V4L/DVB (6715): ivtv: Remove unnecessary register update
[linux-2.6/verdex.git] / drivers / mtd / chips / cfi_cmdset_0020.c
blobb344ff858b2d7a6c220216050b6124b99e603e2f
1 /*
2 * Common Flash Interface support:
3 * ST Advanced Architecture Command Set (ID 0x0020)
5 * (C) 2000 Red Hat. GPL'd
7 * $Id: cfi_cmdset_0020.c,v 1.22 2005/11/07 11:14:22 gleixner Exp $
9 * 10/10/2000 Nicolas Pitre <nico@cam.org>
10 * - completely revamped method functions so they are aware and
11 * independent of the flash geometry (buswidth, interleave, etc.)
12 * - scalability vs code size is completely set at compile-time
13 * (see include/linux/mtd/cfi.h for selection)
14 * - optimized write buffer method
15 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
16 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
17 * (command set 0x0020)
18 * - added a writev function
19 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
20 * - Plugged memory leak in cfi_staa_writev().
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/cfi.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/compatmac.h>
41 static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
42 static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
43 static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
44 unsigned long count, loff_t to, size_t *retlen);
45 static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
46 static void cfi_staa_sync (struct mtd_info *);
47 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
48 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
49 static int cfi_staa_suspend (struct mtd_info *);
50 static void cfi_staa_resume (struct mtd_info *);
52 static void cfi_staa_destroy(struct mtd_info *);
54 struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
56 static struct mtd_info *cfi_staa_setup (struct map_info *);
58 static struct mtd_chip_driver cfi_staa_chipdrv = {
59 .probe = NULL, /* Not usable directly */
60 .destroy = cfi_staa_destroy,
61 .name = "cfi_cmdset_0020",
62 .module = THIS_MODULE
65 /* #define DEBUG_LOCK_BITS */
66 //#define DEBUG_CFI_FEATURES
68 #ifdef DEBUG_CFI_FEATURES
69 static void cfi_tell_features(struct cfi_pri_intelext *extp)
71 int i;
72 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
73 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
74 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
75 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
76 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
77 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
78 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
79 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
80 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
81 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
82 for (i=9; i<32; i++) {
83 if (extp->FeatureSupport & (1<<i))
84 printk(" - Unknown Bit %X: supported\n", i);
87 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
88 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
89 for (i=1; i<8; i++) {
90 if (extp->SuspendCmdSupport & (1<<i))
91 printk(" - Unknown Bit %X: supported\n", i);
94 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
95 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
96 printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
97 for (i=2; i<16; i++) {
98 if (extp->BlkStatusRegMask & (1<<i))
99 printk(" - Unknown Bit %X Active: yes\n",i);
102 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
103 extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
104 if (extp->VppOptimal)
105 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
106 extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
108 #endif
110 /* This routine is made available to other mtd code via
111 * inter_module_register. It must only be accessed through
112 * inter_module_get which will bump the use count of this module. The
113 * addresses passed back in cfi are valid as long as the use count of
114 * this module is non-zero, i.e. between inter_module_get and
115 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
117 struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
119 struct cfi_private *cfi = map->fldrv_priv;
120 int i;
122 if (cfi->cfi_mode) {
124 * It's a real CFI chip, not one for which the probe
125 * routine faked a CFI structure. So we read the feature
126 * table from it.
128 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
129 struct cfi_pri_intelext *extp;
131 extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
132 if (!extp)
133 return NULL;
135 if (extp->MajorVersion != '1' ||
136 (extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
137 printk(KERN_ERR " Unknown ST Microelectronics"
138 " Extended Query version %c.%c.\n",
139 extp->MajorVersion, extp->MinorVersion);
140 kfree(extp);
141 return NULL;
144 /* Do some byteswapping if necessary */
145 extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport);
146 extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask);
148 #ifdef DEBUG_CFI_FEATURES
149 /* Tell the user about it in lots of lovely detail */
150 cfi_tell_features(extp);
151 #endif
153 /* Install our own private info structure */
154 cfi->cmdset_priv = extp;
157 for (i=0; i< cfi->numchips; i++) {
158 cfi->chips[i].word_write_time = 128;
159 cfi->chips[i].buffer_write_time = 128;
160 cfi->chips[i].erase_time = 1024;
161 cfi->chips[i].ref_point_counter = 0;
162 init_waitqueue_head(&(cfi->chips[i].wq));
165 return cfi_staa_setup(map);
167 EXPORT_SYMBOL_GPL(cfi_cmdset_0020);
169 static struct mtd_info *cfi_staa_setup(struct map_info *map)
171 struct cfi_private *cfi = map->fldrv_priv;
172 struct mtd_info *mtd;
173 unsigned long offset = 0;
174 int i,j;
175 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
177 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
178 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
180 if (!mtd) {
181 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
182 kfree(cfi->cmdset_priv);
183 return NULL;
186 mtd->priv = map;
187 mtd->type = MTD_NORFLASH;
188 mtd->size = devsize * cfi->numchips;
190 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
191 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
192 * mtd->numeraseregions, GFP_KERNEL);
193 if (!mtd->eraseregions) {
194 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
195 kfree(cfi->cmdset_priv);
196 kfree(mtd);
197 return NULL;
200 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
201 unsigned long ernum, ersize;
202 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
203 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
205 if (mtd->erasesize < ersize) {
206 mtd->erasesize = ersize;
208 for (j=0; j<cfi->numchips; j++) {
209 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
210 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
211 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
213 offset += (ersize * ernum);
216 if (offset != devsize) {
217 /* Argh */
218 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
219 kfree(mtd->eraseregions);
220 kfree(cfi->cmdset_priv);
221 kfree(mtd);
222 return NULL;
225 for (i=0; i<mtd->numeraseregions;i++){
226 printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n",
227 i,mtd->eraseregions[i].offset,
228 mtd->eraseregions[i].erasesize,
229 mtd->eraseregions[i].numblocks);
232 /* Also select the correct geometry setup too */
233 mtd->erase = cfi_staa_erase_varsize;
234 mtd->read = cfi_staa_read;
235 mtd->write = cfi_staa_write_buffers;
236 mtd->writev = cfi_staa_writev;
237 mtd->sync = cfi_staa_sync;
238 mtd->lock = cfi_staa_lock;
239 mtd->unlock = cfi_staa_unlock;
240 mtd->suspend = cfi_staa_suspend;
241 mtd->resume = cfi_staa_resume;
242 mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
243 mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
244 map->fldrv = &cfi_staa_chipdrv;
245 __module_get(THIS_MODULE);
246 mtd->name = map->name;
247 return mtd;
251 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
253 map_word status, status_OK;
254 unsigned long timeo;
255 DECLARE_WAITQUEUE(wait, current);
256 int suspended = 0;
257 unsigned long cmd_addr;
258 struct cfi_private *cfi = map->fldrv_priv;
260 adr += chip->start;
262 /* Ensure cmd read/writes are aligned. */
263 cmd_addr = adr & ~(map_bankwidth(map)-1);
265 /* Let's determine this according to the interleave only once */
266 status_OK = CMD(0x80);
268 timeo = jiffies + HZ;
269 retry:
270 spin_lock_bh(chip->mutex);
272 /* Check that the chip's ready to talk to us.
273 * If it's in FL_ERASING state, suspend it and make it talk now.
275 switch (chip->state) {
276 case FL_ERASING:
277 if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
278 goto sleep; /* We don't support erase suspend */
280 map_write (map, CMD(0xb0), cmd_addr);
281 /* If the flash has finished erasing, then 'erase suspend'
282 * appears to make some (28F320) flash devices switch to
283 * 'read' mode. Make sure that we switch to 'read status'
284 * mode so we get the right data. --rmk
286 map_write(map, CMD(0x70), cmd_addr);
287 chip->oldstate = FL_ERASING;
288 chip->state = FL_ERASE_SUSPENDING;
289 // printk("Erase suspending at 0x%lx\n", cmd_addr);
290 for (;;) {
291 status = map_read(map, cmd_addr);
292 if (map_word_andequal(map, status, status_OK, status_OK))
293 break;
295 if (time_after(jiffies, timeo)) {
296 /* Urgh */
297 map_write(map, CMD(0xd0), cmd_addr);
298 /* make sure we're in 'read status' mode */
299 map_write(map, CMD(0x70), cmd_addr);
300 chip->state = FL_ERASING;
301 spin_unlock_bh(chip->mutex);
302 printk(KERN_ERR "Chip not ready after erase "
303 "suspended: status = 0x%lx\n", status.x[0]);
304 return -EIO;
307 spin_unlock_bh(chip->mutex);
308 cfi_udelay(1);
309 spin_lock_bh(chip->mutex);
312 suspended = 1;
313 map_write(map, CMD(0xff), cmd_addr);
314 chip->state = FL_READY;
315 break;
317 #if 0
318 case FL_WRITING:
319 /* Not quite yet */
320 #endif
322 case FL_READY:
323 break;
325 case FL_CFI_QUERY:
326 case FL_JEDEC_QUERY:
327 map_write(map, CMD(0x70), cmd_addr);
328 chip->state = FL_STATUS;
330 case FL_STATUS:
331 status = map_read(map, cmd_addr);
332 if (map_word_andequal(map, status, status_OK, status_OK)) {
333 map_write(map, CMD(0xff), cmd_addr);
334 chip->state = FL_READY;
335 break;
338 /* Urgh. Chip not yet ready to talk to us. */
339 if (time_after(jiffies, timeo)) {
340 spin_unlock_bh(chip->mutex);
341 printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
342 return -EIO;
345 /* Latency issues. Drop the lock, wait a while and retry */
346 spin_unlock_bh(chip->mutex);
347 cfi_udelay(1);
348 goto retry;
350 default:
351 sleep:
352 /* Stick ourselves on a wait queue to be woken when
353 someone changes the status */
354 set_current_state(TASK_UNINTERRUPTIBLE);
355 add_wait_queue(&chip->wq, &wait);
356 spin_unlock_bh(chip->mutex);
357 schedule();
358 remove_wait_queue(&chip->wq, &wait);
359 timeo = jiffies + HZ;
360 goto retry;
363 map_copy_from(map, buf, adr, len);
365 if (suspended) {
366 chip->state = chip->oldstate;
367 /* What if one interleaved chip has finished and the
368 other hasn't? The old code would leave the finished
369 one in READY mode. That's bad, and caused -EROFS
370 errors to be returned from do_erase_oneblock because
371 that's the only bit it checked for at the time.
372 As the state machine appears to explicitly allow
373 sending the 0x70 (Read Status) command to an erasing
374 chip and expecting it to be ignored, that's what we
375 do. */
376 map_write(map, CMD(0xd0), cmd_addr);
377 map_write(map, CMD(0x70), cmd_addr);
380 wake_up(&chip->wq);
381 spin_unlock_bh(chip->mutex);
382 return 0;
385 static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
387 struct map_info *map = mtd->priv;
388 struct cfi_private *cfi = map->fldrv_priv;
389 unsigned long ofs;
390 int chipnum;
391 int ret = 0;
393 /* ofs: offset within the first chip that the first read should start */
394 chipnum = (from >> cfi->chipshift);
395 ofs = from - (chipnum << cfi->chipshift);
397 *retlen = 0;
399 while (len) {
400 unsigned long thislen;
402 if (chipnum >= cfi->numchips)
403 break;
405 if ((len + ofs -1) >> cfi->chipshift)
406 thislen = (1<<cfi->chipshift) - ofs;
407 else
408 thislen = len;
410 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
411 if (ret)
412 break;
414 *retlen += thislen;
415 len -= thislen;
416 buf += thislen;
418 ofs = 0;
419 chipnum++;
421 return ret;
424 static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
425 unsigned long adr, const u_char *buf, int len)
427 struct cfi_private *cfi = map->fldrv_priv;
428 map_word status, status_OK;
429 unsigned long cmd_adr, timeo;
430 DECLARE_WAITQUEUE(wait, current);
431 int wbufsize, z;
433 /* M58LW064A requires bus alignment for buffer wriets -- saw */
434 if (adr & (map_bankwidth(map)-1))
435 return -EINVAL;
437 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
438 adr += chip->start;
439 cmd_adr = adr & ~(wbufsize-1);
441 /* Let's determine this according to the interleave only once */
442 status_OK = CMD(0x80);
444 timeo = jiffies + HZ;
445 retry:
447 #ifdef DEBUG_CFI_FEATURES
448 printk("%s: chip->state[%d]\n", __FUNCTION__, chip->state);
449 #endif
450 spin_lock_bh(chip->mutex);
452 /* Check that the chip's ready to talk to us.
453 * Later, we can actually think about interrupting it
454 * if it's in FL_ERASING state.
455 * Not just yet, though.
457 switch (chip->state) {
458 case FL_READY:
459 break;
461 case FL_CFI_QUERY:
462 case FL_JEDEC_QUERY:
463 map_write(map, CMD(0x70), cmd_adr);
464 chip->state = FL_STATUS;
465 #ifdef DEBUG_CFI_FEATURES
466 printk("%s: 1 status[%x]\n", __FUNCTION__, map_read(map, cmd_adr));
467 #endif
469 case FL_STATUS:
470 status = map_read(map, cmd_adr);
471 if (map_word_andequal(map, status, status_OK, status_OK))
472 break;
473 /* Urgh. Chip not yet ready to talk to us. */
474 if (time_after(jiffies, timeo)) {
475 spin_unlock_bh(chip->mutex);
476 printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
477 status.x[0], map_read(map, cmd_adr).x[0]);
478 return -EIO;
481 /* Latency issues. Drop the lock, wait a while and retry */
482 spin_unlock_bh(chip->mutex);
483 cfi_udelay(1);
484 goto retry;
486 default:
487 /* Stick ourselves on a wait queue to be woken when
488 someone changes the status */
489 set_current_state(TASK_UNINTERRUPTIBLE);
490 add_wait_queue(&chip->wq, &wait);
491 spin_unlock_bh(chip->mutex);
492 schedule();
493 remove_wait_queue(&chip->wq, &wait);
494 timeo = jiffies + HZ;
495 goto retry;
498 ENABLE_VPP(map);
499 map_write(map, CMD(0xe8), cmd_adr);
500 chip->state = FL_WRITING_TO_BUFFER;
502 z = 0;
503 for (;;) {
504 status = map_read(map, cmd_adr);
505 if (map_word_andequal(map, status, status_OK, status_OK))
506 break;
508 spin_unlock_bh(chip->mutex);
509 cfi_udelay(1);
510 spin_lock_bh(chip->mutex);
512 if (++z > 100) {
513 /* Argh. Not ready for write to buffer */
514 DISABLE_VPP(map);
515 map_write(map, CMD(0x70), cmd_adr);
516 chip->state = FL_STATUS;
517 spin_unlock_bh(chip->mutex);
518 printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
519 return -EIO;
523 /* Write length of data to come */
524 map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );
526 /* Write data */
527 for (z = 0; z < len;
528 z += map_bankwidth(map), buf += map_bankwidth(map)) {
529 map_word d;
530 d = map_word_load(map, buf);
531 map_write(map, d, adr+z);
533 /* GO GO GO */
534 map_write(map, CMD(0xd0), cmd_adr);
535 chip->state = FL_WRITING;
537 spin_unlock_bh(chip->mutex);
538 cfi_udelay(chip->buffer_write_time);
539 spin_lock_bh(chip->mutex);
541 timeo = jiffies + (HZ/2);
542 z = 0;
543 for (;;) {
544 if (chip->state != FL_WRITING) {
545 /* Someone's suspended the write. Sleep */
546 set_current_state(TASK_UNINTERRUPTIBLE);
547 add_wait_queue(&chip->wq, &wait);
548 spin_unlock_bh(chip->mutex);
549 schedule();
550 remove_wait_queue(&chip->wq, &wait);
551 timeo = jiffies + (HZ / 2); /* FIXME */
552 spin_lock_bh(chip->mutex);
553 continue;
556 status = map_read(map, cmd_adr);
557 if (map_word_andequal(map, status, status_OK, status_OK))
558 break;
560 /* OK Still waiting */
561 if (time_after(jiffies, timeo)) {
562 /* clear status */
563 map_write(map, CMD(0x50), cmd_adr);
564 /* put back into read status register mode */
565 map_write(map, CMD(0x70), adr);
566 chip->state = FL_STATUS;
567 DISABLE_VPP(map);
568 spin_unlock_bh(chip->mutex);
569 printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
570 return -EIO;
573 /* Latency issues. Drop the lock, wait a while and retry */
574 spin_unlock_bh(chip->mutex);
575 cfi_udelay(1);
576 z++;
577 spin_lock_bh(chip->mutex);
579 if (!z) {
580 chip->buffer_write_time--;
581 if (!chip->buffer_write_time)
582 chip->buffer_write_time++;
584 if (z > 1)
585 chip->buffer_write_time++;
587 /* Done and happy. */
588 DISABLE_VPP(map);
589 chip->state = FL_STATUS;
591 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
592 if (map_word_bitsset(map, status, CMD(0x3a))) {
593 #ifdef DEBUG_CFI_FEATURES
594 printk("%s: 2 status[%lx]\n", __FUNCTION__, status.x[0]);
595 #endif
596 /* clear status */
597 map_write(map, CMD(0x50), cmd_adr);
598 /* put back into read status register mode */
599 map_write(map, CMD(0x70), adr);
600 wake_up(&chip->wq);
601 spin_unlock_bh(chip->mutex);
602 return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
604 wake_up(&chip->wq);
605 spin_unlock_bh(chip->mutex);
607 return 0;
610 static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
611 size_t len, size_t *retlen, const u_char *buf)
613 struct map_info *map = mtd->priv;
614 struct cfi_private *cfi = map->fldrv_priv;
615 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
616 int ret = 0;
617 int chipnum;
618 unsigned long ofs;
620 *retlen = 0;
621 if (!len)
622 return 0;
624 chipnum = to >> cfi->chipshift;
625 ofs = to - (chipnum << cfi->chipshift);
627 #ifdef DEBUG_CFI_FEATURES
628 printk("%s: map_bankwidth(map)[%x]\n", __FUNCTION__, map_bankwidth(map));
629 printk("%s: chipnum[%x] wbufsize[%x]\n", __FUNCTION__, chipnum, wbufsize);
630 printk("%s: ofs[%x] len[%x]\n", __FUNCTION__, ofs, len);
631 #endif
633 /* Write buffer is worth it only if more than one word to write... */
634 while (len > 0) {
635 /* We must not cross write block boundaries */
636 int size = wbufsize - (ofs & (wbufsize-1));
638 if (size > len)
639 size = len;
641 ret = do_write_buffer(map, &cfi->chips[chipnum],
642 ofs, buf, size);
643 if (ret)
644 return ret;
646 ofs += size;
647 buf += size;
648 (*retlen) += size;
649 len -= size;
651 if (ofs >> cfi->chipshift) {
652 chipnum ++;
653 ofs = 0;
654 if (chipnum == cfi->numchips)
655 return 0;
659 return 0;
663 * Writev for ECC-Flashes is a little more complicated. We need to maintain
664 * a small buffer for this.
665 * XXX: If the buffer size is not a multiple of 2, this will break
667 #define ECCBUF_SIZE (mtd->writesize)
668 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
669 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
670 static int
671 cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
672 unsigned long count, loff_t to, size_t *retlen)
674 unsigned long i;
675 size_t totlen = 0, thislen;
676 int ret = 0;
677 size_t buflen = 0;
678 static char *buffer;
680 if (!ECCBUF_SIZE) {
681 /* We should fall back to a general writev implementation.
682 * Until that is written, just break.
684 return -EIO;
686 buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
687 if (!buffer)
688 return -ENOMEM;
690 for (i=0; i<count; i++) {
691 size_t elem_len = vecs[i].iov_len;
692 void *elem_base = vecs[i].iov_base;
693 if (!elem_len) /* FIXME: Might be unnecessary. Check that */
694 continue;
695 if (buflen) { /* cut off head */
696 if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
697 memcpy(buffer+buflen, elem_base, elem_len);
698 buflen += elem_len;
699 continue;
701 memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
702 ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer);
703 totlen += thislen;
704 if (ret || thislen != ECCBUF_SIZE)
705 goto write_error;
706 elem_len -= thislen-buflen;
707 elem_base += thislen-buflen;
708 to += ECCBUF_SIZE;
710 if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
711 ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base);
712 totlen += thislen;
713 if (ret || thislen != ECCBUF_DIV(elem_len))
714 goto write_error;
715 to += thislen;
717 buflen = ECCBUF_MOD(elem_len); /* cut off tail */
718 if (buflen) {
719 memset(buffer, 0xff, ECCBUF_SIZE);
720 memcpy(buffer, elem_base + thislen, buflen);
723 if (buflen) { /* flush last page, even if not full */
724 /* This is sometimes intended behaviour, really */
725 ret = mtd->write(mtd, to, buflen, &thislen, buffer);
726 totlen += thislen;
727 if (ret || thislen != ECCBUF_SIZE)
728 goto write_error;
730 write_error:
731 if (retlen)
732 *retlen = totlen;
733 kfree(buffer);
734 return ret;
738 static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
740 struct cfi_private *cfi = map->fldrv_priv;
741 map_word status, status_OK;
742 unsigned long timeo;
743 int retries = 3;
744 DECLARE_WAITQUEUE(wait, current);
745 int ret = 0;
747 adr += chip->start;
749 /* Let's determine this according to the interleave only once */
750 status_OK = CMD(0x80);
752 timeo = jiffies + HZ;
753 retry:
754 spin_lock_bh(chip->mutex);
756 /* Check that the chip's ready to talk to us. */
757 switch (chip->state) {
758 case FL_CFI_QUERY:
759 case FL_JEDEC_QUERY:
760 case FL_READY:
761 map_write(map, CMD(0x70), adr);
762 chip->state = FL_STATUS;
764 case FL_STATUS:
765 status = map_read(map, adr);
766 if (map_word_andequal(map, status, status_OK, status_OK))
767 break;
769 /* Urgh. Chip not yet ready to talk to us. */
770 if (time_after(jiffies, timeo)) {
771 spin_unlock_bh(chip->mutex);
772 printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
773 return -EIO;
776 /* Latency issues. Drop the lock, wait a while and retry */
777 spin_unlock_bh(chip->mutex);
778 cfi_udelay(1);
779 goto retry;
781 default:
782 /* Stick ourselves on a wait queue to be woken when
783 someone changes the status */
784 set_current_state(TASK_UNINTERRUPTIBLE);
785 add_wait_queue(&chip->wq, &wait);
786 spin_unlock_bh(chip->mutex);
787 schedule();
788 remove_wait_queue(&chip->wq, &wait);
789 timeo = jiffies + HZ;
790 goto retry;
793 ENABLE_VPP(map);
794 /* Clear the status register first */
795 map_write(map, CMD(0x50), adr);
797 /* Now erase */
798 map_write(map, CMD(0x20), adr);
799 map_write(map, CMD(0xD0), adr);
800 chip->state = FL_ERASING;
802 spin_unlock_bh(chip->mutex);
803 msleep(1000);
804 spin_lock_bh(chip->mutex);
806 /* FIXME. Use a timer to check this, and return immediately. */
807 /* Once the state machine's known to be working I'll do that */
809 timeo = jiffies + (HZ*20);
810 for (;;) {
811 if (chip->state != FL_ERASING) {
812 /* Someone's suspended the erase. Sleep */
813 set_current_state(TASK_UNINTERRUPTIBLE);
814 add_wait_queue(&chip->wq, &wait);
815 spin_unlock_bh(chip->mutex);
816 schedule();
817 remove_wait_queue(&chip->wq, &wait);
818 timeo = jiffies + (HZ*20); /* FIXME */
819 spin_lock_bh(chip->mutex);
820 continue;
823 status = map_read(map, adr);
824 if (map_word_andequal(map, status, status_OK, status_OK))
825 break;
827 /* OK Still waiting */
828 if (time_after(jiffies, timeo)) {
829 map_write(map, CMD(0x70), adr);
830 chip->state = FL_STATUS;
831 printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
832 DISABLE_VPP(map);
833 spin_unlock_bh(chip->mutex);
834 return -EIO;
837 /* Latency issues. Drop the lock, wait a while and retry */
838 spin_unlock_bh(chip->mutex);
839 cfi_udelay(1);
840 spin_lock_bh(chip->mutex);
843 DISABLE_VPP(map);
844 ret = 0;
846 /* We've broken this before. It doesn't hurt to be safe */
847 map_write(map, CMD(0x70), adr);
848 chip->state = FL_STATUS;
849 status = map_read(map, adr);
851 /* check for lock bit */
852 if (map_word_bitsset(map, status, CMD(0x3a))) {
853 unsigned char chipstatus = status.x[0];
854 if (!map_word_equal(map, status, CMD(chipstatus))) {
855 int i, w;
856 for (w=0; w<map_words(map); w++) {
857 for (i = 0; i<cfi_interleave(cfi); i++) {
858 chipstatus |= status.x[w] >> (cfi->device_type * 8);
861 printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
862 status.x[0], chipstatus);
864 /* Reset the error bits */
865 map_write(map, CMD(0x50), adr);
866 map_write(map, CMD(0x70), adr);
868 if ((chipstatus & 0x30) == 0x30) {
869 printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
870 ret = -EIO;
871 } else if (chipstatus & 0x02) {
872 /* Protection bit set */
873 ret = -EROFS;
874 } else if (chipstatus & 0x8) {
875 /* Voltage */
876 printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
877 ret = -EIO;
878 } else if (chipstatus & 0x20) {
879 if (retries--) {
880 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
881 timeo = jiffies + HZ;
882 chip->state = FL_STATUS;
883 spin_unlock_bh(chip->mutex);
884 goto retry;
886 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
887 ret = -EIO;
891 wake_up(&chip->wq);
892 spin_unlock_bh(chip->mutex);
893 return ret;
896 int cfi_staa_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
897 { struct map_info *map = mtd->priv;
898 struct cfi_private *cfi = map->fldrv_priv;
899 unsigned long adr, len;
900 int chipnum, ret = 0;
901 int i, first;
902 struct mtd_erase_region_info *regions = mtd->eraseregions;
904 if (instr->addr > mtd->size)
905 return -EINVAL;
907 if ((instr->len + instr->addr) > mtd->size)
908 return -EINVAL;
910 /* Check that both start and end of the requested erase are
911 * aligned with the erasesize at the appropriate addresses.
914 i = 0;
916 /* Skip all erase regions which are ended before the start of
917 the requested erase. Actually, to save on the calculations,
918 we skip to the first erase region which starts after the
919 start of the requested erase, and then go back one.
922 while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
923 i++;
924 i--;
926 /* OK, now i is pointing at the erase region in which this
927 erase request starts. Check the start of the requested
928 erase range is aligned with the erase size which is in
929 effect here.
932 if (instr->addr & (regions[i].erasesize-1))
933 return -EINVAL;
935 /* Remember the erase region we start on */
936 first = i;
938 /* Next, check that the end of the requested erase is aligned
939 * with the erase region at that address.
942 while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
943 i++;
945 /* As before, drop back one to point at the region in which
946 the address actually falls
948 i--;
950 if ((instr->addr + instr->len) & (regions[i].erasesize-1))
951 return -EINVAL;
953 chipnum = instr->addr >> cfi->chipshift;
954 adr = instr->addr - (chipnum << cfi->chipshift);
955 len = instr->len;
957 i=first;
959 while(len) {
960 ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
962 if (ret)
963 return ret;
965 adr += regions[i].erasesize;
966 len -= regions[i].erasesize;
968 if (adr % (1<< cfi->chipshift) == ((regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
969 i++;
971 if (adr >> cfi->chipshift) {
972 adr = 0;
973 chipnum++;
975 if (chipnum >= cfi->numchips)
976 break;
980 instr->state = MTD_ERASE_DONE;
981 mtd_erase_callback(instr);
983 return 0;
986 static void cfi_staa_sync (struct mtd_info *mtd)
988 struct map_info *map = mtd->priv;
989 struct cfi_private *cfi = map->fldrv_priv;
990 int i;
991 struct flchip *chip;
992 int ret = 0;
993 DECLARE_WAITQUEUE(wait, current);
995 for (i=0; !ret && i<cfi->numchips; i++) {
996 chip = &cfi->chips[i];
998 retry:
999 spin_lock_bh(chip->mutex);
1001 switch(chip->state) {
1002 case FL_READY:
1003 case FL_STATUS:
1004 case FL_CFI_QUERY:
1005 case FL_JEDEC_QUERY:
1006 chip->oldstate = chip->state;
1007 chip->state = FL_SYNCING;
1008 /* No need to wake_up() on this state change -
1009 * as the whole point is that nobody can do anything
1010 * with the chip now anyway.
1012 case FL_SYNCING:
1013 spin_unlock_bh(chip->mutex);
1014 break;
1016 default:
1017 /* Not an idle state */
1018 add_wait_queue(&chip->wq, &wait);
1020 spin_unlock_bh(chip->mutex);
1021 schedule();
1022 remove_wait_queue(&chip->wq, &wait);
1024 goto retry;
1028 /* Unlock the chips again */
1030 for (i--; i >=0; i--) {
1031 chip = &cfi->chips[i];
1033 spin_lock_bh(chip->mutex);
1035 if (chip->state == FL_SYNCING) {
1036 chip->state = chip->oldstate;
1037 wake_up(&chip->wq);
1039 spin_unlock_bh(chip->mutex);
1043 static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1045 struct cfi_private *cfi = map->fldrv_priv;
1046 map_word status, status_OK;
1047 unsigned long timeo = jiffies + HZ;
1048 DECLARE_WAITQUEUE(wait, current);
1050 adr += chip->start;
1052 /* Let's determine this according to the interleave only once */
1053 status_OK = CMD(0x80);
1055 timeo = jiffies + HZ;
1056 retry:
1057 spin_lock_bh(chip->mutex);
1059 /* Check that the chip's ready to talk to us. */
1060 switch (chip->state) {
1061 case FL_CFI_QUERY:
1062 case FL_JEDEC_QUERY:
1063 case FL_READY:
1064 map_write(map, CMD(0x70), adr);
1065 chip->state = FL_STATUS;
1067 case FL_STATUS:
1068 status = map_read(map, adr);
1069 if (map_word_andequal(map, status, status_OK, status_OK))
1070 break;
1072 /* Urgh. Chip not yet ready to talk to us. */
1073 if (time_after(jiffies, timeo)) {
1074 spin_unlock_bh(chip->mutex);
1075 printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
1076 return -EIO;
1079 /* Latency issues. Drop the lock, wait a while and retry */
1080 spin_unlock_bh(chip->mutex);
1081 cfi_udelay(1);
1082 goto retry;
1084 default:
1085 /* Stick ourselves on a wait queue to be woken when
1086 someone changes the status */
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 add_wait_queue(&chip->wq, &wait);
1089 spin_unlock_bh(chip->mutex);
1090 schedule();
1091 remove_wait_queue(&chip->wq, &wait);
1092 timeo = jiffies + HZ;
1093 goto retry;
1096 ENABLE_VPP(map);
1097 map_write(map, CMD(0x60), adr);
1098 map_write(map, CMD(0x01), adr);
1099 chip->state = FL_LOCKING;
1101 spin_unlock_bh(chip->mutex);
1102 msleep(1000);
1103 spin_lock_bh(chip->mutex);
1105 /* FIXME. Use a timer to check this, and return immediately. */
1106 /* Once the state machine's known to be working I'll do that */
1108 timeo = jiffies + (HZ*2);
1109 for (;;) {
1111 status = map_read(map, adr);
1112 if (map_word_andequal(map, status, status_OK, status_OK))
1113 break;
1115 /* OK Still waiting */
1116 if (time_after(jiffies, timeo)) {
1117 map_write(map, CMD(0x70), adr);
1118 chip->state = FL_STATUS;
1119 printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1120 DISABLE_VPP(map);
1121 spin_unlock_bh(chip->mutex);
1122 return -EIO;
1125 /* Latency issues. Drop the lock, wait a while and retry */
1126 spin_unlock_bh(chip->mutex);
1127 cfi_udelay(1);
1128 spin_lock_bh(chip->mutex);
1131 /* Done and happy. */
1132 chip->state = FL_STATUS;
1133 DISABLE_VPP(map);
1134 wake_up(&chip->wq);
1135 spin_unlock_bh(chip->mutex);
1136 return 0;
1138 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1140 struct map_info *map = mtd->priv;
1141 struct cfi_private *cfi = map->fldrv_priv;
1142 unsigned long adr;
1143 int chipnum, ret = 0;
1144 #ifdef DEBUG_LOCK_BITS
1145 int ofs_factor = cfi->interleave * cfi->device_type;
1146 #endif
1148 if (ofs & (mtd->erasesize - 1))
1149 return -EINVAL;
1151 if (len & (mtd->erasesize -1))
1152 return -EINVAL;
1154 if ((len + ofs) > mtd->size)
1155 return -EINVAL;
1157 chipnum = ofs >> cfi->chipshift;
1158 adr = ofs - (chipnum << cfi->chipshift);
1160 while(len) {
1162 #ifdef DEBUG_LOCK_BITS
1163 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1164 printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1165 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1166 #endif
1168 ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
1170 #ifdef DEBUG_LOCK_BITS
1171 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1172 printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1173 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1174 #endif
1176 if (ret)
1177 return ret;
1179 adr += mtd->erasesize;
1180 len -= mtd->erasesize;
1182 if (adr >> cfi->chipshift) {
1183 adr = 0;
1184 chipnum++;
1186 if (chipnum >= cfi->numchips)
1187 break;
1190 return 0;
1192 static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1194 struct cfi_private *cfi = map->fldrv_priv;
1195 map_word status, status_OK;
1196 unsigned long timeo = jiffies + HZ;
1197 DECLARE_WAITQUEUE(wait, current);
1199 adr += chip->start;
1201 /* Let's determine this according to the interleave only once */
1202 status_OK = CMD(0x80);
1204 timeo = jiffies + HZ;
1205 retry:
1206 spin_lock_bh(chip->mutex);
1208 /* Check that the chip's ready to talk to us. */
1209 switch (chip->state) {
1210 case FL_CFI_QUERY:
1211 case FL_JEDEC_QUERY:
1212 case FL_READY:
1213 map_write(map, CMD(0x70), adr);
1214 chip->state = FL_STATUS;
1216 case FL_STATUS:
1217 status = map_read(map, adr);
1218 if (map_word_andequal(map, status, status_OK, status_OK))
1219 break;
1221 /* Urgh. Chip not yet ready to talk to us. */
1222 if (time_after(jiffies, timeo)) {
1223 spin_unlock_bh(chip->mutex);
1224 printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
1225 return -EIO;
1228 /* Latency issues. Drop the lock, wait a while and retry */
1229 spin_unlock_bh(chip->mutex);
1230 cfi_udelay(1);
1231 goto retry;
1233 default:
1234 /* Stick ourselves on a wait queue to be woken when
1235 someone changes the status */
1236 set_current_state(TASK_UNINTERRUPTIBLE);
1237 add_wait_queue(&chip->wq, &wait);
1238 spin_unlock_bh(chip->mutex);
1239 schedule();
1240 remove_wait_queue(&chip->wq, &wait);
1241 timeo = jiffies + HZ;
1242 goto retry;
1245 ENABLE_VPP(map);
1246 map_write(map, CMD(0x60), adr);
1247 map_write(map, CMD(0xD0), adr);
1248 chip->state = FL_UNLOCKING;
1250 spin_unlock_bh(chip->mutex);
1251 msleep(1000);
1252 spin_lock_bh(chip->mutex);
1254 /* FIXME. Use a timer to check this, and return immediately. */
1255 /* Once the state machine's known to be working I'll do that */
1257 timeo = jiffies + (HZ*2);
1258 for (;;) {
1260 status = map_read(map, adr);
1261 if (map_word_andequal(map, status, status_OK, status_OK))
1262 break;
1264 /* OK Still waiting */
1265 if (time_after(jiffies, timeo)) {
1266 map_write(map, CMD(0x70), adr);
1267 chip->state = FL_STATUS;
1268 printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1269 DISABLE_VPP(map);
1270 spin_unlock_bh(chip->mutex);
1271 return -EIO;
1274 /* Latency issues. Drop the unlock, wait a while and retry */
1275 spin_unlock_bh(chip->mutex);
1276 cfi_udelay(1);
1277 spin_lock_bh(chip->mutex);
1280 /* Done and happy. */
1281 chip->state = FL_STATUS;
1282 DISABLE_VPP(map);
1283 wake_up(&chip->wq);
1284 spin_unlock_bh(chip->mutex);
1285 return 0;
1287 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1289 struct map_info *map = mtd->priv;
1290 struct cfi_private *cfi = map->fldrv_priv;
1291 unsigned long adr;
1292 int chipnum, ret = 0;
1293 #ifdef DEBUG_LOCK_BITS
1294 int ofs_factor = cfi->interleave * cfi->device_type;
1295 #endif
1297 chipnum = ofs >> cfi->chipshift;
1298 adr = ofs - (chipnum << cfi->chipshift);
1300 #ifdef DEBUG_LOCK_BITS
1302 unsigned long temp_adr = adr;
1303 unsigned long temp_len = len;
1305 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1306 while (temp_len) {
1307 printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
1308 temp_adr += mtd->erasesize;
1309 temp_len -= mtd->erasesize;
1311 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1313 #endif
1315 ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
1317 #ifdef DEBUG_LOCK_BITS
1318 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1319 printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1320 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1321 #endif
1323 return ret;
1326 static int cfi_staa_suspend(struct mtd_info *mtd)
1328 struct map_info *map = mtd->priv;
1329 struct cfi_private *cfi = map->fldrv_priv;
1330 int i;
1331 struct flchip *chip;
1332 int ret = 0;
1334 for (i=0; !ret && i<cfi->numchips; i++) {
1335 chip = &cfi->chips[i];
1337 spin_lock_bh(chip->mutex);
1339 switch(chip->state) {
1340 case FL_READY:
1341 case FL_STATUS:
1342 case FL_CFI_QUERY:
1343 case FL_JEDEC_QUERY:
1344 chip->oldstate = chip->state;
1345 chip->state = FL_PM_SUSPENDED;
1346 /* No need to wake_up() on this state change -
1347 * as the whole point is that nobody can do anything
1348 * with the chip now anyway.
1350 case FL_PM_SUSPENDED:
1351 break;
1353 default:
1354 ret = -EAGAIN;
1355 break;
1357 spin_unlock_bh(chip->mutex);
1360 /* Unlock the chips again */
1362 if (ret) {
1363 for (i--; i >=0; i--) {
1364 chip = &cfi->chips[i];
1366 spin_lock_bh(chip->mutex);
1368 if (chip->state == FL_PM_SUSPENDED) {
1369 /* No need to force it into a known state here,
1370 because we're returning failure, and it didn't
1371 get power cycled */
1372 chip->state = chip->oldstate;
1373 wake_up(&chip->wq);
1375 spin_unlock_bh(chip->mutex);
1379 return ret;
1382 static void cfi_staa_resume(struct mtd_info *mtd)
1384 struct map_info *map = mtd->priv;
1385 struct cfi_private *cfi = map->fldrv_priv;
1386 int i;
1387 struct flchip *chip;
1389 for (i=0; i<cfi->numchips; i++) {
1391 chip = &cfi->chips[i];
1393 spin_lock_bh(chip->mutex);
1395 /* Go to known state. Chip may have been power cycled */
1396 if (chip->state == FL_PM_SUSPENDED) {
1397 map_write(map, CMD(0xFF), 0);
1398 chip->state = FL_READY;
1399 wake_up(&chip->wq);
1402 spin_unlock_bh(chip->mutex);
1406 static void cfi_staa_destroy(struct mtd_info *mtd)
1408 struct map_info *map = mtd->priv;
1409 struct cfi_private *cfi = map->fldrv_priv;
1410 kfree(cfi->cmdset_priv);
1411 kfree(cfi);
1414 MODULE_LICENSE("GPL");