1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
37 #define DRIVERNAPI "-NAPI"
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 const char e1000_driver_version
[] = DRV_VERSION
;
41 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
43 /* e1000_pci_tbl - PCI Device ID Table
45 * Last entry must be all 0s
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
50 static struct pci_device_id e1000_pci_tbl
[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
84 INTEL_E1000_ETHERNET_DEVICE(0x1075),
85 INTEL_E1000_ETHERNET_DEVICE(0x1076),
86 INTEL_E1000_ETHERNET_DEVICE(0x1077),
87 INTEL_E1000_ETHERNET_DEVICE(0x1078),
88 INTEL_E1000_ETHERNET_DEVICE(0x1079),
89 INTEL_E1000_ETHERNET_DEVICE(0x107A),
90 INTEL_E1000_ETHERNET_DEVICE(0x107B),
91 INTEL_E1000_ETHERNET_DEVICE(0x107C),
92 INTEL_E1000_ETHERNET_DEVICE(0x107D),
93 INTEL_E1000_ETHERNET_DEVICE(0x107E),
94 INTEL_E1000_ETHERNET_DEVICE(0x107F),
95 INTEL_E1000_ETHERNET_DEVICE(0x108A),
96 INTEL_E1000_ETHERNET_DEVICE(0x108B),
97 INTEL_E1000_ETHERNET_DEVICE(0x108C),
98 INTEL_E1000_ETHERNET_DEVICE(0x1096),
99 INTEL_E1000_ETHERNET_DEVICE(0x1098),
100 INTEL_E1000_ETHERNET_DEVICE(0x1099),
101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
102 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103 INTEL_E1000_ETHERNET_DEVICE(0x10A5),
104 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
105 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
106 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
107 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
108 INTEL_E1000_ETHERNET_DEVICE(0x10BC),
109 INTEL_E1000_ETHERNET_DEVICE(0x10C4),
110 INTEL_E1000_ETHERNET_DEVICE(0x10C5),
111 INTEL_E1000_ETHERNET_DEVICE(0x10D5),
112 INTEL_E1000_ETHERNET_DEVICE(0x10D9),
113 INTEL_E1000_ETHERNET_DEVICE(0x10DA),
114 /* required last entry */
118 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
120 int e1000_up(struct e1000_adapter
*adapter
);
121 void e1000_down(struct e1000_adapter
*adapter
);
122 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
123 void e1000_reset(struct e1000_adapter
*adapter
);
124 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
);
125 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
126 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
127 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
128 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
129 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
130 struct e1000_tx_ring
*txdr
);
131 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
132 struct e1000_rx_ring
*rxdr
);
133 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
134 struct e1000_tx_ring
*tx_ring
);
135 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
136 struct e1000_rx_ring
*rx_ring
);
137 void e1000_update_stats(struct e1000_adapter
*adapter
);
139 static int e1000_init_module(void);
140 static void e1000_exit_module(void);
141 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
142 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
143 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
144 static int e1000_sw_init(struct e1000_adapter
*adapter
);
145 static int e1000_open(struct net_device
*netdev
);
146 static int e1000_close(struct net_device
*netdev
);
147 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
148 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
149 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
150 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
151 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
152 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
153 struct e1000_tx_ring
*tx_ring
);
154 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
155 struct e1000_rx_ring
*rx_ring
);
156 static void e1000_set_multi(struct net_device
*netdev
);
157 static void e1000_update_phy_info(unsigned long data
);
158 static void e1000_watchdog(unsigned long data
);
159 static void e1000_82547_tx_fifo_stall(unsigned long data
);
160 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
161 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
162 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
163 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
164 static irqreturn_t
e1000_intr(int irq
, void *data
);
165 static irqreturn_t
e1000_intr_msi(int irq
, void *data
);
166 static boolean_t
e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
167 struct e1000_tx_ring
*tx_ring
);
168 #ifdef CONFIG_E1000_NAPI
169 static int e1000_clean(struct napi_struct
*napi
, int budget
);
170 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
171 struct e1000_rx_ring
*rx_ring
,
172 int *work_done
, int work_to_do
);
173 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
174 struct e1000_rx_ring
*rx_ring
,
175 int *work_done
, int work_to_do
);
177 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
178 struct e1000_rx_ring
*rx_ring
);
179 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
180 struct e1000_rx_ring
*rx_ring
);
182 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
183 struct e1000_rx_ring
*rx_ring
,
185 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
186 struct e1000_rx_ring
*rx_ring
,
188 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
189 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
191 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
192 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
193 static void e1000_tx_timeout(struct net_device
*dev
);
194 static void e1000_reset_task(struct work_struct
*work
);
195 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
196 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
197 struct sk_buff
*skb
);
199 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
200 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
);
201 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
202 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
204 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
206 static int e1000_resume(struct pci_dev
*pdev
);
208 static void e1000_shutdown(struct pci_dev
*pdev
);
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void e1000_netpoll (struct net_device
*netdev
);
215 #define COPYBREAK_DEFAULT 256
216 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
217 module_param(copybreak
, uint
, 0644);
218 MODULE_PARM_DESC(copybreak
,
219 "Maximum size of packet that is copied to a new buffer on receive");
221 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
222 pci_channel_state_t state
);
223 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
224 static void e1000_io_resume(struct pci_dev
*pdev
);
226 static struct pci_error_handlers e1000_err_handler
= {
227 .error_detected
= e1000_io_error_detected
,
228 .slot_reset
= e1000_io_slot_reset
,
229 .resume
= e1000_io_resume
,
232 static struct pci_driver e1000_driver
= {
233 .name
= e1000_driver_name
,
234 .id_table
= e1000_pci_tbl
,
235 .probe
= e1000_probe
,
236 .remove
= __devexit_p(e1000_remove
),
238 /* Power Managment Hooks */
239 .suspend
= e1000_suspend
,
240 .resume
= e1000_resume
,
242 .shutdown
= e1000_shutdown
,
243 .err_handler
= &e1000_err_handler
246 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
247 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION
);
251 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
252 module_param(debug
, int, 0);
253 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
256 * e1000_init_module - Driver Registration Routine
258 * e1000_init_module is the first routine called when the driver is
259 * loaded. All it does is register with the PCI subsystem.
263 e1000_init_module(void)
266 printk(KERN_INFO
"%s - version %s\n",
267 e1000_driver_string
, e1000_driver_version
);
269 printk(KERN_INFO
"%s\n", e1000_copyright
);
271 ret
= pci_register_driver(&e1000_driver
);
272 if (copybreak
!= COPYBREAK_DEFAULT
) {
274 printk(KERN_INFO
"e1000: copybreak disabled\n");
276 printk(KERN_INFO
"e1000: copybreak enabled for "
277 "packets <= %u bytes\n", copybreak
);
282 module_init(e1000_init_module
);
285 * e1000_exit_module - Driver Exit Cleanup Routine
287 * e1000_exit_module is called just before the driver is removed
292 e1000_exit_module(void)
294 pci_unregister_driver(&e1000_driver
);
297 module_exit(e1000_exit_module
);
299 static int e1000_request_irq(struct e1000_adapter
*adapter
)
301 struct net_device
*netdev
= adapter
->netdev
;
302 void (*handler
) = &e1000_intr
;
303 int irq_flags
= IRQF_SHARED
;
306 if (adapter
->hw
.mac_type
>= e1000_82571
) {
307 adapter
->have_msi
= !pci_enable_msi(adapter
->pdev
);
308 if (adapter
->have_msi
) {
309 handler
= &e1000_intr_msi
;
314 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
317 if (adapter
->have_msi
)
318 pci_disable_msi(adapter
->pdev
);
320 "Unable to allocate interrupt Error: %d\n", err
);
326 static void e1000_free_irq(struct e1000_adapter
*adapter
)
328 struct net_device
*netdev
= adapter
->netdev
;
330 free_irq(adapter
->pdev
->irq
, netdev
);
332 if (adapter
->have_msi
)
333 pci_disable_msi(adapter
->pdev
);
337 * e1000_irq_disable - Mask off interrupt generation on the NIC
338 * @adapter: board private structure
342 e1000_irq_disable(struct e1000_adapter
*adapter
)
344 atomic_inc(&adapter
->irq_sem
);
345 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~0);
346 E1000_WRITE_FLUSH(&adapter
->hw
);
347 synchronize_irq(adapter
->pdev
->irq
);
351 * e1000_irq_enable - Enable default interrupt generation settings
352 * @adapter: board private structure
356 e1000_irq_enable(struct e1000_adapter
*adapter
)
358 if (likely(atomic_dec_and_test(&adapter
->irq_sem
))) {
359 E1000_WRITE_REG(&adapter
->hw
, IMS
, IMS_ENABLE_MASK
);
360 E1000_WRITE_FLUSH(&adapter
->hw
);
365 e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
367 struct net_device
*netdev
= adapter
->netdev
;
368 uint16_t vid
= adapter
->hw
.mng_cookie
.vlan_id
;
369 uint16_t old_vid
= adapter
->mng_vlan_id
;
370 if (adapter
->vlgrp
) {
371 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
372 if (adapter
->hw
.mng_cookie
.status
&
373 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
374 e1000_vlan_rx_add_vid(netdev
, vid
);
375 adapter
->mng_vlan_id
= vid
;
377 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
379 if ((old_vid
!= (uint16_t)E1000_MNG_VLAN_NONE
) &&
381 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
382 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
384 adapter
->mng_vlan_id
= vid
;
389 * e1000_release_hw_control - release control of the h/w to f/w
390 * @adapter: address of board private structure
392 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
393 * For ASF and Pass Through versions of f/w this means that the
394 * driver is no longer loaded. For AMT version (only with 82573) i
395 * of the f/w this means that the network i/f is closed.
400 e1000_release_hw_control(struct e1000_adapter
*adapter
)
405 /* Let firmware taken over control of h/w */
406 switch (adapter
->hw
.mac_type
) {
408 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
409 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
410 swsm
& ~E1000_SWSM_DRV_LOAD
);
414 case e1000_80003es2lan
:
416 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
417 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
418 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
426 * e1000_get_hw_control - get control of the h/w from f/w
427 * @adapter: address of board private structure
429 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
430 * For ASF and Pass Through versions of f/w this means that
431 * the driver is loaded. For AMT version (only with 82573)
432 * of the f/w this means that the network i/f is open.
437 e1000_get_hw_control(struct e1000_adapter
*adapter
)
442 /* Let firmware know the driver has taken over */
443 switch (adapter
->hw
.mac_type
) {
445 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
446 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
447 swsm
| E1000_SWSM_DRV_LOAD
);
451 case e1000_80003es2lan
:
453 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
454 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
455 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
463 e1000_init_manageability(struct e1000_adapter
*adapter
)
465 if (adapter
->en_mng_pt
) {
466 uint32_t manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
468 /* disable hardware interception of ARP */
469 manc
&= ~(E1000_MANC_ARP_EN
);
471 /* enable receiving management packets to the host */
472 /* this will probably generate destination unreachable messages
473 * from the host OS, but the packets will be handled on SMBUS */
474 if (adapter
->hw
.has_manc2h
) {
475 uint32_t manc2h
= E1000_READ_REG(&adapter
->hw
, MANC2H
);
477 manc
|= E1000_MANC_EN_MNG2HOST
;
478 #define E1000_MNG2HOST_PORT_623 (1 << 5)
479 #define E1000_MNG2HOST_PORT_664 (1 << 6)
480 manc2h
|= E1000_MNG2HOST_PORT_623
;
481 manc2h
|= E1000_MNG2HOST_PORT_664
;
482 E1000_WRITE_REG(&adapter
->hw
, MANC2H
, manc2h
);
485 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
490 e1000_release_manageability(struct e1000_adapter
*adapter
)
492 if (adapter
->en_mng_pt
) {
493 uint32_t manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
495 /* re-enable hardware interception of ARP */
496 manc
|= E1000_MANC_ARP_EN
;
498 if (adapter
->hw
.has_manc2h
)
499 manc
&= ~E1000_MANC_EN_MNG2HOST
;
501 /* don't explicitly have to mess with MANC2H since
502 * MANC has an enable disable that gates MANC2H */
504 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
509 * e1000_configure - configure the hardware for RX and TX
510 * @adapter = private board structure
512 static void e1000_configure(struct e1000_adapter
*adapter
)
514 struct net_device
*netdev
= adapter
->netdev
;
517 e1000_set_multi(netdev
);
519 e1000_restore_vlan(adapter
);
520 e1000_init_manageability(adapter
);
522 e1000_configure_tx(adapter
);
523 e1000_setup_rctl(adapter
);
524 e1000_configure_rx(adapter
);
525 /* call E1000_DESC_UNUSED which always leaves
526 * at least 1 descriptor unused to make sure
527 * next_to_use != next_to_clean */
528 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
529 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
530 adapter
->alloc_rx_buf(adapter
, ring
,
531 E1000_DESC_UNUSED(ring
));
534 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
537 int e1000_up(struct e1000_adapter
*adapter
)
539 /* hardware has been reset, we need to reload some things */
540 e1000_configure(adapter
);
542 clear_bit(__E1000_DOWN
, &adapter
->flags
);
544 #ifdef CONFIG_E1000_NAPI
545 napi_enable(&adapter
->napi
);
547 e1000_irq_enable(adapter
);
549 /* fire a link change interrupt to start the watchdog */
550 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_LSC
);
555 * e1000_power_up_phy - restore link in case the phy was powered down
556 * @adapter: address of board private structure
558 * The phy may be powered down to save power and turn off link when the
559 * driver is unloaded and wake on lan is not enabled (among others)
560 * *** this routine MUST be followed by a call to e1000_reset ***
564 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
566 uint16_t mii_reg
= 0;
568 /* Just clear the power down bit to wake the phy back up */
569 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
570 /* according to the manual, the phy will retain its
571 * settings across a power-down/up cycle */
572 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
573 mii_reg
&= ~MII_CR_POWER_DOWN
;
574 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
578 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
580 /* Power down the PHY so no link is implied when interface is down *
581 * The PHY cannot be powered down if any of the following is TRUE *
584 * (c) SoL/IDER session is active */
585 if (!adapter
->wol
&& adapter
->hw
.mac_type
>= e1000_82540
&&
586 adapter
->hw
.media_type
== e1000_media_type_copper
) {
587 uint16_t mii_reg
= 0;
589 switch (adapter
->hw
.mac_type
) {
592 case e1000_82545_rev_3
:
594 case e1000_82546_rev_3
:
596 case e1000_82541_rev_2
:
598 case e1000_82547_rev_2
:
599 if (E1000_READ_REG(&adapter
->hw
, MANC
) &
606 case e1000_80003es2lan
:
608 if (e1000_check_mng_mode(&adapter
->hw
) ||
609 e1000_check_phy_reset_block(&adapter
->hw
))
615 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
616 mii_reg
|= MII_CR_POWER_DOWN
;
617 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
625 e1000_down(struct e1000_adapter
*adapter
)
627 struct net_device
*netdev
= adapter
->netdev
;
629 /* signal that we're down so the interrupt handler does not
630 * reschedule our watchdog timer */
631 set_bit(__E1000_DOWN
, &adapter
->flags
);
633 #ifdef CONFIG_E1000_NAPI
634 napi_disable(&adapter
->napi
);
635 atomic_set(&adapter
->irq_sem
, 0);
637 e1000_irq_disable(adapter
);
639 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
640 del_timer_sync(&adapter
->watchdog_timer
);
641 del_timer_sync(&adapter
->phy_info_timer
);
643 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
644 adapter
->link_speed
= 0;
645 adapter
->link_duplex
= 0;
646 netif_carrier_off(netdev
);
647 netif_stop_queue(netdev
);
649 e1000_reset(adapter
);
650 e1000_clean_all_tx_rings(adapter
);
651 e1000_clean_all_rx_rings(adapter
);
655 e1000_reinit_locked(struct e1000_adapter
*adapter
)
657 WARN_ON(in_interrupt());
658 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
662 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
666 e1000_reset(struct e1000_adapter
*adapter
)
668 uint32_t pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
669 uint16_t fc_high_water_mark
= E1000_FC_HIGH_DIFF
;
670 boolean_t legacy_pba_adjust
= FALSE
;
672 /* Repartition Pba for greater than 9k mtu
673 * To take effect CTRL.RST is required.
676 switch (adapter
->hw
.mac_type
) {
677 case e1000_82542_rev2_0
:
678 case e1000_82542_rev2_1
:
683 case e1000_82541_rev_2
:
684 legacy_pba_adjust
= TRUE
;
688 case e1000_82545_rev_3
:
690 case e1000_82546_rev_3
:
694 case e1000_82547_rev_2
:
695 legacy_pba_adjust
= TRUE
;
700 case e1000_80003es2lan
:
708 case e1000_undefined
:
713 if (legacy_pba_adjust
== TRUE
) {
714 if (adapter
->netdev
->mtu
> E1000_RXBUFFER_8192
)
715 pba
-= 8; /* allocate more FIFO for Tx */
717 if (adapter
->hw
.mac_type
== e1000_82547
) {
718 adapter
->tx_fifo_head
= 0;
719 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
720 adapter
->tx_fifo_size
=
721 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
722 atomic_set(&adapter
->tx_fifo_stall
, 0);
724 } else if (adapter
->hw
.max_frame_size
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
725 /* adjust PBA for jumbo frames */
726 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
728 /* To maintain wire speed transmits, the Tx FIFO should be
729 * large enough to accomodate two full transmit packets,
730 * rounded up to the next 1KB and expressed in KB. Likewise,
731 * the Rx FIFO should be large enough to accomodate at least
732 * one full receive packet and is similarly rounded up and
733 * expressed in KB. */
734 pba
= E1000_READ_REG(&adapter
->hw
, PBA
);
735 /* upper 16 bits has Tx packet buffer allocation size in KB */
736 tx_space
= pba
>> 16;
737 /* lower 16 bits has Rx packet buffer allocation size in KB */
739 /* don't include ethernet FCS because hardware appends/strips */
740 min_rx_space
= adapter
->netdev
->mtu
+ ENET_HEADER_SIZE
+
742 min_tx_space
= min_rx_space
;
744 min_tx_space
= ALIGN(min_tx_space
, 1024);
746 min_rx_space
= ALIGN(min_rx_space
, 1024);
749 /* If current Tx allocation is less than the min Tx FIFO size,
750 * and the min Tx FIFO size is less than the current Rx FIFO
751 * allocation, take space away from current Rx allocation */
752 if (tx_space
< min_tx_space
&&
753 ((min_tx_space
- tx_space
) < pba
)) {
754 pba
= pba
- (min_tx_space
- tx_space
);
756 /* PCI/PCIx hardware has PBA alignment constraints */
757 switch (adapter
->hw
.mac_type
) {
758 case e1000_82545
... e1000_82546_rev_3
:
759 pba
&= ~(E1000_PBA_8K
- 1);
765 /* if short on rx space, rx wins and must trump tx
766 * adjustment or use Early Receive if available */
767 if (pba
< min_rx_space
) {
768 switch (adapter
->hw
.mac_type
) {
770 /* ERT enabled in e1000_configure_rx */
780 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
782 /* flow control settings */
783 /* Set the FC high water mark to 90% of the FIFO size.
784 * Required to clear last 3 LSB */
785 fc_high_water_mark
= ((pba
* 9216)/10) & 0xFFF8;
786 /* We can't use 90% on small FIFOs because the remainder
787 * would be less than 1 full frame. In this case, we size
788 * it to allow at least a full frame above the high water
790 if (pba
< E1000_PBA_16K
)
791 fc_high_water_mark
= (pba
* 1024) - 1600;
793 adapter
->hw
.fc_high_water
= fc_high_water_mark
;
794 adapter
->hw
.fc_low_water
= fc_high_water_mark
- 8;
795 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
796 adapter
->hw
.fc_pause_time
= 0xFFFF;
798 adapter
->hw
.fc_pause_time
= E1000_FC_PAUSE_TIME
;
799 adapter
->hw
.fc_send_xon
= 1;
800 adapter
->hw
.fc
= adapter
->hw
.original_fc
;
802 /* Allow time for pending master requests to run */
803 e1000_reset_hw(&adapter
->hw
);
804 if (adapter
->hw
.mac_type
>= e1000_82544
)
805 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
807 if (e1000_init_hw(&adapter
->hw
))
808 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
809 e1000_update_mng_vlan(adapter
);
811 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
812 if (adapter
->hw
.mac_type
>= e1000_82544
&&
813 adapter
->hw
.mac_type
<= e1000_82547_rev_2
&&
814 adapter
->hw
.autoneg
== 1 &&
815 adapter
->hw
.autoneg_advertised
== ADVERTISE_1000_FULL
) {
816 uint32_t ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
817 /* clear phy power management bit if we are in gig only mode,
818 * which if enabled will attempt negotiation to 100Mb, which
819 * can cause a loss of link at power off or driver unload */
820 ctrl
&= ~E1000_CTRL_SWDPIN3
;
821 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
824 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
825 E1000_WRITE_REG(&adapter
->hw
, VET
, ETHERNET_IEEE_VLAN_TYPE
);
827 e1000_reset_adaptive(&adapter
->hw
);
828 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
830 if (!adapter
->smart_power_down
&&
831 (adapter
->hw
.mac_type
== e1000_82571
||
832 adapter
->hw
.mac_type
== e1000_82572
)) {
833 uint16_t phy_data
= 0;
834 /* speed up time to link by disabling smart power down, ignore
835 * the return value of this function because there is nothing
836 * different we would do if it failed */
837 e1000_read_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
839 phy_data
&= ~IGP02E1000_PM_SPD
;
840 e1000_write_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
844 e1000_release_manageability(adapter
);
848 * e1000_probe - Device Initialization Routine
849 * @pdev: PCI device information struct
850 * @ent: entry in e1000_pci_tbl
852 * Returns 0 on success, negative on failure
854 * e1000_probe initializes an adapter identified by a pci_dev structure.
855 * The OS initialization, configuring of the adapter private structure,
856 * and a hardware reset occur.
860 e1000_probe(struct pci_dev
*pdev
,
861 const struct pci_device_id
*ent
)
863 struct net_device
*netdev
;
864 struct e1000_adapter
*adapter
;
865 unsigned long mmio_start
, mmio_len
;
866 unsigned long flash_start
, flash_len
;
868 static int cards_found
= 0;
869 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
870 int i
, err
, pci_using_dac
;
871 uint16_t eeprom_data
= 0;
872 uint16_t eeprom_apme_mask
= E1000_EEPROM_APME
;
873 DECLARE_MAC_BUF(mac
);
875 if ((err
= pci_enable_device(pdev
)))
878 if (!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) &&
879 !(err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
))) {
882 if ((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) &&
883 (err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
))) {
884 E1000_ERR("No usable DMA configuration, aborting\n");
890 if ((err
= pci_request_regions(pdev
, e1000_driver_name
)))
893 pci_set_master(pdev
);
896 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
898 goto err_alloc_etherdev
;
900 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
902 pci_set_drvdata(pdev
, netdev
);
903 adapter
= netdev_priv(netdev
);
904 adapter
->netdev
= netdev
;
905 adapter
->pdev
= pdev
;
906 adapter
->hw
.back
= adapter
;
907 adapter
->msg_enable
= (1 << debug
) - 1;
909 mmio_start
= pci_resource_start(pdev
, BAR_0
);
910 mmio_len
= pci_resource_len(pdev
, BAR_0
);
913 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
914 if (!adapter
->hw
.hw_addr
)
917 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
918 if (pci_resource_len(pdev
, i
) == 0)
920 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
921 adapter
->hw
.io_base
= pci_resource_start(pdev
, i
);
926 netdev
->open
= &e1000_open
;
927 netdev
->stop
= &e1000_close
;
928 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
929 netdev
->get_stats
= &e1000_get_stats
;
930 netdev
->set_multicast_list
= &e1000_set_multi
;
931 netdev
->set_mac_address
= &e1000_set_mac
;
932 netdev
->change_mtu
= &e1000_change_mtu
;
933 netdev
->do_ioctl
= &e1000_ioctl
;
934 e1000_set_ethtool_ops(netdev
);
935 netdev
->tx_timeout
= &e1000_tx_timeout
;
936 netdev
->watchdog_timeo
= 5 * HZ
;
937 #ifdef CONFIG_E1000_NAPI
938 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
940 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
941 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
942 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
943 #ifdef CONFIG_NET_POLL_CONTROLLER
944 netdev
->poll_controller
= e1000_netpoll
;
946 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
948 netdev
->mem_start
= mmio_start
;
949 netdev
->mem_end
= mmio_start
+ mmio_len
;
950 netdev
->base_addr
= adapter
->hw
.io_base
;
952 adapter
->bd_number
= cards_found
;
954 /* setup the private structure */
956 if ((err
= e1000_sw_init(adapter
)))
960 /* Flash BAR mapping must happen after e1000_sw_init
961 * because it depends on mac_type */
962 if ((adapter
->hw
.mac_type
== e1000_ich8lan
) &&
963 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
964 flash_start
= pci_resource_start(pdev
, 1);
965 flash_len
= pci_resource_len(pdev
, 1);
966 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
967 if (!adapter
->hw
.flash_address
)
971 if (e1000_check_phy_reset_block(&adapter
->hw
))
972 DPRINTK(PROBE
, INFO
, "PHY reset is blocked due to SOL/IDER session.\n");
974 if (adapter
->hw
.mac_type
>= e1000_82543
) {
975 netdev
->features
= NETIF_F_SG
|
979 NETIF_F_HW_VLAN_FILTER
;
980 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
981 netdev
->features
&= ~NETIF_F_HW_VLAN_FILTER
;
984 if ((adapter
->hw
.mac_type
>= e1000_82544
) &&
985 (adapter
->hw
.mac_type
!= e1000_82547
))
986 netdev
->features
|= NETIF_F_TSO
;
988 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
)
989 netdev
->features
|= NETIF_F_TSO6
;
991 netdev
->features
|= NETIF_F_HIGHDMA
;
993 netdev
->features
|= NETIF_F_LLTX
;
995 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(&adapter
->hw
);
997 /* initialize eeprom parameters */
999 if (e1000_init_eeprom_params(&adapter
->hw
)) {
1000 E1000_ERR("EEPROM initialization failed\n");
1004 /* before reading the EEPROM, reset the controller to
1005 * put the device in a known good starting state */
1007 e1000_reset_hw(&adapter
->hw
);
1009 /* make sure the EEPROM is good */
1011 if (e1000_validate_eeprom_checksum(&adapter
->hw
) < 0) {
1012 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
1016 /* copy the MAC address out of the EEPROM */
1018 if (e1000_read_mac_addr(&adapter
->hw
))
1019 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
1020 memcpy(netdev
->dev_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
1021 memcpy(netdev
->perm_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
1023 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1024 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
1028 e1000_get_bus_info(&adapter
->hw
);
1030 init_timer(&adapter
->tx_fifo_stall_timer
);
1031 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
1032 adapter
->tx_fifo_stall_timer
.data
= (unsigned long) adapter
;
1034 init_timer(&adapter
->watchdog_timer
);
1035 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
1036 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1038 init_timer(&adapter
->phy_info_timer
);
1039 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
1040 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1042 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1044 e1000_check_options(adapter
);
1046 /* Initial Wake on LAN setting
1047 * If APM wake is enabled in the EEPROM,
1048 * enable the ACPI Magic Packet filter
1051 switch (adapter
->hw
.mac_type
) {
1052 case e1000_82542_rev2_0
:
1053 case e1000_82542_rev2_1
:
1057 e1000_read_eeprom(&adapter
->hw
,
1058 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1059 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1062 e1000_read_eeprom(&adapter
->hw
,
1063 EEPROM_INIT_CONTROL1_REG
, 1, &eeprom_data
);
1064 eeprom_apme_mask
= E1000_EEPROM_ICH8_APME
;
1067 case e1000_82546_rev_3
:
1069 case e1000_80003es2lan
:
1070 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
){
1071 e1000_read_eeprom(&adapter
->hw
,
1072 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1077 e1000_read_eeprom(&adapter
->hw
,
1078 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1081 if (eeprom_data
& eeprom_apme_mask
)
1082 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1084 /* now that we have the eeprom settings, apply the special cases
1085 * where the eeprom may be wrong or the board simply won't support
1086 * wake on lan on a particular port */
1087 switch (pdev
->device
) {
1088 case E1000_DEV_ID_82546GB_PCIE
:
1089 adapter
->eeprom_wol
= 0;
1091 case E1000_DEV_ID_82546EB_FIBER
:
1092 case E1000_DEV_ID_82546GB_FIBER
:
1093 case E1000_DEV_ID_82571EB_FIBER
:
1094 /* Wake events only supported on port A for dual fiber
1095 * regardless of eeprom setting */
1096 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
)
1097 adapter
->eeprom_wol
= 0;
1099 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1100 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
1101 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
1102 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE
:
1103 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
1104 /* if quad port adapter, disable WoL on all but port A */
1105 if (global_quad_port_a
!= 0)
1106 adapter
->eeprom_wol
= 0;
1108 adapter
->quad_port_a
= 1;
1109 /* Reset for multiple quad port adapters */
1110 if (++global_quad_port_a
== 4)
1111 global_quad_port_a
= 0;
1115 /* initialize the wol settings based on the eeprom settings */
1116 adapter
->wol
= adapter
->eeprom_wol
;
1118 /* print bus type/speed/width info */
1120 struct e1000_hw
*hw
= &adapter
->hw
;
1121 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
1122 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" :
1123 (hw
->bus_type
== e1000_bus_type_pci_express
? " Express":"")),
1124 ((hw
->bus_speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
1125 (hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
1126 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
1127 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
1128 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
1129 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" :
1130 (hw
->bus_width
== e1000_bus_width_pciex_4
) ? "Width x4" :
1131 (hw
->bus_width
== e1000_bus_width_pciex_1
) ? "Width x1" :
1135 printk("%s\n", print_mac(mac
, netdev
->dev_addr
));
1137 /* reset the hardware with the new settings */
1138 e1000_reset(adapter
);
1140 /* If the controller is 82573 and f/w is AMT, do not set
1141 * DRV_LOAD until the interface is up. For all other cases,
1142 * let the f/w know that the h/w is now under the control
1144 if (adapter
->hw
.mac_type
!= e1000_82573
||
1145 !e1000_check_mng_mode(&adapter
->hw
))
1146 e1000_get_hw_control(adapter
);
1148 /* tell the stack to leave us alone until e1000_open() is called */
1149 netif_carrier_off(netdev
);
1150 netif_stop_queue(netdev
);
1152 strcpy(netdev
->name
, "eth%d");
1153 if ((err
= register_netdev(netdev
)))
1156 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
1162 e1000_release_hw_control(adapter
);
1164 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1165 e1000_phy_hw_reset(&adapter
->hw
);
1167 if (adapter
->hw
.flash_address
)
1168 iounmap(adapter
->hw
.flash_address
);
1170 #ifdef CONFIG_E1000_NAPI
1171 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1172 dev_put(&adapter
->polling_netdev
[i
]);
1175 kfree(adapter
->tx_ring
);
1176 kfree(adapter
->rx_ring
);
1177 #ifdef CONFIG_E1000_NAPI
1178 kfree(adapter
->polling_netdev
);
1181 iounmap(adapter
->hw
.hw_addr
);
1183 free_netdev(netdev
);
1185 pci_release_regions(pdev
);
1188 pci_disable_device(pdev
);
1193 * e1000_remove - Device Removal Routine
1194 * @pdev: PCI device information struct
1196 * e1000_remove is called by the PCI subsystem to alert the driver
1197 * that it should release a PCI device. The could be caused by a
1198 * Hot-Plug event, or because the driver is going to be removed from
1202 static void __devexit
1203 e1000_remove(struct pci_dev
*pdev
)
1205 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1206 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1207 #ifdef CONFIG_E1000_NAPI
1211 cancel_work_sync(&adapter
->reset_task
);
1213 e1000_release_manageability(adapter
);
1215 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1216 * would have already happened in close and is redundant. */
1217 e1000_release_hw_control(adapter
);
1219 #ifdef CONFIG_E1000_NAPI
1220 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1221 dev_put(&adapter
->polling_netdev
[i
]);
1224 unregister_netdev(netdev
);
1226 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1227 e1000_phy_hw_reset(&adapter
->hw
);
1229 kfree(adapter
->tx_ring
);
1230 kfree(adapter
->rx_ring
);
1231 #ifdef CONFIG_E1000_NAPI
1232 kfree(adapter
->polling_netdev
);
1235 iounmap(adapter
->hw
.hw_addr
);
1236 if (adapter
->hw
.flash_address
)
1237 iounmap(adapter
->hw
.flash_address
);
1238 pci_release_regions(pdev
);
1240 free_netdev(netdev
);
1242 pci_disable_device(pdev
);
1246 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1247 * @adapter: board private structure to initialize
1249 * e1000_sw_init initializes the Adapter private data structure.
1250 * Fields are initialized based on PCI device information and
1251 * OS network device settings (MTU size).
1254 static int __devinit
1255 e1000_sw_init(struct e1000_adapter
*adapter
)
1257 struct e1000_hw
*hw
= &adapter
->hw
;
1258 struct net_device
*netdev
= adapter
->netdev
;
1259 struct pci_dev
*pdev
= adapter
->pdev
;
1260 #ifdef CONFIG_E1000_NAPI
1264 /* PCI config space info */
1266 hw
->vendor_id
= pdev
->vendor
;
1267 hw
->device_id
= pdev
->device
;
1268 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1269 hw
->subsystem_id
= pdev
->subsystem_device
;
1270 hw
->revision_id
= pdev
->revision
;
1272 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1274 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1275 adapter
->rx_ps_bsize0
= E1000_RXBUFFER_128
;
1276 hw
->max_frame_size
= netdev
->mtu
+
1277 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1278 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1280 /* identify the MAC */
1282 if (e1000_set_mac_type(hw
)) {
1283 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1287 switch (hw
->mac_type
) {
1292 case e1000_82541_rev_2
:
1293 case e1000_82547_rev_2
:
1294 hw
->phy_init_script
= 1;
1298 e1000_set_media_type(hw
);
1300 hw
->wait_autoneg_complete
= FALSE
;
1301 hw
->tbi_compatibility_en
= TRUE
;
1302 hw
->adaptive_ifs
= TRUE
;
1304 /* Copper options */
1306 if (hw
->media_type
== e1000_media_type_copper
) {
1307 hw
->mdix
= AUTO_ALL_MODES
;
1308 hw
->disable_polarity_correction
= FALSE
;
1309 hw
->master_slave
= E1000_MASTER_SLAVE
;
1312 adapter
->num_tx_queues
= 1;
1313 adapter
->num_rx_queues
= 1;
1315 if (e1000_alloc_queues(adapter
)) {
1316 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1320 #ifdef CONFIG_E1000_NAPI
1321 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1322 adapter
->polling_netdev
[i
].priv
= adapter
;
1323 dev_hold(&adapter
->polling_netdev
[i
]);
1324 set_bit(__LINK_STATE_START
, &adapter
->polling_netdev
[i
].state
);
1326 spin_lock_init(&adapter
->tx_queue_lock
);
1329 /* Explicitly disable IRQ since the NIC can be in any state. */
1330 atomic_set(&adapter
->irq_sem
, 0);
1331 e1000_irq_disable(adapter
);
1333 spin_lock_init(&adapter
->stats_lock
);
1335 set_bit(__E1000_DOWN
, &adapter
->flags
);
1341 * e1000_alloc_queues - Allocate memory for all rings
1342 * @adapter: board private structure to initialize
1344 * We allocate one ring per queue at run-time since we don't know the
1345 * number of queues at compile-time. The polling_netdev array is
1346 * intended for Multiqueue, but should work fine with a single queue.
1349 static int __devinit
1350 e1000_alloc_queues(struct e1000_adapter
*adapter
)
1352 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1353 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1354 if (!adapter
->tx_ring
)
1357 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1358 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1359 if (!adapter
->rx_ring
) {
1360 kfree(adapter
->tx_ring
);
1364 #ifdef CONFIG_E1000_NAPI
1365 adapter
->polling_netdev
= kcalloc(adapter
->num_rx_queues
,
1366 sizeof(struct net_device
),
1368 if (!adapter
->polling_netdev
) {
1369 kfree(adapter
->tx_ring
);
1370 kfree(adapter
->rx_ring
);
1375 return E1000_SUCCESS
;
1379 * e1000_open - Called when a network interface is made active
1380 * @netdev: network interface device structure
1382 * Returns 0 on success, negative value on failure
1384 * The open entry point is called when a network interface is made
1385 * active by the system (IFF_UP). At this point all resources needed
1386 * for transmit and receive operations are allocated, the interrupt
1387 * handler is registered with the OS, the watchdog timer is started,
1388 * and the stack is notified that the interface is ready.
1392 e1000_open(struct net_device
*netdev
)
1394 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1397 /* disallow open during test */
1398 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1401 /* allocate transmit descriptors */
1402 err
= e1000_setup_all_tx_resources(adapter
);
1406 /* allocate receive descriptors */
1407 err
= e1000_setup_all_rx_resources(adapter
);
1411 e1000_power_up_phy(adapter
);
1413 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1414 if ((adapter
->hw
.mng_cookie
.status
&
1415 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1416 e1000_update_mng_vlan(adapter
);
1419 /* If AMT is enabled, let the firmware know that the network
1420 * interface is now open */
1421 if (adapter
->hw
.mac_type
== e1000_82573
&&
1422 e1000_check_mng_mode(&adapter
->hw
))
1423 e1000_get_hw_control(adapter
);
1425 /* before we allocate an interrupt, we must be ready to handle it.
1426 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1427 * as soon as we call pci_request_irq, so we have to setup our
1428 * clean_rx handler before we do so. */
1429 e1000_configure(adapter
);
1431 err
= e1000_request_irq(adapter
);
1435 /* From here on the code is the same as e1000_up() */
1436 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1438 #ifdef CONFIG_E1000_NAPI
1439 napi_enable(&adapter
->napi
);
1442 e1000_irq_enable(adapter
);
1444 /* fire a link status change interrupt to start the watchdog */
1445 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_LSC
);
1447 return E1000_SUCCESS
;
1450 e1000_release_hw_control(adapter
);
1451 e1000_power_down_phy(adapter
);
1452 e1000_free_all_rx_resources(adapter
);
1454 e1000_free_all_tx_resources(adapter
);
1456 e1000_reset(adapter
);
1462 * e1000_close - Disables a network interface
1463 * @netdev: network interface device structure
1465 * Returns 0, this is not allowed to fail
1467 * The close entry point is called when an interface is de-activated
1468 * by the OS. The hardware is still under the drivers control, but
1469 * needs to be disabled. A global MAC reset is issued to stop the
1470 * hardware, and all transmit and receive resources are freed.
1474 e1000_close(struct net_device
*netdev
)
1476 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1478 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1479 e1000_down(adapter
);
1480 e1000_power_down_phy(adapter
);
1481 e1000_free_irq(adapter
);
1483 e1000_free_all_tx_resources(adapter
);
1484 e1000_free_all_rx_resources(adapter
);
1486 /* kill manageability vlan ID if supported, but not if a vlan with
1487 * the same ID is registered on the host OS (let 8021q kill it) */
1488 if ((adapter
->hw
.mng_cookie
.status
&
1489 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1491 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
))) {
1492 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1495 /* If AMT is enabled, let the firmware know that the network
1496 * interface is now closed */
1497 if (adapter
->hw
.mac_type
== e1000_82573
&&
1498 e1000_check_mng_mode(&adapter
->hw
))
1499 e1000_release_hw_control(adapter
);
1505 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1506 * @adapter: address of board private structure
1507 * @start: address of beginning of memory
1508 * @len: length of memory
1511 e1000_check_64k_bound(struct e1000_adapter
*adapter
,
1512 void *start
, unsigned long len
)
1514 unsigned long begin
= (unsigned long) start
;
1515 unsigned long end
= begin
+ len
;
1517 /* First rev 82545 and 82546 need to not allow any memory
1518 * write location to cross 64k boundary due to errata 23 */
1519 if (adapter
->hw
.mac_type
== e1000_82545
||
1520 adapter
->hw
.mac_type
== e1000_82546
) {
1521 return ((begin
^ (end
- 1)) >> 16) != 0 ? FALSE
: TRUE
;
1528 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1529 * @adapter: board private structure
1530 * @txdr: tx descriptor ring (for a specific queue) to setup
1532 * Return 0 on success, negative on failure
1536 e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1537 struct e1000_tx_ring
*txdr
)
1539 struct pci_dev
*pdev
= adapter
->pdev
;
1542 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1543 txdr
->buffer_info
= vmalloc(size
);
1544 if (!txdr
->buffer_info
) {
1546 "Unable to allocate memory for the transmit descriptor ring\n");
1549 memset(txdr
->buffer_info
, 0, size
);
1551 /* round up to nearest 4K */
1553 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1554 txdr
->size
= ALIGN(txdr
->size
, 4096);
1556 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1559 vfree(txdr
->buffer_info
);
1561 "Unable to allocate memory for the transmit descriptor ring\n");
1565 /* Fix for errata 23, can't cross 64kB boundary */
1566 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1567 void *olddesc
= txdr
->desc
;
1568 dma_addr_t olddma
= txdr
->dma
;
1569 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1570 "at %p\n", txdr
->size
, txdr
->desc
);
1571 /* Try again, without freeing the previous */
1572 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1573 /* Failed allocation, critical failure */
1575 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1576 goto setup_tx_desc_die
;
1579 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1581 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1583 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1585 "Unable to allocate aligned memory "
1586 "for the transmit descriptor ring\n");
1587 vfree(txdr
->buffer_info
);
1590 /* Free old allocation, new allocation was successful */
1591 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1594 memset(txdr
->desc
, 0, txdr
->size
);
1596 txdr
->next_to_use
= 0;
1597 txdr
->next_to_clean
= 0;
1598 spin_lock_init(&txdr
->tx_lock
);
1604 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1605 * (Descriptors) for all queues
1606 * @adapter: board private structure
1608 * Return 0 on success, negative on failure
1612 e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1616 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1617 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1620 "Allocation for Tx Queue %u failed\n", i
);
1621 for (i
-- ; i
>= 0; i
--)
1622 e1000_free_tx_resources(adapter
,
1623 &adapter
->tx_ring
[i
]);
1632 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1633 * @adapter: board private structure
1635 * Configure the Tx unit of the MAC after a reset.
1639 e1000_configure_tx(struct e1000_adapter
*adapter
)
1642 struct e1000_hw
*hw
= &adapter
->hw
;
1643 uint32_t tdlen
, tctl
, tipg
, tarc
;
1644 uint32_t ipgr1
, ipgr2
;
1646 /* Setup the HW Tx Head and Tail descriptor pointers */
1648 switch (adapter
->num_tx_queues
) {
1651 tdba
= adapter
->tx_ring
[0].dma
;
1652 tdlen
= adapter
->tx_ring
[0].count
*
1653 sizeof(struct e1000_tx_desc
);
1654 E1000_WRITE_REG(hw
, TDLEN
, tdlen
);
1655 E1000_WRITE_REG(hw
, TDBAH
, (tdba
>> 32));
1656 E1000_WRITE_REG(hw
, TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1657 E1000_WRITE_REG(hw
, TDT
, 0);
1658 E1000_WRITE_REG(hw
, TDH
, 0);
1659 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1660 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1664 /* Set the default values for the Tx Inter Packet Gap timer */
1665 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
&&
1666 (hw
->media_type
== e1000_media_type_fiber
||
1667 hw
->media_type
== e1000_media_type_internal_serdes
))
1668 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1670 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1672 switch (hw
->mac_type
) {
1673 case e1000_82542_rev2_0
:
1674 case e1000_82542_rev2_1
:
1675 tipg
= DEFAULT_82542_TIPG_IPGT
;
1676 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1677 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1679 case e1000_80003es2lan
:
1680 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1681 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
;
1684 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1685 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1688 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1689 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1690 E1000_WRITE_REG(hw
, TIPG
, tipg
);
1692 /* Set the Tx Interrupt Delay register */
1694 E1000_WRITE_REG(hw
, TIDV
, adapter
->tx_int_delay
);
1695 if (hw
->mac_type
>= e1000_82540
)
1696 E1000_WRITE_REG(hw
, TADV
, adapter
->tx_abs_int_delay
);
1698 /* Program the Transmit Control Register */
1700 tctl
= E1000_READ_REG(hw
, TCTL
);
1701 tctl
&= ~E1000_TCTL_CT
;
1702 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1703 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1705 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
) {
1706 tarc
= E1000_READ_REG(hw
, TARC0
);
1707 /* set the speed mode bit, we'll clear it if we're not at
1708 * gigabit link later */
1710 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1711 } else if (hw
->mac_type
== e1000_80003es2lan
) {
1712 tarc
= E1000_READ_REG(hw
, TARC0
);
1714 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1715 tarc
= E1000_READ_REG(hw
, TARC1
);
1717 E1000_WRITE_REG(hw
, TARC1
, tarc
);
1720 e1000_config_collision_dist(hw
);
1722 /* Setup Transmit Descriptor Settings for eop descriptor */
1723 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1725 /* only set IDE if we are delaying interrupts using the timers */
1726 if (adapter
->tx_int_delay
)
1727 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1729 if (hw
->mac_type
< e1000_82543
)
1730 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1732 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1734 /* Cache if we're 82544 running in PCI-X because we'll
1735 * need this to apply a workaround later in the send path. */
1736 if (hw
->mac_type
== e1000_82544
&&
1737 hw
->bus_type
== e1000_bus_type_pcix
)
1738 adapter
->pcix_82544
= 1;
1740 E1000_WRITE_REG(hw
, TCTL
, tctl
);
1745 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1746 * @adapter: board private structure
1747 * @rxdr: rx descriptor ring (for a specific queue) to setup
1749 * Returns 0 on success, negative on failure
1753 e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1754 struct e1000_rx_ring
*rxdr
)
1756 struct pci_dev
*pdev
= adapter
->pdev
;
1759 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1760 rxdr
->buffer_info
= vmalloc(size
);
1761 if (!rxdr
->buffer_info
) {
1763 "Unable to allocate memory for the receive descriptor ring\n");
1766 memset(rxdr
->buffer_info
, 0, size
);
1768 rxdr
->ps_page
= kcalloc(rxdr
->count
, sizeof(struct e1000_ps_page
),
1770 if (!rxdr
->ps_page
) {
1771 vfree(rxdr
->buffer_info
);
1773 "Unable to allocate memory for the receive descriptor ring\n");
1777 rxdr
->ps_page_dma
= kcalloc(rxdr
->count
,
1778 sizeof(struct e1000_ps_page_dma
),
1780 if (!rxdr
->ps_page_dma
) {
1781 vfree(rxdr
->buffer_info
);
1782 kfree(rxdr
->ps_page
);
1784 "Unable to allocate memory for the receive descriptor ring\n");
1788 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
)
1789 desc_len
= sizeof(struct e1000_rx_desc
);
1791 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1793 /* Round up to nearest 4K */
1795 rxdr
->size
= rxdr
->count
* desc_len
;
1796 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1798 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1802 "Unable to allocate memory for the receive descriptor ring\n");
1804 vfree(rxdr
->buffer_info
);
1805 kfree(rxdr
->ps_page
);
1806 kfree(rxdr
->ps_page_dma
);
1810 /* Fix for errata 23, can't cross 64kB boundary */
1811 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1812 void *olddesc
= rxdr
->desc
;
1813 dma_addr_t olddma
= rxdr
->dma
;
1814 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1815 "at %p\n", rxdr
->size
, rxdr
->desc
);
1816 /* Try again, without freeing the previous */
1817 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1818 /* Failed allocation, critical failure */
1820 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1822 "Unable to allocate memory "
1823 "for the receive descriptor ring\n");
1824 goto setup_rx_desc_die
;
1827 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1829 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1831 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1833 "Unable to allocate aligned memory "
1834 "for the receive descriptor ring\n");
1835 goto setup_rx_desc_die
;
1837 /* Free old allocation, new allocation was successful */
1838 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1841 memset(rxdr
->desc
, 0, rxdr
->size
);
1843 rxdr
->next_to_clean
= 0;
1844 rxdr
->next_to_use
= 0;
1850 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1851 * (Descriptors) for all queues
1852 * @adapter: board private structure
1854 * Return 0 on success, negative on failure
1858 e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1862 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1863 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1866 "Allocation for Rx Queue %u failed\n", i
);
1867 for (i
-- ; i
>= 0; i
--)
1868 e1000_free_rx_resources(adapter
,
1869 &adapter
->rx_ring
[i
]);
1878 * e1000_setup_rctl - configure the receive control registers
1879 * @adapter: Board private structure
1881 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1882 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1884 e1000_setup_rctl(struct e1000_adapter
*adapter
)
1886 uint32_t rctl
, rfctl
;
1887 uint32_t psrctl
= 0;
1888 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1892 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1894 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1896 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1897 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1898 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1900 if (adapter
->hw
.tbi_compatibility_on
== 1)
1901 rctl
|= E1000_RCTL_SBP
;
1903 rctl
&= ~E1000_RCTL_SBP
;
1905 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1906 rctl
&= ~E1000_RCTL_LPE
;
1908 rctl
|= E1000_RCTL_LPE
;
1910 /* Setup buffer sizes */
1911 rctl
&= ~E1000_RCTL_SZ_4096
;
1912 rctl
|= E1000_RCTL_BSEX
;
1913 switch (adapter
->rx_buffer_len
) {
1914 case E1000_RXBUFFER_256
:
1915 rctl
|= E1000_RCTL_SZ_256
;
1916 rctl
&= ~E1000_RCTL_BSEX
;
1918 case E1000_RXBUFFER_512
:
1919 rctl
|= E1000_RCTL_SZ_512
;
1920 rctl
&= ~E1000_RCTL_BSEX
;
1922 case E1000_RXBUFFER_1024
:
1923 rctl
|= E1000_RCTL_SZ_1024
;
1924 rctl
&= ~E1000_RCTL_BSEX
;
1926 case E1000_RXBUFFER_2048
:
1928 rctl
|= E1000_RCTL_SZ_2048
;
1929 rctl
&= ~E1000_RCTL_BSEX
;
1931 case E1000_RXBUFFER_4096
:
1932 rctl
|= E1000_RCTL_SZ_4096
;
1934 case E1000_RXBUFFER_8192
:
1935 rctl
|= E1000_RCTL_SZ_8192
;
1937 case E1000_RXBUFFER_16384
:
1938 rctl
|= E1000_RCTL_SZ_16384
;
1942 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1943 /* 82571 and greater support packet-split where the protocol
1944 * header is placed in skb->data and the packet data is
1945 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1946 * In the case of a non-split, skb->data is linearly filled,
1947 * followed by the page buffers. Therefore, skb->data is
1948 * sized to hold the largest protocol header.
1950 /* allocations using alloc_page take too long for regular MTU
1951 * so only enable packet split for jumbo frames */
1952 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
1953 if ((adapter
->hw
.mac_type
>= e1000_82571
) && (pages
<= 3) &&
1954 PAGE_SIZE
<= 16384 && (rctl
& E1000_RCTL_LPE
))
1955 adapter
->rx_ps_pages
= pages
;
1957 adapter
->rx_ps_pages
= 0;
1959 if (adapter
->rx_ps_pages
) {
1960 /* Configure extra packet-split registers */
1961 rfctl
= E1000_READ_REG(&adapter
->hw
, RFCTL
);
1962 rfctl
|= E1000_RFCTL_EXTEN
;
1963 /* disable packet split support for IPv6 extension headers,
1964 * because some malformed IPv6 headers can hang the RX */
1965 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
1966 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
1968 E1000_WRITE_REG(&adapter
->hw
, RFCTL
, rfctl
);
1970 rctl
|= E1000_RCTL_DTYP_PS
;
1972 psrctl
|= adapter
->rx_ps_bsize0
>>
1973 E1000_PSRCTL_BSIZE0_SHIFT
;
1975 switch (adapter
->rx_ps_pages
) {
1977 psrctl
|= PAGE_SIZE
<<
1978 E1000_PSRCTL_BSIZE3_SHIFT
;
1980 psrctl
|= PAGE_SIZE
<<
1981 E1000_PSRCTL_BSIZE2_SHIFT
;
1983 psrctl
|= PAGE_SIZE
>>
1984 E1000_PSRCTL_BSIZE1_SHIFT
;
1988 E1000_WRITE_REG(&adapter
->hw
, PSRCTL
, psrctl
);
1991 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1995 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1996 * @adapter: board private structure
1998 * Configure the Rx unit of the MAC after a reset.
2002 e1000_configure_rx(struct e1000_adapter
*adapter
)
2005 struct e1000_hw
*hw
= &adapter
->hw
;
2006 uint32_t rdlen
, rctl
, rxcsum
, ctrl_ext
;
2008 if (adapter
->rx_ps_pages
) {
2009 /* this is a 32 byte descriptor */
2010 rdlen
= adapter
->rx_ring
[0].count
*
2011 sizeof(union e1000_rx_desc_packet_split
);
2012 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2013 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2015 rdlen
= adapter
->rx_ring
[0].count
*
2016 sizeof(struct e1000_rx_desc
);
2017 adapter
->clean_rx
= e1000_clean_rx_irq
;
2018 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2021 /* disable receives while setting up the descriptors */
2022 rctl
= E1000_READ_REG(hw
, RCTL
);
2023 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
2025 /* set the Receive Delay Timer Register */
2026 E1000_WRITE_REG(hw
, RDTR
, adapter
->rx_int_delay
);
2028 if (hw
->mac_type
>= e1000_82540
) {
2029 E1000_WRITE_REG(hw
, RADV
, adapter
->rx_abs_int_delay
);
2030 if (adapter
->itr_setting
!= 0)
2031 E1000_WRITE_REG(hw
, ITR
,
2032 1000000000 / (adapter
->itr
* 256));
2035 if (hw
->mac_type
>= e1000_82571
) {
2036 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
2037 /* Reset delay timers after every interrupt */
2038 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
2039 #ifdef CONFIG_E1000_NAPI
2040 /* Auto-Mask interrupts upon ICR access */
2041 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2042 E1000_WRITE_REG(hw
, IAM
, 0xffffffff);
2044 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
2045 E1000_WRITE_FLUSH(hw
);
2048 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2049 * the Base and Length of the Rx Descriptor Ring */
2050 switch (adapter
->num_rx_queues
) {
2053 rdba
= adapter
->rx_ring
[0].dma
;
2054 E1000_WRITE_REG(hw
, RDLEN
, rdlen
);
2055 E1000_WRITE_REG(hw
, RDBAH
, (rdba
>> 32));
2056 E1000_WRITE_REG(hw
, RDBAL
, (rdba
& 0x00000000ffffffffULL
));
2057 E1000_WRITE_REG(hw
, RDT
, 0);
2058 E1000_WRITE_REG(hw
, RDH
, 0);
2059 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
2060 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
2064 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2065 if (hw
->mac_type
>= e1000_82543
) {
2066 rxcsum
= E1000_READ_REG(hw
, RXCSUM
);
2067 if (adapter
->rx_csum
== TRUE
) {
2068 rxcsum
|= E1000_RXCSUM_TUOFL
;
2070 /* Enable 82571 IPv4 payload checksum for UDP fragments
2071 * Must be used in conjunction with packet-split. */
2072 if ((hw
->mac_type
>= e1000_82571
) &&
2073 (adapter
->rx_ps_pages
)) {
2074 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2077 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2078 /* don't need to clear IPPCSE as it defaults to 0 */
2080 E1000_WRITE_REG(hw
, RXCSUM
, rxcsum
);
2083 /* enable early receives on 82573, only takes effect if using > 2048
2084 * byte total frame size. for example only for jumbo frames */
2085 #define E1000_ERT_2048 0x100
2086 if (hw
->mac_type
== e1000_82573
)
2087 E1000_WRITE_REG(hw
, ERT
, E1000_ERT_2048
);
2089 /* Enable Receives */
2090 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2094 * e1000_free_tx_resources - Free Tx Resources per Queue
2095 * @adapter: board private structure
2096 * @tx_ring: Tx descriptor ring for a specific queue
2098 * Free all transmit software resources
2102 e1000_free_tx_resources(struct e1000_adapter
*adapter
,
2103 struct e1000_tx_ring
*tx_ring
)
2105 struct pci_dev
*pdev
= adapter
->pdev
;
2107 e1000_clean_tx_ring(adapter
, tx_ring
);
2109 vfree(tx_ring
->buffer_info
);
2110 tx_ring
->buffer_info
= NULL
;
2112 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2114 tx_ring
->desc
= NULL
;
2118 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2119 * @adapter: board private structure
2121 * Free all transmit software resources
2125 e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
2129 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2130 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
2134 e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
2135 struct e1000_buffer
*buffer_info
)
2137 if (buffer_info
->dma
) {
2138 pci_unmap_page(adapter
->pdev
,
2140 buffer_info
->length
,
2142 buffer_info
->dma
= 0;
2144 if (buffer_info
->skb
) {
2145 dev_kfree_skb_any(buffer_info
->skb
);
2146 buffer_info
->skb
= NULL
;
2148 /* buffer_info must be completely set up in the transmit path */
2152 * e1000_clean_tx_ring - Free Tx Buffers
2153 * @adapter: board private structure
2154 * @tx_ring: ring to be cleaned
2158 e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
2159 struct e1000_tx_ring
*tx_ring
)
2161 struct e1000_buffer
*buffer_info
;
2165 /* Free all the Tx ring sk_buffs */
2167 for (i
= 0; i
< tx_ring
->count
; i
++) {
2168 buffer_info
= &tx_ring
->buffer_info
[i
];
2169 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2172 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2173 memset(tx_ring
->buffer_info
, 0, size
);
2175 /* Zero out the descriptor ring */
2177 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2179 tx_ring
->next_to_use
= 0;
2180 tx_ring
->next_to_clean
= 0;
2181 tx_ring
->last_tx_tso
= 0;
2183 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdh
);
2184 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
2188 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2189 * @adapter: board private structure
2193 e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2197 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2198 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2202 * e1000_free_rx_resources - Free Rx Resources
2203 * @adapter: board private structure
2204 * @rx_ring: ring to clean the resources from
2206 * Free all receive software resources
2210 e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2211 struct e1000_rx_ring
*rx_ring
)
2213 struct pci_dev
*pdev
= adapter
->pdev
;
2215 e1000_clean_rx_ring(adapter
, rx_ring
);
2217 vfree(rx_ring
->buffer_info
);
2218 rx_ring
->buffer_info
= NULL
;
2219 kfree(rx_ring
->ps_page
);
2220 rx_ring
->ps_page
= NULL
;
2221 kfree(rx_ring
->ps_page_dma
);
2222 rx_ring
->ps_page_dma
= NULL
;
2224 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2226 rx_ring
->desc
= NULL
;
2230 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2231 * @adapter: board private structure
2233 * Free all receive software resources
2237 e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2241 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2242 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2246 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2247 * @adapter: board private structure
2248 * @rx_ring: ring to free buffers from
2252 e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2253 struct e1000_rx_ring
*rx_ring
)
2255 struct e1000_buffer
*buffer_info
;
2256 struct e1000_ps_page
*ps_page
;
2257 struct e1000_ps_page_dma
*ps_page_dma
;
2258 struct pci_dev
*pdev
= adapter
->pdev
;
2262 /* Free all the Rx ring sk_buffs */
2263 for (i
= 0; i
< rx_ring
->count
; i
++) {
2264 buffer_info
= &rx_ring
->buffer_info
[i
];
2265 if (buffer_info
->skb
) {
2266 pci_unmap_single(pdev
,
2268 buffer_info
->length
,
2269 PCI_DMA_FROMDEVICE
);
2271 dev_kfree_skb(buffer_info
->skb
);
2272 buffer_info
->skb
= NULL
;
2274 ps_page
= &rx_ring
->ps_page
[i
];
2275 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
2276 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
2277 if (!ps_page
->ps_page
[j
]) break;
2278 pci_unmap_page(pdev
,
2279 ps_page_dma
->ps_page_dma
[j
],
2280 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2281 ps_page_dma
->ps_page_dma
[j
] = 0;
2282 put_page(ps_page
->ps_page
[j
]);
2283 ps_page
->ps_page
[j
] = NULL
;
2287 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2288 memset(rx_ring
->buffer_info
, 0, size
);
2289 size
= sizeof(struct e1000_ps_page
) * rx_ring
->count
;
2290 memset(rx_ring
->ps_page
, 0, size
);
2291 size
= sizeof(struct e1000_ps_page_dma
) * rx_ring
->count
;
2292 memset(rx_ring
->ps_page_dma
, 0, size
);
2294 /* Zero out the descriptor ring */
2296 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2298 rx_ring
->next_to_clean
= 0;
2299 rx_ring
->next_to_use
= 0;
2301 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdh
);
2302 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
2306 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2307 * @adapter: board private structure
2311 e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2315 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2316 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2319 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2320 * and memory write and invalidate disabled for certain operations
2323 e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2325 struct net_device
*netdev
= adapter
->netdev
;
2328 e1000_pci_clear_mwi(&adapter
->hw
);
2330 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2331 rctl
|= E1000_RCTL_RST
;
2332 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2333 E1000_WRITE_FLUSH(&adapter
->hw
);
2336 if (netif_running(netdev
))
2337 e1000_clean_all_rx_rings(adapter
);
2341 e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2343 struct net_device
*netdev
= adapter
->netdev
;
2346 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2347 rctl
&= ~E1000_RCTL_RST
;
2348 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2349 E1000_WRITE_FLUSH(&adapter
->hw
);
2352 if (adapter
->hw
.pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2353 e1000_pci_set_mwi(&adapter
->hw
);
2355 if (netif_running(netdev
)) {
2356 /* No need to loop, because 82542 supports only 1 queue */
2357 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2358 e1000_configure_rx(adapter
);
2359 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2364 * e1000_set_mac - Change the Ethernet Address of the NIC
2365 * @netdev: network interface device structure
2366 * @p: pointer to an address structure
2368 * Returns 0 on success, negative on failure
2372 e1000_set_mac(struct net_device
*netdev
, void *p
)
2374 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2375 struct sockaddr
*addr
= p
;
2377 if (!is_valid_ether_addr(addr
->sa_data
))
2378 return -EADDRNOTAVAIL
;
2380 /* 82542 2.0 needs to be in reset to write receive address registers */
2382 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2383 e1000_enter_82542_rst(adapter
);
2385 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2386 memcpy(adapter
->hw
.mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2388 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2390 /* With 82571 controllers, LAA may be overwritten (with the default)
2391 * due to controller reset from the other port. */
2392 if (adapter
->hw
.mac_type
== e1000_82571
) {
2393 /* activate the work around */
2394 adapter
->hw
.laa_is_present
= 1;
2396 /* Hold a copy of the LAA in RAR[14] This is done so that
2397 * between the time RAR[0] gets clobbered and the time it
2398 * gets fixed (in e1000_watchdog), the actual LAA is in one
2399 * of the RARs and no incoming packets directed to this port
2400 * are dropped. Eventaully the LAA will be in RAR[0] and
2402 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
,
2403 E1000_RAR_ENTRIES
- 1);
2406 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2407 e1000_leave_82542_rst(adapter
);
2413 * e1000_set_multi - Multicast and Promiscuous mode set
2414 * @netdev: network interface device structure
2416 * The set_multi entry point is called whenever the multicast address
2417 * list or the network interface flags are updated. This routine is
2418 * responsible for configuring the hardware for proper multicast,
2419 * promiscuous mode, and all-multi behavior.
2423 e1000_set_multi(struct net_device
*netdev
)
2425 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2426 struct e1000_hw
*hw
= &adapter
->hw
;
2427 struct dev_mc_list
*mc_ptr
;
2429 uint32_t hash_value
;
2430 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2431 int mta_reg_count
= (hw
->mac_type
== e1000_ich8lan
) ?
2432 E1000_NUM_MTA_REGISTERS_ICH8LAN
:
2433 E1000_NUM_MTA_REGISTERS
;
2435 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
2436 rar_entries
= E1000_RAR_ENTRIES_ICH8LAN
;
2438 /* reserve RAR[14] for LAA over-write work-around */
2439 if (adapter
->hw
.mac_type
== e1000_82571
)
2442 /* Check for Promiscuous and All Multicast modes */
2444 rctl
= E1000_READ_REG(hw
, RCTL
);
2446 if (netdev
->flags
& IFF_PROMISC
) {
2447 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2448 } else if (netdev
->flags
& IFF_ALLMULTI
) {
2449 rctl
|= E1000_RCTL_MPE
;
2450 rctl
&= ~E1000_RCTL_UPE
;
2452 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2455 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2457 /* 82542 2.0 needs to be in reset to write receive address registers */
2459 if (hw
->mac_type
== e1000_82542_rev2_0
)
2460 e1000_enter_82542_rst(adapter
);
2462 /* load the first 14 multicast address into the exact filters 1-14
2463 * RAR 0 is used for the station MAC adddress
2464 * if there are not 14 addresses, go ahead and clear the filters
2465 * -- with 82571 controllers only 0-13 entries are filled here
2467 mc_ptr
= netdev
->mc_list
;
2469 for (i
= 1; i
< rar_entries
; i
++) {
2471 e1000_rar_set(hw
, mc_ptr
->dmi_addr
, i
);
2472 mc_ptr
= mc_ptr
->next
;
2474 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2475 E1000_WRITE_FLUSH(hw
);
2476 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2477 E1000_WRITE_FLUSH(hw
);
2481 /* clear the old settings from the multicast hash table */
2483 for (i
= 0; i
< mta_reg_count
; i
++) {
2484 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
2485 E1000_WRITE_FLUSH(hw
);
2488 /* load any remaining addresses into the hash table */
2490 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2491 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->dmi_addr
);
2492 e1000_mta_set(hw
, hash_value
);
2495 if (hw
->mac_type
== e1000_82542_rev2_0
)
2496 e1000_leave_82542_rst(adapter
);
2499 /* Need to wait a few seconds after link up to get diagnostic information from
2503 e1000_update_phy_info(unsigned long data
)
2505 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2506 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2510 * e1000_82547_tx_fifo_stall - Timer Call-back
2511 * @data: pointer to adapter cast into an unsigned long
2515 e1000_82547_tx_fifo_stall(unsigned long data
)
2517 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2518 struct net_device
*netdev
= adapter
->netdev
;
2521 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2522 if ((E1000_READ_REG(&adapter
->hw
, TDT
) ==
2523 E1000_READ_REG(&adapter
->hw
, TDH
)) &&
2524 (E1000_READ_REG(&adapter
->hw
, TDFT
) ==
2525 E1000_READ_REG(&adapter
->hw
, TDFH
)) &&
2526 (E1000_READ_REG(&adapter
->hw
, TDFTS
) ==
2527 E1000_READ_REG(&adapter
->hw
, TDFHS
))) {
2528 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2529 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
2530 tctl
& ~E1000_TCTL_EN
);
2531 E1000_WRITE_REG(&adapter
->hw
, TDFT
,
2532 adapter
->tx_head_addr
);
2533 E1000_WRITE_REG(&adapter
->hw
, TDFH
,
2534 adapter
->tx_head_addr
);
2535 E1000_WRITE_REG(&adapter
->hw
, TDFTS
,
2536 adapter
->tx_head_addr
);
2537 E1000_WRITE_REG(&adapter
->hw
, TDFHS
,
2538 adapter
->tx_head_addr
);
2539 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2540 E1000_WRITE_FLUSH(&adapter
->hw
);
2542 adapter
->tx_fifo_head
= 0;
2543 atomic_set(&adapter
->tx_fifo_stall
, 0);
2544 netif_wake_queue(netdev
);
2546 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2552 * e1000_watchdog - Timer Call-back
2553 * @data: pointer to adapter cast into an unsigned long
2556 e1000_watchdog(unsigned long data
)
2558 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2559 struct net_device
*netdev
= adapter
->netdev
;
2560 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2561 uint32_t link
, tctl
;
2564 ret_val
= e1000_check_for_link(&adapter
->hw
);
2565 if ((ret_val
== E1000_ERR_PHY
) &&
2566 (adapter
->hw
.phy_type
== e1000_phy_igp_3
) &&
2567 (E1000_READ_REG(&adapter
->hw
, CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
2568 /* See e1000_kumeran_lock_loss_workaround() */
2570 "Gigabit has been disabled, downgrading speed\n");
2573 if (adapter
->hw
.mac_type
== e1000_82573
) {
2574 e1000_enable_tx_pkt_filtering(&adapter
->hw
);
2575 if (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
)
2576 e1000_update_mng_vlan(adapter
);
2579 if ((adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
2580 !(E1000_READ_REG(&adapter
->hw
, TXCW
) & E1000_TXCW_ANE
))
2581 link
= !adapter
->hw
.serdes_link_down
;
2583 link
= E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
;
2586 if (!netif_carrier_ok(netdev
)) {
2588 boolean_t txb2b
= 1;
2589 e1000_get_speed_and_duplex(&adapter
->hw
,
2590 &adapter
->link_speed
,
2591 &adapter
->link_duplex
);
2593 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
2594 DPRINTK(LINK
, INFO
, "NIC Link is Up %d Mbps %s, "
2595 "Flow Control: %s\n",
2596 adapter
->link_speed
,
2597 adapter
->link_duplex
== FULL_DUPLEX
?
2598 "Full Duplex" : "Half Duplex",
2599 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2600 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2601 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2602 E1000_CTRL_TFCE
) ? "TX" : "None" )));
2604 /* tweak tx_queue_len according to speed/duplex
2605 * and adjust the timeout factor */
2606 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2607 adapter
->tx_timeout_factor
= 1;
2608 switch (adapter
->link_speed
) {
2611 netdev
->tx_queue_len
= 10;
2612 adapter
->tx_timeout_factor
= 8;
2616 netdev
->tx_queue_len
= 100;
2617 /* maybe add some timeout factor ? */
2621 if ((adapter
->hw
.mac_type
== e1000_82571
||
2622 adapter
->hw
.mac_type
== e1000_82572
) &&
2625 tarc0
= E1000_READ_REG(&adapter
->hw
, TARC0
);
2626 tarc0
&= ~(1 << 21);
2627 E1000_WRITE_REG(&adapter
->hw
, TARC0
, tarc0
);
2630 /* disable TSO for pcie and 10/100 speeds, to avoid
2631 * some hardware issues */
2632 if (!adapter
->tso_force
&&
2633 adapter
->hw
.bus_type
== e1000_bus_type_pci_express
){
2634 switch (adapter
->link_speed
) {
2638 "10/100 speed: disabling TSO\n");
2639 netdev
->features
&= ~NETIF_F_TSO
;
2640 netdev
->features
&= ~NETIF_F_TSO6
;
2643 netdev
->features
|= NETIF_F_TSO
;
2644 netdev
->features
|= NETIF_F_TSO6
;
2652 /* enable transmits in the hardware, need to do this
2653 * after setting TARC0 */
2654 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2655 tctl
|= E1000_TCTL_EN
;
2656 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2658 netif_carrier_on(netdev
);
2659 netif_wake_queue(netdev
);
2660 mod_timer(&adapter
->phy_info_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2661 adapter
->smartspeed
= 0;
2663 /* make sure the receive unit is started */
2664 if (adapter
->hw
.rx_needs_kicking
) {
2665 struct e1000_hw
*hw
= &adapter
->hw
;
2666 uint32_t rctl
= E1000_READ_REG(hw
, RCTL
);
2667 E1000_WRITE_REG(hw
, RCTL
, rctl
| E1000_RCTL_EN
);
2671 if (netif_carrier_ok(netdev
)) {
2672 adapter
->link_speed
= 0;
2673 adapter
->link_duplex
= 0;
2674 DPRINTK(LINK
, INFO
, "NIC Link is Down\n");
2675 netif_carrier_off(netdev
);
2676 netif_stop_queue(netdev
);
2677 mod_timer(&adapter
->phy_info_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2679 /* 80003ES2LAN workaround--
2680 * For packet buffer work-around on link down event;
2681 * disable receives in the ISR and
2682 * reset device here in the watchdog
2684 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
2686 schedule_work(&adapter
->reset_task
);
2689 e1000_smartspeed(adapter
);
2692 e1000_update_stats(adapter
);
2694 adapter
->hw
.tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2695 adapter
->tpt_old
= adapter
->stats
.tpt
;
2696 adapter
->hw
.collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2697 adapter
->colc_old
= adapter
->stats
.colc
;
2699 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2700 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2701 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2702 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2704 e1000_update_adaptive(&adapter
->hw
);
2706 if (!netif_carrier_ok(netdev
)) {
2707 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2708 /* We've lost link, so the controller stops DMA,
2709 * but we've got queued Tx work that's never going
2710 * to get done, so reset controller to flush Tx.
2711 * (Do the reset outside of interrupt context). */
2712 adapter
->tx_timeout_count
++;
2713 schedule_work(&adapter
->reset_task
);
2717 /* Cause software interrupt to ensure rx ring is cleaned */
2718 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_RXDMT0
);
2720 /* Force detection of hung controller every watchdog period */
2721 adapter
->detect_tx_hung
= TRUE
;
2723 /* With 82571 controllers, LAA may be overwritten due to controller
2724 * reset from the other port. Set the appropriate LAA in RAR[0] */
2725 if (adapter
->hw
.mac_type
== e1000_82571
&& adapter
->hw
.laa_is_present
)
2726 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2728 /* Reset the timer */
2729 mod_timer(&adapter
->watchdog_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2732 enum latency_range
{
2736 latency_invalid
= 255
2740 * e1000_update_itr - update the dynamic ITR value based on statistics
2741 * Stores a new ITR value based on packets and byte
2742 * counts during the last interrupt. The advantage of per interrupt
2743 * computation is faster updates and more accurate ITR for the current
2744 * traffic pattern. Constants in this function were computed
2745 * based on theoretical maximum wire speed and thresholds were set based
2746 * on testing data as well as attempting to minimize response time
2747 * while increasing bulk throughput.
2748 * this functionality is controlled by the InterruptThrottleRate module
2749 * parameter (see e1000_param.c)
2750 * @adapter: pointer to adapter
2751 * @itr_setting: current adapter->itr
2752 * @packets: the number of packets during this measurement interval
2753 * @bytes: the number of bytes during this measurement interval
2755 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2756 uint16_t itr_setting
,
2760 unsigned int retval
= itr_setting
;
2761 struct e1000_hw
*hw
= &adapter
->hw
;
2763 if (unlikely(hw
->mac_type
< e1000_82540
))
2764 goto update_itr_done
;
2767 goto update_itr_done
;
2769 switch (itr_setting
) {
2770 case lowest_latency
:
2771 /* jumbo frames get bulk treatment*/
2772 if (bytes
/packets
> 8000)
2773 retval
= bulk_latency
;
2774 else if ((packets
< 5) && (bytes
> 512))
2775 retval
= low_latency
;
2777 case low_latency
: /* 50 usec aka 20000 ints/s */
2778 if (bytes
> 10000) {
2779 /* jumbo frames need bulk latency setting */
2780 if (bytes
/packets
> 8000)
2781 retval
= bulk_latency
;
2782 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2783 retval
= bulk_latency
;
2784 else if ((packets
> 35))
2785 retval
= lowest_latency
;
2786 } else if (bytes
/packets
> 2000)
2787 retval
= bulk_latency
;
2788 else if (packets
<= 2 && bytes
< 512)
2789 retval
= lowest_latency
;
2791 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2792 if (bytes
> 25000) {
2794 retval
= low_latency
;
2795 } else if (bytes
< 6000) {
2796 retval
= low_latency
;
2805 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2807 struct e1000_hw
*hw
= &adapter
->hw
;
2808 uint16_t current_itr
;
2809 uint32_t new_itr
= adapter
->itr
;
2811 if (unlikely(hw
->mac_type
< e1000_82540
))
2814 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2815 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2821 adapter
->tx_itr
= e1000_update_itr(adapter
,
2823 adapter
->total_tx_packets
,
2824 adapter
->total_tx_bytes
);
2825 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2826 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2827 adapter
->tx_itr
= low_latency
;
2829 adapter
->rx_itr
= e1000_update_itr(adapter
,
2831 adapter
->total_rx_packets
,
2832 adapter
->total_rx_bytes
);
2833 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2834 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2835 adapter
->rx_itr
= low_latency
;
2837 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2839 switch (current_itr
) {
2840 /* counts and packets in update_itr are dependent on these numbers */
2841 case lowest_latency
:
2845 new_itr
= 20000; /* aka hwitr = ~200 */
2855 if (new_itr
!= adapter
->itr
) {
2856 /* this attempts to bias the interrupt rate towards Bulk
2857 * by adding intermediate steps when interrupt rate is
2859 new_itr
= new_itr
> adapter
->itr
?
2860 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2862 adapter
->itr
= new_itr
;
2863 E1000_WRITE_REG(hw
, ITR
, 1000000000 / (new_itr
* 256));
2869 #define E1000_TX_FLAGS_CSUM 0x00000001
2870 #define E1000_TX_FLAGS_VLAN 0x00000002
2871 #define E1000_TX_FLAGS_TSO 0x00000004
2872 #define E1000_TX_FLAGS_IPV4 0x00000008
2873 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2874 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2877 e1000_tso(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2878 struct sk_buff
*skb
)
2880 struct e1000_context_desc
*context_desc
;
2881 struct e1000_buffer
*buffer_info
;
2883 uint32_t cmd_length
= 0;
2884 uint16_t ipcse
= 0, tucse
, mss
;
2885 uint8_t ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2888 if (skb_is_gso(skb
)) {
2889 if (skb_header_cloned(skb
)) {
2890 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2895 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2896 mss
= skb_shinfo(skb
)->gso_size
;
2897 if (skb
->protocol
== htons(ETH_P_IP
)) {
2898 struct iphdr
*iph
= ip_hdr(skb
);
2901 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2905 cmd_length
= E1000_TXD_CMD_IP
;
2906 ipcse
= skb_transport_offset(skb
) - 1;
2907 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2908 ipv6_hdr(skb
)->payload_len
= 0;
2909 tcp_hdr(skb
)->check
=
2910 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2911 &ipv6_hdr(skb
)->daddr
,
2915 ipcss
= skb_network_offset(skb
);
2916 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2917 tucss
= skb_transport_offset(skb
);
2918 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2921 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2922 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2924 i
= tx_ring
->next_to_use
;
2925 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2926 buffer_info
= &tx_ring
->buffer_info
[i
];
2928 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2929 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2930 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2931 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2932 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2933 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2934 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2935 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2936 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2938 buffer_info
->time_stamp
= jiffies
;
2939 buffer_info
->next_to_watch
= i
;
2941 if (++i
== tx_ring
->count
) i
= 0;
2942 tx_ring
->next_to_use
= i
;
2950 e1000_tx_csum(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2951 struct sk_buff
*skb
)
2953 struct e1000_context_desc
*context_desc
;
2954 struct e1000_buffer
*buffer_info
;
2958 if (likely(skb
->ip_summed
== CHECKSUM_PARTIAL
)) {
2959 css
= skb_transport_offset(skb
);
2961 i
= tx_ring
->next_to_use
;
2962 buffer_info
= &tx_ring
->buffer_info
[i
];
2963 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2965 context_desc
->lower_setup
.ip_config
= 0;
2966 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2967 context_desc
->upper_setup
.tcp_fields
.tucso
=
2968 css
+ skb
->csum_offset
;
2969 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2970 context_desc
->tcp_seg_setup
.data
= 0;
2971 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
2973 buffer_info
->time_stamp
= jiffies
;
2974 buffer_info
->next_to_watch
= i
;
2976 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2977 tx_ring
->next_to_use
= i
;
2985 #define E1000_MAX_TXD_PWR 12
2986 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2989 e1000_tx_map(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2990 struct sk_buff
*skb
, unsigned int first
, unsigned int max_per_txd
,
2991 unsigned int nr_frags
, unsigned int mss
)
2993 struct e1000_buffer
*buffer_info
;
2994 unsigned int len
= skb
->len
;
2995 unsigned int offset
= 0, size
, count
= 0, i
;
2997 len
-= skb
->data_len
;
2999 i
= tx_ring
->next_to_use
;
3002 buffer_info
= &tx_ring
->buffer_info
[i
];
3003 size
= min(len
, max_per_txd
);
3004 /* Workaround for Controller erratum --
3005 * descriptor for non-tso packet in a linear SKB that follows a
3006 * tso gets written back prematurely before the data is fully
3007 * DMA'd to the controller */
3008 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
3010 tx_ring
->last_tx_tso
= 0;
3014 /* Workaround for premature desc write-backs
3015 * in TSO mode. Append 4-byte sentinel desc */
3016 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
3018 /* work-around for errata 10 and it applies
3019 * to all controllers in PCI-X mode
3020 * The fix is to make sure that the first descriptor of a
3021 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3023 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
3024 (size
> 2015) && count
== 0))
3027 /* Workaround for potential 82544 hang in PCI-X. Avoid
3028 * terminating buffers within evenly-aligned dwords. */
3029 if (unlikely(adapter
->pcix_82544
&&
3030 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
3034 buffer_info
->length
= size
;
3036 pci_map_single(adapter
->pdev
,
3040 buffer_info
->time_stamp
= jiffies
;
3041 buffer_info
->next_to_watch
= i
;
3046 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3049 for (f
= 0; f
< nr_frags
; f
++) {
3050 struct skb_frag_struct
*frag
;
3052 frag
= &skb_shinfo(skb
)->frags
[f
];
3054 offset
= frag
->page_offset
;
3057 buffer_info
= &tx_ring
->buffer_info
[i
];
3058 size
= min(len
, max_per_txd
);
3059 /* Workaround for premature desc write-backs
3060 * in TSO mode. Append 4-byte sentinel desc */
3061 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
3063 /* Workaround for potential 82544 hang in PCI-X.
3064 * Avoid terminating buffers within evenly-aligned
3066 if (unlikely(adapter
->pcix_82544
&&
3067 !((unsigned long)(frag
->page
+offset
+size
-1) & 4) &&
3071 buffer_info
->length
= size
;
3073 pci_map_page(adapter
->pdev
,
3078 buffer_info
->time_stamp
= jiffies
;
3079 buffer_info
->next_to_watch
= i
;
3084 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3088 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
3089 tx_ring
->buffer_info
[i
].skb
= skb
;
3090 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3096 e1000_tx_queue(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
3097 int tx_flags
, int count
)
3099 struct e1000_tx_desc
*tx_desc
= NULL
;
3100 struct e1000_buffer
*buffer_info
;
3101 uint32_t txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3104 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
3105 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3107 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3109 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
3110 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3113 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
3114 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3115 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3118 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
3119 txd_lower
|= E1000_TXD_CMD_VLE
;
3120 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3123 i
= tx_ring
->next_to_use
;
3126 buffer_info
= &tx_ring
->buffer_info
[i
];
3127 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3128 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3129 tx_desc
->lower
.data
=
3130 cpu_to_le32(txd_lower
| buffer_info
->length
);
3131 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3132 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3135 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3137 /* Force memory writes to complete before letting h/w
3138 * know there are new descriptors to fetch. (Only
3139 * applicable for weak-ordered memory model archs,
3140 * such as IA-64). */
3143 tx_ring
->next_to_use
= i
;
3144 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
3145 /* we need this if more than one processor can write to our tail
3146 * at a time, it syncronizes IO on IA64/Altix systems */
3151 * 82547 workaround to avoid controller hang in half-duplex environment.
3152 * The workaround is to avoid queuing a large packet that would span
3153 * the internal Tx FIFO ring boundary by notifying the stack to resend
3154 * the packet at a later time. This gives the Tx FIFO an opportunity to
3155 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3156 * to the beginning of the Tx FIFO.
3159 #define E1000_FIFO_HDR 0x10
3160 #define E1000_82547_PAD_LEN 0x3E0
3163 e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3165 uint32_t fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3166 uint32_t skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3168 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3170 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3171 goto no_fifo_stall_required
;
3173 if (atomic_read(&adapter
->tx_fifo_stall
))
3176 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3177 atomic_set(&adapter
->tx_fifo_stall
, 1);
3181 no_fifo_stall_required
:
3182 adapter
->tx_fifo_head
+= skb_fifo_len
;
3183 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3184 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3188 #define MINIMUM_DHCP_PACKET_SIZE 282
3190 e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3192 struct e1000_hw
*hw
= &adapter
->hw
;
3193 uint16_t length
, offset
;
3194 if (vlan_tx_tag_present(skb
)) {
3195 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
3196 ( adapter
->hw
.mng_cookie
.status
&
3197 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) )
3200 if (skb
->len
> MINIMUM_DHCP_PACKET_SIZE
) {
3201 struct ethhdr
*eth
= (struct ethhdr
*) skb
->data
;
3202 if ((htons(ETH_P_IP
) == eth
->h_proto
)) {
3203 const struct iphdr
*ip
=
3204 (struct iphdr
*)((uint8_t *)skb
->data
+14);
3205 if (IPPROTO_UDP
== ip
->protocol
) {
3206 struct udphdr
*udp
=
3207 (struct udphdr
*)((uint8_t *)ip
+
3209 if (ntohs(udp
->dest
) == 67) {
3210 offset
= (uint8_t *)udp
+ 8 - skb
->data
;
3211 length
= skb
->len
- offset
;
3213 return e1000_mng_write_dhcp_info(hw
,
3223 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3225 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3226 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3228 netif_stop_queue(netdev
);
3229 /* Herbert's original patch had:
3230 * smp_mb__after_netif_stop_queue();
3231 * but since that doesn't exist yet, just open code it. */
3234 /* We need to check again in a case another CPU has just
3235 * made room available. */
3236 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3240 netif_start_queue(netdev
);
3241 ++adapter
->restart_queue
;
3245 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3246 struct e1000_tx_ring
*tx_ring
, int size
)
3248 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3250 return __e1000_maybe_stop_tx(netdev
, size
);
3253 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3255 e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3257 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3258 struct e1000_tx_ring
*tx_ring
;
3259 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3260 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3261 unsigned int tx_flags
= 0;
3262 unsigned int len
= skb
->len
- skb
->data_len
;
3263 unsigned long flags
;
3264 unsigned int nr_frags
;
3270 /* This goes back to the question of how to logically map a tx queue
3271 * to a flow. Right now, performance is impacted slightly negatively
3272 * if using multiple tx queues. If the stack breaks away from a
3273 * single qdisc implementation, we can look at this again. */
3274 tx_ring
= adapter
->tx_ring
;
3276 if (unlikely(skb
->len
<= 0)) {
3277 dev_kfree_skb_any(skb
);
3278 return NETDEV_TX_OK
;
3281 /* 82571 and newer doesn't need the workaround that limited descriptor
3283 if (adapter
->hw
.mac_type
>= e1000_82571
)
3286 mss
= skb_shinfo(skb
)->gso_size
;
3287 /* The controller does a simple calculation to
3288 * make sure there is enough room in the FIFO before
3289 * initiating the DMA for each buffer. The calc is:
3290 * 4 = ceil(buffer len/mss). To make sure we don't
3291 * overrun the FIFO, adjust the max buffer len if mss
3295 max_per_txd
= min(mss
<< 2, max_per_txd
);
3296 max_txd_pwr
= fls(max_per_txd
) - 1;
3298 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3299 * points to just header, pull a few bytes of payload from
3300 * frags into skb->data */
3301 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3302 if (skb
->data_len
&& hdr_len
== len
) {
3303 switch (adapter
->hw
.mac_type
) {
3304 unsigned int pull_size
;
3306 /* Make sure we have room to chop off 4 bytes,
3307 * and that the end alignment will work out to
3308 * this hardware's requirements
3309 * NOTE: this is a TSO only workaround
3310 * if end byte alignment not correct move us
3311 * into the next dword */
3312 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
3319 pull_size
= min((unsigned int)4, skb
->data_len
);
3320 if (!__pskb_pull_tail(skb
, pull_size
)) {
3322 "__pskb_pull_tail failed.\n");
3323 dev_kfree_skb_any(skb
);
3324 return NETDEV_TX_OK
;
3326 len
= skb
->len
- skb
->data_len
;
3335 /* reserve a descriptor for the offload context */
3336 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3340 /* Controller Erratum workaround */
3341 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3344 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3346 if (adapter
->pcix_82544
)
3349 /* work-around for errata 10 and it applies to all controllers
3350 * in PCI-X mode, so add one more descriptor to the count
3352 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
3356 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3357 for (f
= 0; f
< nr_frags
; f
++)
3358 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3360 if (adapter
->pcix_82544
)
3364 if (adapter
->hw
.tx_pkt_filtering
&&
3365 (adapter
->hw
.mac_type
== e1000_82573
))
3366 e1000_transfer_dhcp_info(adapter
, skb
);
3368 if (!spin_trylock_irqsave(&tx_ring
->tx_lock
, flags
))
3369 /* Collision - tell upper layer to requeue */
3370 return NETDEV_TX_LOCKED
;
3372 /* need: count + 2 desc gap to keep tail from touching
3373 * head, otherwise try next time */
3374 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2))) {
3375 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3376 return NETDEV_TX_BUSY
;
3379 if (unlikely(adapter
->hw
.mac_type
== e1000_82547
)) {
3380 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3381 netif_stop_queue(netdev
);
3382 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
3383 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3384 return NETDEV_TX_BUSY
;
3388 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3389 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3390 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3393 first
= tx_ring
->next_to_use
;
3395 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3397 dev_kfree_skb_any(skb
);
3398 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3399 return NETDEV_TX_OK
;
3403 tx_ring
->last_tx_tso
= 1;
3404 tx_flags
|= E1000_TX_FLAGS_TSO
;
3405 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3406 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3408 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3409 * 82571 hardware supports TSO capabilities for IPv6 as well...
3410 * no longer assume, we must. */
3411 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3412 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3414 e1000_tx_queue(adapter
, tx_ring
, tx_flags
,
3415 e1000_tx_map(adapter
, tx_ring
, skb
, first
,
3416 max_per_txd
, nr_frags
, mss
));
3418 netdev
->trans_start
= jiffies
;
3420 /* Make sure there is space in the ring for the next send. */
3421 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3423 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3424 return NETDEV_TX_OK
;
3428 * e1000_tx_timeout - Respond to a Tx Hang
3429 * @netdev: network interface device structure
3433 e1000_tx_timeout(struct net_device
*netdev
)
3435 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3437 /* Do the reset outside of interrupt context */
3438 adapter
->tx_timeout_count
++;
3439 schedule_work(&adapter
->reset_task
);
3443 e1000_reset_task(struct work_struct
*work
)
3445 struct e1000_adapter
*adapter
=
3446 container_of(work
, struct e1000_adapter
, reset_task
);
3448 e1000_reinit_locked(adapter
);
3452 * e1000_get_stats - Get System Network Statistics
3453 * @netdev: network interface device structure
3455 * Returns the address of the device statistics structure.
3456 * The statistics are actually updated from the timer callback.
3459 static struct net_device_stats
*
3460 e1000_get_stats(struct net_device
*netdev
)
3462 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3464 /* only return the current stats */
3465 return &adapter
->net_stats
;
3469 * e1000_change_mtu - Change the Maximum Transfer Unit
3470 * @netdev: network interface device structure
3471 * @new_mtu: new value for maximum frame size
3473 * Returns 0 on success, negative on failure
3477 e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3479 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3480 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3481 uint16_t eeprom_data
= 0;
3483 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3484 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3485 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3489 /* Adapter-specific max frame size limits. */
3490 switch (adapter
->hw
.mac_type
) {
3491 case e1000_undefined
... e1000_82542_rev2_1
:
3493 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3494 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3499 /* Jumbo Frames not supported if:
3500 * - this is not an 82573L device
3501 * - ASPM is enabled in any way (0x1A bits 3:2) */
3502 e1000_read_eeprom(&adapter
->hw
, EEPROM_INIT_3GIO_3
, 1,
3504 if ((adapter
->hw
.device_id
!= E1000_DEV_ID_82573L
) ||
3505 (eeprom_data
& EEPROM_WORD1A_ASPM_MASK
)) {
3506 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3508 "Jumbo Frames not supported.\n");
3513 /* ERT will be enabled later to enable wire speed receives */
3515 /* fall through to get support */
3518 case e1000_80003es2lan
:
3519 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3520 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3521 DPRINTK(PROBE
, ERR
, "MTU > 9216 not supported.\n");
3526 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3530 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3531 * means we reserve 2 more, this pushes us to allocate from the next
3533 * i.e. RXBUFFER_2048 --> size-4096 slab */
3535 if (max_frame
<= E1000_RXBUFFER_256
)
3536 adapter
->rx_buffer_len
= E1000_RXBUFFER_256
;
3537 else if (max_frame
<= E1000_RXBUFFER_512
)
3538 adapter
->rx_buffer_len
= E1000_RXBUFFER_512
;
3539 else if (max_frame
<= E1000_RXBUFFER_1024
)
3540 adapter
->rx_buffer_len
= E1000_RXBUFFER_1024
;
3541 else if (max_frame
<= E1000_RXBUFFER_2048
)
3542 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3543 else if (max_frame
<= E1000_RXBUFFER_4096
)
3544 adapter
->rx_buffer_len
= E1000_RXBUFFER_4096
;
3545 else if (max_frame
<= E1000_RXBUFFER_8192
)
3546 adapter
->rx_buffer_len
= E1000_RXBUFFER_8192
;
3547 else if (max_frame
<= E1000_RXBUFFER_16384
)
3548 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3550 /* adjust allocation if LPE protects us, and we aren't using SBP */
3551 if (!adapter
->hw
.tbi_compatibility_on
&&
3552 ((max_frame
== MAXIMUM_ETHERNET_FRAME_SIZE
) ||
3553 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3554 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3556 netdev
->mtu
= new_mtu
;
3557 adapter
->hw
.max_frame_size
= max_frame
;
3559 if (netif_running(netdev
))
3560 e1000_reinit_locked(adapter
);
3566 * e1000_update_stats - Update the board statistics counters
3567 * @adapter: board private structure
3571 e1000_update_stats(struct e1000_adapter
*adapter
)
3573 struct e1000_hw
*hw
= &adapter
->hw
;
3574 struct pci_dev
*pdev
= adapter
->pdev
;
3575 unsigned long flags
;
3578 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3581 * Prevent stats update while adapter is being reset, or if the pci
3582 * connection is down.
3584 if (adapter
->link_speed
== 0)
3586 if (pci_channel_offline(pdev
))
3589 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3591 /* these counters are modified from e1000_tbi_adjust_stats,
3592 * called from the interrupt context, so they must only
3593 * be written while holding adapter->stats_lock
3596 adapter
->stats
.crcerrs
+= E1000_READ_REG(hw
, CRCERRS
);
3597 adapter
->stats
.gprc
+= E1000_READ_REG(hw
, GPRC
);
3598 adapter
->stats
.gorcl
+= E1000_READ_REG(hw
, GORCL
);
3599 adapter
->stats
.gorch
+= E1000_READ_REG(hw
, GORCH
);
3600 adapter
->stats
.bprc
+= E1000_READ_REG(hw
, BPRC
);
3601 adapter
->stats
.mprc
+= E1000_READ_REG(hw
, MPRC
);
3602 adapter
->stats
.roc
+= E1000_READ_REG(hw
, ROC
);
3604 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3605 adapter
->stats
.prc64
+= E1000_READ_REG(hw
, PRC64
);
3606 adapter
->stats
.prc127
+= E1000_READ_REG(hw
, PRC127
);
3607 adapter
->stats
.prc255
+= E1000_READ_REG(hw
, PRC255
);
3608 adapter
->stats
.prc511
+= E1000_READ_REG(hw
, PRC511
);
3609 adapter
->stats
.prc1023
+= E1000_READ_REG(hw
, PRC1023
);
3610 adapter
->stats
.prc1522
+= E1000_READ_REG(hw
, PRC1522
);
3613 adapter
->stats
.symerrs
+= E1000_READ_REG(hw
, SYMERRS
);
3614 adapter
->stats
.mpc
+= E1000_READ_REG(hw
, MPC
);
3615 adapter
->stats
.scc
+= E1000_READ_REG(hw
, SCC
);
3616 adapter
->stats
.ecol
+= E1000_READ_REG(hw
, ECOL
);
3617 adapter
->stats
.mcc
+= E1000_READ_REG(hw
, MCC
);
3618 adapter
->stats
.latecol
+= E1000_READ_REG(hw
, LATECOL
);
3619 adapter
->stats
.dc
+= E1000_READ_REG(hw
, DC
);
3620 adapter
->stats
.sec
+= E1000_READ_REG(hw
, SEC
);
3621 adapter
->stats
.rlec
+= E1000_READ_REG(hw
, RLEC
);
3622 adapter
->stats
.xonrxc
+= E1000_READ_REG(hw
, XONRXC
);
3623 adapter
->stats
.xontxc
+= E1000_READ_REG(hw
, XONTXC
);
3624 adapter
->stats
.xoffrxc
+= E1000_READ_REG(hw
, XOFFRXC
);
3625 adapter
->stats
.xofftxc
+= E1000_READ_REG(hw
, XOFFTXC
);
3626 adapter
->stats
.fcruc
+= E1000_READ_REG(hw
, FCRUC
);
3627 adapter
->stats
.gptc
+= E1000_READ_REG(hw
, GPTC
);
3628 adapter
->stats
.gotcl
+= E1000_READ_REG(hw
, GOTCL
);
3629 adapter
->stats
.gotch
+= E1000_READ_REG(hw
, GOTCH
);
3630 adapter
->stats
.rnbc
+= E1000_READ_REG(hw
, RNBC
);
3631 adapter
->stats
.ruc
+= E1000_READ_REG(hw
, RUC
);
3632 adapter
->stats
.rfc
+= E1000_READ_REG(hw
, RFC
);
3633 adapter
->stats
.rjc
+= E1000_READ_REG(hw
, RJC
);
3634 adapter
->stats
.torl
+= E1000_READ_REG(hw
, TORL
);
3635 adapter
->stats
.torh
+= E1000_READ_REG(hw
, TORH
);
3636 adapter
->stats
.totl
+= E1000_READ_REG(hw
, TOTL
);
3637 adapter
->stats
.toth
+= E1000_READ_REG(hw
, TOTH
);
3638 adapter
->stats
.tpr
+= E1000_READ_REG(hw
, TPR
);
3640 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3641 adapter
->stats
.ptc64
+= E1000_READ_REG(hw
, PTC64
);
3642 adapter
->stats
.ptc127
+= E1000_READ_REG(hw
, PTC127
);
3643 adapter
->stats
.ptc255
+= E1000_READ_REG(hw
, PTC255
);
3644 adapter
->stats
.ptc511
+= E1000_READ_REG(hw
, PTC511
);
3645 adapter
->stats
.ptc1023
+= E1000_READ_REG(hw
, PTC1023
);
3646 adapter
->stats
.ptc1522
+= E1000_READ_REG(hw
, PTC1522
);
3649 adapter
->stats
.mptc
+= E1000_READ_REG(hw
, MPTC
);
3650 adapter
->stats
.bptc
+= E1000_READ_REG(hw
, BPTC
);
3652 /* used for adaptive IFS */
3654 hw
->tx_packet_delta
= E1000_READ_REG(hw
, TPT
);
3655 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3656 hw
->collision_delta
= E1000_READ_REG(hw
, COLC
);
3657 adapter
->stats
.colc
+= hw
->collision_delta
;
3659 if (hw
->mac_type
>= e1000_82543
) {
3660 adapter
->stats
.algnerrc
+= E1000_READ_REG(hw
, ALGNERRC
);
3661 adapter
->stats
.rxerrc
+= E1000_READ_REG(hw
, RXERRC
);
3662 adapter
->stats
.tncrs
+= E1000_READ_REG(hw
, TNCRS
);
3663 adapter
->stats
.cexterr
+= E1000_READ_REG(hw
, CEXTERR
);
3664 adapter
->stats
.tsctc
+= E1000_READ_REG(hw
, TSCTC
);
3665 adapter
->stats
.tsctfc
+= E1000_READ_REG(hw
, TSCTFC
);
3667 if (hw
->mac_type
> e1000_82547_rev_2
) {
3668 adapter
->stats
.iac
+= E1000_READ_REG(hw
, IAC
);
3669 adapter
->stats
.icrxoc
+= E1000_READ_REG(hw
, ICRXOC
);
3671 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3672 adapter
->stats
.icrxptc
+= E1000_READ_REG(hw
, ICRXPTC
);
3673 adapter
->stats
.icrxatc
+= E1000_READ_REG(hw
, ICRXATC
);
3674 adapter
->stats
.ictxptc
+= E1000_READ_REG(hw
, ICTXPTC
);
3675 adapter
->stats
.ictxatc
+= E1000_READ_REG(hw
, ICTXATC
);
3676 adapter
->stats
.ictxqec
+= E1000_READ_REG(hw
, ICTXQEC
);
3677 adapter
->stats
.ictxqmtc
+= E1000_READ_REG(hw
, ICTXQMTC
);
3678 adapter
->stats
.icrxdmtc
+= E1000_READ_REG(hw
, ICRXDMTC
);
3682 /* Fill out the OS statistics structure */
3683 adapter
->net_stats
.rx_packets
= adapter
->stats
.gprc
;
3684 adapter
->net_stats
.tx_packets
= adapter
->stats
.gptc
;
3685 adapter
->net_stats
.rx_bytes
= adapter
->stats
.gorcl
;
3686 adapter
->net_stats
.tx_bytes
= adapter
->stats
.gotcl
;
3687 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3688 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3692 /* RLEC on some newer hardware can be incorrect so build
3693 * our own version based on RUC and ROC */
3694 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3695 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3696 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3697 adapter
->stats
.cexterr
;
3698 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3699 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3700 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3701 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3702 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3705 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3706 adapter
->net_stats
.tx_errors
= adapter
->stats
.txerrc
;
3707 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3708 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3709 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3710 if (adapter
->hw
.bad_tx_carr_stats_fd
&&
3711 adapter
->link_duplex
== FULL_DUPLEX
) {
3712 adapter
->net_stats
.tx_carrier_errors
= 0;
3713 adapter
->stats
.tncrs
= 0;
3716 /* Tx Dropped needs to be maintained elsewhere */
3719 if (hw
->media_type
== e1000_media_type_copper
) {
3720 if ((adapter
->link_speed
== SPEED_1000
) &&
3721 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3722 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3723 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3726 if ((hw
->mac_type
<= e1000_82546
) &&
3727 (hw
->phy_type
== e1000_phy_m88
) &&
3728 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3729 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3732 /* Management Stats */
3733 if (adapter
->hw
.has_smbus
) {
3734 adapter
->stats
.mgptc
+= E1000_READ_REG(hw
, MGTPTC
);
3735 adapter
->stats
.mgprc
+= E1000_READ_REG(hw
, MGTPRC
);
3736 adapter
->stats
.mgpdc
+= E1000_READ_REG(hw
, MGTPDC
);
3739 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3743 * e1000_intr_msi - Interrupt Handler
3744 * @irq: interrupt number
3745 * @data: pointer to a network interface device structure
3749 e1000_intr_msi(int irq
, void *data
)
3751 struct net_device
*netdev
= data
;
3752 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3753 struct e1000_hw
*hw
= &adapter
->hw
;
3754 #ifndef CONFIG_E1000_NAPI
3757 uint32_t icr
= E1000_READ_REG(hw
, ICR
);
3759 #ifdef CONFIG_E1000_NAPI
3760 /* read ICR disables interrupts using IAM, so keep up with our
3761 * enable/disable accounting */
3762 atomic_inc(&adapter
->irq_sem
);
3764 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3765 hw
->get_link_status
= 1;
3766 /* 80003ES2LAN workaround-- For packet buffer work-around on
3767 * link down event; disable receives here in the ISR and reset
3768 * adapter in watchdog */
3769 if (netif_carrier_ok(netdev
) &&
3770 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3771 /* disable receives */
3772 uint32_t rctl
= E1000_READ_REG(hw
, RCTL
);
3773 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3775 /* guard against interrupt when we're going down */
3776 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3777 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3780 #ifdef CONFIG_E1000_NAPI
3781 if (likely(netif_rx_schedule_prep(netdev
, &adapter
->napi
))) {
3782 adapter
->total_tx_bytes
= 0;
3783 adapter
->total_tx_packets
= 0;
3784 adapter
->total_rx_bytes
= 0;
3785 adapter
->total_rx_packets
= 0;
3786 __netif_rx_schedule(netdev
, &adapter
->napi
);
3788 e1000_irq_enable(adapter
);
3790 adapter
->total_tx_bytes
= 0;
3791 adapter
->total_rx_bytes
= 0;
3792 adapter
->total_tx_packets
= 0;
3793 adapter
->total_rx_packets
= 0;
3795 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3796 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3797 !e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3800 if (likely(adapter
->itr_setting
& 3))
3801 e1000_set_itr(adapter
);
3808 * e1000_intr - Interrupt Handler
3809 * @irq: interrupt number
3810 * @data: pointer to a network interface device structure
3814 e1000_intr(int irq
, void *data
)
3816 struct net_device
*netdev
= data
;
3817 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3818 struct e1000_hw
*hw
= &adapter
->hw
;
3819 uint32_t rctl
, icr
= E1000_READ_REG(hw
, ICR
);
3820 #ifndef CONFIG_E1000_NAPI
3824 return IRQ_NONE
; /* Not our interrupt */
3826 #ifdef CONFIG_E1000_NAPI
3827 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3828 * not set, then the adapter didn't send an interrupt */
3829 if (unlikely(hw
->mac_type
>= e1000_82571
&&
3830 !(icr
& E1000_ICR_INT_ASSERTED
)))
3833 /* Interrupt Auto-Mask...upon reading ICR,
3834 * interrupts are masked. No need for the
3835 * IMC write, but it does mean we should
3836 * account for it ASAP. */
3837 if (likely(hw
->mac_type
>= e1000_82571
))
3838 atomic_inc(&adapter
->irq_sem
);
3841 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3842 hw
->get_link_status
= 1;
3843 /* 80003ES2LAN workaround--
3844 * For packet buffer work-around on link down event;
3845 * disable receives here in the ISR and
3846 * reset adapter in watchdog
3848 if (netif_carrier_ok(netdev
) &&
3849 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3850 /* disable receives */
3851 rctl
= E1000_READ_REG(hw
, RCTL
);
3852 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3854 /* guard against interrupt when we're going down */
3855 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3856 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3859 #ifdef CONFIG_E1000_NAPI
3860 if (unlikely(hw
->mac_type
< e1000_82571
)) {
3861 /* disable interrupts, without the synchronize_irq bit */
3862 atomic_inc(&adapter
->irq_sem
);
3863 E1000_WRITE_REG(hw
, IMC
, ~0);
3864 E1000_WRITE_FLUSH(hw
);
3866 if (likely(netif_rx_schedule_prep(netdev
, &adapter
->napi
))) {
3867 adapter
->total_tx_bytes
= 0;
3868 adapter
->total_tx_packets
= 0;
3869 adapter
->total_rx_bytes
= 0;
3870 adapter
->total_rx_packets
= 0;
3871 __netif_rx_schedule(netdev
, &adapter
->napi
);
3873 /* this really should not happen! if it does it is basically a
3874 * bug, but not a hard error, so enable ints and continue */
3875 e1000_irq_enable(adapter
);
3877 /* Writing IMC and IMS is needed for 82547.
3878 * Due to Hub Link bus being occupied, an interrupt
3879 * de-assertion message is not able to be sent.
3880 * When an interrupt assertion message is generated later,
3881 * two messages are re-ordered and sent out.
3882 * That causes APIC to think 82547 is in de-assertion
3883 * state, while 82547 is in assertion state, resulting
3884 * in dead lock. Writing IMC forces 82547 into
3885 * de-assertion state.
3887 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
) {
3888 atomic_inc(&adapter
->irq_sem
);
3889 E1000_WRITE_REG(hw
, IMC
, ~0);
3892 adapter
->total_tx_bytes
= 0;
3893 adapter
->total_rx_bytes
= 0;
3894 adapter
->total_tx_packets
= 0;
3895 adapter
->total_rx_packets
= 0;
3897 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3898 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3899 !e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3902 if (likely(adapter
->itr_setting
& 3))
3903 e1000_set_itr(adapter
);
3905 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
)
3906 e1000_irq_enable(adapter
);
3912 #ifdef CONFIG_E1000_NAPI
3914 * e1000_clean - NAPI Rx polling callback
3915 * @adapter: board private structure
3919 e1000_clean(struct napi_struct
*napi
, int budget
)
3921 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3922 struct net_device
*poll_dev
= adapter
->netdev
;
3923 int tx_cleaned
= 0, work_done
= 0;
3925 /* Must NOT use netdev_priv macro here. */
3926 adapter
= poll_dev
->priv
;
3928 /* e1000_clean is called per-cpu. This lock protects
3929 * tx_ring[0] from being cleaned by multiple cpus
3930 * simultaneously. A failure obtaining the lock means
3931 * tx_ring[0] is currently being cleaned anyway. */
3932 if (spin_trylock(&adapter
->tx_queue_lock
)) {
3933 tx_cleaned
= e1000_clean_tx_irq(adapter
,
3934 &adapter
->tx_ring
[0]);
3935 spin_unlock(&adapter
->tx_queue_lock
);
3938 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0],
3939 &work_done
, budget
);
3944 /* If budget not fully consumed, exit the polling mode */
3945 if (work_done
< budget
) {
3946 if (likely(adapter
->itr_setting
& 3))
3947 e1000_set_itr(adapter
);
3948 netif_rx_complete(poll_dev
, napi
);
3949 e1000_irq_enable(adapter
);
3957 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3958 * @adapter: board private structure
3962 e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3963 struct e1000_tx_ring
*tx_ring
)
3965 struct net_device
*netdev
= adapter
->netdev
;
3966 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3967 struct e1000_buffer
*buffer_info
;
3968 unsigned int i
, eop
;
3969 #ifdef CONFIG_E1000_NAPI
3970 unsigned int count
= 0;
3972 boolean_t cleaned
= FALSE
;
3973 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3975 i
= tx_ring
->next_to_clean
;
3976 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3977 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3979 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
3980 for (cleaned
= FALSE
; !cleaned
; ) {
3981 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3982 buffer_info
= &tx_ring
->buffer_info
[i
];
3983 cleaned
= (i
== eop
);
3986 struct sk_buff
*skb
= buffer_info
->skb
;
3987 unsigned int segs
, bytecount
;
3988 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3989 /* multiply data chunks by size of headers */
3990 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3992 total_tx_packets
+= segs
;
3993 total_tx_bytes
+= bytecount
;
3995 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3996 tx_desc
->upper
.data
= 0;
3998 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
4001 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
4002 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
4003 #ifdef CONFIG_E1000_NAPI
4004 #define E1000_TX_WEIGHT 64
4005 /* weight of a sort for tx, to avoid endless transmit cleanup */
4006 if (count
++ == E1000_TX_WEIGHT
) break;
4010 tx_ring
->next_to_clean
= i
;
4012 #define TX_WAKE_THRESHOLD 32
4013 if (unlikely(cleaned
&& netif_carrier_ok(netdev
) &&
4014 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
4015 /* Make sure that anybody stopping the queue after this
4016 * sees the new next_to_clean.
4019 if (netif_queue_stopped(netdev
)) {
4020 netif_wake_queue(netdev
);
4021 ++adapter
->restart_queue
;
4025 if (adapter
->detect_tx_hung
) {
4026 /* Detect a transmit hang in hardware, this serializes the
4027 * check with the clearing of time_stamp and movement of i */
4028 adapter
->detect_tx_hung
= FALSE
;
4029 if (tx_ring
->buffer_info
[eop
].dma
&&
4030 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
4031 (adapter
->tx_timeout_factor
* HZ
))
4032 && !(E1000_READ_REG(&adapter
->hw
, STATUS
) &
4033 E1000_STATUS_TXOFF
)) {
4035 /* detected Tx unit hang */
4036 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
4040 " next_to_use <%x>\n"
4041 " next_to_clean <%x>\n"
4042 "buffer_info[next_to_clean]\n"
4043 " time_stamp <%lx>\n"
4044 " next_to_watch <%x>\n"
4046 " next_to_watch.status <%x>\n",
4047 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
4048 sizeof(struct e1000_tx_ring
)),
4049 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdh
),
4050 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdt
),
4051 tx_ring
->next_to_use
,
4052 tx_ring
->next_to_clean
,
4053 tx_ring
->buffer_info
[eop
].time_stamp
,
4056 eop_desc
->upper
.fields
.status
);
4057 netif_stop_queue(netdev
);
4060 adapter
->total_tx_bytes
+= total_tx_bytes
;
4061 adapter
->total_tx_packets
+= total_tx_packets
;
4066 * e1000_rx_checksum - Receive Checksum Offload for 82543
4067 * @adapter: board private structure
4068 * @status_err: receive descriptor status and error fields
4069 * @csum: receive descriptor csum field
4070 * @sk_buff: socket buffer with received data
4074 e1000_rx_checksum(struct e1000_adapter
*adapter
,
4075 uint32_t status_err
, uint32_t csum
,
4076 struct sk_buff
*skb
)
4078 uint16_t status
= (uint16_t)status_err
;
4079 uint8_t errors
= (uint8_t)(status_err
>> 24);
4080 skb
->ip_summed
= CHECKSUM_NONE
;
4082 /* 82543 or newer only */
4083 if (unlikely(adapter
->hw
.mac_type
< e1000_82543
)) return;
4084 /* Ignore Checksum bit is set */
4085 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
4086 /* TCP/UDP checksum error bit is set */
4087 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
4088 /* let the stack verify checksum errors */
4089 adapter
->hw_csum_err
++;
4092 /* TCP/UDP Checksum has not been calculated */
4093 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
) {
4094 if (!(status
& E1000_RXD_STAT_TCPCS
))
4097 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
4100 /* It must be a TCP or UDP packet with a valid checksum */
4101 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
4102 /* TCP checksum is good */
4103 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
4104 } else if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
4105 /* IP fragment with UDP payload */
4106 /* Hardware complements the payload checksum, so we undo it
4107 * and then put the value in host order for further stack use.
4109 csum
= ntohl(csum
^ 0xFFFF);
4111 skb
->ip_summed
= CHECKSUM_COMPLETE
;
4113 adapter
->hw_csum_good
++;
4117 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4118 * @adapter: board private structure
4122 #ifdef CONFIG_E1000_NAPI
4123 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4124 struct e1000_rx_ring
*rx_ring
,
4125 int *work_done
, int work_to_do
)
4127 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4128 struct e1000_rx_ring
*rx_ring
)
4131 struct net_device
*netdev
= adapter
->netdev
;
4132 struct pci_dev
*pdev
= adapter
->pdev
;
4133 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
4134 struct e1000_buffer
*buffer_info
, *next_buffer
;
4135 unsigned long flags
;
4139 int cleaned_count
= 0;
4140 boolean_t cleaned
= FALSE
;
4141 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4143 i
= rx_ring
->next_to_clean
;
4144 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4145 buffer_info
= &rx_ring
->buffer_info
[i
];
4147 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4148 struct sk_buff
*skb
;
4151 #ifdef CONFIG_E1000_NAPI
4152 if (*work_done
>= work_to_do
)
4156 status
= rx_desc
->status
;
4157 skb
= buffer_info
->skb
;
4158 buffer_info
->skb
= NULL
;
4160 prefetch(skb
->data
- NET_IP_ALIGN
);
4162 if (++i
== rx_ring
->count
) i
= 0;
4163 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4166 next_buffer
= &rx_ring
->buffer_info
[i
];
4170 pci_unmap_single(pdev
,
4172 buffer_info
->length
,
4173 PCI_DMA_FROMDEVICE
);
4175 length
= le16_to_cpu(rx_desc
->length
);
4177 if (unlikely(!(status
& E1000_RXD_STAT_EOP
))) {
4178 /* All receives must fit into a single buffer */
4179 E1000_DBG("%s: Receive packet consumed multiple"
4180 " buffers\n", netdev
->name
);
4182 buffer_info
->skb
= skb
;
4186 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4187 last_byte
= *(skb
->data
+ length
- 1);
4188 if (TBI_ACCEPT(&adapter
->hw
, status
,
4189 rx_desc
->errors
, length
, last_byte
)) {
4190 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4191 e1000_tbi_adjust_stats(&adapter
->hw
,
4194 spin_unlock_irqrestore(&adapter
->stats_lock
,
4199 buffer_info
->skb
= skb
;
4204 /* adjust length to remove Ethernet CRC, this must be
4205 * done after the TBI_ACCEPT workaround above */
4208 /* probably a little skewed due to removing CRC */
4209 total_rx_bytes
+= length
;
4212 /* code added for copybreak, this should improve
4213 * performance for small packets with large amounts
4214 * of reassembly being done in the stack */
4215 if (length
< copybreak
) {
4216 struct sk_buff
*new_skb
=
4217 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
4219 skb_reserve(new_skb
, NET_IP_ALIGN
);
4220 skb_copy_to_linear_data_offset(new_skb
,
4226 /* save the skb in buffer_info as good */
4227 buffer_info
->skb
= skb
;
4230 /* else just continue with the old one */
4232 /* end copybreak code */
4233 skb_put(skb
, length
);
4235 /* Receive Checksum Offload */
4236 e1000_rx_checksum(adapter
,
4237 (uint32_t)(status
) |
4238 ((uint32_t)(rx_desc
->errors
) << 24),
4239 le16_to_cpu(rx_desc
->csum
), skb
);
4241 skb
->protocol
= eth_type_trans(skb
, netdev
);
4242 #ifdef CONFIG_E1000_NAPI
4243 if (unlikely(adapter
->vlgrp
&&
4244 (status
& E1000_RXD_STAT_VP
))) {
4245 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4246 le16_to_cpu(rx_desc
->special
) &
4247 E1000_RXD_SPC_VLAN_MASK
);
4249 netif_receive_skb(skb
);
4251 #else /* CONFIG_E1000_NAPI */
4252 if (unlikely(adapter
->vlgrp
&&
4253 (status
& E1000_RXD_STAT_VP
))) {
4254 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
4255 le16_to_cpu(rx_desc
->special
) &
4256 E1000_RXD_SPC_VLAN_MASK
);
4260 #endif /* CONFIG_E1000_NAPI */
4261 netdev
->last_rx
= jiffies
;
4264 rx_desc
->status
= 0;
4266 /* return some buffers to hardware, one at a time is too slow */
4267 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4268 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4272 /* use prefetched values */
4274 buffer_info
= next_buffer
;
4276 rx_ring
->next_to_clean
= i
;
4278 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4280 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4282 adapter
->total_rx_packets
+= total_rx_packets
;
4283 adapter
->total_rx_bytes
+= total_rx_bytes
;
4288 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4289 * @adapter: board private structure
4293 #ifdef CONFIG_E1000_NAPI
4294 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
4295 struct e1000_rx_ring
*rx_ring
,
4296 int *work_done
, int work_to_do
)
4298 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
4299 struct e1000_rx_ring
*rx_ring
)
4302 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
4303 struct net_device
*netdev
= adapter
->netdev
;
4304 struct pci_dev
*pdev
= adapter
->pdev
;
4305 struct e1000_buffer
*buffer_info
, *next_buffer
;
4306 struct e1000_ps_page
*ps_page
;
4307 struct e1000_ps_page_dma
*ps_page_dma
;
4308 struct sk_buff
*skb
;
4310 uint32_t length
, staterr
;
4311 int cleaned_count
= 0;
4312 boolean_t cleaned
= FALSE
;
4313 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4315 i
= rx_ring
->next_to_clean
;
4316 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
4317 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
4318 buffer_info
= &rx_ring
->buffer_info
[i
];
4320 while (staterr
& E1000_RXD_STAT_DD
) {
4321 ps_page
= &rx_ring
->ps_page
[i
];
4322 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4323 #ifdef CONFIG_E1000_NAPI
4324 if (unlikely(*work_done
>= work_to_do
))
4328 skb
= buffer_info
->skb
;
4330 /* in the packet split case this is header only */
4331 prefetch(skb
->data
- NET_IP_ALIGN
);
4333 if (++i
== rx_ring
->count
) i
= 0;
4334 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
4337 next_buffer
= &rx_ring
->buffer_info
[i
];
4341 pci_unmap_single(pdev
, buffer_info
->dma
,
4342 buffer_info
->length
,
4343 PCI_DMA_FROMDEVICE
);
4345 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
))) {
4346 E1000_DBG("%s: Packet Split buffers didn't pick up"
4347 " the full packet\n", netdev
->name
);
4348 dev_kfree_skb_irq(skb
);
4352 if (unlikely(staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
)) {
4353 dev_kfree_skb_irq(skb
);
4357 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
4359 if (unlikely(!length
)) {
4360 E1000_DBG("%s: Last part of the packet spanning"
4361 " multiple descriptors\n", netdev
->name
);
4362 dev_kfree_skb_irq(skb
);
4367 skb_put(skb
, length
);
4370 /* this looks ugly, but it seems compiler issues make it
4371 more efficient than reusing j */
4372 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
4374 /* page alloc/put takes too long and effects small packet
4375 * throughput, so unsplit small packets and save the alloc/put*/
4376 if (l1
&& (l1
<= copybreak
) && ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
4378 /* there is no documentation about how to call
4379 * kmap_atomic, so we can't hold the mapping
4381 pci_dma_sync_single_for_cpu(pdev
,
4382 ps_page_dma
->ps_page_dma
[0],
4384 PCI_DMA_FROMDEVICE
);
4385 vaddr
= kmap_atomic(ps_page
->ps_page
[0],
4386 KM_SKB_DATA_SOFTIRQ
);
4387 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
4388 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
4389 pci_dma_sync_single_for_device(pdev
,
4390 ps_page_dma
->ps_page_dma
[0],
4391 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
4392 /* remove the CRC */
4399 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
4400 if (!(length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
])))
4402 pci_unmap_page(pdev
, ps_page_dma
->ps_page_dma
[j
],
4403 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
4404 ps_page_dma
->ps_page_dma
[j
] = 0;
4405 skb_fill_page_desc(skb
, j
, ps_page
->ps_page
[j
], 0,
4407 ps_page
->ps_page
[j
] = NULL
;
4409 skb
->data_len
+= length
;
4410 skb
->truesize
+= length
;
4413 /* strip the ethernet crc, problem is we're using pages now so
4414 * this whole operation can get a little cpu intensive */
4415 pskb_trim(skb
, skb
->len
- 4);
4418 total_rx_bytes
+= skb
->len
;
4421 e1000_rx_checksum(adapter
, staterr
,
4422 le16_to_cpu(rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
4423 skb
->protocol
= eth_type_trans(skb
, netdev
);
4425 if (likely(rx_desc
->wb
.upper
.header_status
&
4426 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
)))
4427 adapter
->rx_hdr_split
++;
4428 #ifdef CONFIG_E1000_NAPI
4429 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
4430 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4431 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
4432 E1000_RXD_SPC_VLAN_MASK
);
4434 netif_receive_skb(skb
);
4436 #else /* CONFIG_E1000_NAPI */
4437 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
4438 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
4439 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
4440 E1000_RXD_SPC_VLAN_MASK
);
4444 #endif /* CONFIG_E1000_NAPI */
4445 netdev
->last_rx
= jiffies
;
4448 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
4449 buffer_info
->skb
= NULL
;
4451 /* return some buffers to hardware, one at a time is too slow */
4452 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4453 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4457 /* use prefetched values */
4459 buffer_info
= next_buffer
;
4461 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
4463 rx_ring
->next_to_clean
= i
;
4465 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4467 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4469 adapter
->total_rx_packets
+= total_rx_packets
;
4470 adapter
->total_rx_bytes
+= total_rx_bytes
;
4475 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4476 * @adapter: address of board private structure
4480 e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4481 struct e1000_rx_ring
*rx_ring
,
4484 struct net_device
*netdev
= adapter
->netdev
;
4485 struct pci_dev
*pdev
= adapter
->pdev
;
4486 struct e1000_rx_desc
*rx_desc
;
4487 struct e1000_buffer
*buffer_info
;
4488 struct sk_buff
*skb
;
4490 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
4492 i
= rx_ring
->next_to_use
;
4493 buffer_info
= &rx_ring
->buffer_info
[i
];
4495 while (cleaned_count
--) {
4496 skb
= buffer_info
->skb
;
4502 skb
= netdev_alloc_skb(netdev
, bufsz
);
4503 if (unlikely(!skb
)) {
4504 /* Better luck next round */
4505 adapter
->alloc_rx_buff_failed
++;
4509 /* Fix for errata 23, can't cross 64kB boundary */
4510 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4511 struct sk_buff
*oldskb
= skb
;
4512 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
4513 "at %p\n", bufsz
, skb
->data
);
4514 /* Try again, without freeing the previous */
4515 skb
= netdev_alloc_skb(netdev
, bufsz
);
4516 /* Failed allocation, critical failure */
4518 dev_kfree_skb(oldskb
);
4522 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4525 dev_kfree_skb(oldskb
);
4526 break; /* while !buffer_info->skb */
4529 /* Use new allocation */
4530 dev_kfree_skb(oldskb
);
4532 /* Make buffer alignment 2 beyond a 16 byte boundary
4533 * this will result in a 16 byte aligned IP header after
4534 * the 14 byte MAC header is removed
4536 skb_reserve(skb
, NET_IP_ALIGN
);
4538 buffer_info
->skb
= skb
;
4539 buffer_info
->length
= adapter
->rx_buffer_len
;
4541 buffer_info
->dma
= pci_map_single(pdev
,
4543 adapter
->rx_buffer_len
,
4544 PCI_DMA_FROMDEVICE
);
4546 /* Fix for errata 23, can't cross 64kB boundary */
4547 if (!e1000_check_64k_bound(adapter
,
4548 (void *)(unsigned long)buffer_info
->dma
,
4549 adapter
->rx_buffer_len
)) {
4550 DPRINTK(RX_ERR
, ERR
,
4551 "dma align check failed: %u bytes at %p\n",
4552 adapter
->rx_buffer_len
,
4553 (void *)(unsigned long)buffer_info
->dma
);
4555 buffer_info
->skb
= NULL
;
4557 pci_unmap_single(pdev
, buffer_info
->dma
,
4558 adapter
->rx_buffer_len
,
4559 PCI_DMA_FROMDEVICE
);
4561 break; /* while !buffer_info->skb */
4563 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4564 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4566 if (unlikely(++i
== rx_ring
->count
))
4568 buffer_info
= &rx_ring
->buffer_info
[i
];
4571 if (likely(rx_ring
->next_to_use
!= i
)) {
4572 rx_ring
->next_to_use
= i
;
4573 if (unlikely(i
-- == 0))
4574 i
= (rx_ring
->count
- 1);
4576 /* Force memory writes to complete before letting h/w
4577 * know there are new descriptors to fetch. (Only
4578 * applicable for weak-ordered memory model archs,
4579 * such as IA-64). */
4581 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4586 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4587 * @adapter: address of board private structure
4591 e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
4592 struct e1000_rx_ring
*rx_ring
,
4595 struct net_device
*netdev
= adapter
->netdev
;
4596 struct pci_dev
*pdev
= adapter
->pdev
;
4597 union e1000_rx_desc_packet_split
*rx_desc
;
4598 struct e1000_buffer
*buffer_info
;
4599 struct e1000_ps_page
*ps_page
;
4600 struct e1000_ps_page_dma
*ps_page_dma
;
4601 struct sk_buff
*skb
;
4604 i
= rx_ring
->next_to_use
;
4605 buffer_info
= &rx_ring
->buffer_info
[i
];
4606 ps_page
= &rx_ring
->ps_page
[i
];
4607 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4609 while (cleaned_count
--) {
4610 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
4612 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
4613 if (j
< adapter
->rx_ps_pages
) {
4614 if (likely(!ps_page
->ps_page
[j
])) {
4615 ps_page
->ps_page
[j
] =
4616 alloc_page(GFP_ATOMIC
);
4617 if (unlikely(!ps_page
->ps_page
[j
])) {
4618 adapter
->alloc_rx_buff_failed
++;
4621 ps_page_dma
->ps_page_dma
[j
] =
4623 ps_page
->ps_page
[j
],
4625 PCI_DMA_FROMDEVICE
);
4627 /* Refresh the desc even if buffer_addrs didn't
4628 * change because each write-back erases
4631 rx_desc
->read
.buffer_addr
[j
+1] =
4632 cpu_to_le64(ps_page_dma
->ps_page_dma
[j
]);
4634 rx_desc
->read
.buffer_addr
[j
+1] = ~0;
4637 skb
= netdev_alloc_skb(netdev
,
4638 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
4640 if (unlikely(!skb
)) {
4641 adapter
->alloc_rx_buff_failed
++;
4645 /* Make buffer alignment 2 beyond a 16 byte boundary
4646 * this will result in a 16 byte aligned IP header after
4647 * the 14 byte MAC header is removed
4649 skb_reserve(skb
, NET_IP_ALIGN
);
4651 buffer_info
->skb
= skb
;
4652 buffer_info
->length
= adapter
->rx_ps_bsize0
;
4653 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4654 adapter
->rx_ps_bsize0
,
4655 PCI_DMA_FROMDEVICE
);
4657 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
4659 if (unlikely(++i
== rx_ring
->count
)) i
= 0;
4660 buffer_info
= &rx_ring
->buffer_info
[i
];
4661 ps_page
= &rx_ring
->ps_page
[i
];
4662 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4666 if (likely(rx_ring
->next_to_use
!= i
)) {
4667 rx_ring
->next_to_use
= i
;
4668 if (unlikely(i
-- == 0)) i
= (rx_ring
->count
- 1);
4670 /* Force memory writes to complete before letting h/w
4671 * know there are new descriptors to fetch. (Only
4672 * applicable for weak-ordered memory model archs,
4673 * such as IA-64). */
4675 /* Hardware increments by 16 bytes, but packet split
4676 * descriptors are 32 bytes...so we increment tail
4679 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4684 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4689 e1000_smartspeed(struct e1000_adapter
*adapter
)
4691 uint16_t phy_status
;
4694 if ((adapter
->hw
.phy_type
!= e1000_phy_igp
) || !adapter
->hw
.autoneg
||
4695 !(adapter
->hw
.autoneg_advertised
& ADVERTISE_1000_FULL
))
4698 if (adapter
->smartspeed
== 0) {
4699 /* If Master/Slave config fault is asserted twice,
4700 * we assume back-to-back */
4701 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4702 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4703 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4704 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4705 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4706 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4707 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4708 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
,
4710 adapter
->smartspeed
++;
4711 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4712 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
,
4714 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4715 MII_CR_RESTART_AUTO_NEG
);
4716 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
,
4721 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4722 /* If still no link, perhaps using 2/3 pair cable */
4723 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4724 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4725 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, phy_ctrl
);
4726 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4727 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_ctrl
)) {
4728 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4729 MII_CR_RESTART_AUTO_NEG
);
4730 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_ctrl
);
4733 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4734 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4735 adapter
->smartspeed
= 0;
4746 e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4752 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4766 e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4768 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4769 struct mii_ioctl_data
*data
= if_mii(ifr
);
4773 unsigned long flags
;
4775 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
4780 data
->phy_id
= adapter
->hw
.phy_addr
;
4783 if (!capable(CAP_NET_ADMIN
))
4785 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4786 if (e1000_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4788 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4791 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4794 if (!capable(CAP_NET_ADMIN
))
4796 if (data
->reg_num
& ~(0x1F))
4798 mii_reg
= data
->val_in
;
4799 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4800 if (e1000_write_phy_reg(&adapter
->hw
, data
->reg_num
,
4802 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4805 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4806 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
4807 switch (data
->reg_num
) {
4809 if (mii_reg
& MII_CR_POWER_DOWN
)
4811 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4812 adapter
->hw
.autoneg
= 1;
4813 adapter
->hw
.autoneg_advertised
= 0x2F;
4816 spddplx
= SPEED_1000
;
4817 else if (mii_reg
& 0x2000)
4818 spddplx
= SPEED_100
;
4821 spddplx
+= (mii_reg
& 0x100)
4824 retval
= e1000_set_spd_dplx(adapter
,
4829 if (netif_running(adapter
->netdev
))
4830 e1000_reinit_locked(adapter
);
4832 e1000_reset(adapter
);
4834 case M88E1000_PHY_SPEC_CTRL
:
4835 case M88E1000_EXT_PHY_SPEC_CTRL
:
4836 if (e1000_phy_reset(&adapter
->hw
))
4841 switch (data
->reg_num
) {
4843 if (mii_reg
& MII_CR_POWER_DOWN
)
4845 if (netif_running(adapter
->netdev
))
4846 e1000_reinit_locked(adapter
);
4848 e1000_reset(adapter
);
4856 return E1000_SUCCESS
;
4860 e1000_pci_set_mwi(struct e1000_hw
*hw
)
4862 struct e1000_adapter
*adapter
= hw
->back
;
4863 int ret_val
= pci_set_mwi(adapter
->pdev
);
4866 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4870 e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4872 struct e1000_adapter
*adapter
= hw
->back
;
4874 pci_clear_mwi(adapter
->pdev
);
4878 e1000_read_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4880 struct e1000_adapter
*adapter
= hw
->back
;
4882 pci_read_config_word(adapter
->pdev
, reg
, value
);
4886 e1000_write_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4888 struct e1000_adapter
*adapter
= hw
->back
;
4890 pci_write_config_word(adapter
->pdev
, reg
, *value
);
4894 e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4896 struct e1000_adapter
*adapter
= hw
->back
;
4897 return pcix_get_mmrbc(adapter
->pdev
);
4901 e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4903 struct e1000_adapter
*adapter
= hw
->back
;
4904 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4908 e1000_read_pcie_cap_reg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4910 struct e1000_adapter
*adapter
= hw
->back
;
4911 uint16_t cap_offset
;
4913 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
4915 return -E1000_ERR_CONFIG
;
4917 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
4919 return E1000_SUCCESS
;
4923 e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, uint32_t value
)
4929 e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
)
4931 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4932 uint32_t ctrl
, rctl
;
4934 e1000_irq_disable(adapter
);
4935 adapter
->vlgrp
= grp
;
4938 /* enable VLAN tag insert/strip */
4939 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4940 ctrl
|= E1000_CTRL_VME
;
4941 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4943 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4944 /* enable VLAN receive filtering */
4945 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4946 rctl
|= E1000_RCTL_VFE
;
4947 rctl
&= ~E1000_RCTL_CFIEN
;
4948 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4949 e1000_update_mng_vlan(adapter
);
4952 /* disable VLAN tag insert/strip */
4953 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4954 ctrl
&= ~E1000_CTRL_VME
;
4955 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4957 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4958 /* disable VLAN filtering */
4959 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4960 rctl
&= ~E1000_RCTL_VFE
;
4961 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4962 if (adapter
->mng_vlan_id
!=
4963 (uint16_t)E1000_MNG_VLAN_NONE
) {
4964 e1000_vlan_rx_kill_vid(netdev
,
4965 adapter
->mng_vlan_id
);
4966 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4971 e1000_irq_enable(adapter
);
4975 e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
)
4977 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4978 uint32_t vfta
, index
;
4980 if ((adapter
->hw
.mng_cookie
.status
&
4981 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4982 (vid
== adapter
->mng_vlan_id
))
4984 /* add VID to filter table */
4985 index
= (vid
>> 5) & 0x7F;
4986 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
4987 vfta
|= (1 << (vid
& 0x1F));
4988 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
4992 e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
)
4994 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4995 uint32_t vfta
, index
;
4997 e1000_irq_disable(adapter
);
4998 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4999 e1000_irq_enable(adapter
);
5001 if ((adapter
->hw
.mng_cookie
.status
&
5002 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
5003 (vid
== adapter
->mng_vlan_id
)) {
5004 /* release control to f/w */
5005 e1000_release_hw_control(adapter
);
5009 /* remove VID from filter table */
5010 index
= (vid
>> 5) & 0x7F;
5011 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
5012 vfta
&= ~(1 << (vid
& 0x1F));
5013 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
5017 e1000_restore_vlan(struct e1000_adapter
*adapter
)
5019 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
5021 if (adapter
->vlgrp
) {
5023 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
5024 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
5026 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
5032 e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
)
5034 adapter
->hw
.autoneg
= 0;
5036 /* Fiber NICs only allow 1000 gbps Full duplex */
5037 if ((adapter
->hw
.media_type
== e1000_media_type_fiber
) &&
5038 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
5039 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
5044 case SPEED_10
+ DUPLEX_HALF
:
5045 adapter
->hw
.forced_speed_duplex
= e1000_10_half
;
5047 case SPEED_10
+ DUPLEX_FULL
:
5048 adapter
->hw
.forced_speed_duplex
= e1000_10_full
;
5050 case SPEED_100
+ DUPLEX_HALF
:
5051 adapter
->hw
.forced_speed_duplex
= e1000_100_half
;
5053 case SPEED_100
+ DUPLEX_FULL
:
5054 adapter
->hw
.forced_speed_duplex
= e1000_100_full
;
5056 case SPEED_1000
+ DUPLEX_FULL
:
5057 adapter
->hw
.autoneg
= 1;
5058 adapter
->hw
.autoneg_advertised
= ADVERTISE_1000_FULL
;
5060 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
5062 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
5069 e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5071 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5072 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5073 uint32_t ctrl
, ctrl_ext
, rctl
, status
;
5074 uint32_t wufc
= adapter
->wol
;
5079 netif_device_detach(netdev
);
5081 if (netif_running(netdev
)) {
5082 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
5083 e1000_down(adapter
);
5087 retval
= pci_save_state(pdev
);
5092 status
= E1000_READ_REG(&adapter
->hw
, STATUS
);
5093 if (status
& E1000_STATUS_LU
)
5094 wufc
&= ~E1000_WUFC_LNKC
;
5097 e1000_setup_rctl(adapter
);
5098 e1000_set_multi(netdev
);
5100 /* turn on all-multi mode if wake on multicast is enabled */
5101 if (wufc
& E1000_WUFC_MC
) {
5102 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
5103 rctl
|= E1000_RCTL_MPE
;
5104 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
5107 if (adapter
->hw
.mac_type
>= e1000_82540
) {
5108 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
5109 /* advertise wake from D3Cold */
5110 #define E1000_CTRL_ADVD3WUC 0x00100000
5111 /* phy power management enable */
5112 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5113 ctrl
|= E1000_CTRL_ADVD3WUC
|
5114 E1000_CTRL_EN_PHY_PWR_MGMT
;
5115 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
5118 if (adapter
->hw
.media_type
== e1000_media_type_fiber
||
5119 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
5120 /* keep the laser running in D3 */
5121 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
5122 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
5123 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
, ctrl_ext
);
5126 /* Allow time for pending master requests to run */
5127 e1000_disable_pciex_master(&adapter
->hw
);
5129 E1000_WRITE_REG(&adapter
->hw
, WUC
, E1000_WUC_PME_EN
);
5130 E1000_WRITE_REG(&adapter
->hw
, WUFC
, wufc
);
5131 pci_enable_wake(pdev
, PCI_D3hot
, 1);
5132 pci_enable_wake(pdev
, PCI_D3cold
, 1);
5134 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
5135 E1000_WRITE_REG(&adapter
->hw
, WUFC
, 0);
5136 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5137 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5140 e1000_release_manageability(adapter
);
5142 /* make sure adapter isn't asleep if manageability is enabled */
5143 if (adapter
->en_mng_pt
) {
5144 pci_enable_wake(pdev
, PCI_D3hot
, 1);
5145 pci_enable_wake(pdev
, PCI_D3cold
, 1);
5148 if (adapter
->hw
.phy_type
== e1000_phy_igp_3
)
5149 e1000_phy_powerdown_workaround(&adapter
->hw
);
5151 if (netif_running(netdev
))
5152 e1000_free_irq(adapter
);
5154 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5155 * would have already happened in close and is redundant. */
5156 e1000_release_hw_control(adapter
);
5158 pci_disable_device(pdev
);
5160 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
5167 e1000_resume(struct pci_dev
*pdev
)
5169 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5170 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5173 pci_set_power_state(pdev
, PCI_D0
);
5174 pci_restore_state(pdev
);
5175 if ((err
= pci_enable_device(pdev
))) {
5176 printk(KERN_ERR
"e1000: Cannot enable PCI device from suspend\n");
5179 pci_set_master(pdev
);
5181 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5182 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5184 if (netif_running(netdev
) && (err
= e1000_request_irq(adapter
)))
5187 e1000_power_up_phy(adapter
);
5188 e1000_reset(adapter
);
5189 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
5191 e1000_init_manageability(adapter
);
5193 if (netif_running(netdev
))
5196 netif_device_attach(netdev
);
5198 /* If the controller is 82573 and f/w is AMT, do not set
5199 * DRV_LOAD until the interface is up. For all other cases,
5200 * let the f/w know that the h/w is now under the control
5202 if (adapter
->hw
.mac_type
!= e1000_82573
||
5203 !e1000_check_mng_mode(&adapter
->hw
))
5204 e1000_get_hw_control(adapter
);
5210 static void e1000_shutdown(struct pci_dev
*pdev
)
5212 e1000_suspend(pdev
, PMSG_SUSPEND
);
5215 #ifdef CONFIG_NET_POLL_CONTROLLER
5217 * Polling 'interrupt' - used by things like netconsole to send skbs
5218 * without having to re-enable interrupts. It's not called while
5219 * the interrupt routine is executing.
5222 e1000_netpoll(struct net_device
*netdev
)
5224 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5226 disable_irq(adapter
->pdev
->irq
);
5227 e1000_intr(adapter
->pdev
->irq
, netdev
);
5228 e1000_clean_tx_irq(adapter
, adapter
->tx_ring
);
5229 #ifndef CONFIG_E1000_NAPI
5230 adapter
->clean_rx(adapter
, adapter
->rx_ring
);
5232 enable_irq(adapter
->pdev
->irq
);
5237 * e1000_io_error_detected - called when PCI error is detected
5238 * @pdev: Pointer to PCI device
5239 * @state: The current pci conneection state
5241 * This function is called after a PCI bus error affecting
5242 * this device has been detected.
5244 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
5246 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5247 struct e1000_adapter
*adapter
= netdev
->priv
;
5249 netif_device_detach(netdev
);
5251 if (netif_running(netdev
))
5252 e1000_down(adapter
);
5253 pci_disable_device(pdev
);
5255 /* Request a slot slot reset. */
5256 return PCI_ERS_RESULT_NEED_RESET
;
5260 * e1000_io_slot_reset - called after the pci bus has been reset.
5261 * @pdev: Pointer to PCI device
5263 * Restart the card from scratch, as if from a cold-boot. Implementation
5264 * resembles the first-half of the e1000_resume routine.
5266 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5268 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5269 struct e1000_adapter
*adapter
= netdev
->priv
;
5271 if (pci_enable_device(pdev
)) {
5272 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
5273 return PCI_ERS_RESULT_DISCONNECT
;
5275 pci_set_master(pdev
);
5277 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5278 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5280 e1000_reset(adapter
);
5281 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
5283 return PCI_ERS_RESULT_RECOVERED
;
5287 * e1000_io_resume - called when traffic can start flowing again.
5288 * @pdev: Pointer to PCI device
5290 * This callback is called when the error recovery driver tells us that
5291 * its OK to resume normal operation. Implementation resembles the
5292 * second-half of the e1000_resume routine.
5294 static void e1000_io_resume(struct pci_dev
*pdev
)
5296 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5297 struct e1000_adapter
*adapter
= netdev
->priv
;
5299 e1000_init_manageability(adapter
);
5301 if (netif_running(netdev
)) {
5302 if (e1000_up(adapter
)) {
5303 printk("e1000: can't bring device back up after reset\n");
5308 netif_device_attach(netdev
);
5310 /* If the controller is 82573 and f/w is AMT, do not set
5311 * DRV_LOAD until the interface is up. For all other cases,
5312 * let the f/w know that the h/w is now under the control
5314 if (adapter
->hw
.mac_type
!= e1000_82573
||
5315 !e1000_check_mng_mode(&adapter
->hw
))
5316 e1000_get_hw_control(adapter
);