V4L/DVB (6715): ivtv: Remove unnecessary register update
[linux-2.6/verdex.git] / drivers / mtd / ubi / io.c
blob7c304eec78b59ba8142a411a96ab4d925760052f
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * UBI input/output unit.
25 * This unit provides a uniform way to work with all kinds of the underlying
26 * MTD devices. It also implements handy functions for reading and writing UBI
27 * headers.
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this unit
31 * validates every single header it reads from the flash media.
33 * Some words about how the eraseblock headers are stored.
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69 * prefer to use sub-pages only for EV and VID headers.
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
82 * The I/O unit does the following trick in order to avoid this extra copy.
83 * It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header
84 * and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the
85 * VID header is being written out, it shifts the VID header pointer back and
86 * writes the whole sub-page.
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include "ubi.h"
93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 const struct ubi_ec_hdr *ec_hdr);
98 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 const struct ubi_vid_hdr *vid_hdr);
101 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
102 int len);
103 #else
104 #define paranoid_check_not_bad(ubi, pnum) 0
105 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
106 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
107 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
108 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
109 #define paranoid_check_all_ff(ubi, pnum, offset, len) 0
110 #endif
113 * ubi_io_read - read data from a physical eraseblock.
114 * @ubi: UBI device description object
115 * @buf: buffer where to store the read data
116 * @pnum: physical eraseblock number to read from
117 * @offset: offset within the physical eraseblock from where to read
118 * @len: how many bytes to read
120 * This function reads data from offset @offset of physical eraseblock @pnum
121 * and stores the read data in the @buf buffer. The following return codes are
122 * possible:
124 * o %0 if all the requested data were successfully read;
125 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
126 * correctable bit-flips were detected; this is harmless but may indicate
127 * that this eraseblock may become bad soon (but do not have to);
128 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
129 * example it can be an ECC error in case of NAND; this most probably means
130 * that the data is corrupted;
131 * o %-EIO if some I/O error occurred;
132 * o other negative error codes in case of other errors.
134 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
135 int len)
137 int err, retries = 0;
138 size_t read;
139 loff_t addr;
141 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
143 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
144 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
145 ubi_assert(len > 0);
147 err = paranoid_check_not_bad(ubi, pnum);
148 if (err)
149 return err > 0 ? -EINVAL : err;
151 addr = (loff_t)pnum * ubi->peb_size + offset;
152 retry:
153 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
154 if (err) {
155 if (err == -EUCLEAN) {
157 * -EUCLEAN is reported if there was a bit-flip which
158 * was corrected, so this is harmless.
160 ubi_msg("fixable bit-flip detected at PEB %d", pnum);
161 ubi_assert(len == read);
162 return UBI_IO_BITFLIPS;
165 if (read != len && retries++ < UBI_IO_RETRIES) {
166 dbg_io("error %d while reading %d bytes from PEB %d:%d, "
167 "read only %zd bytes, retry",
168 err, len, pnum, offset, read);
169 yield();
170 goto retry;
173 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
174 "read %zd bytes", err, len, pnum, offset, read);
175 ubi_dbg_dump_stack();
176 } else {
177 ubi_assert(len == read);
179 if (ubi_dbg_is_bitflip()) {
180 dbg_msg("bit-flip (emulated)");
181 err = UBI_IO_BITFLIPS;
185 return err;
189 * ubi_io_write - write data to a physical eraseblock.
190 * @ubi: UBI device description object
191 * @buf: buffer with the data to write
192 * @pnum: physical eraseblock number to write to
193 * @offset: offset within the physical eraseblock where to write
194 * @len: how many bytes to write
196 * This function writes @len bytes of data from buffer @buf to offset @offset
197 * of physical eraseblock @pnum. If all the data were successfully written,
198 * zero is returned. If an error occurred, this function returns a negative
199 * error code. If %-EIO is returned, the physical eraseblock most probably went
200 * bad.
202 * Note, in case of an error, it is possible that something was still written
203 * to the flash media, but may be some garbage.
205 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
206 int len)
208 int err;
209 size_t written;
210 loff_t addr;
212 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
214 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
215 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
216 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
217 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
219 if (ubi->ro_mode) {
220 ubi_err("read-only mode");
221 return -EROFS;
224 /* The below has to be compiled out if paranoid checks are disabled */
226 err = paranoid_check_not_bad(ubi, pnum);
227 if (err)
228 return err > 0 ? -EINVAL : err;
230 /* The area we are writing to has to contain all 0xFF bytes */
231 err = paranoid_check_all_ff(ubi, pnum, offset, len);
232 if (err)
233 return err > 0 ? -EINVAL : err;
235 if (offset >= ubi->leb_start) {
237 * We write to the data area of the physical eraseblock. Make
238 * sure it has valid EC and VID headers.
240 err = paranoid_check_peb_ec_hdr(ubi, pnum);
241 if (err)
242 return err > 0 ? -EINVAL : err;
243 err = paranoid_check_peb_vid_hdr(ubi, pnum);
244 if (err)
245 return err > 0 ? -EINVAL : err;
248 if (ubi_dbg_is_write_failure()) {
249 dbg_err("cannot write %d bytes to PEB %d:%d "
250 "(emulated)", len, pnum, offset);
251 ubi_dbg_dump_stack();
252 return -EIO;
255 addr = (loff_t)pnum * ubi->peb_size + offset;
256 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
257 if (err) {
258 ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
259 " %zd bytes", err, len, pnum, offset, written);
260 ubi_dbg_dump_stack();
261 } else
262 ubi_assert(written == len);
264 return err;
268 * erase_callback - MTD erasure call-back.
269 * @ei: MTD erase information object.
271 * Note, even though MTD erase interface is asynchronous, all the current
272 * implementations are synchronous anyway.
274 static void erase_callback(struct erase_info *ei)
276 wake_up_interruptible((wait_queue_head_t *)ei->priv);
280 * do_sync_erase - synchronously erase a physical eraseblock.
281 * @ubi: UBI device description object
282 * @pnum: the physical eraseblock number to erase
284 * This function synchronously erases physical eraseblock @pnum and returns
285 * zero in case of success and a negative error code in case of failure. If
286 * %-EIO is returned, the physical eraseblock most probably went bad.
288 static int do_sync_erase(struct ubi_device *ubi, int pnum)
290 int err, retries = 0;
291 struct erase_info ei;
292 wait_queue_head_t wq;
294 dbg_io("erase PEB %d", pnum);
296 retry:
297 init_waitqueue_head(&wq);
298 memset(&ei, 0, sizeof(struct erase_info));
300 ei.mtd = ubi->mtd;
301 ei.addr = (loff_t)pnum * ubi->peb_size;
302 ei.len = ubi->peb_size;
303 ei.callback = erase_callback;
304 ei.priv = (unsigned long)&wq;
306 err = ubi->mtd->erase(ubi->mtd, &ei);
307 if (err) {
308 if (retries++ < UBI_IO_RETRIES) {
309 dbg_io("error %d while erasing PEB %d, retry",
310 err, pnum);
311 yield();
312 goto retry;
314 ubi_err("cannot erase PEB %d, error %d", pnum, err);
315 ubi_dbg_dump_stack();
316 return err;
319 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
320 ei.state == MTD_ERASE_FAILED);
321 if (err) {
322 ubi_err("interrupted PEB %d erasure", pnum);
323 return -EINTR;
326 if (ei.state == MTD_ERASE_FAILED) {
327 if (retries++ < UBI_IO_RETRIES) {
328 dbg_io("error while erasing PEB %d, retry", pnum);
329 yield();
330 goto retry;
332 ubi_err("cannot erase PEB %d", pnum);
333 ubi_dbg_dump_stack();
334 return -EIO;
337 err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
338 if (err)
339 return err > 0 ? -EINVAL : err;
341 if (ubi_dbg_is_erase_failure() && !err) {
342 dbg_err("cannot erase PEB %d (emulated)", pnum);
343 return -EIO;
346 return 0;
350 * check_pattern - check if buffer contains only a certain byte pattern.
351 * @buf: buffer to check
352 * @patt: the pattern to check
353 * @size: buffer size in bytes
355 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
356 * something else was also found.
358 static int check_pattern(const void *buf, uint8_t patt, int size)
360 int i;
362 for (i = 0; i < size; i++)
363 if (((const uint8_t *)buf)[i] != patt)
364 return 0;
365 return 1;
368 /* Patterns to write to a physical eraseblock when torturing it */
369 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
372 * torture_peb - test a supposedly bad physical eraseblock.
373 * @ubi: UBI device description object
374 * @pnum: the physical eraseblock number to test
376 * This function returns %-EIO if the physical eraseblock did not pass the
377 * test, a positive number of erase operations done if the test was
378 * successfully passed, and other negative error codes in case of other errors.
380 static int torture_peb(struct ubi_device *ubi, int pnum)
382 int err, i, patt_count;
384 patt_count = ARRAY_SIZE(patterns);
385 ubi_assert(patt_count > 0);
387 mutex_lock(&ubi->buf_mutex);
388 for (i = 0; i < patt_count; i++) {
389 err = do_sync_erase(ubi, pnum);
390 if (err)
391 goto out;
393 /* Make sure the PEB contains only 0xFF bytes */
394 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
395 if (err)
396 goto out;
398 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
399 if (err == 0) {
400 ubi_err("erased PEB %d, but a non-0xFF byte found",
401 pnum);
402 err = -EIO;
403 goto out;
406 /* Write a pattern and check it */
407 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
408 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
409 if (err)
410 goto out;
412 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
413 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
414 if (err)
415 goto out;
417 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
418 if (err == 0) {
419 ubi_err("pattern %x checking failed for PEB %d",
420 patterns[i], pnum);
421 err = -EIO;
422 goto out;
426 err = patt_count;
428 out:
429 mutex_unlock(&ubi->buf_mutex);
430 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
432 * If a bit-flip or data integrity error was detected, the test
433 * has not passed because it happened on a freshly erased
434 * physical eraseblock which means something is wrong with it.
436 ubi_err("read problems on freshly erased PEB %d, must be bad",
437 pnum);
438 err = -EIO;
440 return err;
444 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
445 * @ubi: UBI device description object
446 * @pnum: physical eraseblock number to erase
447 * @torture: if this physical eraseblock has to be tortured
449 * This function synchronously erases physical eraseblock @pnum. If @torture
450 * flag is not zero, the physical eraseblock is checked by means of writing
451 * different patterns to it and reading them back. If the torturing is enabled,
452 * the physical eraseblock is erased more then once.
454 * This function returns the number of erasures made in case of success, %-EIO
455 * if the erasure failed or the torturing test failed, and other negative error
456 * codes in case of other errors. Note, %-EIO means that the physical
457 * eraseblock is bad.
459 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
461 int err, ret = 0;
463 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
465 err = paranoid_check_not_bad(ubi, pnum);
466 if (err != 0)
467 return err > 0 ? -EINVAL : err;
469 if (ubi->ro_mode) {
470 ubi_err("read-only mode");
471 return -EROFS;
474 if (torture) {
475 ret = torture_peb(ubi, pnum);
476 if (ret < 0)
477 return ret;
480 err = do_sync_erase(ubi, pnum);
481 if (err)
482 return err;
484 return ret + 1;
488 * ubi_io_is_bad - check if a physical eraseblock is bad.
489 * @ubi: UBI device description object
490 * @pnum: the physical eraseblock number to check
492 * This function returns a positive number if the physical eraseblock is bad,
493 * zero if not, and a negative error code if an error occurred.
495 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
497 struct mtd_info *mtd = ubi->mtd;
499 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
501 if (ubi->bad_allowed) {
502 int ret;
504 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
505 if (ret < 0)
506 ubi_err("error %d while checking if PEB %d is bad",
507 ret, pnum);
508 else if (ret)
509 dbg_io("PEB %d is bad", pnum);
510 return ret;
513 return 0;
517 * ubi_io_mark_bad - mark a physical eraseblock as bad.
518 * @ubi: UBI device description object
519 * @pnum: the physical eraseblock number to mark
521 * This function returns zero in case of success and a negative error code in
522 * case of failure.
524 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
526 int err;
527 struct mtd_info *mtd = ubi->mtd;
529 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
531 if (ubi->ro_mode) {
532 ubi_err("read-only mode");
533 return -EROFS;
536 if (!ubi->bad_allowed)
537 return 0;
539 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
540 if (err)
541 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
542 return err;
546 * validate_ec_hdr - validate an erase counter header.
547 * @ubi: UBI device description object
548 * @ec_hdr: the erase counter header to check
550 * This function returns zero if the erase counter header is OK, and %1 if
551 * not.
553 static int validate_ec_hdr(const struct ubi_device *ubi,
554 const struct ubi_ec_hdr *ec_hdr)
556 long long ec;
557 int vid_hdr_offset, leb_start;
559 ec = be64_to_cpu(ec_hdr->ec);
560 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
561 leb_start = be32_to_cpu(ec_hdr->data_offset);
563 if (ec_hdr->version != UBI_VERSION) {
564 ubi_err("node with incompatible UBI version found: "
565 "this UBI version is %d, image version is %d",
566 UBI_VERSION, (int)ec_hdr->version);
567 goto bad;
570 if (vid_hdr_offset != ubi->vid_hdr_offset) {
571 ubi_err("bad VID header offset %d, expected %d",
572 vid_hdr_offset, ubi->vid_hdr_offset);
573 goto bad;
576 if (leb_start != ubi->leb_start) {
577 ubi_err("bad data offset %d, expected %d",
578 leb_start, ubi->leb_start);
579 goto bad;
582 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
583 ubi_err("bad erase counter %lld", ec);
584 goto bad;
587 return 0;
589 bad:
590 ubi_err("bad EC header");
591 ubi_dbg_dump_ec_hdr(ec_hdr);
592 ubi_dbg_dump_stack();
593 return 1;
597 * ubi_io_read_ec_hdr - read and check an erase counter header.
598 * @ubi: UBI device description object
599 * @pnum: physical eraseblock to read from
600 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
601 * header
602 * @verbose: be verbose if the header is corrupted or was not found
604 * This function reads erase counter header from physical eraseblock @pnum and
605 * stores it in @ec_hdr. This function also checks CRC checksum of the read
606 * erase counter header. The following codes may be returned:
608 * o %0 if the CRC checksum is correct and the header was successfully read;
609 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
610 * and corrected by the flash driver; this is harmless but may indicate that
611 * this eraseblock may become bad soon (but may be not);
612 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
613 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
614 * o a negative error code in case of failure.
616 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
617 struct ubi_ec_hdr *ec_hdr, int verbose)
619 int err, read_err = 0;
620 uint32_t crc, magic, hdr_crc;
622 dbg_io("read EC header from PEB %d", pnum);
623 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
625 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
626 if (err) {
627 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
628 return err;
631 * We read all the data, but either a correctable bit-flip
632 * occurred, or MTD reported about some data integrity error,
633 * like an ECC error in case of NAND. The former is harmless,
634 * the later may mean that the read data is corrupted. But we
635 * have a CRC check-sum and we will detect this. If the EC
636 * header is still OK, we just report this as there was a
637 * bit-flip.
639 read_err = err;
642 magic = be32_to_cpu(ec_hdr->magic);
643 if (magic != UBI_EC_HDR_MAGIC) {
645 * The magic field is wrong. Let's check if we have read all
646 * 0xFF. If yes, this physical eraseblock is assumed to be
647 * empty.
649 * But if there was a read error, we do not test it for all
650 * 0xFFs. Even if it does contain all 0xFFs, this error
651 * indicates that something is still wrong with this physical
652 * eraseblock and we anyway cannot treat it as empty.
654 if (read_err != -EBADMSG &&
655 check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
656 /* The physical eraseblock is supposedly empty */
659 * The below is just a paranoid check, it has to be
660 * compiled out if paranoid checks are disabled.
662 err = paranoid_check_all_ff(ubi, pnum, 0,
663 ubi->peb_size);
664 if (err)
665 return err > 0 ? UBI_IO_BAD_EC_HDR : err;
667 if (verbose)
668 ubi_warn("no EC header found at PEB %d, "
669 "only 0xFF bytes", pnum);
670 return UBI_IO_PEB_EMPTY;
674 * This is not a valid erase counter header, and these are not
675 * 0xFF bytes. Report that the header is corrupted.
677 if (verbose) {
678 ubi_warn("bad magic number at PEB %d: %08x instead of "
679 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
680 ubi_dbg_dump_ec_hdr(ec_hdr);
682 return UBI_IO_BAD_EC_HDR;
685 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
686 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
688 if (hdr_crc != crc) {
689 if (verbose) {
690 ubi_warn("bad EC header CRC at PEB %d, calculated %#08x,"
691 " read %#08x", pnum, crc, hdr_crc);
692 ubi_dbg_dump_ec_hdr(ec_hdr);
694 return UBI_IO_BAD_EC_HDR;
697 /* And of course validate what has just been read from the media */
698 err = validate_ec_hdr(ubi, ec_hdr);
699 if (err) {
700 ubi_err("validation failed for PEB %d", pnum);
701 return -EINVAL;
704 return read_err ? UBI_IO_BITFLIPS : 0;
708 * ubi_io_write_ec_hdr - write an erase counter header.
709 * @ubi: UBI device description object
710 * @pnum: physical eraseblock to write to
711 * @ec_hdr: the erase counter header to write
713 * This function writes erase counter header described by @ec_hdr to physical
714 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
715 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
716 * field.
718 * This function returns zero in case of success and a negative error code in
719 * case of failure. If %-EIO is returned, the physical eraseblock most probably
720 * went bad.
722 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
723 struct ubi_ec_hdr *ec_hdr)
725 int err;
726 uint32_t crc;
728 dbg_io("write EC header to PEB %d", pnum);
729 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
731 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
732 ec_hdr->version = UBI_VERSION;
733 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
734 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
735 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
736 ec_hdr->hdr_crc = cpu_to_be32(crc);
738 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
739 if (err)
740 return -EINVAL;
742 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
743 return err;
747 * validate_vid_hdr - validate a volume identifier header.
748 * @ubi: UBI device description object
749 * @vid_hdr: the volume identifier header to check
751 * This function checks that data stored in the volume identifier header
752 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
754 static int validate_vid_hdr(const struct ubi_device *ubi,
755 const struct ubi_vid_hdr *vid_hdr)
757 int vol_type = vid_hdr->vol_type;
758 int copy_flag = vid_hdr->copy_flag;
759 int vol_id = be32_to_cpu(vid_hdr->vol_id);
760 int lnum = be32_to_cpu(vid_hdr->lnum);
761 int compat = vid_hdr->compat;
762 int data_size = be32_to_cpu(vid_hdr->data_size);
763 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
764 int data_pad = be32_to_cpu(vid_hdr->data_pad);
765 int data_crc = be32_to_cpu(vid_hdr->data_crc);
766 int usable_leb_size = ubi->leb_size - data_pad;
768 if (copy_flag != 0 && copy_flag != 1) {
769 dbg_err("bad copy_flag");
770 goto bad;
773 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
774 data_pad < 0) {
775 dbg_err("negative values");
776 goto bad;
779 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
780 dbg_err("bad vol_id");
781 goto bad;
784 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
785 dbg_err("bad compat");
786 goto bad;
789 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
790 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
791 compat != UBI_COMPAT_REJECT) {
792 dbg_err("bad compat");
793 goto bad;
796 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
797 dbg_err("bad vol_type");
798 goto bad;
801 if (data_pad >= ubi->leb_size / 2) {
802 dbg_err("bad data_pad");
803 goto bad;
806 if (vol_type == UBI_VID_STATIC) {
808 * Although from high-level point of view static volumes may
809 * contain zero bytes of data, but no VID headers can contain
810 * zero at these fields, because they empty volumes do not have
811 * mapped logical eraseblocks.
813 if (used_ebs == 0) {
814 dbg_err("zero used_ebs");
815 goto bad;
817 if (data_size == 0) {
818 dbg_err("zero data_size");
819 goto bad;
821 if (lnum < used_ebs - 1) {
822 if (data_size != usable_leb_size) {
823 dbg_err("bad data_size");
824 goto bad;
826 } else if (lnum == used_ebs - 1) {
827 if (data_size == 0) {
828 dbg_err("bad data_size at last LEB");
829 goto bad;
831 } else {
832 dbg_err("too high lnum");
833 goto bad;
835 } else {
836 if (copy_flag == 0) {
837 if (data_crc != 0) {
838 dbg_err("non-zero data CRC");
839 goto bad;
841 if (data_size != 0) {
842 dbg_err("non-zero data_size");
843 goto bad;
845 } else {
846 if (data_size == 0) {
847 dbg_err("zero data_size of copy");
848 goto bad;
851 if (used_ebs != 0) {
852 dbg_err("bad used_ebs");
853 goto bad;
857 return 0;
859 bad:
860 ubi_err("bad VID header");
861 ubi_dbg_dump_vid_hdr(vid_hdr);
862 ubi_dbg_dump_stack();
863 return 1;
867 * ubi_io_read_vid_hdr - read and check a volume identifier header.
868 * @ubi: UBI device description object
869 * @pnum: physical eraseblock number to read from
870 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
871 * identifier header
872 * @verbose: be verbose if the header is corrupted or wasn't found
874 * This function reads the volume identifier header from physical eraseblock
875 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
876 * volume identifier header. The following codes may be returned:
878 * o %0 if the CRC checksum is correct and the header was successfully read;
879 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
880 * and corrected by the flash driver; this is harmless but may indicate that
881 * this eraseblock may become bad soon;
882 * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
883 * error detected);
884 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
885 * header there);
886 * o a negative error code in case of failure.
888 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
889 struct ubi_vid_hdr *vid_hdr, int verbose)
891 int err, read_err = 0;
892 uint32_t crc, magic, hdr_crc;
893 void *p;
895 dbg_io("read VID header from PEB %d", pnum);
896 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
898 p = (char *)vid_hdr - ubi->vid_hdr_shift;
899 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
900 ubi->vid_hdr_alsize);
901 if (err) {
902 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
903 return err;
906 * We read all the data, but either a correctable bit-flip
907 * occurred, or MTD reported about some data integrity error,
908 * like an ECC error in case of NAND. The former is harmless,
909 * the later may mean the read data is corrupted. But we have a
910 * CRC check-sum and we will identify this. If the VID header is
911 * still OK, we just report this as there was a bit-flip.
913 read_err = err;
916 magic = be32_to_cpu(vid_hdr->magic);
917 if (magic != UBI_VID_HDR_MAGIC) {
919 * If we have read all 0xFF bytes, the VID header probably does
920 * not exist and the physical eraseblock is assumed to be free.
922 * But if there was a read error, we do not test the data for
923 * 0xFFs. Even if it does contain all 0xFFs, this error
924 * indicates that something is still wrong with this physical
925 * eraseblock and it cannot be regarded as free.
927 if (read_err != -EBADMSG &&
928 check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
929 /* The physical eraseblock is supposedly free */
932 * The below is just a paranoid check, it has to be
933 * compiled out if paranoid checks are disabled.
935 err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
936 ubi->leb_size);
937 if (err)
938 return err > 0 ? UBI_IO_BAD_VID_HDR : err;
940 if (verbose)
941 ubi_warn("no VID header found at PEB %d, "
942 "only 0xFF bytes", pnum);
943 return UBI_IO_PEB_FREE;
947 * This is not a valid VID header, and these are not 0xFF
948 * bytes. Report that the header is corrupted.
950 if (verbose) {
951 ubi_warn("bad magic number at PEB %d: %08x instead of "
952 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
953 ubi_dbg_dump_vid_hdr(vid_hdr);
955 return UBI_IO_BAD_VID_HDR;
958 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
959 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
961 if (hdr_crc != crc) {
962 if (verbose) {
963 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
964 "read %#08x", pnum, crc, hdr_crc);
965 ubi_dbg_dump_vid_hdr(vid_hdr);
967 return UBI_IO_BAD_VID_HDR;
970 /* Validate the VID header that we have just read */
971 err = validate_vid_hdr(ubi, vid_hdr);
972 if (err) {
973 ubi_err("validation failed for PEB %d", pnum);
974 return -EINVAL;
977 return read_err ? UBI_IO_BITFLIPS : 0;
981 * ubi_io_write_vid_hdr - write a volume identifier header.
982 * @ubi: UBI device description object
983 * @pnum: the physical eraseblock number to write to
984 * @vid_hdr: the volume identifier header to write
986 * This function writes the volume identifier header described by @vid_hdr to
987 * physical eraseblock @pnum. This function automatically fills the
988 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
989 * header CRC checksum and stores it at vid_hdr->hdr_crc.
991 * This function returns zero in case of success and a negative error code in
992 * case of failure. If %-EIO is returned, the physical eraseblock probably went
993 * bad.
995 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
996 struct ubi_vid_hdr *vid_hdr)
998 int err;
999 uint32_t crc;
1000 void *p;
1002 dbg_io("write VID header to PEB %d", pnum);
1003 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1005 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1006 if (err)
1007 return err > 0 ? -EINVAL: err;
1009 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1010 vid_hdr->version = UBI_VERSION;
1011 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1012 vid_hdr->hdr_crc = cpu_to_be32(crc);
1014 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1015 if (err)
1016 return -EINVAL;
1018 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1019 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1020 ubi->vid_hdr_alsize);
1021 return err;
1024 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1027 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1028 * @ubi: UBI device description object
1029 * @pnum: physical eraseblock number to check
1031 * This function returns zero if the physical eraseblock is good, a positive
1032 * number if it is bad and a negative error code if an error occurred.
1034 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1036 int err;
1038 err = ubi_io_is_bad(ubi, pnum);
1039 if (!err)
1040 return err;
1042 ubi_err("paranoid check failed for PEB %d", pnum);
1043 ubi_dbg_dump_stack();
1044 return err;
1048 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1049 * @ubi: UBI device description object
1050 * @pnum: physical eraseblock number the erase counter header belongs to
1051 * @ec_hdr: the erase counter header to check
1053 * This function returns zero if the erase counter header contains valid
1054 * values, and %1 if not.
1056 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1057 const struct ubi_ec_hdr *ec_hdr)
1059 int err;
1060 uint32_t magic;
1062 magic = be32_to_cpu(ec_hdr->magic);
1063 if (magic != UBI_EC_HDR_MAGIC) {
1064 ubi_err("bad magic %#08x, must be %#08x",
1065 magic, UBI_EC_HDR_MAGIC);
1066 goto fail;
1069 err = validate_ec_hdr(ubi, ec_hdr);
1070 if (err) {
1071 ubi_err("paranoid check failed for PEB %d", pnum);
1072 goto fail;
1075 return 0;
1077 fail:
1078 ubi_dbg_dump_ec_hdr(ec_hdr);
1079 ubi_dbg_dump_stack();
1080 return 1;
1084 * paranoid_check_peb_ec_hdr - check that the erase counter header of a
1085 * physical eraseblock is in-place and is all right.
1086 * @ubi: UBI device description object
1087 * @pnum: the physical eraseblock number to check
1089 * This function returns zero if the erase counter header is all right, %1 if
1090 * not, and a negative error code if an error occurred.
1092 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1094 int err;
1095 uint32_t crc, hdr_crc;
1096 struct ubi_ec_hdr *ec_hdr;
1098 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1099 if (!ec_hdr)
1100 return -ENOMEM;
1102 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1103 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1104 goto exit;
1106 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1107 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1108 if (hdr_crc != crc) {
1109 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1110 ubi_err("paranoid check failed for PEB %d", pnum);
1111 ubi_dbg_dump_ec_hdr(ec_hdr);
1112 ubi_dbg_dump_stack();
1113 err = 1;
1114 goto exit;
1117 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1119 exit:
1120 kfree(ec_hdr);
1121 return err;
1125 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1126 * @ubi: UBI device description object
1127 * @pnum: physical eraseblock number the volume identifier header belongs to
1128 * @vid_hdr: the volume identifier header to check
1130 * This function returns zero if the volume identifier header is all right, and
1131 * %1 if not.
1133 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1134 const struct ubi_vid_hdr *vid_hdr)
1136 int err;
1137 uint32_t magic;
1139 magic = be32_to_cpu(vid_hdr->magic);
1140 if (magic != UBI_VID_HDR_MAGIC) {
1141 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1142 magic, pnum, UBI_VID_HDR_MAGIC);
1143 goto fail;
1146 err = validate_vid_hdr(ubi, vid_hdr);
1147 if (err) {
1148 ubi_err("paranoid check failed for PEB %d", pnum);
1149 goto fail;
1152 return err;
1154 fail:
1155 ubi_err("paranoid check failed for PEB %d", pnum);
1156 ubi_dbg_dump_vid_hdr(vid_hdr);
1157 ubi_dbg_dump_stack();
1158 return 1;
1163 * paranoid_check_peb_vid_hdr - check that the volume identifier header of a
1164 * physical eraseblock is in-place and is all right.
1165 * @ubi: UBI device description object
1166 * @pnum: the physical eraseblock number to check
1168 * This function returns zero if the volume identifier header is all right,
1169 * %1 if not, and a negative error code if an error occurred.
1171 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1173 int err;
1174 uint32_t crc, hdr_crc;
1175 struct ubi_vid_hdr *vid_hdr;
1176 void *p;
1178 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1179 if (!vid_hdr)
1180 return -ENOMEM;
1182 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1183 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1184 ubi->vid_hdr_alsize);
1185 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1186 goto exit;
1188 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1189 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1190 if (hdr_crc != crc) {
1191 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1192 "read %#08x", pnum, crc, hdr_crc);
1193 ubi_err("paranoid check failed for PEB %d", pnum);
1194 ubi_dbg_dump_vid_hdr(vid_hdr);
1195 ubi_dbg_dump_stack();
1196 err = 1;
1197 goto exit;
1200 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1202 exit:
1203 ubi_free_vid_hdr(ubi, vid_hdr);
1204 return err;
1208 * paranoid_check_all_ff - check that a region of flash is empty.
1209 * @ubi: UBI device description object
1210 * @pnum: the physical eraseblock number to check
1211 * @offset: the starting offset within the physical eraseblock to check
1212 * @len: the length of the region to check
1214 * This function returns zero if only 0xFF bytes are present at offset
1215 * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1216 * code if an error occurred.
1218 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
1219 int len)
1221 size_t read;
1222 int err;
1223 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1225 mutex_lock(&ubi->dbg_buf_mutex);
1226 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1227 if (err && err != -EUCLEAN) {
1228 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1229 "read %zd bytes", err, len, pnum, offset, read);
1230 goto error;
1233 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1234 if (err == 0) {
1235 ubi_err("flash region at PEB %d:%d, length %d does not "
1236 "contain all 0xFF bytes", pnum, offset, len);
1237 goto fail;
1239 mutex_unlock(&ubi->dbg_buf_mutex);
1241 return 0;
1243 fail:
1244 ubi_err("paranoid check failed for PEB %d", pnum);
1245 dbg_msg("hex dump of the %d-%d region", offset, offset + len);
1246 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1247 ubi->dbg_peb_buf, len, 1);
1248 err = 1;
1249 error:
1250 ubi_dbg_dump_stack();
1251 mutex_unlock(&ubi->dbg_buf_mutex);
1252 return err;
1255 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */