V4L/DVB (6715): ivtv: Remove unnecessary register update
[linux-2.6/verdex.git] / drivers / mtd / nand / nand_ecc.c
blob9003a135e0502089f6a8e44f77f26b129a849375
1 /*
2 * This file contains an ECC algorithm from Toshiba that detects and
3 * corrects 1 bit errors in a 256 byte block of data.
5 * drivers/mtd/nand/nand_ecc.c
7 * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
8 * Toshiba America Electronics Components, Inc.
10 * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de>
12 * $Id: nand_ecc.c,v 1.15 2005/11/07 11:14:30 gleixner Exp $
14 * This file is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 or (at your option) any
17 * later version.
19 * This file is distributed in the hope that it will be useful, but WITHOUT
20 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
21 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22 * for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this file; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * As a special exception, if other files instantiate templates or use
29 * macros or inline functions from these files, or you compile these
30 * files and link them with other works to produce a work based on these
31 * files, these files do not by themselves cause the resulting work to be
32 * covered by the GNU General Public License. However the source code for
33 * these files must still be made available in accordance with section (3)
34 * of the GNU General Public License.
36 * This exception does not invalidate any other reasons why a work based on
37 * this file might be covered by the GNU General Public License.
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/mtd/nand_ecc.h>
46 * Pre-calculated 256-way 1 byte column parity
48 static const u_char nand_ecc_precalc_table[] = {
49 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
50 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
51 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
52 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
53 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
54 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
55 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
56 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
57 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
58 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
59 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
60 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
61 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
62 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
63 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
64 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
67 /**
68 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
69 * @mtd: MTD block structure
70 * @dat: raw data
71 * @ecc_code: buffer for ECC
73 int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
74 u_char *ecc_code)
76 uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
77 int i;
79 /* Initialize variables */
80 reg1 = reg2 = reg3 = 0;
82 /* Build up column parity */
83 for(i = 0; i < 256; i++) {
84 /* Get CP0 - CP5 from table */
85 idx = nand_ecc_precalc_table[*dat++];
86 reg1 ^= (idx & 0x3f);
88 /* All bit XOR = 1 ? */
89 if (idx & 0x40) {
90 reg3 ^= (uint8_t) i;
91 reg2 ^= ~((uint8_t) i);
95 /* Create non-inverted ECC code from line parity */
96 tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */
97 tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
98 tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
99 tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
100 tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
101 tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
102 tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
103 tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
105 tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */
106 tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
107 tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
108 tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
109 tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
110 tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
111 tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
112 tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
114 /* Calculate final ECC code */
115 #ifdef CONFIG_MTD_NAND_ECC_SMC
116 ecc_code[0] = ~tmp2;
117 ecc_code[1] = ~tmp1;
118 #else
119 ecc_code[0] = ~tmp1;
120 ecc_code[1] = ~tmp2;
121 #endif
122 ecc_code[2] = ((~reg1) << 2) | 0x03;
124 return 0;
126 EXPORT_SYMBOL(nand_calculate_ecc);
128 static inline int countbits(uint32_t byte)
130 int res = 0;
132 for (;byte; byte >>= 1)
133 res += byte & 0x01;
134 return res;
138 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
139 * @mtd: MTD block structure
140 * @dat: raw data read from the chip
141 * @read_ecc: ECC from the chip
142 * @calc_ecc: the ECC calculated from raw data
144 * Detect and correct a 1 bit error for 256 byte block
146 int nand_correct_data(struct mtd_info *mtd, u_char *dat,
147 u_char *read_ecc, u_char *calc_ecc)
149 uint8_t s0, s1, s2;
151 #ifdef CONFIG_MTD_NAND_ECC_SMC
152 s0 = calc_ecc[0] ^ read_ecc[0];
153 s1 = calc_ecc[1] ^ read_ecc[1];
154 s2 = calc_ecc[2] ^ read_ecc[2];
155 #else
156 s1 = calc_ecc[0] ^ read_ecc[0];
157 s0 = calc_ecc[1] ^ read_ecc[1];
158 s2 = calc_ecc[2] ^ read_ecc[2];
159 #endif
160 if ((s0 | s1 | s2) == 0)
161 return 0;
163 /* Check for a single bit error */
164 if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
165 ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
166 ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
168 uint32_t byteoffs, bitnum;
170 byteoffs = (s1 << 0) & 0x80;
171 byteoffs |= (s1 << 1) & 0x40;
172 byteoffs |= (s1 << 2) & 0x20;
173 byteoffs |= (s1 << 3) & 0x10;
175 byteoffs |= (s0 >> 4) & 0x08;
176 byteoffs |= (s0 >> 3) & 0x04;
177 byteoffs |= (s0 >> 2) & 0x02;
178 byteoffs |= (s0 >> 1) & 0x01;
180 bitnum = (s2 >> 5) & 0x04;
181 bitnum |= (s2 >> 4) & 0x02;
182 bitnum |= (s2 >> 3) & 0x01;
184 dat[byteoffs] ^= (1 << bitnum);
186 return 1;
189 if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
190 return 1;
192 return -EBADMSG;
194 EXPORT_SYMBOL(nand_correct_data);
196 MODULE_LICENSE("GPL");
197 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
198 MODULE_DESCRIPTION("Generic NAND ECC support");