V4L/DVB (6715): ivtv: Remove unnecessary register update
[linux-2.6/verdex.git] / drivers / net / e1000e / ethtool.c
blob87f9da1b6b4ef9e2786dba5048414570a670cd66
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
36 #include "e1000.h"
38 struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int sizeof_stat;
41 int stat_offset;
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorcl) },
50 { "tx_bytes", E1000_STAT(stats.gotcl) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
98 #define E1000_GLOBAL_STATS_LEN \
99 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
100 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
101 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
102 "Register test (offline)", "Eeprom test (offline)",
103 "Interrupt test (offline)", "Loopback test (offline)",
104 "Link test (on/offline)"
106 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
108 static int e1000_get_settings(struct net_device *netdev,
109 struct ethtool_cmd *ecmd)
111 struct e1000_adapter *adapter = netdev_priv(netdev);
112 struct e1000_hw *hw = &adapter->hw;
113 u32 status;
115 if (hw->media_type == e1000_media_type_copper) {
117 ecmd->supported = (SUPPORTED_10baseT_Half |
118 SUPPORTED_10baseT_Full |
119 SUPPORTED_100baseT_Half |
120 SUPPORTED_100baseT_Full |
121 SUPPORTED_1000baseT_Full |
122 SUPPORTED_Autoneg |
123 SUPPORTED_TP);
124 if (hw->phy.type == e1000_phy_ife)
125 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
126 ecmd->advertising = ADVERTISED_TP;
128 if (hw->mac.autoneg == 1) {
129 ecmd->advertising |= ADVERTISED_Autoneg;
130 /* the e1000 autoneg seems to match ethtool nicely */
131 ecmd->advertising |= hw->phy.autoneg_advertised;
134 ecmd->port = PORT_TP;
135 ecmd->phy_address = hw->phy.addr;
136 ecmd->transceiver = XCVR_INTERNAL;
138 } else {
139 ecmd->supported = (SUPPORTED_1000baseT_Full |
140 SUPPORTED_FIBRE |
141 SUPPORTED_Autoneg);
143 ecmd->advertising = (ADVERTISED_1000baseT_Full |
144 ADVERTISED_FIBRE |
145 ADVERTISED_Autoneg);
147 ecmd->port = PORT_FIBRE;
148 ecmd->transceiver = XCVR_EXTERNAL;
151 status = er32(STATUS);
152 if (status & E1000_STATUS_LU) {
153 if (status & E1000_STATUS_SPEED_1000)
154 ecmd->speed = 1000;
155 else if (status & E1000_STATUS_SPEED_100)
156 ecmd->speed = 100;
157 else
158 ecmd->speed = 10;
160 if (status & E1000_STATUS_FD)
161 ecmd->duplex = DUPLEX_FULL;
162 else
163 ecmd->duplex = DUPLEX_HALF;
164 } else {
165 ecmd->speed = -1;
166 ecmd->duplex = -1;
169 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
170 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171 return 0;
174 static u32 e1000_get_link(struct net_device *netdev)
176 struct e1000_adapter *adapter = netdev_priv(netdev);
177 struct e1000_hw *hw = &adapter->hw;
178 u32 status;
180 status = er32(STATUS);
181 return (status & E1000_STATUS_LU);
184 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
186 struct e1000_mac_info *mac = &adapter->hw.mac;
188 mac->autoneg = 0;
190 /* Fiber NICs only allow 1000 gbps Full duplex */
191 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
192 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
193 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
194 "configuration\n");
195 return -EINVAL;
198 switch (spddplx) {
199 case SPEED_10 + DUPLEX_HALF:
200 mac->forced_speed_duplex = ADVERTISE_10_HALF;
201 break;
202 case SPEED_10 + DUPLEX_FULL:
203 mac->forced_speed_duplex = ADVERTISE_10_FULL;
204 break;
205 case SPEED_100 + DUPLEX_HALF:
206 mac->forced_speed_duplex = ADVERTISE_100_HALF;
207 break;
208 case SPEED_100 + DUPLEX_FULL:
209 mac->forced_speed_duplex = ADVERTISE_100_FULL;
210 break;
211 case SPEED_1000 + DUPLEX_FULL:
212 mac->autoneg = 1;
213 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
214 break;
215 case SPEED_1000 + DUPLEX_HALF: /* not supported */
216 default:
217 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
218 "configuration\n");
219 return -EINVAL;
221 return 0;
224 static int e1000_set_settings(struct net_device *netdev,
225 struct ethtool_cmd *ecmd)
227 struct e1000_adapter *adapter = netdev_priv(netdev);
228 struct e1000_hw *hw = &adapter->hw;
230 /* When SoL/IDER sessions are active, autoneg/speed/duplex
231 * cannot be changed */
232 if (e1000_check_reset_block(hw)) {
233 ndev_err(netdev, "Cannot change link "
234 "characteristics when SoL/IDER is active.\n");
235 return -EINVAL;
238 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
239 msleep(1);
241 if (ecmd->autoneg == AUTONEG_ENABLE) {
242 hw->mac.autoneg = 1;
243 if (hw->media_type == e1000_media_type_fiber)
244 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
245 ADVERTISED_FIBRE |
246 ADVERTISED_Autoneg;
247 else
248 hw->phy.autoneg_advertised = ecmd->advertising |
249 ADVERTISED_TP |
250 ADVERTISED_Autoneg;
251 ecmd->advertising = hw->phy.autoneg_advertised;
252 } else {
253 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
254 clear_bit(__E1000_RESETTING, &adapter->state);
255 return -EINVAL;
259 /* reset the link */
261 if (netif_running(adapter->netdev)) {
262 e1000e_down(adapter);
263 e1000e_up(adapter);
264 } else {
265 e1000e_reset(adapter);
268 clear_bit(__E1000_RESETTING, &adapter->state);
269 return 0;
272 static void e1000_get_pauseparam(struct net_device *netdev,
273 struct ethtool_pauseparam *pause)
275 struct e1000_adapter *adapter = netdev_priv(netdev);
276 struct e1000_hw *hw = &adapter->hw;
278 pause->autoneg =
279 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
281 if (hw->mac.fc == e1000_fc_rx_pause) {
282 pause->rx_pause = 1;
283 } else if (hw->mac.fc == e1000_fc_tx_pause) {
284 pause->tx_pause = 1;
285 } else if (hw->mac.fc == e1000_fc_full) {
286 pause->rx_pause = 1;
287 pause->tx_pause = 1;
291 static int e1000_set_pauseparam(struct net_device *netdev,
292 struct ethtool_pauseparam *pause)
294 struct e1000_adapter *adapter = netdev_priv(netdev);
295 struct e1000_hw *hw = &adapter->hw;
296 int retval = 0;
298 adapter->fc_autoneg = pause->autoneg;
300 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
301 msleep(1);
303 if (pause->rx_pause && pause->tx_pause)
304 hw->mac.fc = e1000_fc_full;
305 else if (pause->rx_pause && !pause->tx_pause)
306 hw->mac.fc = e1000_fc_rx_pause;
307 else if (!pause->rx_pause && pause->tx_pause)
308 hw->mac.fc = e1000_fc_tx_pause;
309 else if (!pause->rx_pause && !pause->tx_pause)
310 hw->mac.fc = e1000_fc_none;
312 hw->mac.original_fc = hw->mac.fc;
314 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
315 hw->mac.fc = e1000_fc_default;
316 if (netif_running(adapter->netdev)) {
317 e1000e_down(adapter);
318 e1000e_up(adapter);
319 } else {
320 e1000e_reset(adapter);
322 } else {
323 retval = ((hw->media_type == e1000_media_type_fiber) ?
324 hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
327 clear_bit(__E1000_RESETTING, &adapter->state);
328 return retval;
331 static u32 e1000_get_rx_csum(struct net_device *netdev)
333 struct e1000_adapter *adapter = netdev_priv(netdev);
334 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
337 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
339 struct e1000_adapter *adapter = netdev_priv(netdev);
341 if (data)
342 adapter->flags |= FLAG_RX_CSUM_ENABLED;
343 else
344 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
346 if (netif_running(netdev))
347 e1000e_reinit_locked(adapter);
348 else
349 e1000e_reset(adapter);
350 return 0;
353 static u32 e1000_get_tx_csum(struct net_device *netdev)
355 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
358 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
360 if (data)
361 netdev->features |= NETIF_F_HW_CSUM;
362 else
363 netdev->features &= ~NETIF_F_HW_CSUM;
365 return 0;
368 static int e1000_set_tso(struct net_device *netdev, u32 data)
370 struct e1000_adapter *adapter = netdev_priv(netdev);
372 if (data) {
373 netdev->features |= NETIF_F_TSO;
374 netdev->features |= NETIF_F_TSO6;
375 } else {
376 netdev->features &= ~NETIF_F_TSO;
377 netdev->features &= ~NETIF_F_TSO6;
380 ndev_info(netdev, "TSO is %s\n",
381 data ? "Enabled" : "Disabled");
382 adapter->flags |= FLAG_TSO_FORCE;
383 return 0;
386 static u32 e1000_get_msglevel(struct net_device *netdev)
388 struct e1000_adapter *adapter = netdev_priv(netdev);
389 return adapter->msg_enable;
392 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
394 struct e1000_adapter *adapter = netdev_priv(netdev);
395 adapter->msg_enable = data;
398 static int e1000_get_regs_len(struct net_device *netdev)
400 #define E1000_REGS_LEN 32 /* overestimate */
401 return E1000_REGS_LEN * sizeof(u32);
404 static void e1000_get_regs(struct net_device *netdev,
405 struct ethtool_regs *regs, void *p)
407 struct e1000_adapter *adapter = netdev_priv(netdev);
408 struct e1000_hw *hw = &adapter->hw;
409 u32 *regs_buff = p;
410 u16 phy_data;
411 u8 revision_id;
413 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
415 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
417 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
419 regs_buff[0] = er32(CTRL);
420 regs_buff[1] = er32(STATUS);
422 regs_buff[2] = er32(RCTL);
423 regs_buff[3] = er32(RDLEN);
424 regs_buff[4] = er32(RDH);
425 regs_buff[5] = er32(RDT);
426 regs_buff[6] = er32(RDTR);
428 regs_buff[7] = er32(TCTL);
429 regs_buff[8] = er32(TDLEN);
430 regs_buff[9] = er32(TDH);
431 regs_buff[10] = er32(TDT);
432 regs_buff[11] = er32(TIDV);
434 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
435 if (hw->phy.type == e1000_phy_m88) {
436 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
437 regs_buff[13] = (u32)phy_data; /* cable length */
438 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
439 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
440 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
441 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
442 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
443 regs_buff[18] = regs_buff[13]; /* cable polarity */
444 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
445 regs_buff[20] = regs_buff[17]; /* polarity correction */
446 /* phy receive errors */
447 regs_buff[22] = adapter->phy_stats.receive_errors;
448 regs_buff[23] = regs_buff[13]; /* mdix mode */
450 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
451 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
452 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
453 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
456 static int e1000_get_eeprom_len(struct net_device *netdev)
458 struct e1000_adapter *adapter = netdev_priv(netdev);
459 return adapter->hw.nvm.word_size * 2;
462 static int e1000_get_eeprom(struct net_device *netdev,
463 struct ethtool_eeprom *eeprom, u8 *bytes)
465 struct e1000_adapter *adapter = netdev_priv(netdev);
466 struct e1000_hw *hw = &adapter->hw;
467 u16 *eeprom_buff;
468 int first_word;
469 int last_word;
470 int ret_val = 0;
471 u16 i;
473 if (eeprom->len == 0)
474 return -EINVAL;
476 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
478 first_word = eeprom->offset >> 1;
479 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
481 eeprom_buff = kmalloc(sizeof(u16) *
482 (last_word - first_word + 1), GFP_KERNEL);
483 if (!eeprom_buff)
484 return -ENOMEM;
486 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
487 ret_val = e1000_read_nvm(hw, first_word,
488 last_word - first_word + 1,
489 eeprom_buff);
490 } else {
491 for (i = 0; i < last_word - first_word + 1; i++) {
492 ret_val = e1000_read_nvm(hw, first_word + i, 1,
493 &eeprom_buff[i]);
494 if (ret_val)
495 break;
499 /* Device's eeprom is always little-endian, word addressable */
500 for (i = 0; i < last_word - first_word + 1; i++)
501 le16_to_cpus(&eeprom_buff[i]);
503 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
504 kfree(eeprom_buff);
506 return ret_val;
509 static int e1000_set_eeprom(struct net_device *netdev,
510 struct ethtool_eeprom *eeprom, u8 *bytes)
512 struct e1000_adapter *adapter = netdev_priv(netdev);
513 struct e1000_hw *hw = &adapter->hw;
514 u16 *eeprom_buff;
515 void *ptr;
516 int max_len;
517 int first_word;
518 int last_word;
519 int ret_val = 0;
520 u16 i;
522 if (eeprom->len == 0)
523 return -EOPNOTSUPP;
525 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
526 return -EFAULT;
528 max_len = hw->nvm.word_size * 2;
530 first_word = eeprom->offset >> 1;
531 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
532 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
533 if (!eeprom_buff)
534 return -ENOMEM;
536 ptr = (void *)eeprom_buff;
538 if (eeprom->offset & 1) {
539 /* need read/modify/write of first changed EEPROM word */
540 /* only the second byte of the word is being modified */
541 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
542 ptr++;
544 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
545 /* need read/modify/write of last changed EEPROM word */
546 /* only the first byte of the word is being modified */
547 ret_val = e1000_read_nvm(hw, last_word, 1,
548 &eeprom_buff[last_word - first_word]);
550 /* Device's eeprom is always little-endian, word addressable */
551 for (i = 0; i < last_word - first_word + 1; i++)
552 le16_to_cpus(&eeprom_buff[i]);
554 memcpy(ptr, bytes, eeprom->len);
556 for (i = 0; i < last_word - first_word + 1; i++)
557 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
559 ret_val = e1000_write_nvm(hw, first_word,
560 last_word - first_word + 1, eeprom_buff);
562 /* Update the checksum over the first part of the EEPROM if needed
563 * and flush shadow RAM for 82573 controllers */
564 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
565 (hw->mac.type == e1000_82573)))
566 e1000e_update_nvm_checksum(hw);
568 kfree(eeprom_buff);
569 return ret_val;
572 static void e1000_get_drvinfo(struct net_device *netdev,
573 struct ethtool_drvinfo *drvinfo)
575 struct e1000_adapter *adapter = netdev_priv(netdev);
576 char firmware_version[32];
577 u16 eeprom_data;
579 strncpy(drvinfo->driver, e1000e_driver_name, 32);
580 strncpy(drvinfo->version, e1000e_driver_version, 32);
582 /* EEPROM image version # is reported as firmware version # for
583 * PCI-E controllers */
584 e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
585 sprintf(firmware_version, "%d.%d-%d",
586 (eeprom_data & 0xF000) >> 12,
587 (eeprom_data & 0x0FF0) >> 4,
588 eeprom_data & 0x000F);
590 strncpy(drvinfo->fw_version, firmware_version, 32);
591 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
592 drvinfo->regdump_len = e1000_get_regs_len(netdev);
593 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
596 static void e1000_get_ringparam(struct net_device *netdev,
597 struct ethtool_ringparam *ring)
599 struct e1000_adapter *adapter = netdev_priv(netdev);
600 struct e1000_ring *tx_ring = adapter->tx_ring;
601 struct e1000_ring *rx_ring = adapter->rx_ring;
603 ring->rx_max_pending = E1000_MAX_RXD;
604 ring->tx_max_pending = E1000_MAX_TXD;
605 ring->rx_mini_max_pending = 0;
606 ring->rx_jumbo_max_pending = 0;
607 ring->rx_pending = rx_ring->count;
608 ring->tx_pending = tx_ring->count;
609 ring->rx_mini_pending = 0;
610 ring->rx_jumbo_pending = 0;
613 static int e1000_set_ringparam(struct net_device *netdev,
614 struct ethtool_ringparam *ring)
616 struct e1000_adapter *adapter = netdev_priv(netdev);
617 struct e1000_ring *tx_ring, *tx_old;
618 struct e1000_ring *rx_ring, *rx_old;
619 int err;
621 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
622 return -EINVAL;
624 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
625 msleep(1);
627 if (netif_running(adapter->netdev))
628 e1000e_down(adapter);
630 tx_old = adapter->tx_ring;
631 rx_old = adapter->rx_ring;
633 err = -ENOMEM;
634 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
635 if (!tx_ring)
636 goto err_alloc_tx;
638 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
639 if (!rx_ring)
640 goto err_alloc_rx;
642 adapter->tx_ring = tx_ring;
643 adapter->rx_ring = rx_ring;
645 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
646 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
647 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
649 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
650 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
651 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
653 if (netif_running(adapter->netdev)) {
654 /* Try to get new resources before deleting old */
655 err = e1000e_setup_rx_resources(adapter);
656 if (err)
657 goto err_setup_rx;
658 err = e1000e_setup_tx_resources(adapter);
659 if (err)
660 goto err_setup_tx;
662 /* save the new, restore the old in order to free it,
663 * then restore the new back again */
664 adapter->rx_ring = rx_old;
665 adapter->tx_ring = tx_old;
666 e1000e_free_rx_resources(adapter);
667 e1000e_free_tx_resources(adapter);
668 kfree(tx_old);
669 kfree(rx_old);
670 adapter->rx_ring = rx_ring;
671 adapter->tx_ring = tx_ring;
672 err = e1000e_up(adapter);
673 if (err)
674 goto err_setup;
677 clear_bit(__E1000_RESETTING, &adapter->state);
678 return 0;
679 err_setup_tx:
680 e1000e_free_rx_resources(adapter);
681 err_setup_rx:
682 adapter->rx_ring = rx_old;
683 adapter->tx_ring = tx_old;
684 kfree(rx_ring);
685 err_alloc_rx:
686 kfree(tx_ring);
687 err_alloc_tx:
688 e1000e_up(adapter);
689 err_setup:
690 clear_bit(__E1000_RESETTING, &adapter->state);
691 return err;
694 #define REG_PATTERN_TEST(R, M, W) REG_PATTERN_TEST_ARRAY(R, 0, M, W)
695 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, writeable) \
697 u32 _pat; \
698 u32 _value; \
699 u32 _test[] = {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
700 for (_pat = 0; _pat < ARRAY_SIZE(_test); _pat++) { \
701 E1000_WRITE_REG_ARRAY(hw, reg, offset, \
702 (_test[_pat] & writeable)); \
703 _value = E1000_READ_REG_ARRAY(hw, reg, offset); \
704 if (_value != (_test[_pat] & writeable & mask)) { \
705 ndev_err(netdev, "pattern test reg %04X " \
706 "failed: got 0x%08X expected 0x%08X\n", \
707 reg + offset, \
708 value, (_test[_pat] & writeable & mask)); \
709 *data = reg; \
710 return 1; \
715 #define REG_SET_AND_CHECK(R, M, W) \
717 u32 _value; \
718 __ew32(hw, R, W & M); \
719 _value = __er32(hw, R); \
720 if ((W & M) != (_value & M)) { \
721 ndev_err(netdev, "set/check reg %04X test failed: " \
722 "got 0x%08X expected 0x%08X\n", R, (_value & M), \
723 (W & M)); \
724 *data = R; \
725 return 1; \
729 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
731 struct e1000_hw *hw = &adapter->hw;
732 struct e1000_mac_info *mac = &adapter->hw.mac;
733 struct net_device *netdev = adapter->netdev;
734 u32 value;
735 u32 before;
736 u32 after;
737 u32 i;
738 u32 toggle;
740 /* The status register is Read Only, so a write should fail.
741 * Some bits that get toggled are ignored.
743 switch (mac->type) {
744 /* there are several bits on newer hardware that are r/w */
745 case e1000_82571:
746 case e1000_82572:
747 case e1000_80003es2lan:
748 toggle = 0x7FFFF3FF;
749 break;
750 case e1000_82573:
751 case e1000_ich8lan:
752 case e1000_ich9lan:
753 toggle = 0x7FFFF033;
754 break;
755 default:
756 toggle = 0xFFFFF833;
757 break;
760 before = er32(STATUS);
761 value = (er32(STATUS) & toggle);
762 ew32(STATUS, toggle);
763 after = er32(STATUS) & toggle;
764 if (value != after) {
765 ndev_err(netdev, "failed STATUS register test got: "
766 "0x%08X expected: 0x%08X\n", after, value);
767 *data = 1;
768 return 1;
770 /* restore previous status */
771 ew32(STATUS, before);
773 if ((mac->type != e1000_ich8lan) &&
774 (mac->type != e1000_ich9lan)) {
775 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
776 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
777 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
778 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
781 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
782 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
783 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
784 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
785 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
786 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
787 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
788 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
789 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
790 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
792 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
794 before = (((mac->type == e1000_ich8lan) ||
795 (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
796 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
797 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
799 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
800 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
801 if ((mac->type != e1000_ich8lan) &&
802 (mac->type != e1000_ich9lan))
803 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
804 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
805 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
806 for (i = 0; i < mac->rar_entry_count; i++)
807 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
808 0x8003FFFF, 0xFFFFFFFF);
810 for (i = 0; i < mac->mta_reg_count; i++)
811 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
813 *data = 0;
814 return 0;
817 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
819 u16 temp;
820 u16 checksum = 0;
821 u16 i;
823 *data = 0;
824 /* Read and add up the contents of the EEPROM */
825 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
826 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
827 *data = 1;
828 break;
830 checksum += temp;
833 /* If Checksum is not Correct return error else test passed */
834 if ((checksum != (u16) NVM_SUM) && !(*data))
835 *data = 2;
837 return *data;
840 static irqreturn_t e1000_test_intr(int irq, void *data)
842 struct net_device *netdev = (struct net_device *) data;
843 struct e1000_adapter *adapter = netdev_priv(netdev);
844 struct e1000_hw *hw = &adapter->hw;
846 adapter->test_icr |= er32(ICR);
848 return IRQ_HANDLED;
851 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
853 struct net_device *netdev = adapter->netdev;
854 struct e1000_hw *hw = &adapter->hw;
855 u32 mask;
856 u32 shared_int = 1;
857 u32 irq = adapter->pdev->irq;
858 int i;
860 *data = 0;
862 /* NOTE: we don't test MSI interrupts here, yet */
863 /* Hook up test interrupt handler just for this test */
864 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
865 netdev)) {
866 shared_int = 0;
867 } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
868 netdev->name, netdev)) {
869 *data = 1;
870 return -1;
872 ndev_info(netdev, "testing %s interrupt\n",
873 (shared_int ? "shared" : "unshared"));
875 /* Disable all the interrupts */
876 ew32(IMC, 0xFFFFFFFF);
877 msleep(10);
879 /* Test each interrupt */
880 for (i = 0; i < 10; i++) {
882 if (((adapter->hw.mac.type == e1000_ich8lan) ||
883 (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
884 continue;
886 /* Interrupt to test */
887 mask = 1 << i;
889 if (!shared_int) {
890 /* Disable the interrupt to be reported in
891 * the cause register and then force the same
892 * interrupt and see if one gets posted. If
893 * an interrupt was posted to the bus, the
894 * test failed.
896 adapter->test_icr = 0;
897 ew32(IMC, mask);
898 ew32(ICS, mask);
899 msleep(10);
901 if (adapter->test_icr & mask) {
902 *data = 3;
903 break;
907 /* Enable the interrupt to be reported in
908 * the cause register and then force the same
909 * interrupt and see if one gets posted. If
910 * an interrupt was not posted to the bus, the
911 * test failed.
913 adapter->test_icr = 0;
914 ew32(IMS, mask);
915 ew32(ICS, mask);
916 msleep(10);
918 if (!(adapter->test_icr & mask)) {
919 *data = 4;
920 break;
923 if (!shared_int) {
924 /* Disable the other interrupts to be reported in
925 * the cause register and then force the other
926 * interrupts and see if any get posted. If
927 * an interrupt was posted to the bus, the
928 * test failed.
930 adapter->test_icr = 0;
931 ew32(IMC, ~mask & 0x00007FFF);
932 ew32(ICS, ~mask & 0x00007FFF);
933 msleep(10);
935 if (adapter->test_icr) {
936 *data = 5;
937 break;
942 /* Disable all the interrupts */
943 ew32(IMC, 0xFFFFFFFF);
944 msleep(10);
946 /* Unhook test interrupt handler */
947 free_irq(irq, netdev);
949 return *data;
952 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
954 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
955 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
956 struct pci_dev *pdev = adapter->pdev;
957 int i;
959 if (tx_ring->desc && tx_ring->buffer_info) {
960 for (i = 0; i < tx_ring->count; i++) {
961 if (tx_ring->buffer_info[i].dma)
962 pci_unmap_single(pdev,
963 tx_ring->buffer_info[i].dma,
964 tx_ring->buffer_info[i].length,
965 PCI_DMA_TODEVICE);
966 if (tx_ring->buffer_info[i].skb)
967 dev_kfree_skb(tx_ring->buffer_info[i].skb);
971 if (rx_ring->desc && rx_ring->buffer_info) {
972 for (i = 0; i < rx_ring->count; i++) {
973 if (rx_ring->buffer_info[i].dma)
974 pci_unmap_single(pdev,
975 rx_ring->buffer_info[i].dma,
976 2048, PCI_DMA_FROMDEVICE);
977 if (rx_ring->buffer_info[i].skb)
978 dev_kfree_skb(rx_ring->buffer_info[i].skb);
982 if (tx_ring->desc) {
983 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
984 tx_ring->dma);
985 tx_ring->desc = NULL;
987 if (rx_ring->desc) {
988 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
989 rx_ring->dma);
990 rx_ring->desc = NULL;
993 kfree(tx_ring->buffer_info);
994 tx_ring->buffer_info = NULL;
995 kfree(rx_ring->buffer_info);
996 rx_ring->buffer_info = NULL;
999 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1001 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1002 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1003 struct pci_dev *pdev = adapter->pdev;
1004 struct e1000_hw *hw = &adapter->hw;
1005 u32 rctl;
1006 int size;
1007 int i;
1008 int ret_val;
1010 /* Setup Tx descriptor ring and Tx buffers */
1012 if (!tx_ring->count)
1013 tx_ring->count = E1000_DEFAULT_TXD;
1015 size = tx_ring->count * sizeof(struct e1000_buffer);
1016 tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1017 if (!tx_ring->buffer_info) {
1018 ret_val = 1;
1019 goto err_nomem;
1021 memset(tx_ring->buffer_info, 0, size);
1023 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1024 tx_ring->size = ALIGN(tx_ring->size, 4096);
1025 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1026 &tx_ring->dma, GFP_KERNEL);
1027 if (!tx_ring->desc) {
1028 ret_val = 2;
1029 goto err_nomem;
1031 memset(tx_ring->desc, 0, tx_ring->size);
1032 tx_ring->next_to_use = 0;
1033 tx_ring->next_to_clean = 0;
1035 ew32(TDBAL,
1036 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1037 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1038 ew32(TDLEN,
1039 tx_ring->count * sizeof(struct e1000_tx_desc));
1040 ew32(TDH, 0);
1041 ew32(TDT, 0);
1042 ew32(TCTL,
1043 E1000_TCTL_PSP | E1000_TCTL_EN |
1044 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1045 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1047 for (i = 0; i < tx_ring->count; i++) {
1048 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1049 struct sk_buff *skb;
1050 unsigned int skb_size = 1024;
1052 skb = alloc_skb(skb_size, GFP_KERNEL);
1053 if (!skb) {
1054 ret_val = 3;
1055 goto err_nomem;
1057 skb_put(skb, skb_size);
1058 tx_ring->buffer_info[i].skb = skb;
1059 tx_ring->buffer_info[i].length = skb->len;
1060 tx_ring->buffer_info[i].dma =
1061 pci_map_single(pdev, skb->data, skb->len,
1062 PCI_DMA_TODEVICE);
1063 if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
1064 ret_val = 4;
1065 goto err_nomem;
1067 tx_desc->buffer_addr = cpu_to_le64(
1068 tx_ring->buffer_info[i].dma);
1069 tx_desc->lower.data = cpu_to_le32(skb->len);
1070 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1071 E1000_TXD_CMD_IFCS |
1072 E1000_TXD_CMD_RPS);
1073 tx_desc->upper.data = 0;
1076 /* Setup Rx descriptor ring and Rx buffers */
1078 if (!rx_ring->count)
1079 rx_ring->count = E1000_DEFAULT_RXD;
1081 size = rx_ring->count * sizeof(struct e1000_buffer);
1082 rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1083 if (!rx_ring->buffer_info) {
1084 ret_val = 5;
1085 goto err_nomem;
1087 memset(rx_ring->buffer_info, 0, size);
1089 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1090 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1091 &rx_ring->dma, GFP_KERNEL);
1092 if (!rx_ring->desc) {
1093 ret_val = 6;
1094 goto err_nomem;
1096 memset(rx_ring->desc, 0, rx_ring->size);
1097 rx_ring->next_to_use = 0;
1098 rx_ring->next_to_clean = 0;
1100 rctl = er32(RCTL);
1101 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1102 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1103 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1104 ew32(RDLEN, rx_ring->size);
1105 ew32(RDH, 0);
1106 ew32(RDT, 0);
1107 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1108 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1109 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1110 ew32(RCTL, rctl);
1112 for (i = 0; i < rx_ring->count; i++) {
1113 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1114 struct sk_buff *skb;
1116 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1117 if (!skb) {
1118 ret_val = 7;
1119 goto err_nomem;
1121 skb_reserve(skb, NET_IP_ALIGN);
1122 rx_ring->buffer_info[i].skb = skb;
1123 rx_ring->buffer_info[i].dma =
1124 pci_map_single(pdev, skb->data, 2048,
1125 PCI_DMA_FROMDEVICE);
1126 if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
1127 ret_val = 8;
1128 goto err_nomem;
1130 rx_desc->buffer_addr =
1131 cpu_to_le64(rx_ring->buffer_info[i].dma);
1132 memset(skb->data, 0x00, skb->len);
1135 return 0;
1137 err_nomem:
1138 e1000_free_desc_rings(adapter);
1139 return ret_val;
1142 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1144 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1145 e1e_wphy(&adapter->hw, 29, 0x001F);
1146 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1147 e1e_wphy(&adapter->hw, 29, 0x001A);
1148 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1151 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1153 struct e1000_hw *hw = &adapter->hw;
1154 u32 ctrl_reg = 0;
1155 u32 stat_reg = 0;
1157 adapter->hw.mac.autoneg = 0;
1159 if (adapter->hw.phy.type == e1000_phy_m88) {
1160 /* Auto-MDI/MDIX Off */
1161 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1162 /* reset to update Auto-MDI/MDIX */
1163 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1164 /* autoneg off */
1165 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1166 } else if (adapter->hw.phy.type == e1000_phy_gg82563)
1167 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1169 ctrl_reg = er32(CTRL);
1171 if (adapter->hw.phy.type == e1000_phy_ife) {
1172 /* force 100, set loopback */
1173 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1175 /* Now set up the MAC to the same speed/duplex as the PHY. */
1176 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1177 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1178 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1179 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1180 E1000_CTRL_FD); /* Force Duplex to FULL */
1181 } else {
1182 /* force 1000, set loopback */
1183 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1185 /* Now set up the MAC to the same speed/duplex as the PHY. */
1186 ctrl_reg = er32(CTRL);
1187 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1188 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1189 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1190 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1191 E1000_CTRL_FD); /* Force Duplex to FULL */
1194 if (adapter->hw.media_type == e1000_media_type_copper &&
1195 adapter->hw.phy.type == e1000_phy_m88) {
1196 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1197 } else {
1198 /* Set the ILOS bit on the fiber Nic if half duplex link is
1199 * detected. */
1200 stat_reg = er32(STATUS);
1201 if ((stat_reg & E1000_STATUS_FD) == 0)
1202 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1205 ew32(CTRL, ctrl_reg);
1207 /* Disable the receiver on the PHY so when a cable is plugged in, the
1208 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1210 if (adapter->hw.phy.type == e1000_phy_m88)
1211 e1000_phy_disable_receiver(adapter);
1213 udelay(500);
1215 return 0;
1218 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1220 struct e1000_hw *hw = &adapter->hw;
1221 u32 ctrl = er32(CTRL);
1222 int link = 0;
1224 /* special requirements for 82571/82572 fiber adapters */
1226 /* jump through hoops to make sure link is up because serdes
1227 * link is hardwired up */
1228 ctrl |= E1000_CTRL_SLU;
1229 ew32(CTRL, ctrl);
1231 /* disable autoneg */
1232 ctrl = er32(TXCW);
1233 ctrl &= ~(1 << 31);
1234 ew32(TXCW, ctrl);
1236 link = (er32(STATUS) & E1000_STATUS_LU);
1238 if (!link) {
1239 /* set invert loss of signal */
1240 ctrl = er32(CTRL);
1241 ctrl |= E1000_CTRL_ILOS;
1242 ew32(CTRL, ctrl);
1245 /* special write to serdes control register to enable SerDes analog
1246 * loopback */
1247 #define E1000_SERDES_LB_ON 0x410
1248 ew32(SCTL, E1000_SERDES_LB_ON);
1249 msleep(10);
1251 return 0;
1254 /* only call this for fiber/serdes connections to es2lan */
1255 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1257 struct e1000_hw *hw = &adapter->hw;
1258 u32 ctrlext = er32(CTRL_EXT);
1259 u32 ctrl = er32(CTRL);
1261 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1262 on mac_type 80003es2lan) */
1263 adapter->tx_fifo_head = ctrlext;
1265 /* clear the serdes mode bits, putting the device into mac loopback */
1266 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1267 ew32(CTRL_EXT, ctrlext);
1269 /* force speed to 1000/FD, link up */
1270 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1271 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1272 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1273 ew32(CTRL, ctrl);
1275 /* set mac loopback */
1276 ctrl = er32(RCTL);
1277 ctrl |= E1000_RCTL_LBM_MAC;
1278 ew32(RCTL, ctrl);
1280 /* set testing mode parameters (no need to reset later) */
1281 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1282 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1283 ew32(KMRNCTRLSTA,
1284 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1286 return 0;
1289 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1291 struct e1000_hw *hw = &adapter->hw;
1292 u32 rctl;
1294 if (hw->media_type == e1000_media_type_fiber ||
1295 hw->media_type == e1000_media_type_internal_serdes) {
1296 switch (hw->mac.type) {
1297 case e1000_80003es2lan:
1298 return e1000_set_es2lan_mac_loopback(adapter);
1299 break;
1300 case e1000_82571:
1301 case e1000_82572:
1302 return e1000_set_82571_fiber_loopback(adapter);
1303 break;
1304 default:
1305 rctl = er32(RCTL);
1306 rctl |= E1000_RCTL_LBM_TCVR;
1307 ew32(RCTL, rctl);
1308 return 0;
1310 } else if (hw->media_type == e1000_media_type_copper) {
1311 return e1000_integrated_phy_loopback(adapter);
1314 return 7;
1317 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1319 struct e1000_hw *hw = &adapter->hw;
1320 u32 rctl;
1321 u16 phy_reg;
1323 rctl = er32(RCTL);
1324 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1325 ew32(RCTL, rctl);
1327 switch (hw->mac.type) {
1328 case e1000_80003es2lan:
1329 if (hw->media_type == e1000_media_type_fiber ||
1330 hw->media_type == e1000_media_type_internal_serdes) {
1331 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1332 ew32(CTRL_EXT,
1333 adapter->tx_fifo_head);
1334 adapter->tx_fifo_head = 0;
1336 /* fall through */
1337 case e1000_82571:
1338 case e1000_82572:
1339 if (hw->media_type == e1000_media_type_fiber ||
1340 hw->media_type == e1000_media_type_internal_serdes) {
1341 #define E1000_SERDES_LB_OFF 0x400
1342 ew32(SCTL, E1000_SERDES_LB_OFF);
1343 msleep(10);
1344 break;
1346 /* Fall Through */
1347 default:
1348 hw->mac.autoneg = 1;
1349 if (hw->phy.type == e1000_phy_gg82563)
1350 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1351 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1352 if (phy_reg & MII_CR_LOOPBACK) {
1353 phy_reg &= ~MII_CR_LOOPBACK;
1354 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1355 e1000e_commit_phy(hw);
1357 break;
1361 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1362 unsigned int frame_size)
1364 memset(skb->data, 0xFF, frame_size);
1365 frame_size &= ~1;
1366 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1367 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1368 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1371 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1372 unsigned int frame_size)
1374 frame_size &= ~1;
1375 if (*(skb->data + 3) == 0xFF)
1376 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1377 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1378 return 0;
1379 return 13;
1382 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1384 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1385 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1386 struct pci_dev *pdev = adapter->pdev;
1387 struct e1000_hw *hw = &adapter->hw;
1388 int i, j, k, l;
1389 int lc;
1390 int good_cnt;
1391 int ret_val = 0;
1392 unsigned long time;
1394 ew32(RDT, rx_ring->count - 1);
1396 /* Calculate the loop count based on the largest descriptor ring
1397 * The idea is to wrap the largest ring a number of times using 64
1398 * send/receive pairs during each loop
1401 if (rx_ring->count <= tx_ring->count)
1402 lc = ((tx_ring->count / 64) * 2) + 1;
1403 else
1404 lc = ((rx_ring->count / 64) * 2) + 1;
1406 k = 0;
1407 l = 0;
1408 for (j = 0; j <= lc; j++) { /* loop count loop */
1409 for (i = 0; i < 64; i++) { /* send the packets */
1410 e1000_create_lbtest_frame(
1411 tx_ring->buffer_info[i].skb, 1024);
1412 pci_dma_sync_single_for_device(pdev,
1413 tx_ring->buffer_info[k].dma,
1414 tx_ring->buffer_info[k].length,
1415 PCI_DMA_TODEVICE);
1416 k++;
1417 if (k == tx_ring->count)
1418 k = 0;
1420 ew32(TDT, k);
1421 msleep(200);
1422 time = jiffies; /* set the start time for the receive */
1423 good_cnt = 0;
1424 do { /* receive the sent packets */
1425 pci_dma_sync_single_for_cpu(pdev,
1426 rx_ring->buffer_info[l].dma, 2048,
1427 PCI_DMA_FROMDEVICE);
1429 ret_val = e1000_check_lbtest_frame(
1430 rx_ring->buffer_info[l].skb, 1024);
1431 if (!ret_val)
1432 good_cnt++;
1433 l++;
1434 if (l == rx_ring->count)
1435 l = 0;
1436 /* time + 20 msecs (200 msecs on 2.4) is more than
1437 * enough time to complete the receives, if it's
1438 * exceeded, break and error off
1440 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1441 if (good_cnt != 64) {
1442 ret_val = 13; /* ret_val is the same as mis-compare */
1443 break;
1445 if (jiffies >= (time + 2)) {
1446 ret_val = 14; /* error code for time out error */
1447 break;
1449 } /* end loop count loop */
1450 return ret_val;
1453 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1455 /* PHY loopback cannot be performed if SoL/IDER
1456 * sessions are active */
1457 if (e1000_check_reset_block(&adapter->hw)) {
1458 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1459 "when SoL/IDER is active.\n");
1460 *data = 0;
1461 goto out;
1464 *data = e1000_setup_desc_rings(adapter);
1465 if (*data)
1466 goto out;
1468 *data = e1000_setup_loopback_test(adapter);
1469 if (*data)
1470 goto err_loopback;
1472 *data = e1000_run_loopback_test(adapter);
1473 e1000_loopback_cleanup(adapter);
1475 err_loopback:
1476 e1000_free_desc_rings(adapter);
1477 out:
1478 return *data;
1481 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1483 struct e1000_hw *hw = &adapter->hw;
1485 *data = 0;
1486 if (hw->media_type == e1000_media_type_internal_serdes) {
1487 int i = 0;
1488 hw->mac.serdes_has_link = 0;
1490 /* On some blade server designs, link establishment
1491 * could take as long as 2-3 minutes */
1492 do {
1493 hw->mac.ops.check_for_link(hw);
1494 if (hw->mac.serdes_has_link)
1495 return *data;
1496 msleep(20);
1497 } while (i++ < 3750);
1499 *data = 1;
1500 } else {
1501 hw->mac.ops.check_for_link(hw);
1502 if (hw->mac.autoneg)
1503 msleep(4000);
1505 if (!(er32(STATUS) &
1506 E1000_STATUS_LU))
1507 *data = 1;
1509 return *data;
1512 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1514 switch (sset) {
1515 case ETH_SS_TEST:
1516 return E1000_TEST_LEN;
1517 case ETH_SS_STATS:
1518 return E1000_STATS_LEN;
1519 default:
1520 return -EOPNOTSUPP;
1524 static void e1000_diag_test(struct net_device *netdev,
1525 struct ethtool_test *eth_test, u64 *data)
1527 struct e1000_adapter *adapter = netdev_priv(netdev);
1528 u16 autoneg_advertised;
1529 u8 forced_speed_duplex;
1530 u8 autoneg;
1531 bool if_running = netif_running(netdev);
1533 set_bit(__E1000_TESTING, &adapter->state);
1534 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1535 /* Offline tests */
1537 /* save speed, duplex, autoneg settings */
1538 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1539 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1540 autoneg = adapter->hw.mac.autoneg;
1542 ndev_info(netdev, "offline testing starting\n");
1544 /* Link test performed before hardware reset so autoneg doesn't
1545 * interfere with test result */
1546 if (e1000_link_test(adapter, &data[4]))
1547 eth_test->flags |= ETH_TEST_FL_FAILED;
1549 if (if_running)
1550 /* indicate we're in test mode */
1551 dev_close(netdev);
1552 else
1553 e1000e_reset(adapter);
1555 if (e1000_reg_test(adapter, &data[0]))
1556 eth_test->flags |= ETH_TEST_FL_FAILED;
1558 e1000e_reset(adapter);
1559 if (e1000_eeprom_test(adapter, &data[1]))
1560 eth_test->flags |= ETH_TEST_FL_FAILED;
1562 e1000e_reset(adapter);
1563 if (e1000_intr_test(adapter, &data[2]))
1564 eth_test->flags |= ETH_TEST_FL_FAILED;
1566 e1000e_reset(adapter);
1567 /* make sure the phy is powered up */
1568 e1000e_power_up_phy(adapter);
1569 if (e1000_loopback_test(adapter, &data[3]))
1570 eth_test->flags |= ETH_TEST_FL_FAILED;
1572 /* restore speed, duplex, autoneg settings */
1573 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1574 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1575 adapter->hw.mac.autoneg = autoneg;
1577 /* force this routine to wait until autoneg complete/timeout */
1578 adapter->hw.phy.wait_for_link = 1;
1579 e1000e_reset(adapter);
1580 adapter->hw.phy.wait_for_link = 0;
1582 clear_bit(__E1000_TESTING, &adapter->state);
1583 if (if_running)
1584 dev_open(netdev);
1585 } else {
1586 ndev_info(netdev, "online testing starting\n");
1587 /* Online tests */
1588 if (e1000_link_test(adapter, &data[4]))
1589 eth_test->flags |= ETH_TEST_FL_FAILED;
1591 /* Online tests aren't run; pass by default */
1592 data[0] = 0;
1593 data[1] = 0;
1594 data[2] = 0;
1595 data[3] = 0;
1597 clear_bit(__E1000_TESTING, &adapter->state);
1599 msleep_interruptible(4 * 1000);
1602 static void e1000_get_wol(struct net_device *netdev,
1603 struct ethtool_wolinfo *wol)
1605 struct e1000_adapter *adapter = netdev_priv(netdev);
1607 wol->supported = 0;
1608 wol->wolopts = 0;
1610 if (!(adapter->flags & FLAG_HAS_WOL))
1611 return;
1613 wol->supported = WAKE_UCAST | WAKE_MCAST |
1614 WAKE_BCAST | WAKE_MAGIC;
1616 /* apply any specific unsupported masks here */
1617 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1618 wol->supported &= ~WAKE_UCAST;
1620 if (adapter->wol & E1000_WUFC_EX)
1621 ndev_err(netdev, "Interface does not support "
1622 "directed (unicast) frame wake-up packets\n");
1625 if (adapter->wol & E1000_WUFC_EX)
1626 wol->wolopts |= WAKE_UCAST;
1627 if (adapter->wol & E1000_WUFC_MC)
1628 wol->wolopts |= WAKE_MCAST;
1629 if (adapter->wol & E1000_WUFC_BC)
1630 wol->wolopts |= WAKE_BCAST;
1631 if (adapter->wol & E1000_WUFC_MAG)
1632 wol->wolopts |= WAKE_MAGIC;
1635 static int e1000_set_wol(struct net_device *netdev,
1636 struct ethtool_wolinfo *wol)
1638 struct e1000_adapter *adapter = netdev_priv(netdev);
1640 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1641 return -EOPNOTSUPP;
1643 if (!(adapter->flags & FLAG_HAS_WOL))
1644 return wol->wolopts ? -EOPNOTSUPP : 0;
1646 /* these settings will always override what we currently have */
1647 adapter->wol = 0;
1649 if (wol->wolopts & WAKE_UCAST)
1650 adapter->wol |= E1000_WUFC_EX;
1651 if (wol->wolopts & WAKE_MCAST)
1652 adapter->wol |= E1000_WUFC_MC;
1653 if (wol->wolopts & WAKE_BCAST)
1654 adapter->wol |= E1000_WUFC_BC;
1655 if (wol->wolopts & WAKE_MAGIC)
1656 adapter->wol |= E1000_WUFC_MAG;
1658 return 0;
1661 /* toggle LED 4 times per second = 2 "blinks" per second */
1662 #define E1000_ID_INTERVAL (HZ/4)
1664 /* bit defines for adapter->led_status */
1665 #define E1000_LED_ON 0
1667 static void e1000_led_blink_callback(unsigned long data)
1669 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1671 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1672 adapter->hw.mac.ops.led_off(&adapter->hw);
1673 else
1674 adapter->hw.mac.ops.led_on(&adapter->hw);
1676 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1679 static int e1000_phys_id(struct net_device *netdev, u32 data)
1681 struct e1000_adapter *adapter = netdev_priv(netdev);
1683 if (!data)
1684 data = INT_MAX;
1686 if (adapter->hw.phy.type == e1000_phy_ife) {
1687 if (!adapter->blink_timer.function) {
1688 init_timer(&adapter->blink_timer);
1689 adapter->blink_timer.function =
1690 e1000_led_blink_callback;
1691 adapter->blink_timer.data = (unsigned long) adapter;
1693 mod_timer(&adapter->blink_timer, jiffies);
1694 msleep_interruptible(data * 1000);
1695 del_timer_sync(&adapter->blink_timer);
1696 e1e_wphy(&adapter->hw,
1697 IFE_PHY_SPECIAL_CONTROL_LED, 0);
1698 } else {
1699 e1000e_blink_led(&adapter->hw);
1700 msleep_interruptible(data * 1000);
1703 adapter->hw.mac.ops.led_off(&adapter->hw);
1704 clear_bit(E1000_LED_ON, &adapter->led_status);
1705 adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1707 return 0;
1710 static int e1000_nway_reset(struct net_device *netdev)
1712 struct e1000_adapter *adapter = netdev_priv(netdev);
1713 if (netif_running(netdev))
1714 e1000e_reinit_locked(adapter);
1715 return 0;
1718 static void e1000_get_ethtool_stats(struct net_device *netdev,
1719 struct ethtool_stats *stats,
1720 u64 *data)
1722 struct e1000_adapter *adapter = netdev_priv(netdev);
1723 int i;
1725 e1000e_update_stats(adapter);
1726 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1727 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1728 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1729 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1733 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1734 u8 *data)
1736 u8 *p = data;
1737 int i;
1739 switch (stringset) {
1740 case ETH_SS_TEST:
1741 memcpy(data, *e1000_gstrings_test,
1742 sizeof(e1000_gstrings_test));
1743 break;
1744 case ETH_SS_STATS:
1745 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1746 memcpy(p, e1000_gstrings_stats[i].stat_string,
1747 ETH_GSTRING_LEN);
1748 p += ETH_GSTRING_LEN;
1750 break;
1754 static const struct ethtool_ops e1000_ethtool_ops = {
1755 .get_settings = e1000_get_settings,
1756 .set_settings = e1000_set_settings,
1757 .get_drvinfo = e1000_get_drvinfo,
1758 .get_regs_len = e1000_get_regs_len,
1759 .get_regs = e1000_get_regs,
1760 .get_wol = e1000_get_wol,
1761 .set_wol = e1000_set_wol,
1762 .get_msglevel = e1000_get_msglevel,
1763 .set_msglevel = e1000_set_msglevel,
1764 .nway_reset = e1000_nway_reset,
1765 .get_link = e1000_get_link,
1766 .get_eeprom_len = e1000_get_eeprom_len,
1767 .get_eeprom = e1000_get_eeprom,
1768 .set_eeprom = e1000_set_eeprom,
1769 .get_ringparam = e1000_get_ringparam,
1770 .set_ringparam = e1000_set_ringparam,
1771 .get_pauseparam = e1000_get_pauseparam,
1772 .set_pauseparam = e1000_set_pauseparam,
1773 .get_rx_csum = e1000_get_rx_csum,
1774 .set_rx_csum = e1000_set_rx_csum,
1775 .get_tx_csum = e1000_get_tx_csum,
1776 .set_tx_csum = e1000_set_tx_csum,
1777 .get_sg = ethtool_op_get_sg,
1778 .set_sg = ethtool_op_set_sg,
1779 .get_tso = ethtool_op_get_tso,
1780 .set_tso = e1000_set_tso,
1781 .self_test = e1000_diag_test,
1782 .get_strings = e1000_get_strings,
1783 .phys_id = e1000_phys_id,
1784 .get_ethtool_stats = e1000_get_ethtool_stats,
1785 .get_sset_count = e1000e_get_sset_count,
1788 void e1000e_set_ethtool_ops(struct net_device *netdev)
1790 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);