V4L/DVB (6715): ivtv: Remove unnecessary register update
[linux-2.6/verdex.git] / drivers / hid / hid-core.c
blob2884b036495a0713f0389b09ceee5a9c1a4476f0
1 /*
2 * HID support for Linux
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 * Copyright (c) 2006-2007 Jiri Kosina
8 */
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/list.h>
22 #include <linux/mm.h>
23 #include <linux/spinlock.h>
24 #include <asm/unaligned.h>
25 #include <asm/byteorder.h>
26 #include <linux/input.h>
27 #include <linux/wait.h>
28 #include <linux/vmalloc.h>
30 #include <linux/hid.h>
31 #include <linux/hiddev.h>
32 #include <linux/hid-debug.h>
33 #include <linux/hidraw.h>
36 * Version Information
39 #define DRIVER_VERSION "v2.6"
40 #define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik, Jiri Kosina"
41 #define DRIVER_DESC "HID core driver"
42 #define DRIVER_LICENSE "GPL"
44 #ifdef CONFIG_HID_DEBUG
45 int hid_debug = 0;
46 module_param_named(debug, hid_debug, bool, 0600);
47 MODULE_PARM_DESC(debug, "Turn HID debugging mode on and off");
48 EXPORT_SYMBOL_GPL(hid_debug);
49 #endif
52 * Register a new report for a device.
55 static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
57 struct hid_report_enum *report_enum = device->report_enum + type;
58 struct hid_report *report;
60 if (report_enum->report_id_hash[id])
61 return report_enum->report_id_hash[id];
63 if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL)))
64 return NULL;
66 if (id != 0)
67 report_enum->numbered = 1;
69 report->id = id;
70 report->type = type;
71 report->size = 0;
72 report->device = device;
73 report_enum->report_id_hash[id] = report;
75 list_add_tail(&report->list, &report_enum->report_list);
77 return report;
81 * Register a new field for this report.
84 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
86 struct hid_field *field;
88 if (report->maxfield == HID_MAX_FIELDS) {
89 dbg_hid("too many fields in report\n");
90 return NULL;
93 if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
94 + values * sizeof(unsigned), GFP_KERNEL))) return NULL;
96 field->index = report->maxfield++;
97 report->field[field->index] = field;
98 field->usage = (struct hid_usage *)(field + 1);
99 field->value = (unsigned *)(field->usage + usages);
100 field->report = report;
102 return field;
106 * Open a collection. The type/usage is pushed on the stack.
109 static int open_collection(struct hid_parser *parser, unsigned type)
111 struct hid_collection *collection;
112 unsigned usage;
114 usage = parser->local.usage[0];
116 if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
117 dbg_hid("collection stack overflow\n");
118 return -1;
121 if (parser->device->maxcollection == parser->device->collection_size) {
122 collection = kmalloc(sizeof(struct hid_collection) *
123 parser->device->collection_size * 2, GFP_KERNEL);
124 if (collection == NULL) {
125 dbg_hid("failed to reallocate collection array\n");
126 return -1;
128 memcpy(collection, parser->device->collection,
129 sizeof(struct hid_collection) *
130 parser->device->collection_size);
131 memset(collection + parser->device->collection_size, 0,
132 sizeof(struct hid_collection) *
133 parser->device->collection_size);
134 kfree(parser->device->collection);
135 parser->device->collection = collection;
136 parser->device->collection_size *= 2;
139 parser->collection_stack[parser->collection_stack_ptr++] =
140 parser->device->maxcollection;
142 collection = parser->device->collection +
143 parser->device->maxcollection++;
144 collection->type = type;
145 collection->usage = usage;
146 collection->level = parser->collection_stack_ptr - 1;
148 if (type == HID_COLLECTION_APPLICATION)
149 parser->device->maxapplication++;
151 return 0;
155 * Close a collection.
158 static int close_collection(struct hid_parser *parser)
160 if (!parser->collection_stack_ptr) {
161 dbg_hid("collection stack underflow\n");
162 return -1;
164 parser->collection_stack_ptr--;
165 return 0;
169 * Climb up the stack, search for the specified collection type
170 * and return the usage.
173 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
175 int n;
176 for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
177 if (parser->device->collection[parser->collection_stack[n]].type == type)
178 return parser->device->collection[parser->collection_stack[n]].usage;
179 return 0; /* we know nothing about this usage type */
183 * Add a usage to the temporary parser table.
186 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
188 if (parser->local.usage_index >= HID_MAX_USAGES) {
189 dbg_hid("usage index exceeded\n");
190 return -1;
192 parser->local.usage[parser->local.usage_index] = usage;
193 parser->local.collection_index[parser->local.usage_index] =
194 parser->collection_stack_ptr ?
195 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
196 parser->local.usage_index++;
197 return 0;
201 * Register a new field for this report.
204 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
206 struct hid_report *report;
207 struct hid_field *field;
208 int usages;
209 unsigned offset;
210 int i;
212 if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
213 dbg_hid("hid_register_report failed\n");
214 return -1;
217 if (parser->global.logical_maximum < parser->global.logical_minimum) {
218 dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
219 return -1;
222 offset = report->size;
223 report->size += parser->global.report_size * parser->global.report_count;
225 if (!parser->local.usage_index) /* Ignore padding fields */
226 return 0;
228 usages = max_t(int, parser->local.usage_index, parser->global.report_count);
230 if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
231 return 0;
233 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
234 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
235 field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
237 for (i = 0; i < usages; i++) {
238 int j = i;
239 /* Duplicate the last usage we parsed if we have excess values */
240 if (i >= parser->local.usage_index)
241 j = parser->local.usage_index - 1;
242 field->usage[i].hid = parser->local.usage[j];
243 field->usage[i].collection_index =
244 parser->local.collection_index[j];
247 field->maxusage = usages;
248 field->flags = flags;
249 field->report_offset = offset;
250 field->report_type = report_type;
251 field->report_size = parser->global.report_size;
252 field->report_count = parser->global.report_count;
253 field->logical_minimum = parser->global.logical_minimum;
254 field->logical_maximum = parser->global.logical_maximum;
255 field->physical_minimum = parser->global.physical_minimum;
256 field->physical_maximum = parser->global.physical_maximum;
257 field->unit_exponent = parser->global.unit_exponent;
258 field->unit = parser->global.unit;
260 return 0;
264 * Read data value from item.
267 static u32 item_udata(struct hid_item *item)
269 switch (item->size) {
270 case 1: return item->data.u8;
271 case 2: return item->data.u16;
272 case 4: return item->data.u32;
274 return 0;
277 static s32 item_sdata(struct hid_item *item)
279 switch (item->size) {
280 case 1: return item->data.s8;
281 case 2: return item->data.s16;
282 case 4: return item->data.s32;
284 return 0;
288 * Process a global item.
291 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
293 switch (item->tag) {
295 case HID_GLOBAL_ITEM_TAG_PUSH:
297 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
298 dbg_hid("global enviroment stack overflow\n");
299 return -1;
302 memcpy(parser->global_stack + parser->global_stack_ptr++,
303 &parser->global, sizeof(struct hid_global));
304 return 0;
306 case HID_GLOBAL_ITEM_TAG_POP:
308 if (!parser->global_stack_ptr) {
309 dbg_hid("global enviroment stack underflow\n");
310 return -1;
313 memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
314 sizeof(struct hid_global));
315 return 0;
317 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
318 parser->global.usage_page = item_udata(item);
319 return 0;
321 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
322 parser->global.logical_minimum = item_sdata(item);
323 return 0;
325 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
326 if (parser->global.logical_minimum < 0)
327 parser->global.logical_maximum = item_sdata(item);
328 else
329 parser->global.logical_maximum = item_udata(item);
330 return 0;
332 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
333 parser->global.physical_minimum = item_sdata(item);
334 return 0;
336 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
337 if (parser->global.physical_minimum < 0)
338 parser->global.physical_maximum = item_sdata(item);
339 else
340 parser->global.physical_maximum = item_udata(item);
341 return 0;
343 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
344 parser->global.unit_exponent = item_sdata(item);
345 return 0;
347 case HID_GLOBAL_ITEM_TAG_UNIT:
348 parser->global.unit = item_udata(item);
349 return 0;
351 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
352 if ((parser->global.report_size = item_udata(item)) > 32) {
353 dbg_hid("invalid report_size %d\n", parser->global.report_size);
354 return -1;
356 return 0;
358 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
359 if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
360 dbg_hid("invalid report_count %d\n", parser->global.report_count);
361 return -1;
363 return 0;
365 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
366 if ((parser->global.report_id = item_udata(item)) == 0) {
367 dbg_hid("report_id 0 is invalid\n");
368 return -1;
370 return 0;
372 default:
373 dbg_hid("unknown global tag 0x%x\n", item->tag);
374 return -1;
379 * Process a local item.
382 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
384 __u32 data;
385 unsigned n;
387 if (item->size == 0) {
388 dbg_hid("item data expected for local item\n");
389 return -1;
392 data = item_udata(item);
394 switch (item->tag) {
396 case HID_LOCAL_ITEM_TAG_DELIMITER:
398 if (data) {
400 * We treat items before the first delimiter
401 * as global to all usage sets (branch 0).
402 * In the moment we process only these global
403 * items and the first delimiter set.
405 if (parser->local.delimiter_depth != 0) {
406 dbg_hid("nested delimiters\n");
407 return -1;
409 parser->local.delimiter_depth++;
410 parser->local.delimiter_branch++;
411 } else {
412 if (parser->local.delimiter_depth < 1) {
413 dbg_hid("bogus close delimiter\n");
414 return -1;
416 parser->local.delimiter_depth--;
418 return 1;
420 case HID_LOCAL_ITEM_TAG_USAGE:
422 if (parser->local.delimiter_branch > 1) {
423 dbg_hid("alternative usage ignored\n");
424 return 0;
427 if (item->size <= 2)
428 data = (parser->global.usage_page << 16) + data;
430 return hid_add_usage(parser, data);
432 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
434 if (parser->local.delimiter_branch > 1) {
435 dbg_hid("alternative usage ignored\n");
436 return 0;
439 if (item->size <= 2)
440 data = (parser->global.usage_page << 16) + data;
442 parser->local.usage_minimum = data;
443 return 0;
445 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
447 if (parser->local.delimiter_branch > 1) {
448 dbg_hid("alternative usage ignored\n");
449 return 0;
452 if (item->size <= 2)
453 data = (parser->global.usage_page << 16) + data;
455 for (n = parser->local.usage_minimum; n <= data; n++)
456 if (hid_add_usage(parser, n)) {
457 dbg_hid("hid_add_usage failed\n");
458 return -1;
460 return 0;
462 default:
464 dbg_hid("unknown local item tag 0x%x\n", item->tag);
465 return 0;
467 return 0;
471 * Process a main item.
474 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
476 __u32 data;
477 int ret;
479 data = item_udata(item);
481 switch (item->tag) {
482 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
483 ret = open_collection(parser, data & 0xff);
484 break;
485 case HID_MAIN_ITEM_TAG_END_COLLECTION:
486 ret = close_collection(parser);
487 break;
488 case HID_MAIN_ITEM_TAG_INPUT:
489 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
490 break;
491 case HID_MAIN_ITEM_TAG_OUTPUT:
492 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
493 break;
494 case HID_MAIN_ITEM_TAG_FEATURE:
495 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
496 break;
497 default:
498 dbg_hid("unknown main item tag 0x%x\n", item->tag);
499 ret = 0;
502 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
504 return ret;
508 * Process a reserved item.
511 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
513 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
514 return 0;
518 * Free a report and all registered fields. The field->usage and
519 * field->value table's are allocated behind the field, so we need
520 * only to free(field) itself.
523 static void hid_free_report(struct hid_report *report)
525 unsigned n;
527 for (n = 0; n < report->maxfield; n++)
528 kfree(report->field[n]);
529 kfree(report);
533 * Free a device structure, all reports, and all fields.
536 void hid_free_device(struct hid_device *device)
538 unsigned i,j;
540 for (i = 0; i < HID_REPORT_TYPES; i++) {
541 struct hid_report_enum *report_enum = device->report_enum + i;
543 for (j = 0; j < 256; j++) {
544 struct hid_report *report = report_enum->report_id_hash[j];
545 if (report)
546 hid_free_report(report);
550 kfree(device->rdesc);
551 kfree(device->collection);
552 kfree(device);
554 EXPORT_SYMBOL_GPL(hid_free_device);
557 * Fetch a report description item from the data stream. We support long
558 * items, though they are not used yet.
561 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
563 u8 b;
565 if ((end - start) <= 0)
566 return NULL;
568 b = *start++;
570 item->type = (b >> 2) & 3;
571 item->tag = (b >> 4) & 15;
573 if (item->tag == HID_ITEM_TAG_LONG) {
575 item->format = HID_ITEM_FORMAT_LONG;
577 if ((end - start) < 2)
578 return NULL;
580 item->size = *start++;
581 item->tag = *start++;
583 if ((end - start) < item->size)
584 return NULL;
586 item->data.longdata = start;
587 start += item->size;
588 return start;
591 item->format = HID_ITEM_FORMAT_SHORT;
592 item->size = b & 3;
594 switch (item->size) {
596 case 0:
597 return start;
599 case 1:
600 if ((end - start) < 1)
601 return NULL;
602 item->data.u8 = *start++;
603 return start;
605 case 2:
606 if ((end - start) < 2)
607 return NULL;
608 item->data.u16 = le16_to_cpu(get_unaligned((__le16*)start));
609 start = (__u8 *)((__le16 *)start + 1);
610 return start;
612 case 3:
613 item->size++;
614 if ((end - start) < 4)
615 return NULL;
616 item->data.u32 = le32_to_cpu(get_unaligned((__le32*)start));
617 start = (__u8 *)((__le32 *)start + 1);
618 return start;
621 return NULL;
625 * Parse a report description into a hid_device structure. Reports are
626 * enumerated, fields are attached to these reports.
629 struct hid_device *hid_parse_report(__u8 *start, unsigned size)
631 struct hid_device *device;
632 struct hid_parser *parser;
633 struct hid_item item;
634 __u8 *end;
635 unsigned i;
636 static int (*dispatch_type[])(struct hid_parser *parser,
637 struct hid_item *item) = {
638 hid_parser_main,
639 hid_parser_global,
640 hid_parser_local,
641 hid_parser_reserved
644 if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL)))
645 return NULL;
647 if (!(device->collection = kzalloc(sizeof(struct hid_collection) *
648 HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
649 kfree(device);
650 return NULL;
652 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
654 for (i = 0; i < HID_REPORT_TYPES; i++)
655 INIT_LIST_HEAD(&device->report_enum[i].report_list);
657 if (!(device->rdesc = kmalloc(size, GFP_KERNEL))) {
658 kfree(device->collection);
659 kfree(device);
660 return NULL;
662 memcpy(device->rdesc, start, size);
663 device->rsize = size;
665 if (!(parser = vmalloc(sizeof(struct hid_parser)))) {
666 kfree(device->rdesc);
667 kfree(device->collection);
668 kfree(device);
669 return NULL;
671 memset(parser, 0, sizeof(struct hid_parser));
672 parser->device = device;
674 end = start + size;
675 while ((start = fetch_item(start, end, &item)) != NULL) {
677 if (item.format != HID_ITEM_FORMAT_SHORT) {
678 dbg_hid("unexpected long global item\n");
679 hid_free_device(device);
680 vfree(parser);
681 return NULL;
684 if (dispatch_type[item.type](parser, &item)) {
685 dbg_hid("item %u %u %u %u parsing failed\n",
686 item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
687 hid_free_device(device);
688 vfree(parser);
689 return NULL;
692 if (start == end) {
693 if (parser->collection_stack_ptr) {
694 dbg_hid("unbalanced collection at end of report description\n");
695 hid_free_device(device);
696 vfree(parser);
697 return NULL;
699 if (parser->local.delimiter_depth) {
700 dbg_hid("unbalanced delimiter at end of report description\n");
701 hid_free_device(device);
702 vfree(parser);
703 return NULL;
705 vfree(parser);
706 return device;
710 dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
711 hid_free_device(device);
712 vfree(parser);
713 return NULL;
715 EXPORT_SYMBOL_GPL(hid_parse_report);
718 * Convert a signed n-bit integer to signed 32-bit integer. Common
719 * cases are done through the compiler, the screwed things has to be
720 * done by hand.
723 static s32 snto32(__u32 value, unsigned n)
725 switch (n) {
726 case 8: return ((__s8)value);
727 case 16: return ((__s16)value);
728 case 32: return ((__s32)value);
730 return value & (1 << (n - 1)) ? value | (-1 << n) : value;
734 * Convert a signed 32-bit integer to a signed n-bit integer.
737 static u32 s32ton(__s32 value, unsigned n)
739 s32 a = value >> (n - 1);
740 if (a && a != -1)
741 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
742 return value & ((1 << n) - 1);
746 * Extract/implement a data field from/to a little endian report (bit array).
748 * Code sort-of follows HID spec:
749 * http://www.usb.org/developers/devclass_docs/HID1_11.pdf
751 * While the USB HID spec allows unlimited length bit fields in "report
752 * descriptors", most devices never use more than 16 bits.
753 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
754 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
757 static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
759 u64 x;
761 WARN_ON(n > 32);
763 report += offset >> 3; /* adjust byte index */
764 offset &= 7; /* now only need bit offset into one byte */
765 x = le64_to_cpu(get_unaligned((__le64 *) report));
766 x = (x >> offset) & ((1ULL << n) - 1); /* extract bit field */
767 return (u32) x;
771 * "implement" : set bits in a little endian bit stream.
772 * Same concepts as "extract" (see comments above).
773 * The data mangled in the bit stream remains in little endian
774 * order the whole time. It make more sense to talk about
775 * endianness of register values by considering a register
776 * a "cached" copy of the little endiad bit stream.
778 static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
780 __le64 x;
781 u64 m = (1ULL << n) - 1;
783 WARN_ON(n > 32);
785 WARN_ON(value > m);
786 value &= m;
788 report += offset >> 3;
789 offset &= 7;
791 x = get_unaligned((__le64 *)report);
792 x &= cpu_to_le64(~(m << offset));
793 x |= cpu_to_le64(((u64) value) << offset);
794 put_unaligned(x, (__le64 *) report);
798 * Search an array for a value.
801 static __inline__ int search(__s32 *array, __s32 value, unsigned n)
803 while (n--) {
804 if (*array++ == value)
805 return 0;
807 return -1;
810 static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt)
812 hid_dump_input(usage, value);
813 if (hid->claimed & HID_CLAIMED_INPUT)
814 hidinput_hid_event(hid, field, usage, value);
815 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
816 hid->hiddev_hid_event(hid, field, usage, value);
820 * Analyse a received field, and fetch the data from it. The field
821 * content is stored for next report processing (we do differential
822 * reporting to the layer).
825 void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, int interrupt)
827 unsigned n;
828 unsigned count = field->report_count;
829 unsigned offset = field->report_offset;
830 unsigned size = field->report_size;
831 __s32 min = field->logical_minimum;
832 __s32 max = field->logical_maximum;
833 __s32 *value;
835 if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
836 return;
838 for (n = 0; n < count; n++) {
840 value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
841 extract(data, offset + n * size, size);
843 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
844 && value[n] >= min && value[n] <= max
845 && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
846 goto exit;
849 for (n = 0; n < count; n++) {
851 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
852 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
853 continue;
856 if (field->value[n] >= min && field->value[n] <= max
857 && field->usage[field->value[n] - min].hid
858 && search(value, field->value[n], count))
859 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
861 if (value[n] >= min && value[n] <= max
862 && field->usage[value[n] - min].hid
863 && search(field->value, value[n], count))
864 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
867 memcpy(field->value, value, count * sizeof(__s32));
868 exit:
869 kfree(value);
871 EXPORT_SYMBOL_GPL(hid_input_field);
874 * Output the field into the report.
877 static void hid_output_field(struct hid_field *field, __u8 *data)
879 unsigned count = field->report_count;
880 unsigned offset = field->report_offset;
881 unsigned size = field->report_size;
882 unsigned bitsused = offset + count * size;
883 unsigned n;
885 /* make sure the unused bits in the last byte are zeros */
886 if (count > 0 && size > 0 && (bitsused % 8) != 0)
887 data[(bitsused-1)/8] &= (1 << (bitsused % 8)) - 1;
889 for (n = 0; n < count; n++) {
890 if (field->logical_minimum < 0) /* signed values */
891 implement(data, offset + n * size, size, s32ton(field->value[n], size));
892 else /* unsigned values */
893 implement(data, offset + n * size, size, field->value[n]);
898 * Create a report.
901 void hid_output_report(struct hid_report *report, __u8 *data)
903 unsigned n;
905 if (report->id > 0)
906 *data++ = report->id;
908 for (n = 0; n < report->maxfield; n++)
909 hid_output_field(report->field[n], data);
911 EXPORT_SYMBOL_GPL(hid_output_report);
914 * Set a field value. The report this field belongs to has to be
915 * created and transferred to the device, to set this value in the
916 * device.
919 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
921 unsigned size = field->report_size;
923 hid_dump_input(field->usage + offset, value);
925 if (offset >= field->report_count) {
926 dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
927 hid_dump_field(field, 8);
928 return -1;
930 if (field->logical_minimum < 0) {
931 if (value != snto32(s32ton(value, size), size)) {
932 dbg_hid("value %d is out of range\n", value);
933 return -1;
936 field->value[offset] = value;
937 return 0;
939 EXPORT_SYMBOL_GPL(hid_set_field);
941 int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
943 struct hid_report_enum *report_enum = hid->report_enum + type;
944 struct hid_report *report;
945 int n, rsize, i;
947 if (!hid)
948 return -ENODEV;
950 if (!size) {
951 dbg_hid("empty report\n");
952 return -1;
955 dbg_hid("report (size %u) (%snumbered)\n", size, report_enum->numbered ? "" : "un");
957 n = 0; /* Normally report number is 0 */
958 if (report_enum->numbered) { /* Device uses numbered reports, data[0] is report number */
959 n = *data++;
960 size--;
963 /* dump the report descriptor */
964 dbg_hid("report %d (size %u) = ", n, size);
965 for (i = 0; i < size; i++)
966 dbg_hid_line(" %02x", data[i]);
967 dbg_hid_line("\n");
969 if (!(report = report_enum->report_id_hash[n])) {
970 dbg_hid("undefined report_id %d received\n", n);
971 return -1;
974 rsize = ((report->size - 1) >> 3) + 1;
976 if (size < rsize) {
977 dbg_hid("report %d is too short, (%d < %d)\n", report->id, size, rsize);
978 memset(data + size, 0, rsize - size);
981 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
982 hid->hiddev_report_event(hid, report);
983 if (hid->claimed & HID_CLAIMED_HIDRAW)
984 hidraw_report_event(hid, data, size);
986 for (n = 0; n < report->maxfield; n++)
987 hid_input_field(hid, report->field[n], data, interrupt);
989 if (hid->claimed & HID_CLAIMED_INPUT)
990 hidinput_report_event(hid, report);
992 return 0;
994 EXPORT_SYMBOL_GPL(hid_input_report);
996 static int __init hid_init(void)
998 return hidraw_init();
1001 static void __exit hid_exit(void)
1003 hidraw_exit();
1006 module_init(hid_init);
1007 module_exit(hid_exit);
1009 MODULE_LICENSE(DRIVER_LICENSE);