1136 rpc_destroy_mempool(void)
1138 if (rpc_buffer_mempool
)
1139 mempool_destroy(rpc_buffer_mempool
);
1140 if (rpc_task_mempool
)
1141 mempool_destroy(rpc_task_mempool
);
1142 if (rpc_task_slabp
&& kmem_cache_destroy(rpc_task_slabp
))
1143 printk(KERN_INFO
"rpc_task: not all structures were freed\n");
1144 if (rpc_buffer_slabp
&& kmem_cache_destroy(rpc_buffer_slabp
))
1145 printk(KERN_INFO
"rpc_buffers: not all structures were freed\n");
1149 rpc_init_mempool(void)
1151 rpc_task_slabp
= kmem_cache_create("rpc_tasks",
1152 sizeof(struct rpc_task
),
1153 0, SLAB_HWCACHE_ALIGN
,
1155 if (!rpc_task_slabp
)
1157 rpc_buffer_slabp
= kmem_cache_create("rpc_buffers",
1159 0, SLAB_HWCACHE_ALIGN
,
1161 if (!rpc_buffer_slabp
)
1163 rpc_task_mempool
= mempool_create(RPC_TASK_POOLSIZE
,
1167 if (!rpc_task_mempool
)
1169 rpc_buffer_mempool
= mempool_create(RPC_BUFFER_POOLSIZE
,
1173 if (!rpc_buffer_mempool
)
1177 rpc_destroy_mempool();