1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
49 #define DRV_VERSION "0.2.0"
50 char e1000e_driver_name
[] = "e1000e";
51 const char e1000e_driver_version
[] = DRV_VERSION
;
53 static const struct e1000_info
*e1000_info_tbl
[] = {
54 [board_82571
] = &e1000_82571_info
,
55 [board_82572
] = &e1000_82572_info
,
56 [board_82573
] = &e1000_82573_info
,
57 [board_80003es2lan
] = &e1000_es2_info
,
58 [board_ich8lan
] = &e1000_ich8_info
,
59 [board_ich9lan
] = &e1000_ich9_info
,
64 * e1000_get_hw_dev_name - return device name string
65 * used by hardware layer to print debugging information
67 char *e1000e_get_hw_dev_name(struct e1000_hw
*hw
)
69 return hw
->adapter
->netdev
->name
;
74 * e1000_desc_unused - calculate if we have unused descriptors
76 static int e1000_desc_unused(struct e1000_ring
*ring
)
78 if (ring
->next_to_clean
> ring
->next_to_use
)
79 return ring
->next_to_clean
- ring
->next_to_use
- 1;
81 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
85 * e1000_receive_skb - helper function to handle rx indications
86 * @adapter: board private structure
87 * @status: descriptor status field as written by hardware
88 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89 * @skb: pointer to sk_buff to be indicated to stack
91 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
92 struct net_device
*netdev
,
96 skb
->protocol
= eth_type_trans(skb
, netdev
);
98 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
99 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
101 E1000_RXD_SPC_VLAN_MASK
);
103 netif_receive_skb(skb
);
105 netdev
->last_rx
= jiffies
;
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
116 u32 csum
, struct sk_buff
*skb
)
118 u16 status
= (u16
)status_err
;
119 u8 errors
= (u8
)(status_err
>> 24);
120 skb
->ip_summed
= CHECKSUM_NONE
;
122 /* Ignore Checksum bit is set */
123 if (status
& E1000_RXD_STAT_IXSM
)
125 /* TCP/UDP checksum error bit is set */
126 if (errors
& E1000_RXD_ERR_TCPE
) {
127 /* let the stack verify checksum errors */
128 adapter
->hw_csum_err
++;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status
& E1000_RXD_STAT_TCPCS
) {
138 /* TCP checksum is good */
139 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
141 /* IP fragment with UDP payload */
142 /* Hardware complements the payload checksum, so we undo it
143 * and then put the value in host order for further stack use.
145 csum
= ntohl(csum
^ 0xFFFF);
147 skb
->ip_summed
= CHECKSUM_COMPLETE
;
149 adapter
->hw_csum_good
++;
153 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
154 * @adapter: address of board private structure
156 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
159 struct net_device
*netdev
= adapter
->netdev
;
160 struct pci_dev
*pdev
= adapter
->pdev
;
161 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
162 struct e1000_rx_desc
*rx_desc
;
163 struct e1000_buffer
*buffer_info
;
166 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
168 i
= rx_ring
->next_to_use
;
169 buffer_info
= &rx_ring
->buffer_info
[i
];
171 while (cleaned_count
--) {
172 skb
= buffer_info
->skb
;
178 skb
= netdev_alloc_skb(netdev
, bufsz
);
180 /* Better luck next round */
181 adapter
->alloc_rx_buff_failed
++;
185 /* Make buffer alignment 2 beyond a 16 byte boundary
186 * this will result in a 16 byte aligned IP header after
187 * the 14 byte MAC header is removed
189 skb_reserve(skb
, NET_IP_ALIGN
);
191 buffer_info
->skb
= skb
;
193 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
194 adapter
->rx_buffer_len
,
196 if (pci_dma_mapping_error(buffer_info
->dma
)) {
197 dev_err(&pdev
->dev
, "RX DMA map failed\n");
198 adapter
->rx_dma_failed
++;
202 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
203 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
206 if (i
== rx_ring
->count
)
208 buffer_info
= &rx_ring
->buffer_info
[i
];
211 if (rx_ring
->next_to_use
!= i
) {
212 rx_ring
->next_to_use
= i
;
214 i
= (rx_ring
->count
- 1);
216 /* Force memory writes to complete before letting h/w
217 * know there are new descriptors to fetch. (Only
218 * applicable for weak-ordered memory model archs,
221 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
226 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
227 * @adapter: address of board private structure
229 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
232 struct net_device
*netdev
= adapter
->netdev
;
233 struct pci_dev
*pdev
= adapter
->pdev
;
234 union e1000_rx_desc_packet_split
*rx_desc
;
235 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
236 struct e1000_buffer
*buffer_info
;
237 struct e1000_ps_page
*ps_page
;
241 i
= rx_ring
->next_to_use
;
242 buffer_info
= &rx_ring
->buffer_info
[i
];
244 while (cleaned_count
--) {
245 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
247 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
248 ps_page
= &buffer_info
->ps_pages
[j
];
249 if (j
>= adapter
->rx_ps_pages
) {
250 /* all unused desc entries get hw null ptr */
251 rx_desc
->read
.buffer_addr
[j
+1] = ~0;
254 if (!ps_page
->page
) {
255 ps_page
->page
= alloc_page(GFP_ATOMIC
);
256 if (!ps_page
->page
) {
257 adapter
->alloc_rx_buff_failed
++;
260 ps_page
->dma
= pci_map_page(pdev
,
264 if (pci_dma_mapping_error(ps_page
->dma
)) {
265 dev_err(&adapter
->pdev
->dev
,
266 "RX DMA page map failed\n");
267 adapter
->rx_dma_failed
++;
272 * Refresh the desc even if buffer_addrs
273 * didn't change because each write-back
276 rx_desc
->read
.buffer_addr
[j
+1] =
277 cpu_to_le64(ps_page
->dma
);
280 skb
= netdev_alloc_skb(netdev
,
281 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
284 adapter
->alloc_rx_buff_failed
++;
288 /* Make buffer alignment 2 beyond a 16 byte boundary
289 * this will result in a 16 byte aligned IP header after
290 * the 14 byte MAC header is removed
292 skb_reserve(skb
, NET_IP_ALIGN
);
294 buffer_info
->skb
= skb
;
295 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
296 adapter
->rx_ps_bsize0
,
298 if (pci_dma_mapping_error(buffer_info
->dma
)) {
299 dev_err(&pdev
->dev
, "RX DMA map failed\n");
300 adapter
->rx_dma_failed
++;
302 dev_kfree_skb_any(skb
);
303 buffer_info
->skb
= NULL
;
307 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
310 if (i
== rx_ring
->count
)
312 buffer_info
= &rx_ring
->buffer_info
[i
];
316 if (rx_ring
->next_to_use
!= i
) {
317 rx_ring
->next_to_use
= i
;
320 i
= (rx_ring
->count
- 1);
322 /* Force memory writes to complete before letting h/w
323 * know there are new descriptors to fetch. (Only
324 * applicable for weak-ordered memory model archs,
327 /* Hardware increments by 16 bytes, but packet split
328 * descriptors are 32 bytes...so we increment tail
331 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
336 * e1000_clean_rx_irq - Send received data up the network stack; legacy
337 * @adapter: board private structure
339 * the return value indicates whether actual cleaning was done, there
340 * is no guarantee that everything was cleaned
342 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
343 int *work_done
, int work_to_do
)
345 struct net_device
*netdev
= adapter
->netdev
;
346 struct pci_dev
*pdev
= adapter
->pdev
;
347 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
348 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
349 struct e1000_buffer
*buffer_info
, *next_buffer
;
352 int cleaned_count
= 0;
354 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
356 i
= rx_ring
->next_to_clean
;
357 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
358 buffer_info
= &rx_ring
->buffer_info
[i
];
360 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
364 if (*work_done
>= work_to_do
)
368 status
= rx_desc
->status
;
369 skb
= buffer_info
->skb
;
370 buffer_info
->skb
= NULL
;
372 prefetch(skb
->data
- NET_IP_ALIGN
);
375 if (i
== rx_ring
->count
)
377 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
380 next_buffer
= &rx_ring
->buffer_info
[i
];
384 pci_unmap_single(pdev
,
386 adapter
->rx_buffer_len
,
388 buffer_info
->dma
= 0;
390 length
= le16_to_cpu(rx_desc
->length
);
392 /* !EOP means multiple descriptors were used to store a single
393 * packet, also make sure the frame isn't just CRC only */
394 if (!(status
& E1000_RXD_STAT_EOP
) || (length
<= 4)) {
395 /* All receives must fit into a single buffer */
396 ndev_dbg(netdev
, "%s: Receive packet consumed "
397 "multiple buffers\n", netdev
->name
);
399 buffer_info
->skb
= skb
;
403 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
405 buffer_info
->skb
= skb
;
409 total_rx_bytes
+= length
;
412 /* code added for copybreak, this should improve
413 * performance for small packets with large amounts
414 * of reassembly being done in the stack */
415 if (length
< copybreak
) {
416 struct sk_buff
*new_skb
=
417 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
419 skb_reserve(new_skb
, NET_IP_ALIGN
);
420 memcpy(new_skb
->data
- NET_IP_ALIGN
,
421 skb
->data
- NET_IP_ALIGN
,
422 length
+ NET_IP_ALIGN
);
423 /* save the skb in buffer_info as good */
424 buffer_info
->skb
= skb
;
427 /* else just continue with the old one */
429 /* end copybreak code */
430 skb_put(skb
, length
);
432 /* Receive Checksum Offload */
433 e1000_rx_checksum(adapter
,
435 ((u32
)(rx_desc
->errors
) << 24),
436 le16_to_cpu(rx_desc
->csum
), skb
);
438 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
443 /* return some buffers to hardware, one at a time is too slow */
444 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
445 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
449 /* use prefetched values */
451 buffer_info
= next_buffer
;
453 rx_ring
->next_to_clean
= i
;
455 cleaned_count
= e1000_desc_unused(rx_ring
);
457 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
459 adapter
->total_rx_packets
+= total_rx_packets
;
460 adapter
->total_rx_bytes
+= total_rx_bytes
;
464 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
465 struct e1000_buffer
*buffer_info
)
467 if (buffer_info
->dma
) {
468 pci_unmap_page(adapter
->pdev
, buffer_info
->dma
,
469 buffer_info
->length
, PCI_DMA_TODEVICE
);
470 buffer_info
->dma
= 0;
472 if (buffer_info
->skb
) {
473 dev_kfree_skb_any(buffer_info
->skb
);
474 buffer_info
->skb
= NULL
;
478 static void e1000_print_tx_hang(struct e1000_adapter
*adapter
)
480 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
481 unsigned int i
= tx_ring
->next_to_clean
;
482 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
483 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
484 struct net_device
*netdev
= adapter
->netdev
;
486 /* detected Tx unit hang */
488 "Detected Tx Unit Hang:\n"
491 " next_to_use <%x>\n"
492 " next_to_clean <%x>\n"
493 "buffer_info[next_to_clean]:\n"
494 " time_stamp <%lx>\n"
495 " next_to_watch <%x>\n"
497 " next_to_watch.status <%x>\n",
498 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
499 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
500 tx_ring
->next_to_use
,
501 tx_ring
->next_to_clean
,
502 tx_ring
->buffer_info
[eop
].time_stamp
,
505 eop_desc
->upper
.fields
.status
);
509 * e1000_clean_tx_irq - Reclaim resources after transmit completes
510 * @adapter: board private structure
512 * the return value indicates whether actual cleaning was done, there
513 * is no guarantee that everything was cleaned
515 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
517 struct net_device
*netdev
= adapter
->netdev
;
518 struct e1000_hw
*hw
= &adapter
->hw
;
519 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
520 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
521 struct e1000_buffer
*buffer_info
;
523 unsigned int count
= 0;
525 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
527 i
= tx_ring
->next_to_clean
;
528 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
529 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
531 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
532 for (cleaned
= 0; !cleaned
; ) {
533 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
534 buffer_info
= &tx_ring
->buffer_info
[i
];
535 cleaned
= (i
== eop
);
538 struct sk_buff
*skb
= buffer_info
->skb
;
539 unsigned int segs
, bytecount
;
540 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
541 /* multiply data chunks by size of headers */
542 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
544 total_tx_packets
+= segs
;
545 total_tx_bytes
+= bytecount
;
548 e1000_put_txbuf(adapter
, buffer_info
);
549 tx_desc
->upper
.data
= 0;
552 if (i
== tx_ring
->count
)
556 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
557 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
558 #define E1000_TX_WEIGHT 64
559 /* weight of a sort for tx, to avoid endless transmit cleanup */
560 if (count
++ == E1000_TX_WEIGHT
)
564 tx_ring
->next_to_clean
= i
;
566 #define TX_WAKE_THRESHOLD 32
567 if (cleaned
&& netif_carrier_ok(netdev
) &&
568 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
569 /* Make sure that anybody stopping the queue after this
570 * sees the new next_to_clean.
574 if (netif_queue_stopped(netdev
) &&
575 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
576 netif_wake_queue(netdev
);
577 ++adapter
->restart_queue
;
581 if (adapter
->detect_tx_hung
) {
582 /* Detect a transmit hang in hardware, this serializes the
583 * check with the clearing of time_stamp and movement of i */
584 adapter
->detect_tx_hung
= 0;
585 if (tx_ring
->buffer_info
[eop
].dma
&&
586 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
587 + (adapter
->tx_timeout_factor
* HZ
))
589 E1000_STATUS_TXOFF
)) {
590 e1000_print_tx_hang(adapter
);
591 netif_stop_queue(netdev
);
594 adapter
->total_tx_bytes
+= total_tx_bytes
;
595 adapter
->total_tx_packets
+= total_tx_packets
;
600 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
601 * @adapter: board private structure
603 * the return value indicates whether actual cleaning was done, there
604 * is no guarantee that everything was cleaned
606 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
607 int *work_done
, int work_to_do
)
609 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
610 struct net_device
*netdev
= adapter
->netdev
;
611 struct pci_dev
*pdev
= adapter
->pdev
;
612 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
613 struct e1000_buffer
*buffer_info
, *next_buffer
;
614 struct e1000_ps_page
*ps_page
;
618 int cleaned_count
= 0;
620 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
622 i
= rx_ring
->next_to_clean
;
623 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
624 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
625 buffer_info
= &rx_ring
->buffer_info
[i
];
627 while (staterr
& E1000_RXD_STAT_DD
) {
628 if (*work_done
>= work_to_do
)
631 skb
= buffer_info
->skb
;
633 /* in the packet split case this is header only */
634 prefetch(skb
->data
- NET_IP_ALIGN
);
637 if (i
== rx_ring
->count
)
639 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
642 next_buffer
= &rx_ring
->buffer_info
[i
];
646 pci_unmap_single(pdev
, buffer_info
->dma
,
647 adapter
->rx_ps_bsize0
,
649 buffer_info
->dma
= 0;
651 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
652 ndev_dbg(netdev
, "%s: Packet Split buffers didn't pick "
653 "up the full packet\n", netdev
->name
);
654 dev_kfree_skb_irq(skb
);
658 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
659 dev_kfree_skb_irq(skb
);
663 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
666 ndev_dbg(netdev
, "%s: Last part of the packet spanning"
667 " multiple descriptors\n", netdev
->name
);
668 dev_kfree_skb_irq(skb
);
673 skb_put(skb
, length
);
676 /* this looks ugly, but it seems compiler issues make it
677 more efficient than reusing j */
678 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
680 /* page alloc/put takes too long and effects small packet
681 * throughput, so unsplit small packets and save the alloc/put*/
682 if (l1
&& (l1
<= copybreak
) &&
683 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
686 ps_page
= &buffer_info
->ps_pages
[0];
688 /* there is no documentation about how to call
689 * kmap_atomic, so we can't hold the mapping
691 pci_dma_sync_single_for_cpu(pdev
, ps_page
->dma
,
692 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
693 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
694 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
695 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
696 pci_dma_sync_single_for_device(pdev
, ps_page
->dma
,
697 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
704 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
705 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
709 ps_page
= &buffer_info
->ps_pages
[j
];
710 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
713 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
714 ps_page
->page
= NULL
;
716 skb
->data_len
+= length
;
717 skb
->truesize
+= length
;
721 total_rx_bytes
+= skb
->len
;
724 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
725 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
727 if (rx_desc
->wb
.upper
.header_status
&
728 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
729 adapter
->rx_hdr_split
++;
731 e1000_receive_skb(adapter
, netdev
, skb
,
732 staterr
, rx_desc
->wb
.middle
.vlan
);
735 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
736 buffer_info
->skb
= NULL
;
738 /* return some buffers to hardware, one at a time is too slow */
739 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
740 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
744 /* use prefetched values */
746 buffer_info
= next_buffer
;
748 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
750 rx_ring
->next_to_clean
= i
;
752 cleaned_count
= e1000_desc_unused(rx_ring
);
754 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
756 adapter
->total_rx_packets
+= total_rx_packets
;
757 adapter
->total_rx_bytes
+= total_rx_bytes
;
762 * e1000_clean_rx_ring - Free Rx Buffers per Queue
763 * @adapter: board private structure
765 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
767 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
768 struct e1000_buffer
*buffer_info
;
769 struct e1000_ps_page
*ps_page
;
770 struct pci_dev
*pdev
= adapter
->pdev
;
773 /* Free all the Rx ring sk_buffs */
774 for (i
= 0; i
< rx_ring
->count
; i
++) {
775 buffer_info
= &rx_ring
->buffer_info
[i
];
776 if (buffer_info
->dma
) {
777 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
778 pci_unmap_single(pdev
, buffer_info
->dma
,
779 adapter
->rx_buffer_len
,
781 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
782 pci_unmap_single(pdev
, buffer_info
->dma
,
783 adapter
->rx_ps_bsize0
,
785 buffer_info
->dma
= 0;
788 if (buffer_info
->skb
) {
789 dev_kfree_skb(buffer_info
->skb
);
790 buffer_info
->skb
= NULL
;
793 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
794 ps_page
= &buffer_info
->ps_pages
[j
];
797 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
800 put_page(ps_page
->page
);
801 ps_page
->page
= NULL
;
805 /* there also may be some cached data from a chained receive */
806 if (rx_ring
->rx_skb_top
) {
807 dev_kfree_skb(rx_ring
->rx_skb_top
);
808 rx_ring
->rx_skb_top
= NULL
;
811 /* Zero out the descriptor ring */
812 memset(rx_ring
->desc
, 0, rx_ring
->size
);
814 rx_ring
->next_to_clean
= 0;
815 rx_ring
->next_to_use
= 0;
817 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
818 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
822 * e1000_intr_msi - Interrupt Handler
823 * @irq: interrupt number
824 * @data: pointer to a network interface device structure
826 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
828 struct net_device
*netdev
= data
;
829 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
830 struct e1000_hw
*hw
= &adapter
->hw
;
833 /* read ICR disables interrupts using IAM, so keep up with our
834 * enable/disable accounting */
835 atomic_inc(&adapter
->irq_sem
);
837 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
838 hw
->mac
.get_link_status
= 1;
839 /* ICH8 workaround-- Call gig speed drop workaround on cable
840 * disconnect (LSC) before accessing any PHY registers */
841 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
842 (!(er32(STATUS
) & E1000_STATUS_LU
)))
843 e1000e_gig_downshift_workaround_ich8lan(hw
);
845 /* 80003ES2LAN workaround-- For packet buffer work-around on
846 * link down event; disable receives here in the ISR and reset
847 * adapter in watchdog */
848 if (netif_carrier_ok(netdev
) &&
849 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
850 /* disable receives */
851 u32 rctl
= er32(RCTL
);
852 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
854 /* guard against interrupt when we're going down */
855 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
856 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
859 if (netif_rx_schedule_prep(netdev
, &adapter
->napi
)) {
860 adapter
->total_tx_bytes
= 0;
861 adapter
->total_tx_packets
= 0;
862 adapter
->total_rx_bytes
= 0;
863 adapter
->total_rx_packets
= 0;
864 __netif_rx_schedule(netdev
, &adapter
->napi
);
866 atomic_dec(&adapter
->irq_sem
);
873 * e1000_intr - Interrupt Handler
874 * @irq: interrupt number
875 * @data: pointer to a network interface device structure
877 static irqreturn_t
e1000_intr(int irq
, void *data
)
879 struct net_device
*netdev
= data
;
880 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
881 struct e1000_hw
*hw
= &adapter
->hw
;
883 u32 rctl
, icr
= er32(ICR
);
885 return IRQ_NONE
; /* Not our interrupt */
887 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
888 * not set, then the adapter didn't send an interrupt */
889 if (!(icr
& E1000_ICR_INT_ASSERTED
))
892 /* Interrupt Auto-Mask...upon reading ICR,
893 * interrupts are masked. No need for the
894 * IMC write, but it does mean we should
895 * account for it ASAP. */
896 atomic_inc(&adapter
->irq_sem
);
898 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
899 hw
->mac
.get_link_status
= 1;
900 /* ICH8 workaround-- Call gig speed drop workaround on cable
901 * disconnect (LSC) before accessing any PHY registers */
902 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
903 (!(er32(STATUS
) & E1000_STATUS_LU
)))
904 e1000e_gig_downshift_workaround_ich8lan(hw
);
906 /* 80003ES2LAN workaround--
907 * For packet buffer work-around on link down event;
908 * disable receives here in the ISR and
909 * reset adapter in watchdog
911 if (netif_carrier_ok(netdev
) &&
912 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
913 /* disable receives */
915 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
917 /* guard against interrupt when we're going down */
918 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
919 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
922 if (netif_rx_schedule_prep(netdev
, &adapter
->napi
)) {
923 adapter
->total_tx_bytes
= 0;
924 adapter
->total_tx_packets
= 0;
925 adapter
->total_rx_bytes
= 0;
926 adapter
->total_rx_packets
= 0;
927 __netif_rx_schedule(netdev
, &adapter
->napi
);
929 atomic_dec(&adapter
->irq_sem
);
935 static int e1000_request_irq(struct e1000_adapter
*adapter
)
937 struct net_device
*netdev
= adapter
->netdev
;
938 void (*handler
) = &e1000_intr
;
939 int irq_flags
= IRQF_SHARED
;
942 err
= pci_enable_msi(adapter
->pdev
);
945 "Unable to allocate MSI interrupt Error: %d\n", err
);
947 adapter
->flags
|= FLAG_MSI_ENABLED
;
948 handler
= &e1000_intr_msi
;
952 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
955 if (adapter
->flags
& FLAG_MSI_ENABLED
)
956 pci_disable_msi(adapter
->pdev
);
958 "Unable to allocate interrupt Error: %d\n", err
);
964 static void e1000_free_irq(struct e1000_adapter
*adapter
)
966 struct net_device
*netdev
= adapter
->netdev
;
968 free_irq(adapter
->pdev
->irq
, netdev
);
969 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
970 pci_disable_msi(adapter
->pdev
);
971 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
976 * e1000_irq_disable - Mask off interrupt generation on the NIC
978 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
980 struct e1000_hw
*hw
= &adapter
->hw
;
982 atomic_inc(&adapter
->irq_sem
);
985 synchronize_irq(adapter
->pdev
->irq
);
989 * e1000_irq_enable - Enable default interrupt generation settings
991 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
993 struct e1000_hw
*hw
= &adapter
->hw
;
995 if (atomic_dec_and_test(&adapter
->irq_sem
)) {
996 ew32(IMS
, IMS_ENABLE_MASK
);
1002 * e1000_get_hw_control - get control of the h/w from f/w
1003 * @adapter: address of board private structure
1005 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1006 * For ASF and Pass Through versions of f/w this means that
1007 * the driver is loaded. For AMT version (only with 82573)
1008 * of the f/w this means that the network i/f is open.
1010 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
1012 struct e1000_hw
*hw
= &adapter
->hw
;
1016 /* Let firmware know the driver has taken over */
1017 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1019 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
1020 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1021 ctrl_ext
= er32(CTRL_EXT
);
1023 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1028 * e1000_release_hw_control - release control of the h/w to f/w
1029 * @adapter: address of board private structure
1031 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1032 * For ASF and Pass Through versions of f/w this means that the
1033 * driver is no longer loaded. For AMT version (only with 82573) i
1034 * of the f/w this means that the network i/f is closed.
1037 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
1039 struct e1000_hw
*hw
= &adapter
->hw
;
1043 /* Let firmware taken over control of h/w */
1044 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1046 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
1047 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1048 ctrl_ext
= er32(CTRL_EXT
);
1050 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
1054 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
1056 if (adapter
->flags
& FLAG_MNG_PT_ENABLED
) {
1057 struct e1000_hw
*hw
= &adapter
->hw
;
1059 u32 manc
= er32(MANC
);
1061 /* re-enable hardware interception of ARP */
1062 manc
|= E1000_MANC_ARP_EN
;
1063 manc
&= ~E1000_MANC_EN_MNG2HOST
;
1065 /* don't explicitly have to mess with MANC2H since
1066 * MANC has an enable disable that gates MANC2H */
1072 * @e1000_alloc_ring - allocate memory for a ring structure
1074 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
1075 struct e1000_ring
*ring
)
1077 struct pci_dev
*pdev
= adapter
->pdev
;
1079 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
1088 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1089 * @adapter: board private structure
1091 * Return 0 on success, negative on failure
1093 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
1095 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1096 int err
= -ENOMEM
, size
;
1098 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1099 tx_ring
->buffer_info
= vmalloc(size
);
1100 if (!tx_ring
->buffer_info
)
1102 memset(tx_ring
->buffer_info
, 0, size
);
1104 /* round up to nearest 4K */
1105 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1106 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1108 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
1112 tx_ring
->next_to_use
= 0;
1113 tx_ring
->next_to_clean
= 0;
1114 spin_lock_init(&adapter
->tx_queue_lock
);
1118 vfree(tx_ring
->buffer_info
);
1119 ndev_err(adapter
->netdev
,
1120 "Unable to allocate memory for the transmit descriptor ring\n");
1125 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1126 * @adapter: board private structure
1128 * Returns 0 on success, negative on failure
1130 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
1132 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1133 struct e1000_buffer
*buffer_info
;
1134 int i
, size
, desc_len
, err
= -ENOMEM
;
1136 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1137 rx_ring
->buffer_info
= vmalloc(size
);
1138 if (!rx_ring
->buffer_info
)
1140 memset(rx_ring
->buffer_info
, 0, size
);
1142 for (i
= 0; i
< rx_ring
->count
; i
++) {
1143 buffer_info
= &rx_ring
->buffer_info
[i
];
1144 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
1145 sizeof(struct e1000_ps_page
),
1147 if (!buffer_info
->ps_pages
)
1151 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1153 /* Round up to nearest 4K */
1154 rx_ring
->size
= rx_ring
->count
* desc_len
;
1155 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1157 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
1161 rx_ring
->next_to_clean
= 0;
1162 rx_ring
->next_to_use
= 0;
1163 rx_ring
->rx_skb_top
= NULL
;
1168 for (i
= 0; i
< rx_ring
->count
; i
++) {
1169 buffer_info
= &rx_ring
->buffer_info
[i
];
1170 kfree(buffer_info
->ps_pages
);
1173 vfree(rx_ring
->buffer_info
);
1174 ndev_err(adapter
->netdev
,
1175 "Unable to allocate memory for the transmit descriptor ring\n");
1180 * e1000_clean_tx_ring - Free Tx Buffers
1181 * @adapter: board private structure
1183 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
1185 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1186 struct e1000_buffer
*buffer_info
;
1190 for (i
= 0; i
< tx_ring
->count
; i
++) {
1191 buffer_info
= &tx_ring
->buffer_info
[i
];
1192 e1000_put_txbuf(adapter
, buffer_info
);
1195 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1196 memset(tx_ring
->buffer_info
, 0, size
);
1198 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1200 tx_ring
->next_to_use
= 0;
1201 tx_ring
->next_to_clean
= 0;
1203 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1204 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1208 * e1000e_free_tx_resources - Free Tx Resources per Queue
1209 * @adapter: board private structure
1211 * Free all transmit software resources
1213 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
1215 struct pci_dev
*pdev
= adapter
->pdev
;
1216 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1218 e1000_clean_tx_ring(adapter
);
1220 vfree(tx_ring
->buffer_info
);
1221 tx_ring
->buffer_info
= NULL
;
1223 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1225 tx_ring
->desc
= NULL
;
1229 * e1000e_free_rx_resources - Free Rx Resources
1230 * @adapter: board private structure
1232 * Free all receive software resources
1235 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
1237 struct pci_dev
*pdev
= adapter
->pdev
;
1238 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1241 e1000_clean_rx_ring(adapter
);
1243 for (i
= 0; i
< rx_ring
->count
; i
++) {
1244 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
1247 vfree(rx_ring
->buffer_info
);
1248 rx_ring
->buffer_info
= NULL
;
1250 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1252 rx_ring
->desc
= NULL
;
1256 * e1000_update_itr - update the dynamic ITR value based on statistics
1257 * Stores a new ITR value based on packets and byte
1258 * counts during the last interrupt. The advantage of per interrupt
1259 * computation is faster updates and more accurate ITR for the current
1260 * traffic pattern. Constants in this function were computed
1261 * based on theoretical maximum wire speed and thresholds were set based
1262 * on testing data as well as attempting to minimize response time
1263 * while increasing bulk throughput.
1264 * this functionality is controlled by the InterruptThrottleRate module
1265 * parameter (see e1000_param.c)
1266 * @adapter: pointer to adapter
1267 * @itr_setting: current adapter->itr
1268 * @packets: the number of packets during this measurement interval
1269 * @bytes: the number of bytes during this measurement interval
1271 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
1272 u16 itr_setting
, int packets
,
1275 unsigned int retval
= itr_setting
;
1278 goto update_itr_done
;
1280 switch (itr_setting
) {
1281 case lowest_latency
:
1282 /* handle TSO and jumbo frames */
1283 if (bytes
/packets
> 8000)
1284 retval
= bulk_latency
;
1285 else if ((packets
< 5) && (bytes
> 512)) {
1286 retval
= low_latency
;
1289 case low_latency
: /* 50 usec aka 20000 ints/s */
1290 if (bytes
> 10000) {
1291 /* this if handles the TSO accounting */
1292 if (bytes
/packets
> 8000) {
1293 retval
= bulk_latency
;
1294 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
1295 retval
= bulk_latency
;
1296 } else if ((packets
> 35)) {
1297 retval
= lowest_latency
;
1299 } else if (bytes
/packets
> 2000) {
1300 retval
= bulk_latency
;
1301 } else if (packets
<= 2 && bytes
< 512) {
1302 retval
= lowest_latency
;
1305 case bulk_latency
: /* 250 usec aka 4000 ints/s */
1306 if (bytes
> 25000) {
1308 retval
= low_latency
;
1310 } else if (bytes
< 6000) {
1311 retval
= low_latency
;
1320 static void e1000_set_itr(struct e1000_adapter
*adapter
)
1322 struct e1000_hw
*hw
= &adapter
->hw
;
1324 u32 new_itr
= adapter
->itr
;
1326 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1327 if (adapter
->link_speed
!= SPEED_1000
) {
1333 adapter
->tx_itr
= e1000_update_itr(adapter
,
1335 adapter
->total_tx_packets
,
1336 adapter
->total_tx_bytes
);
1337 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1338 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
1339 adapter
->tx_itr
= low_latency
;
1341 adapter
->rx_itr
= e1000_update_itr(adapter
,
1343 adapter
->total_rx_packets
,
1344 adapter
->total_rx_bytes
);
1345 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1346 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
1347 adapter
->rx_itr
= low_latency
;
1349 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
1351 switch (current_itr
) {
1352 /* counts and packets in update_itr are dependent on these numbers */
1353 case lowest_latency
:
1357 new_itr
= 20000; /* aka hwitr = ~200 */
1367 if (new_itr
!= adapter
->itr
) {
1368 /* this attempts to bias the interrupt rate towards Bulk
1369 * by adding intermediate steps when interrupt rate is
1371 new_itr
= new_itr
> adapter
->itr
?
1372 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
1374 adapter
->itr
= new_itr
;
1375 ew32(ITR
, 1000000000 / (new_itr
* 256));
1380 * e1000_clean - NAPI Rx polling callback
1381 * @adapter: board private structure
1383 static int e1000_clean(struct napi_struct
*napi
, int budget
)
1385 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
1386 struct net_device
*poll_dev
= adapter
->netdev
;
1387 int tx_cleaned
= 0, work_done
= 0;
1389 /* Must NOT use netdev_priv macro here. */
1390 adapter
= poll_dev
->priv
;
1392 /* e1000_clean is called per-cpu. This lock protects
1393 * tx_ring from being cleaned by multiple cpus
1394 * simultaneously. A failure obtaining the lock means
1395 * tx_ring is currently being cleaned anyway. */
1396 if (spin_trylock(&adapter
->tx_queue_lock
)) {
1397 tx_cleaned
= e1000_clean_tx_irq(adapter
);
1398 spin_unlock(&adapter
->tx_queue_lock
);
1401 adapter
->clean_rx(adapter
, &work_done
, budget
);
1406 /* If budget not fully consumed, exit the polling mode */
1407 if (work_done
< budget
) {
1408 if (adapter
->itr_setting
& 3)
1409 e1000_set_itr(adapter
);
1410 netif_rx_complete(poll_dev
, napi
);
1411 e1000_irq_enable(adapter
);
1417 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
1419 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1420 struct e1000_hw
*hw
= &adapter
->hw
;
1423 /* don't update vlan cookie if already programmed */
1424 if ((adapter
->hw
.mng_cookie
.status
&
1425 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1426 (vid
== adapter
->mng_vlan_id
))
1428 /* add VID to filter table */
1429 index
= (vid
>> 5) & 0x7F;
1430 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
1431 vfta
|= (1 << (vid
& 0x1F));
1432 e1000e_write_vfta(hw
, index
, vfta
);
1435 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
1437 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1438 struct e1000_hw
*hw
= &adapter
->hw
;
1441 e1000_irq_disable(adapter
);
1442 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
1443 e1000_irq_enable(adapter
);
1445 if ((adapter
->hw
.mng_cookie
.status
&
1446 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1447 (vid
== adapter
->mng_vlan_id
)) {
1448 /* release control to f/w */
1449 e1000_release_hw_control(adapter
);
1453 /* remove VID from filter table */
1454 index
= (vid
>> 5) & 0x7F;
1455 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
1456 vfta
&= ~(1 << (vid
& 0x1F));
1457 e1000e_write_vfta(hw
, index
, vfta
);
1460 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
1462 struct net_device
*netdev
= adapter
->netdev
;
1463 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
1464 u16 old_vid
= adapter
->mng_vlan_id
;
1466 if (!adapter
->vlgrp
)
1469 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
1470 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1471 if (adapter
->hw
.mng_cookie
.status
&
1472 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
1473 e1000_vlan_rx_add_vid(netdev
, vid
);
1474 adapter
->mng_vlan_id
= vid
;
1477 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
1479 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
1480 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
1482 adapter
->mng_vlan_id
= vid
;
1487 static void e1000_vlan_rx_register(struct net_device
*netdev
,
1488 struct vlan_group
*grp
)
1490 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1491 struct e1000_hw
*hw
= &adapter
->hw
;
1494 e1000_irq_disable(adapter
);
1495 adapter
->vlgrp
= grp
;
1498 /* enable VLAN tag insert/strip */
1500 ctrl
|= E1000_CTRL_VME
;
1503 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
1504 /* enable VLAN receive filtering */
1506 rctl
|= E1000_RCTL_VFE
;
1507 rctl
&= ~E1000_RCTL_CFIEN
;
1509 e1000_update_mng_vlan(adapter
);
1512 /* disable VLAN tag insert/strip */
1514 ctrl
&= ~E1000_CTRL_VME
;
1517 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
1518 /* disable VLAN filtering */
1520 rctl
&= ~E1000_RCTL_VFE
;
1522 if (adapter
->mng_vlan_id
!=
1523 (u16
)E1000_MNG_VLAN_NONE
) {
1524 e1000_vlan_rx_kill_vid(netdev
,
1525 adapter
->mng_vlan_id
);
1526 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1531 e1000_irq_enable(adapter
);
1534 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
1538 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
1540 if (!adapter
->vlgrp
)
1543 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
1544 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
1546 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
1550 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
1552 struct e1000_hw
*hw
= &adapter
->hw
;
1555 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
1560 /* disable hardware interception of ARP */
1561 manc
&= ~(E1000_MANC_ARP_EN
);
1563 /* enable receiving management packets to the host. this will probably
1564 * generate destination unreachable messages from the host OS, but
1565 * the packets will be handled on SMBUS */
1566 manc
|= E1000_MANC_EN_MNG2HOST
;
1567 manc2h
= er32(MANC2H
);
1568 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1569 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1570 manc2h
|= E1000_MNG2HOST_PORT_623
;
1571 manc2h
|= E1000_MNG2HOST_PORT_664
;
1572 ew32(MANC2H
, manc2h
);
1577 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1578 * @adapter: board private structure
1580 * Configure the Tx unit of the MAC after a reset.
1582 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1584 struct e1000_hw
*hw
= &adapter
->hw
;
1585 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1587 u32 tdlen
, tctl
, tipg
, tarc
;
1590 /* Setup the HW Tx Head and Tail descriptor pointers */
1591 tdba
= tx_ring
->dma
;
1592 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1593 ew32(TDBAL
, (tdba
& DMA_32BIT_MASK
));
1594 ew32(TDBAH
, (tdba
>> 32));
1598 tx_ring
->head
= E1000_TDH
;
1599 tx_ring
->tail
= E1000_TDT
;
1601 /* Set the default values for the Tx Inter Packet Gap timer */
1602 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
1603 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
1604 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
1606 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
1607 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
1609 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1610 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1613 /* Set the Tx Interrupt Delay register */
1614 ew32(TIDV
, adapter
->tx_int_delay
);
1615 /* tx irq moderation */
1616 ew32(TADV
, adapter
->tx_abs_int_delay
);
1618 /* Program the Transmit Control Register */
1620 tctl
&= ~E1000_TCTL_CT
;
1621 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1622 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1624 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
1626 /* set the speed mode bit, we'll clear it if we're not at
1627 * gigabit link later */
1628 #define SPEED_MODE_BIT (1 << 21)
1629 tarc
|= SPEED_MODE_BIT
;
1633 /* errata: program both queues to unweighted RR */
1634 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
1643 e1000e_config_collision_dist(hw
);
1645 /* Setup Transmit Descriptor Settings for eop descriptor */
1646 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1648 /* only set IDE if we are delaying interrupts using the timers */
1649 if (adapter
->tx_int_delay
)
1650 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1652 /* enable Report Status bit */
1653 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1657 adapter
->tx_queue_len
= adapter
->netdev
->tx_queue_len
;
1661 * e1000_setup_rctl - configure the receive control registers
1662 * @adapter: Board private structure
1664 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1665 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1666 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1668 struct e1000_hw
*hw
= &adapter
->hw
;
1673 /* Program MC offset vector base */
1675 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1676 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1677 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1678 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1680 /* Do not Store bad packets */
1681 rctl
&= ~E1000_RCTL_SBP
;
1683 /* Enable Long Packet receive */
1684 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1685 rctl
&= ~E1000_RCTL_LPE
;
1687 rctl
|= E1000_RCTL_LPE
;
1689 /* Setup buffer sizes */
1690 rctl
&= ~E1000_RCTL_SZ_4096
;
1691 rctl
|= E1000_RCTL_BSEX
;
1692 switch (adapter
->rx_buffer_len
) {
1694 rctl
|= E1000_RCTL_SZ_256
;
1695 rctl
&= ~E1000_RCTL_BSEX
;
1698 rctl
|= E1000_RCTL_SZ_512
;
1699 rctl
&= ~E1000_RCTL_BSEX
;
1702 rctl
|= E1000_RCTL_SZ_1024
;
1703 rctl
&= ~E1000_RCTL_BSEX
;
1707 rctl
|= E1000_RCTL_SZ_2048
;
1708 rctl
&= ~E1000_RCTL_BSEX
;
1711 rctl
|= E1000_RCTL_SZ_4096
;
1714 rctl
|= E1000_RCTL_SZ_8192
;
1717 rctl
|= E1000_RCTL_SZ_16384
;
1722 * 82571 and greater support packet-split where the protocol
1723 * header is placed in skb->data and the packet data is
1724 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1725 * In the case of a non-split, skb->data is linearly filled,
1726 * followed by the page buffers. Therefore, skb->data is
1727 * sized to hold the largest protocol header.
1729 * allocations using alloc_page take too long for regular MTU
1730 * so only enable packet split for jumbo frames
1732 * Using pages when the page size is greater than 16k wastes
1733 * a lot of memory, since we allocate 3 pages at all times
1736 adapter
->rx_ps_pages
= 0;
1737 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
1738 if ((pages
<= 3) && (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
1739 adapter
->rx_ps_pages
= pages
;
1741 if (adapter
->rx_ps_pages
) {
1742 /* Configure extra packet-split registers */
1743 rfctl
= er32(RFCTL
);
1744 rfctl
|= E1000_RFCTL_EXTEN
;
1745 /* disable packet split support for IPv6 extension headers,
1746 * because some malformed IPv6 headers can hang the RX */
1747 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
1748 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
1752 /* Enable Packet split descriptors */
1753 rctl
|= E1000_RCTL_DTYP_PS
;
1755 /* Enable hardware CRC frame stripping */
1756 rctl
|= E1000_RCTL_SECRC
;
1758 psrctl
|= adapter
->rx_ps_bsize0
>>
1759 E1000_PSRCTL_BSIZE0_SHIFT
;
1761 switch (adapter
->rx_ps_pages
) {
1763 psrctl
|= PAGE_SIZE
<<
1764 E1000_PSRCTL_BSIZE3_SHIFT
;
1766 psrctl
|= PAGE_SIZE
<<
1767 E1000_PSRCTL_BSIZE2_SHIFT
;
1769 psrctl
|= PAGE_SIZE
>>
1770 E1000_PSRCTL_BSIZE1_SHIFT
;
1774 ew32(PSRCTL
, psrctl
);
1781 * e1000_configure_rx - Configure Receive Unit after Reset
1782 * @adapter: board private structure
1784 * Configure the Rx unit of the MAC after a reset.
1786 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1788 struct e1000_hw
*hw
= &adapter
->hw
;
1789 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1791 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
1793 if (adapter
->rx_ps_pages
) {
1794 /* this is a 32 byte descriptor */
1795 rdlen
= rx_ring
->count
*
1796 sizeof(union e1000_rx_desc_packet_split
);
1797 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
1798 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
1800 rdlen
= rx_ring
->count
*
1801 sizeof(struct e1000_rx_desc
);
1802 adapter
->clean_rx
= e1000_clean_rx_irq
;
1803 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1806 /* disable receives while setting up the descriptors */
1808 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1812 /* set the Receive Delay Timer Register */
1813 ew32(RDTR
, adapter
->rx_int_delay
);
1815 /* irq moderation */
1816 ew32(RADV
, adapter
->rx_abs_int_delay
);
1817 if (adapter
->itr_setting
!= 0)
1819 1000000000 / (adapter
->itr
* 256));
1821 ctrl_ext
= er32(CTRL_EXT
);
1822 /* Reset delay timers after every interrupt */
1823 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
1824 /* Auto-Mask interrupts upon ICR access */
1825 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
1826 ew32(IAM
, 0xffffffff);
1827 ew32(CTRL_EXT
, ctrl_ext
);
1830 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1831 * the Base and Length of the Rx Descriptor Ring */
1832 rdba
= rx_ring
->dma
;
1833 ew32(RDBAL
, (rdba
& DMA_32BIT_MASK
));
1834 ew32(RDBAH
, (rdba
>> 32));
1838 rx_ring
->head
= E1000_RDH
;
1839 rx_ring
->tail
= E1000_RDT
;
1841 /* Enable Receive Checksum Offload for TCP and UDP */
1842 rxcsum
= er32(RXCSUM
);
1843 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
1844 rxcsum
|= E1000_RXCSUM_TUOFL
;
1846 /* IPv4 payload checksum for UDP fragments must be
1847 * used in conjunction with packet-split. */
1848 if (adapter
->rx_ps_pages
)
1849 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1851 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1852 /* no need to clear IPPCSE as it defaults to 0 */
1854 ew32(RXCSUM
, rxcsum
);
1856 /* Enable early receives on supported devices, only takes effect when
1857 * packet size is equal or larger than the specified value (in 8 byte
1858 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
1859 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
1860 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
1861 ew32(ERT
, E1000_ERT_2048
);
1863 /* Enable Receives */
1868 * e1000_mc_addr_list_update - Update Multicast addresses
1869 * @hw: pointer to the HW structure
1870 * @mc_addr_list: array of multicast addresses to program
1871 * @mc_addr_count: number of multicast addresses to program
1872 * @rar_used_count: the first RAR register free to program
1873 * @rar_count: total number of supported Receive Address Registers
1875 * Updates the Receive Address Registers and Multicast Table Array.
1876 * The caller must have a packed mc_addr_list of multicast addresses.
1877 * The parameter rar_count will usually be hw->mac.rar_entry_count
1878 * unless there are workarounds that change this. Currently no func pointer
1879 * exists and all implementations are handled in the generic version of this
1882 static void e1000_mc_addr_list_update(struct e1000_hw
*hw
, u8
*mc_addr_list
,
1883 u32 mc_addr_count
, u32 rar_used_count
,
1886 hw
->mac
.ops
.mc_addr_list_update(hw
, mc_addr_list
, mc_addr_count
,
1887 rar_used_count
, rar_count
);
1891 * e1000_set_multi - Multicast and Promiscuous mode set
1892 * @netdev: network interface device structure
1894 * The set_multi entry point is called whenever the multicast address
1895 * list or the network interface flags are updated. This routine is
1896 * responsible for configuring the hardware for proper multicast,
1897 * promiscuous mode, and all-multi behavior.
1899 static void e1000_set_multi(struct net_device
*netdev
)
1901 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1902 struct e1000_hw
*hw
= &adapter
->hw
;
1903 struct e1000_mac_info
*mac
= &hw
->mac
;
1904 struct dev_mc_list
*mc_ptr
;
1909 /* Check for Promiscuous and All Multicast modes */
1913 if (netdev
->flags
& IFF_PROMISC
) {
1914 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
1915 } else if (netdev
->flags
& IFF_ALLMULTI
) {
1916 rctl
|= E1000_RCTL_MPE
;
1917 rctl
&= ~E1000_RCTL_UPE
;
1919 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
1924 if (netdev
->mc_count
) {
1925 mta_list
= kmalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
1929 /* prepare a packed array of only addresses. */
1930 mc_ptr
= netdev
->mc_list
;
1932 for (i
= 0; i
< netdev
->mc_count
; i
++) {
1935 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
,
1937 mc_ptr
= mc_ptr
->next
;
1940 e1000_mc_addr_list_update(hw
, mta_list
, i
, 1,
1941 mac
->rar_entry_count
);
1945 * if we're called from probe, we might not have
1946 * anything to do here, so clear out the list
1948 e1000_mc_addr_list_update(hw
, NULL
, 0, 1,
1949 mac
->rar_entry_count
);
1954 * e1000_configure - configure the hardware for RX and TX
1955 * @adapter: private board structure
1957 static void e1000_configure(struct e1000_adapter
*adapter
)
1959 e1000_set_multi(adapter
->netdev
);
1961 e1000_restore_vlan(adapter
);
1962 e1000_init_manageability(adapter
);
1964 e1000_configure_tx(adapter
);
1965 e1000_setup_rctl(adapter
);
1966 e1000_configure_rx(adapter
);
1967 adapter
->alloc_rx_buf(adapter
,
1968 e1000_desc_unused(adapter
->rx_ring
));
1972 * e1000e_power_up_phy - restore link in case the phy was powered down
1973 * @adapter: address of board private structure
1975 * The phy may be powered down to save power and turn off link when the
1976 * driver is unloaded and wake on lan is not enabled (among others)
1977 * *** this routine MUST be followed by a call to e1000e_reset ***
1979 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
1983 /* Just clear the power down bit to wake the phy back up */
1984 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
1985 /* according to the manual, the phy will retain its
1986 * settings across a power-down/up cycle */
1987 e1e_rphy(&adapter
->hw
, PHY_CONTROL
, &mii_reg
);
1988 mii_reg
&= ~MII_CR_POWER_DOWN
;
1989 e1e_wphy(&adapter
->hw
, PHY_CONTROL
, mii_reg
);
1992 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
1996 * e1000_power_down_phy - Power down the PHY
1998 * Power down the PHY so no link is implied when interface is down
1999 * The PHY cannot be powered down is management or WoL is active
2001 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
2003 struct e1000_hw
*hw
= &adapter
->hw
;
2006 /* WoL is enabled */
2010 /* non-copper PHY? */
2011 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
2014 /* reset is blocked because of a SoL/IDER session */
2015 if (e1000e_check_mng_mode(hw
) ||
2016 e1000_check_reset_block(hw
))
2019 /* managebility (AMT) is enabled */
2020 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
2023 /* power down the PHY */
2024 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2025 mii_reg
|= MII_CR_POWER_DOWN
;
2026 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2031 * e1000e_reset - bring the hardware into a known good state
2033 * This function boots the hardware and enables some settings that
2034 * require a configuration cycle of the hardware - those cannot be
2035 * set/changed during runtime. After reset the device needs to be
2036 * properly configured for rx, tx etc.
2038 void e1000e_reset(struct e1000_adapter
*adapter
)
2040 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2041 struct e1000_hw
*hw
= &adapter
->hw
;
2042 u32 tx_space
, min_tx_space
, min_rx_space
;
2046 ew32(PBA
, adapter
->pba
);
2048 if (mac
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2049 /* To maintain wire speed transmits, the Tx FIFO should be
2050 * large enough to accommodate two full transmit packets,
2051 * rounded up to the next 1KB and expressed in KB. Likewise,
2052 * the Rx FIFO should be large enough to accommodate at least
2053 * one full receive packet and is similarly rounded up and
2054 * expressed in KB. */
2056 /* upper 16 bits has Tx packet buffer allocation size in KB */
2057 tx_space
= pba
>> 16;
2058 /* lower 16 bits has Rx packet buffer allocation size in KB */
2060 /* the tx fifo also stores 16 bytes of information about the tx
2061 * but don't include ethernet FCS because hardware appends it */
2062 min_tx_space
= (mac
->max_frame_size
+
2063 sizeof(struct e1000_tx_desc
) -
2065 min_tx_space
= ALIGN(min_tx_space
, 1024);
2066 min_tx_space
>>= 10;
2067 /* software strips receive CRC, so leave room for it */
2068 min_rx_space
= mac
->max_frame_size
;
2069 min_rx_space
= ALIGN(min_rx_space
, 1024);
2070 min_rx_space
>>= 10;
2072 /* If current Tx allocation is less than the min Tx FIFO size,
2073 * and the min Tx FIFO size is less than the current Rx FIFO
2074 * allocation, take space away from current Rx allocation */
2075 if ((tx_space
< min_tx_space
) &&
2076 ((min_tx_space
- tx_space
) < pba
)) {
2077 pba
-= min_tx_space
- tx_space
;
2079 /* if short on rx space, rx wins and must trump tx
2080 * adjustment or use Early Receive if available */
2081 if ((pba
< min_rx_space
) &&
2082 (!(adapter
->flags
& FLAG_HAS_ERT
)))
2083 /* ERT enabled in e1000_configure_rx */
2091 /* flow control settings */
2092 /* The high water mark must be low enough to fit one full frame
2093 * (or the size used for early receive) above it in the Rx FIFO.
2094 * Set it to the lower of:
2095 * - 90% of the Rx FIFO size, and
2096 * - the full Rx FIFO size minus the early receive size (for parts
2097 * with ERT support assuming ERT set to E1000_ERT_2048), or
2098 * - the full Rx FIFO size minus one full frame */
2099 if (adapter
->flags
& FLAG_HAS_ERT
)
2100 hwm
= min(((adapter
->pba
<< 10) * 9 / 10),
2101 ((adapter
->pba
<< 10) - (E1000_ERT_2048
<< 3)));
2103 hwm
= min(((adapter
->pba
<< 10) * 9 / 10),
2104 ((adapter
->pba
<< 10) - mac
->max_frame_size
));
2106 mac
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
2107 mac
->fc_low_water
= mac
->fc_high_water
- 8;
2109 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
2110 mac
->fc_pause_time
= 0xFFFF;
2112 mac
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
2113 mac
->fc
= mac
->original_fc
;
2115 /* Allow time for pending master requests to run */
2116 mac
->ops
.reset_hw(hw
);
2119 if (mac
->ops
.init_hw(hw
))
2120 ndev_err(adapter
->netdev
, "Hardware Error\n");
2122 e1000_update_mng_vlan(adapter
);
2124 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2125 ew32(VET
, ETH_P_8021Q
);
2127 e1000e_reset_adaptive(hw
);
2128 e1000_get_phy_info(hw
);
2130 if (!(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
2132 /* speed up time to link by disabling smart power down, ignore
2133 * the return value of this function because there is nothing
2134 * different we would do if it failed */
2135 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
2136 phy_data
&= ~IGP02E1000_PM_SPD
;
2137 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
2140 e1000_release_manageability(adapter
);
2143 int e1000e_up(struct e1000_adapter
*adapter
)
2145 struct e1000_hw
*hw
= &adapter
->hw
;
2147 /* hardware has been reset, we need to reload some things */
2148 e1000_configure(adapter
);
2150 clear_bit(__E1000_DOWN
, &adapter
->state
);
2152 napi_enable(&adapter
->napi
);
2153 e1000_irq_enable(adapter
);
2155 /* fire a link change interrupt to start the watchdog */
2156 ew32(ICS
, E1000_ICS_LSC
);
2160 void e1000e_down(struct e1000_adapter
*adapter
)
2162 struct net_device
*netdev
= adapter
->netdev
;
2163 struct e1000_hw
*hw
= &adapter
->hw
;
2166 /* signal that we're down so the interrupt handler does not
2167 * reschedule our watchdog timer */
2168 set_bit(__E1000_DOWN
, &adapter
->state
);
2170 /* disable receives in the hardware */
2172 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2173 /* flush and sleep below */
2175 netif_stop_queue(netdev
);
2177 /* disable transmits in the hardware */
2179 tctl
&= ~E1000_TCTL_EN
;
2181 /* flush both disables and wait for them to finish */
2185 napi_disable(&adapter
->napi
);
2186 atomic_set(&adapter
->irq_sem
, 0);
2187 e1000_irq_disable(adapter
);
2189 del_timer_sync(&adapter
->watchdog_timer
);
2190 del_timer_sync(&adapter
->phy_info_timer
);
2192 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2193 netif_carrier_off(netdev
);
2194 adapter
->link_speed
= 0;
2195 adapter
->link_duplex
= 0;
2197 e1000e_reset(adapter
);
2198 e1000_clean_tx_ring(adapter
);
2199 e1000_clean_rx_ring(adapter
);
2202 * TODO: for power management, we could drop the link and
2203 * pci_disable_device here.
2207 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
2210 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
2212 e1000e_down(adapter
);
2214 clear_bit(__E1000_RESETTING
, &adapter
->state
);
2218 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2219 * @adapter: board private structure to initialize
2221 * e1000_sw_init initializes the Adapter private data structure.
2222 * Fields are initialized based on PCI device information and
2223 * OS network device settings (MTU size).
2225 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
2227 struct e1000_hw
*hw
= &adapter
->hw
;
2228 struct net_device
*netdev
= adapter
->netdev
;
2230 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
2231 adapter
->rx_ps_bsize0
= 128;
2232 hw
->mac
.max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2233 hw
->mac
.min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
2235 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2236 if (!adapter
->tx_ring
)
2239 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2240 if (!adapter
->rx_ring
)
2243 spin_lock_init(&adapter
->tx_queue_lock
);
2245 /* Explicitly disable IRQ since the NIC can be in any state. */
2246 atomic_set(&adapter
->irq_sem
, 0);
2247 e1000_irq_disable(adapter
);
2249 spin_lock_init(&adapter
->stats_lock
);
2251 set_bit(__E1000_DOWN
, &adapter
->state
);
2255 ndev_err(netdev
, "Unable to allocate memory for queues\n");
2256 kfree(adapter
->rx_ring
);
2257 kfree(adapter
->tx_ring
);
2262 * e1000_open - Called when a network interface is made active
2263 * @netdev: network interface device structure
2265 * Returns 0 on success, negative value on failure
2267 * The open entry point is called when a network interface is made
2268 * active by the system (IFF_UP). At this point all resources needed
2269 * for transmit and receive operations are allocated, the interrupt
2270 * handler is registered with the OS, the watchdog timer is started,
2271 * and the stack is notified that the interface is ready.
2273 static int e1000_open(struct net_device
*netdev
)
2275 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2276 struct e1000_hw
*hw
= &adapter
->hw
;
2279 /* disallow open during test */
2280 if (test_bit(__E1000_TESTING
, &adapter
->state
))
2283 /* allocate transmit descriptors */
2284 err
= e1000e_setup_tx_resources(adapter
);
2288 /* allocate receive descriptors */
2289 err
= e1000e_setup_rx_resources(adapter
);
2293 e1000e_power_up_phy(adapter
);
2295 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2296 if ((adapter
->hw
.mng_cookie
.status
&
2297 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
2298 e1000_update_mng_vlan(adapter
);
2300 /* If AMT is enabled, let the firmware know that the network
2301 * interface is now open */
2302 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
2303 e1000e_check_mng_mode(&adapter
->hw
))
2304 e1000_get_hw_control(adapter
);
2306 /* before we allocate an interrupt, we must be ready to handle it.
2307 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2308 * as soon as we call pci_request_irq, so we have to setup our
2309 * clean_rx handler before we do so. */
2310 e1000_configure(adapter
);
2312 err
= e1000_request_irq(adapter
);
2316 /* From here on the code is the same as e1000e_up() */
2317 clear_bit(__E1000_DOWN
, &adapter
->state
);
2319 napi_enable(&adapter
->napi
);
2321 e1000_irq_enable(adapter
);
2323 /* fire a link status change interrupt to start the watchdog */
2324 ew32(ICS
, E1000_ICS_LSC
);
2329 e1000_release_hw_control(adapter
);
2330 e1000_power_down_phy(adapter
);
2331 e1000e_free_rx_resources(adapter
);
2333 e1000e_free_tx_resources(adapter
);
2335 e1000e_reset(adapter
);
2341 * e1000_close - Disables a network interface
2342 * @netdev: network interface device structure
2344 * Returns 0, this is not allowed to fail
2346 * The close entry point is called when an interface is de-activated
2347 * by the OS. The hardware is still under the drivers control, but
2348 * needs to be disabled. A global MAC reset is issued to stop the
2349 * hardware, and all transmit and receive resources are freed.
2351 static int e1000_close(struct net_device
*netdev
)
2353 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2355 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
2356 e1000e_down(adapter
);
2357 e1000_power_down_phy(adapter
);
2358 e1000_free_irq(adapter
);
2360 e1000e_free_tx_resources(adapter
);
2361 e1000e_free_rx_resources(adapter
);
2363 /* kill manageability vlan ID if supported, but not if a vlan with
2364 * the same ID is registered on the host OS (let 8021q kill it) */
2365 if ((adapter
->hw
.mng_cookie
.status
&
2366 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2368 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
2369 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
2371 /* If AMT is enabled, let the firmware know that the network
2372 * interface is now closed */
2373 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
2374 e1000e_check_mng_mode(&adapter
->hw
))
2375 e1000_release_hw_control(adapter
);
2380 * e1000_set_mac - Change the Ethernet Address of the NIC
2381 * @netdev: network interface device structure
2382 * @p: pointer to an address structure
2384 * Returns 0 on success, negative on failure
2386 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2388 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2389 struct sockaddr
*addr
= p
;
2391 if (!is_valid_ether_addr(addr
->sa_data
))
2392 return -EADDRNOTAVAIL
;
2394 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2395 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2397 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
2399 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
2400 /* activate the work around */
2401 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
2403 /* Hold a copy of the LAA in RAR[14] This is done so that
2404 * between the time RAR[0] gets clobbered and the time it
2405 * gets fixed (in e1000_watchdog), the actual LAA is in one
2406 * of the RARs and no incoming packets directed to this port
2407 * are dropped. Eventually the LAA will be in RAR[0] and
2409 e1000e_rar_set(&adapter
->hw
,
2410 adapter
->hw
.mac
.addr
,
2411 adapter
->hw
.mac
.rar_entry_count
- 1);
2417 /* Need to wait a few seconds after link up to get diagnostic information from
2419 static void e1000_update_phy_info(unsigned long data
)
2421 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2422 e1000_get_phy_info(&adapter
->hw
);
2426 * e1000e_update_stats - Update the board statistics counters
2427 * @adapter: board private structure
2429 void e1000e_update_stats(struct e1000_adapter
*adapter
)
2431 struct e1000_hw
*hw
= &adapter
->hw
;
2432 struct pci_dev
*pdev
= adapter
->pdev
;
2433 unsigned long irq_flags
;
2436 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2439 * Prevent stats update while adapter is being reset, or if the pci
2440 * connection is down.
2442 if (adapter
->link_speed
== 0)
2444 if (pci_channel_offline(pdev
))
2447 spin_lock_irqsave(&adapter
->stats_lock
, irq_flags
);
2449 /* these counters are modified from e1000_adjust_tbi_stats,
2450 * called from the interrupt context, so they must only
2451 * be written while holding adapter->stats_lock
2454 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
2455 adapter
->stats
.gprc
+= er32(GPRC
);
2456 adapter
->stats
.gorcl
+= er32(GORCL
);
2457 adapter
->stats
.gorch
+= er32(GORCH
);
2458 adapter
->stats
.bprc
+= er32(BPRC
);
2459 adapter
->stats
.mprc
+= er32(MPRC
);
2460 adapter
->stats
.roc
+= er32(ROC
);
2462 if (adapter
->flags
& FLAG_HAS_STATS_PTC_PRC
) {
2463 adapter
->stats
.prc64
+= er32(PRC64
);
2464 adapter
->stats
.prc127
+= er32(PRC127
);
2465 adapter
->stats
.prc255
+= er32(PRC255
);
2466 adapter
->stats
.prc511
+= er32(PRC511
);
2467 adapter
->stats
.prc1023
+= er32(PRC1023
);
2468 adapter
->stats
.prc1522
+= er32(PRC1522
);
2469 adapter
->stats
.symerrs
+= er32(SYMERRS
);
2470 adapter
->stats
.sec
+= er32(SEC
);
2473 adapter
->stats
.mpc
+= er32(MPC
);
2474 adapter
->stats
.scc
+= er32(SCC
);
2475 adapter
->stats
.ecol
+= er32(ECOL
);
2476 adapter
->stats
.mcc
+= er32(MCC
);
2477 adapter
->stats
.latecol
+= er32(LATECOL
);
2478 adapter
->stats
.dc
+= er32(DC
);
2479 adapter
->stats
.rlec
+= er32(RLEC
);
2480 adapter
->stats
.xonrxc
+= er32(XONRXC
);
2481 adapter
->stats
.xontxc
+= er32(XONTXC
);
2482 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
2483 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
2484 adapter
->stats
.fcruc
+= er32(FCRUC
);
2485 adapter
->stats
.gptc
+= er32(GPTC
);
2486 adapter
->stats
.gotcl
+= er32(GOTCL
);
2487 adapter
->stats
.gotch
+= er32(GOTCH
);
2488 adapter
->stats
.rnbc
+= er32(RNBC
);
2489 adapter
->stats
.ruc
+= er32(RUC
);
2490 adapter
->stats
.rfc
+= er32(RFC
);
2491 adapter
->stats
.rjc
+= er32(RJC
);
2492 adapter
->stats
.torl
+= er32(TORL
);
2493 adapter
->stats
.torh
+= er32(TORH
);
2494 adapter
->stats
.totl
+= er32(TOTL
);
2495 adapter
->stats
.toth
+= er32(TOTH
);
2496 adapter
->stats
.tpr
+= er32(TPR
);
2498 if (adapter
->flags
& FLAG_HAS_STATS_PTC_PRC
) {
2499 adapter
->stats
.ptc64
+= er32(PTC64
);
2500 adapter
->stats
.ptc127
+= er32(PTC127
);
2501 adapter
->stats
.ptc255
+= er32(PTC255
);
2502 adapter
->stats
.ptc511
+= er32(PTC511
);
2503 adapter
->stats
.ptc1023
+= er32(PTC1023
);
2504 adapter
->stats
.ptc1522
+= er32(PTC1522
);
2507 adapter
->stats
.mptc
+= er32(MPTC
);
2508 adapter
->stats
.bptc
+= er32(BPTC
);
2510 /* used for adaptive IFS */
2512 hw
->mac
.tx_packet_delta
= er32(TPT
);
2513 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
2514 hw
->mac
.collision_delta
= er32(COLC
);
2515 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
2517 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
2518 adapter
->stats
.rxerrc
+= er32(RXERRC
);
2519 adapter
->stats
.tncrs
+= er32(TNCRS
);
2520 adapter
->stats
.cexterr
+= er32(CEXTERR
);
2521 adapter
->stats
.tsctc
+= er32(TSCTC
);
2522 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
2524 adapter
->stats
.iac
+= er32(IAC
);
2526 if (adapter
->flags
& FLAG_HAS_STATS_ICR_ICT
) {
2527 adapter
->stats
.icrxoc
+= er32(ICRXOC
);
2528 adapter
->stats
.icrxptc
+= er32(ICRXPTC
);
2529 adapter
->stats
.icrxatc
+= er32(ICRXATC
);
2530 adapter
->stats
.ictxptc
+= er32(ICTXPTC
);
2531 adapter
->stats
.ictxatc
+= er32(ICTXATC
);
2532 adapter
->stats
.ictxqec
+= er32(ICTXQEC
);
2533 adapter
->stats
.ictxqmtc
+= er32(ICTXQMTC
);
2534 adapter
->stats
.icrxdmtc
+= er32(ICRXDMTC
);
2537 /* Fill out the OS statistics structure */
2538 adapter
->net_stats
.rx_packets
= adapter
->stats
.gprc
;
2539 adapter
->net_stats
.tx_packets
= adapter
->stats
.gptc
;
2540 adapter
->net_stats
.rx_bytes
= adapter
->stats
.gorcl
;
2541 adapter
->net_stats
.tx_bytes
= adapter
->stats
.gotcl
;
2542 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
2543 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
2547 /* RLEC on some newer hardware can be incorrect so build
2548 * our own version based on RUC and ROC */
2549 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
2550 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
2551 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
2552 adapter
->stats
.cexterr
;
2553 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
2555 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
2556 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
2557 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
2560 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
2561 adapter
->stats
.latecol
;
2562 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
2563 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
2564 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
2566 /* Tx Dropped needs to be maintained elsewhere */
2569 if (hw
->media_type
== e1000_media_type_copper
) {
2570 if ((adapter
->link_speed
== SPEED_1000
) &&
2571 (!e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
2572 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
2573 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
2577 /* Management Stats */
2578 adapter
->stats
.mgptc
+= er32(MGTPTC
);
2579 adapter
->stats
.mgprc
+= er32(MGTPRC
);
2580 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
2582 spin_unlock_irqrestore(&adapter
->stats_lock
, irq_flags
);
2585 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
2587 struct net_device
*netdev
= adapter
->netdev
;
2588 struct e1000_hw
*hw
= &adapter
->hw
;
2589 u32 ctrl
= er32(CTRL
);
2592 "Link is Up %d Mbps %s, Flow Control: %s\n",
2593 adapter
->link_speed
,
2594 (adapter
->link_duplex
== FULL_DUPLEX
) ?
2595 "Full Duplex" : "Half Duplex",
2596 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
2598 ((ctrl
& E1000_CTRL_RFCE
) ? "RX" :
2599 ((ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None" )));
2603 * e1000_watchdog - Timer Call-back
2604 * @data: pointer to adapter cast into an unsigned long
2606 static void e1000_watchdog(unsigned long data
)
2608 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2610 /* Do the rest outside of interrupt context */
2611 schedule_work(&adapter
->watchdog_task
);
2613 /* TODO: make this use queue_delayed_work() */
2616 static void e1000_watchdog_task(struct work_struct
*work
)
2618 struct e1000_adapter
*adapter
= container_of(work
,
2619 struct e1000_adapter
, watchdog_task
);
2621 struct net_device
*netdev
= adapter
->netdev
;
2622 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2623 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2624 struct e1000_hw
*hw
= &adapter
->hw
;
2629 if ((netif_carrier_ok(netdev
)) &&
2630 (er32(STATUS
) & E1000_STATUS_LU
))
2633 ret_val
= mac
->ops
.check_for_link(hw
);
2634 if ((ret_val
== E1000_ERR_PHY
) &&
2635 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
) &&
2637 E1000_PHY_CTRL_GBE_DISABLE
)) {
2638 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2640 "Gigabit has been disabled, downgrading speed\n");
2643 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
2644 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
2645 e1000_update_mng_vlan(adapter
);
2647 if ((adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
2648 !(er32(TXCW
) & E1000_TXCW_ANE
))
2649 link
= adapter
->hw
.mac
.serdes_has_link
;
2651 link
= er32(STATUS
) & E1000_STATUS_LU
;
2654 if (!netif_carrier_ok(netdev
)) {
2656 mac
->ops
.get_link_up_info(&adapter
->hw
,
2657 &adapter
->link_speed
,
2658 &adapter
->link_duplex
);
2659 e1000_print_link_info(adapter
);
2660 /* tweak tx_queue_len according to speed/duplex
2661 * and adjust the timeout factor */
2662 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2663 adapter
->tx_timeout_factor
= 1;
2664 switch (adapter
->link_speed
) {
2667 netdev
->tx_queue_len
= 10;
2668 adapter
->tx_timeout_factor
= 14;
2672 netdev
->tx_queue_len
= 100;
2673 /* maybe add some timeout factor ? */
2677 /* workaround: re-program speed mode bit after
2679 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
2682 tarc0
= er32(TARC0
);
2683 tarc0
&= ~SPEED_MODE_BIT
;
2687 /* disable TSO for pcie and 10/100 speeds, to avoid
2688 * some hardware issues */
2689 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
2690 switch (adapter
->link_speed
) {
2694 "10/100 speed: disabling TSO\n");
2695 netdev
->features
&= ~NETIF_F_TSO
;
2696 netdev
->features
&= ~NETIF_F_TSO6
;
2699 netdev
->features
|= NETIF_F_TSO
;
2700 netdev
->features
|= NETIF_F_TSO6
;
2708 /* enable transmits in the hardware, need to do this
2709 * after setting TARC0 */
2711 tctl
|= E1000_TCTL_EN
;
2714 netif_carrier_on(netdev
);
2715 netif_wake_queue(netdev
);
2717 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2718 mod_timer(&adapter
->phy_info_timer
,
2719 round_jiffies(jiffies
+ 2 * HZ
));
2721 /* make sure the receive unit is started */
2722 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
2723 u32 rctl
= er32(RCTL
);
2729 if (netif_carrier_ok(netdev
)) {
2730 adapter
->link_speed
= 0;
2731 adapter
->link_duplex
= 0;
2732 ndev_info(netdev
, "Link is Down\n");
2733 netif_carrier_off(netdev
);
2734 netif_stop_queue(netdev
);
2735 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2736 mod_timer(&adapter
->phy_info_timer
,
2737 round_jiffies(jiffies
+ 2 * HZ
));
2739 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
2740 schedule_work(&adapter
->reset_task
);
2745 e1000e_update_stats(adapter
);
2747 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2748 adapter
->tpt_old
= adapter
->stats
.tpt
;
2749 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2750 adapter
->colc_old
= adapter
->stats
.colc
;
2752 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2753 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2754 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2755 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2757 e1000e_update_adaptive(&adapter
->hw
);
2759 if (!netif_carrier_ok(netdev
)) {
2760 tx_pending
= (e1000_desc_unused(tx_ring
) + 1 <
2763 /* We've lost link, so the controller stops DMA,
2764 * but we've got queued Tx work that's never going
2765 * to get done, so reset controller to flush Tx.
2766 * (Do the reset outside of interrupt context). */
2767 adapter
->tx_timeout_count
++;
2768 schedule_work(&adapter
->reset_task
);
2772 /* Cause software interrupt to ensure rx ring is cleaned */
2773 ew32(ICS
, E1000_ICS_RXDMT0
);
2775 /* Force detection of hung controller every watchdog period */
2776 adapter
->detect_tx_hung
= 1;
2778 /* With 82571 controllers, LAA may be overwritten due to controller
2779 * reset from the other port. Set the appropriate LAA in RAR[0] */
2780 if (e1000e_get_laa_state_82571(hw
))
2781 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
2783 /* Reset the timer */
2784 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2785 mod_timer(&adapter
->watchdog_timer
,
2786 round_jiffies(jiffies
+ 2 * HZ
));
2789 #define E1000_TX_FLAGS_CSUM 0x00000001
2790 #define E1000_TX_FLAGS_VLAN 0x00000002
2791 #define E1000_TX_FLAGS_TSO 0x00000004
2792 #define E1000_TX_FLAGS_IPV4 0x00000008
2793 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2794 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2796 static int e1000_tso(struct e1000_adapter
*adapter
,
2797 struct sk_buff
*skb
)
2799 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2800 struct e1000_context_desc
*context_desc
;
2801 struct e1000_buffer
*buffer_info
;
2804 u16 ipcse
= 0, tucse
, mss
;
2805 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2808 if (skb_is_gso(skb
)) {
2809 if (skb_header_cloned(skb
)) {
2810 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2815 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2816 mss
= skb_shinfo(skb
)->gso_size
;
2817 if (skb
->protocol
== htons(ETH_P_IP
)) {
2818 struct iphdr
*iph
= ip_hdr(skb
);
2821 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2825 cmd_length
= E1000_TXD_CMD_IP
;
2826 ipcse
= skb_transport_offset(skb
) - 1;
2827 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
2828 ipv6_hdr(skb
)->payload_len
= 0;
2829 tcp_hdr(skb
)->check
=
2830 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2831 &ipv6_hdr(skb
)->daddr
,
2835 ipcss
= skb_network_offset(skb
);
2836 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2837 tucss
= skb_transport_offset(skb
);
2838 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2841 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2842 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2844 i
= tx_ring
->next_to_use
;
2845 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2846 buffer_info
= &tx_ring
->buffer_info
[i
];
2848 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2849 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2850 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2851 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2852 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2853 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2854 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2855 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2856 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2858 buffer_info
->time_stamp
= jiffies
;
2859 buffer_info
->next_to_watch
= i
;
2862 if (i
== tx_ring
->count
)
2864 tx_ring
->next_to_use
= i
;
2872 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
2874 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2875 struct e1000_context_desc
*context_desc
;
2876 struct e1000_buffer
*buffer_info
;
2880 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2881 css
= skb_transport_offset(skb
);
2883 i
= tx_ring
->next_to_use
;
2884 buffer_info
= &tx_ring
->buffer_info
[i
];
2885 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2887 context_desc
->lower_setup
.ip_config
= 0;
2888 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2889 context_desc
->upper_setup
.tcp_fields
.tucso
=
2890 css
+ skb
->csum_offset
;
2891 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2892 context_desc
->tcp_seg_setup
.data
= 0;
2893 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
2895 buffer_info
->time_stamp
= jiffies
;
2896 buffer_info
->next_to_watch
= i
;
2899 if (i
== tx_ring
->count
)
2901 tx_ring
->next_to_use
= i
;
2909 #define E1000_MAX_PER_TXD 8192
2910 #define E1000_MAX_TXD_PWR 12
2912 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2913 struct sk_buff
*skb
, unsigned int first
,
2914 unsigned int max_per_txd
, unsigned int nr_frags
,
2917 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2918 struct e1000_buffer
*buffer_info
;
2919 unsigned int len
= skb
->len
- skb
->data_len
;
2920 unsigned int offset
= 0, size
, count
= 0, i
;
2923 i
= tx_ring
->next_to_use
;
2926 buffer_info
= &tx_ring
->buffer_info
[i
];
2927 size
= min(len
, max_per_txd
);
2929 /* Workaround for premature desc write-backs
2930 * in TSO mode. Append 4-byte sentinel desc */
2931 if (mss
&& !nr_frags
&& size
== len
&& size
> 8)
2934 buffer_info
->length
= size
;
2935 /* set time_stamp *before* dma to help avoid a possible race */
2936 buffer_info
->time_stamp
= jiffies
;
2938 pci_map_single(adapter
->pdev
,
2942 if (pci_dma_mapping_error(buffer_info
->dma
)) {
2943 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
2944 adapter
->tx_dma_failed
++;
2947 buffer_info
->next_to_watch
= i
;
2953 if (i
== tx_ring
->count
)
2957 for (f
= 0; f
< nr_frags
; f
++) {
2958 struct skb_frag_struct
*frag
;
2960 frag
= &skb_shinfo(skb
)->frags
[f
];
2962 offset
= frag
->page_offset
;
2965 buffer_info
= &tx_ring
->buffer_info
[i
];
2966 size
= min(len
, max_per_txd
);
2967 /* Workaround for premature desc write-backs
2968 * in TSO mode. Append 4-byte sentinel desc */
2969 if (mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8)
2972 buffer_info
->length
= size
;
2973 buffer_info
->time_stamp
= jiffies
;
2975 pci_map_page(adapter
->pdev
,
2980 if (pci_dma_mapping_error(buffer_info
->dma
)) {
2981 dev_err(&adapter
->pdev
->dev
,
2982 "TX DMA page map failed\n");
2983 adapter
->tx_dma_failed
++;
2987 buffer_info
->next_to_watch
= i
;
2994 if (i
== tx_ring
->count
)
3000 i
= tx_ring
->count
- 1;
3004 tx_ring
->buffer_info
[i
].skb
= skb
;
3005 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3010 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
3011 int tx_flags
, int count
)
3013 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3014 struct e1000_tx_desc
*tx_desc
= NULL
;
3015 struct e1000_buffer
*buffer_info
;
3016 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3019 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
3020 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3022 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3024 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
3025 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3028 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
3029 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3030 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3033 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
3034 txd_lower
|= E1000_TXD_CMD_VLE
;
3035 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3038 i
= tx_ring
->next_to_use
;
3041 buffer_info
= &tx_ring
->buffer_info
[i
];
3042 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3043 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3044 tx_desc
->lower
.data
=
3045 cpu_to_le32(txd_lower
| buffer_info
->length
);
3046 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3049 if (i
== tx_ring
->count
)
3053 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3055 /* Force memory writes to complete before letting h/w
3056 * know there are new descriptors to fetch. (Only
3057 * applicable for weak-ordered memory model archs,
3058 * such as IA-64). */
3061 tx_ring
->next_to_use
= i
;
3062 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
3063 /* we need this if more than one processor can write to our tail
3064 * at a time, it synchronizes IO on IA64/Altix systems */
3068 #define MINIMUM_DHCP_PACKET_SIZE 282
3069 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
3070 struct sk_buff
*skb
)
3072 struct e1000_hw
*hw
= &adapter
->hw
;
3075 if (vlan_tx_tag_present(skb
)) {
3076 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
)
3077 && (adapter
->hw
.mng_cookie
.status
&
3078 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
3082 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
3085 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
3089 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
3092 if (ip
->protocol
!= IPPROTO_UDP
)
3095 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
3096 if (ntohs(udp
->dest
) != 67)
3099 offset
= (u8
*)udp
+ 8 - skb
->data
;
3100 length
= skb
->len
- offset
;
3101 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
3107 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3109 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3111 netif_stop_queue(netdev
);
3112 /* Herbert's original patch had:
3113 * smp_mb__after_netif_stop_queue();
3114 * but since that doesn't exist yet, just open code it. */
3117 /* We need to check again in a case another CPU has just
3118 * made room available. */
3119 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
3123 netif_start_queue(netdev
);
3124 ++adapter
->restart_queue
;
3128 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3130 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3132 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
3134 return __e1000_maybe_stop_tx(netdev
, size
);
3137 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3138 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3140 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3141 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3143 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
3144 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3145 unsigned int tx_flags
= 0;
3146 unsigned int len
= skb
->len
- skb
->data_len
;
3147 unsigned long irq_flags
;
3148 unsigned int nr_frags
;
3154 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
3155 dev_kfree_skb_any(skb
);
3156 return NETDEV_TX_OK
;
3159 if (skb
->len
<= 0) {
3160 dev_kfree_skb_any(skb
);
3161 return NETDEV_TX_OK
;
3164 mss
= skb_shinfo(skb
)->gso_size
;
3165 /* The controller does a simple calculation to
3166 * make sure there is enough room in the FIFO before
3167 * initiating the DMA for each buffer. The calc is:
3168 * 4 = ceil(buffer len/mss). To make sure we don't
3169 * overrun the FIFO, adjust the max buffer len if mss
3173 max_per_txd
= min(mss
<< 2, max_per_txd
);
3174 max_txd_pwr
= fls(max_per_txd
) - 1;
3176 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3177 * points to just header, pull a few bytes of payload from
3178 * frags into skb->data */
3179 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3180 if (skb
->data_len
&& (hdr_len
== len
)) {
3181 unsigned int pull_size
;
3183 pull_size
= min((unsigned int)4, skb
->data_len
);
3184 if (!__pskb_pull_tail(skb
, pull_size
)) {
3186 "__pskb_pull_tail failed.\n");
3187 dev_kfree_skb_any(skb
);
3188 return NETDEV_TX_OK
;
3190 len
= skb
->len
- skb
->data_len
;
3194 /* reserve a descriptor for the offload context */
3195 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3199 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3201 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3202 for (f
= 0; f
< nr_frags
; f
++)
3203 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3206 if (adapter
->hw
.mac
.tx_pkt_filtering
)
3207 e1000_transfer_dhcp_info(adapter
, skb
);
3209 if (!spin_trylock_irqsave(&adapter
->tx_queue_lock
, irq_flags
))
3210 /* Collision - tell upper layer to requeue */
3211 return NETDEV_TX_LOCKED
;
3213 /* need: count + 2 desc gap to keep tail from touching
3214 * head, otherwise try next time */
3215 if (e1000_maybe_stop_tx(netdev
, count
+ 2)) {
3216 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3217 return NETDEV_TX_BUSY
;
3220 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3221 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3222 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3225 first
= tx_ring
->next_to_use
;
3227 tso
= e1000_tso(adapter
, skb
);
3229 dev_kfree_skb_any(skb
);
3230 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3231 return NETDEV_TX_OK
;
3235 tx_flags
|= E1000_TX_FLAGS_TSO
;
3236 else if (e1000_tx_csum(adapter
, skb
))
3237 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3239 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3240 * 82571 hardware supports TSO capabilities for IPv6 as well...
3241 * no longer assume, we must. */
3242 if (skb
->protocol
== htons(ETH_P_IP
))
3243 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3245 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
3247 /* handle pci_map_single() error in e1000_tx_map */
3248 dev_kfree_skb_any(skb
);
3249 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3250 return NETDEV_TX_OK
;
3253 e1000_tx_queue(adapter
, tx_flags
, count
);
3255 netdev
->trans_start
= jiffies
;
3257 /* Make sure there is space in the ring for the next send. */
3258 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
3260 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3261 return NETDEV_TX_OK
;
3265 * e1000_tx_timeout - Respond to a Tx Hang
3266 * @netdev: network interface device structure
3268 static void e1000_tx_timeout(struct net_device
*netdev
)
3270 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3272 /* Do the reset outside of interrupt context */
3273 adapter
->tx_timeout_count
++;
3274 schedule_work(&adapter
->reset_task
);
3277 static void e1000_reset_task(struct work_struct
*work
)
3279 struct e1000_adapter
*adapter
;
3280 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
3282 e1000e_reinit_locked(adapter
);
3286 * e1000_get_stats - Get System Network Statistics
3287 * @netdev: network interface device structure
3289 * Returns the address of the device statistics structure.
3290 * The statistics are actually updated from the timer callback.
3292 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3294 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3296 /* only return the current stats */
3297 return &adapter
->net_stats
;
3301 * e1000_change_mtu - Change the Maximum Transfer Unit
3302 * @netdev: network interface device structure
3303 * @new_mtu: new value for maximum frame size
3305 * Returns 0 on success, negative on failure
3307 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3309 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3310 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3312 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
3313 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3314 ndev_err(netdev
, "Invalid MTU setting\n");
3318 /* Jumbo frame size limits */
3319 if (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3320 if (!(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
3321 ndev_err(netdev
, "Jumbo Frames not supported.\n");
3324 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
3325 ndev_err(netdev
, "Jumbo Frames not supported.\n");
3330 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3331 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3332 ndev_err(netdev
, "MTU > 9216 not supported.\n");
3336 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
3338 /* e1000e_down has a dependency on max_frame_size */
3339 adapter
->hw
.mac
.max_frame_size
= max_frame
;
3340 if (netif_running(netdev
))
3341 e1000e_down(adapter
);
3343 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3344 * means we reserve 2 more, this pushes us to allocate from the next
3346 * i.e. RXBUFFER_2048 --> size-4096 slab */
3348 if (max_frame
<= 256)
3349 adapter
->rx_buffer_len
= 256;
3350 else if (max_frame
<= 512)
3351 adapter
->rx_buffer_len
= 512;
3352 else if (max_frame
<= 1024)
3353 adapter
->rx_buffer_len
= 1024;
3354 else if (max_frame
<= 2048)
3355 adapter
->rx_buffer_len
= 2048;
3357 adapter
->rx_buffer_len
= 4096;
3359 /* adjust allocation if LPE protects us, and we aren't using SBP */
3360 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
3361 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
3362 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
3365 ndev_info(netdev
, "changing MTU from %d to %d\n",
3366 netdev
->mtu
, new_mtu
);
3367 netdev
->mtu
= new_mtu
;
3369 if (netif_running(netdev
))
3372 e1000e_reset(adapter
);
3374 clear_bit(__E1000_RESETTING
, &adapter
->state
);
3379 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
3382 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3383 struct mii_ioctl_data
*data
= if_mii(ifr
);
3384 unsigned long irq_flags
;
3386 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
3391 data
->phy_id
= adapter
->hw
.phy
.addr
;
3394 if (!capable(CAP_NET_ADMIN
))
3396 spin_lock_irqsave(&adapter
->stats_lock
, irq_flags
);
3397 if (e1e_rphy(&adapter
->hw
, data
->reg_num
& 0x1F,
3399 spin_unlock_irqrestore(&adapter
->stats_lock
, irq_flags
);
3402 spin_unlock_irqrestore(&adapter
->stats_lock
, irq_flags
);
3411 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3417 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
3423 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3425 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3426 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3427 struct e1000_hw
*hw
= &adapter
->hw
;
3428 u32 ctrl
, ctrl_ext
, rctl
, status
;
3429 u32 wufc
= adapter
->wol
;
3432 netif_device_detach(netdev
);
3434 if (netif_running(netdev
)) {
3435 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3436 e1000e_down(adapter
);
3437 e1000_free_irq(adapter
);
3440 retval
= pci_save_state(pdev
);
3444 status
= er32(STATUS
);
3445 if (status
& E1000_STATUS_LU
)
3446 wufc
&= ~E1000_WUFC_LNKC
;
3449 e1000_setup_rctl(adapter
);
3450 e1000_set_multi(netdev
);
3452 /* turn on all-multi mode if wake on multicast is enabled */
3453 if (wufc
& E1000_WUFC_MC
) {
3455 rctl
|= E1000_RCTL_MPE
;
3460 /* advertise wake from D3Cold */
3461 #define E1000_CTRL_ADVD3WUC 0x00100000
3462 /* phy power management enable */
3463 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3464 ctrl
|= E1000_CTRL_ADVD3WUC
|
3465 E1000_CTRL_EN_PHY_PWR_MGMT
;
3468 if (adapter
->hw
.media_type
== e1000_media_type_fiber
||
3469 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
3470 /* keep the laser running in D3 */
3471 ctrl_ext
= er32(CTRL_EXT
);
3472 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
3473 ew32(CTRL_EXT
, ctrl_ext
);
3476 /* Allow time for pending master requests to run */
3477 e1000e_disable_pcie_master(&adapter
->hw
);
3479 ew32(WUC
, E1000_WUC_PME_EN
);
3481 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3482 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3486 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3487 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3490 e1000_release_manageability(adapter
);
3492 /* make sure adapter isn't asleep if manageability is enabled */
3493 if (adapter
->flags
& FLAG_MNG_PT_ENABLED
) {
3494 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3495 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3498 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
3499 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
3501 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3502 * would have already happened in close and is redundant. */
3503 e1000_release_hw_control(adapter
);
3505 pci_disable_device(pdev
);
3507 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3513 static int e1000_resume(struct pci_dev
*pdev
)
3515 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3516 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3517 struct e1000_hw
*hw
= &adapter
->hw
;
3520 pci_set_power_state(pdev
, PCI_D0
);
3521 pci_restore_state(pdev
);
3522 err
= pci_enable_device(pdev
);
3525 "Cannot enable PCI device from suspend\n");
3529 pci_set_master(pdev
);
3531 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3532 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3534 if (netif_running(netdev
)) {
3535 err
= e1000_request_irq(adapter
);
3540 e1000e_power_up_phy(adapter
);
3541 e1000e_reset(adapter
);
3544 e1000_init_manageability(adapter
);
3546 if (netif_running(netdev
))
3549 netif_device_attach(netdev
);
3551 /* If the controller has AMT, do not set DRV_LOAD until the interface
3552 * is up. For all other cases, let the f/w know that the h/w is now
3553 * under the control of the driver. */
3554 if (!(adapter
->flags
& FLAG_HAS_AMT
) || !e1000e_check_mng_mode(&adapter
->hw
))
3555 e1000_get_hw_control(adapter
);
3561 static void e1000_shutdown(struct pci_dev
*pdev
)
3563 e1000_suspend(pdev
, PMSG_SUSPEND
);
3566 #ifdef CONFIG_NET_POLL_CONTROLLER
3568 * Polling 'interrupt' - used by things like netconsole to send skbs
3569 * without having to re-enable interrupts. It's not called while
3570 * the interrupt routine is executing.
3572 static void e1000_netpoll(struct net_device
*netdev
)
3574 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3576 disable_irq(adapter
->pdev
->irq
);
3577 e1000_intr(adapter
->pdev
->irq
, netdev
);
3579 e1000_clean_tx_irq(adapter
);
3581 enable_irq(adapter
->pdev
->irq
);
3586 * e1000_io_error_detected - called when PCI error is detected
3587 * @pdev: Pointer to PCI device
3588 * @state: The current pci connection state
3590 * This function is called after a PCI bus error affecting
3591 * this device has been detected.
3593 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
3594 pci_channel_state_t state
)
3596 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3597 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3599 netif_device_detach(netdev
);
3601 if (netif_running(netdev
))
3602 e1000e_down(adapter
);
3603 pci_disable_device(pdev
);
3605 /* Request a slot slot reset. */
3606 return PCI_ERS_RESULT_NEED_RESET
;
3610 * e1000_io_slot_reset - called after the pci bus has been reset.
3611 * @pdev: Pointer to PCI device
3613 * Restart the card from scratch, as if from a cold-boot. Implementation
3614 * resembles the first-half of the e1000_resume routine.
3616 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
3618 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3619 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3620 struct e1000_hw
*hw
= &adapter
->hw
;
3622 if (pci_enable_device(pdev
)) {
3624 "Cannot re-enable PCI device after reset.\n");
3625 return PCI_ERS_RESULT_DISCONNECT
;
3627 pci_set_master(pdev
);
3629 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3630 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3632 e1000e_reset(adapter
);
3635 return PCI_ERS_RESULT_RECOVERED
;
3639 * e1000_io_resume - called when traffic can start flowing again.
3640 * @pdev: Pointer to PCI device
3642 * This callback is called when the error recovery driver tells us that
3643 * its OK to resume normal operation. Implementation resembles the
3644 * second-half of the e1000_resume routine.
3646 static void e1000_io_resume(struct pci_dev
*pdev
)
3648 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3649 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3651 e1000_init_manageability(adapter
);
3653 if (netif_running(netdev
)) {
3654 if (e1000e_up(adapter
)) {
3656 "can't bring device back up after reset\n");
3661 netif_device_attach(netdev
);
3663 /* If the controller has AMT, do not set DRV_LOAD until the interface
3664 * is up. For all other cases, let the f/w know that the h/w is now
3665 * under the control of the driver. */
3666 if (!(adapter
->flags
& FLAG_HAS_AMT
) ||
3667 !e1000e_check_mng_mode(&adapter
->hw
))
3668 e1000_get_hw_control(adapter
);
3672 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
3674 struct e1000_hw
*hw
= &adapter
->hw
;
3675 struct net_device
*netdev
= adapter
->netdev
;
3678 /* print bus type/speed/width info */
3679 ndev_info(netdev
, "(PCI Express:2.5GB/s:%s) "
3680 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3682 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
3685 netdev
->dev_addr
[0], netdev
->dev_addr
[1],
3686 netdev
->dev_addr
[2], netdev
->dev_addr
[3],
3687 netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
3688 ndev_info(netdev
, "Intel(R) PRO/%s Network Connection\n",
3689 (hw
->phy
.type
== e1000_phy_ife
)
3690 ? "10/100" : "1000");
3691 e1000e_read_part_num(hw
, &part_num
);
3692 ndev_info(netdev
, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3693 hw
->mac
.type
, hw
->phy
.type
,
3694 (part_num
>> 8), (part_num
& 0xff));
3698 * e1000_probe - Device Initialization Routine
3699 * @pdev: PCI device information struct
3700 * @ent: entry in e1000_pci_tbl
3702 * Returns 0 on success, negative on failure
3704 * e1000_probe initializes an adapter identified by a pci_dev structure.
3705 * The OS initialization, configuring of the adapter private structure,
3706 * and a hardware reset occur.
3708 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
3709 const struct pci_device_id
*ent
)
3711 struct net_device
*netdev
;
3712 struct e1000_adapter
*adapter
;
3713 struct e1000_hw
*hw
;
3714 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
3715 unsigned long mmio_start
, mmio_len
;
3716 unsigned long flash_start
, flash_len
;
3718 static int cards_found
;
3719 int i
, err
, pci_using_dac
;
3720 u16 eeprom_data
= 0;
3721 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
3723 err
= pci_enable_device(pdev
);
3728 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
3730 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3734 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
3736 err
= pci_set_consistent_dma_mask(pdev
,
3739 dev_err(&pdev
->dev
, "No usable DMA "
3740 "configuration, aborting\n");
3746 err
= pci_request_regions(pdev
, e1000e_driver_name
);
3750 pci_set_master(pdev
);
3753 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
3755 goto err_alloc_etherdev
;
3757 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
3759 pci_set_drvdata(pdev
, netdev
);
3760 adapter
= netdev_priv(netdev
);
3762 adapter
->netdev
= netdev
;
3763 adapter
->pdev
= pdev
;
3765 adapter
->pba
= ei
->pba
;
3766 adapter
->flags
= ei
->flags
;
3767 adapter
->hw
.adapter
= adapter
;
3768 adapter
->hw
.mac
.type
= ei
->mac
;
3769 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
3771 mmio_start
= pci_resource_start(pdev
, 0);
3772 mmio_len
= pci_resource_len(pdev
, 0);
3775 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
3776 if (!adapter
->hw
.hw_addr
)
3779 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
3780 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
3781 flash_start
= pci_resource_start(pdev
, 1);
3782 flash_len
= pci_resource_len(pdev
, 1);
3783 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
3784 if (!adapter
->hw
.flash_address
)
3788 /* construct the net_device struct */
3789 netdev
->open
= &e1000_open
;
3790 netdev
->stop
= &e1000_close
;
3791 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
3792 netdev
->get_stats
= &e1000_get_stats
;
3793 netdev
->set_multicast_list
= &e1000_set_multi
;
3794 netdev
->set_mac_address
= &e1000_set_mac
;
3795 netdev
->change_mtu
= &e1000_change_mtu
;
3796 netdev
->do_ioctl
= &e1000_ioctl
;
3797 e1000e_set_ethtool_ops(netdev
);
3798 netdev
->tx_timeout
= &e1000_tx_timeout
;
3799 netdev
->watchdog_timeo
= 5 * HZ
;
3800 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
3801 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
3802 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
3803 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
3804 #ifdef CONFIG_NET_POLL_CONTROLLER
3805 netdev
->poll_controller
= e1000_netpoll
;
3807 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
3809 netdev
->mem_start
= mmio_start
;
3810 netdev
->mem_end
= mmio_start
+ mmio_len
;
3812 adapter
->bd_number
= cards_found
++;
3814 /* setup adapter struct */
3815 err
= e1000_sw_init(adapter
);
3821 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
3822 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
3823 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
3825 err
= ei
->get_invariants(adapter
);
3829 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
3831 adapter
->hw
.phy
.wait_for_link
= 0;
3833 /* Copper options */
3834 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
3835 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
3836 adapter
->hw
.phy
.disable_polarity_correction
= 0;
3837 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
3840 if (e1000_check_reset_block(&adapter
->hw
))
3842 "PHY reset is blocked due to SOL/IDER session.\n");
3844 netdev
->features
= NETIF_F_SG
|
3846 NETIF_F_HW_VLAN_TX
|
3849 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
3850 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
3852 netdev
->features
|= NETIF_F_TSO
;
3853 netdev
->features
|= NETIF_F_TSO6
;
3856 netdev
->features
|= NETIF_F_HIGHDMA
;
3858 /* We should not be using LLTX anymore, but we are still TX faster with
3860 netdev
->features
|= NETIF_F_LLTX
;
3862 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
3863 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
3865 /* before reading the NVM, reset the controller to
3866 * put the device in a known good starting state */
3867 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
3870 * systems with ASPM and others may see the checksum fail on the first
3871 * attempt. Let's give it a few tries
3874 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
3877 ndev_err(netdev
, "The NVM Checksum Is Not Valid\n");
3883 /* copy the MAC address out of the NVM */
3884 if (e1000e_read_mac_addr(&adapter
->hw
))
3885 ndev_err(netdev
, "NVM Read Error while reading MAC address\n");
3887 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
3888 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
3890 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
3891 ndev_err(netdev
, "Invalid MAC Address: "
3892 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3893 netdev
->perm_addr
[0], netdev
->perm_addr
[1],
3894 netdev
->perm_addr
[2], netdev
->perm_addr
[3],
3895 netdev
->perm_addr
[4], netdev
->perm_addr
[5]);
3900 init_timer(&adapter
->watchdog_timer
);
3901 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
3902 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
3904 init_timer(&adapter
->phy_info_timer
);
3905 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
3906 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
3908 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
3909 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
3911 e1000e_check_options(adapter
);
3913 /* Initialize link parameters. User can change them with ethtool */
3914 adapter
->hw
.mac
.autoneg
= 1;
3915 adapter
->fc_autoneg
= 1;
3916 adapter
->hw
.mac
.original_fc
= e1000_fc_default
;
3917 adapter
->hw
.mac
.fc
= e1000_fc_default
;
3918 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
3920 /* ring size defaults */
3921 adapter
->rx_ring
->count
= 256;
3922 adapter
->tx_ring
->count
= 256;
3925 * Initial Wake on LAN setting - If APM wake is enabled in
3926 * the EEPROM, enable the ACPI Magic Packet filter
3928 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
3929 /* APME bit in EEPROM is mapped to WUC.APME */
3930 eeprom_data
= er32(WUC
);
3931 eeprom_apme_mask
= E1000_WUC_APME
;
3932 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
3933 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
3934 (adapter
->hw
.bus
.func
== 1))
3935 e1000_read_nvm(&adapter
->hw
,
3936 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
3938 e1000_read_nvm(&adapter
->hw
,
3939 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
3942 /* fetch WoL from EEPROM */
3943 if (eeprom_data
& eeprom_apme_mask
)
3944 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
3947 * now that we have the eeprom settings, apply the special cases
3948 * where the eeprom may be wrong or the board simply won't support
3949 * wake on lan on a particular port
3951 if (!(adapter
->flags
& FLAG_HAS_WOL
))
3952 adapter
->eeprom_wol
= 0;
3954 /* initialize the wol settings based on the eeprom settings */
3955 adapter
->wol
= adapter
->eeprom_wol
;
3957 /* reset the hardware with the new settings */
3958 e1000e_reset(adapter
);
3960 /* If the controller has AMT, do not set DRV_LOAD until the interface
3961 * is up. For all other cases, let the f/w know that the h/w is now
3962 * under the control of the driver. */
3963 if (!(adapter
->flags
& FLAG_HAS_AMT
) ||
3964 !e1000e_check_mng_mode(&adapter
->hw
))
3965 e1000_get_hw_control(adapter
);
3967 /* tell the stack to leave us alone until e1000_open() is called */
3968 netif_carrier_off(netdev
);
3969 netif_stop_queue(netdev
);
3971 strcpy(netdev
->name
, "eth%d");
3972 err
= register_netdev(netdev
);
3976 e1000_print_device_info(adapter
);
3982 e1000_release_hw_control(adapter
);
3984 if (!e1000_check_reset_block(&adapter
->hw
))
3985 e1000_phy_hw_reset(&adapter
->hw
);
3987 if (adapter
->hw
.flash_address
)
3988 iounmap(adapter
->hw
.flash_address
);
3991 kfree(adapter
->tx_ring
);
3992 kfree(adapter
->rx_ring
);
3994 iounmap(adapter
->hw
.hw_addr
);
3996 free_netdev(netdev
);
3998 pci_release_regions(pdev
);
4001 pci_disable_device(pdev
);
4006 * e1000_remove - Device Removal Routine
4007 * @pdev: PCI device information struct
4009 * e1000_remove is called by the PCI subsystem to alert the driver
4010 * that it should release a PCI device. The could be caused by a
4011 * Hot-Plug event, or because the driver is going to be removed from
4014 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
4016 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4017 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4019 /* flush_scheduled work may reschedule our watchdog task, so
4020 * explicitly disable watchdog tasks from being rescheduled */
4021 set_bit(__E1000_DOWN
, &adapter
->state
);
4022 del_timer_sync(&adapter
->watchdog_timer
);
4023 del_timer_sync(&adapter
->phy_info_timer
);
4025 flush_scheduled_work();
4027 e1000_release_manageability(adapter
);
4029 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4030 * would have already happened in close and is redundant. */
4031 e1000_release_hw_control(adapter
);
4033 unregister_netdev(netdev
);
4035 if (!e1000_check_reset_block(&adapter
->hw
))
4036 e1000_phy_hw_reset(&adapter
->hw
);
4038 kfree(adapter
->tx_ring
);
4039 kfree(adapter
->rx_ring
);
4041 iounmap(adapter
->hw
.hw_addr
);
4042 if (adapter
->hw
.flash_address
)
4043 iounmap(adapter
->hw
.flash_address
);
4044 pci_release_regions(pdev
);
4046 free_netdev(netdev
);
4048 pci_disable_device(pdev
);
4051 /* PCI Error Recovery (ERS) */
4052 static struct pci_error_handlers e1000_err_handler
= {
4053 .error_detected
= e1000_io_error_detected
,
4054 .slot_reset
= e1000_io_slot_reset
,
4055 .resume
= e1000_io_resume
,
4058 static struct pci_device_id e1000_pci_tbl
[] = {
4060 * Support for 82571/2/3, es2lan and ich8 will be phased in
4063 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4064 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4065 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4066 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4067 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4068 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4069 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4070 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4071 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4072 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4073 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4074 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4075 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4076 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4077 board_80003es2lan },
4078 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4079 board_80003es2lan },
4080 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4081 board_80003es2lan },
4082 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4083 board_80003es2lan },
4084 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4085 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4086 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4087 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4088 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4089 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4090 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4093 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
4094 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
4095 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
4096 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
4097 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
4099 { } /* terminate list */
4101 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
4103 /* PCI Device API Driver */
4104 static struct pci_driver e1000_driver
= {
4105 .name
= e1000e_driver_name
,
4106 .id_table
= e1000_pci_tbl
,
4107 .probe
= e1000_probe
,
4108 .remove
= __devexit_p(e1000_remove
),
4110 /* Power Managment Hooks */
4111 .suspend
= e1000_suspend
,
4112 .resume
= e1000_resume
,
4114 .shutdown
= e1000_shutdown
,
4115 .err_handler
= &e1000_err_handler
4119 * e1000_init_module - Driver Registration Routine
4121 * e1000_init_module is the first routine called when the driver is
4122 * loaded. All it does is register with the PCI subsystem.
4124 static int __init
e1000_init_module(void)
4127 printk(KERN_INFO
"%s: Intel(R) PRO/1000 Network Driver - %s\n",
4128 e1000e_driver_name
, e1000e_driver_version
);
4129 printk(KERN_INFO
"%s: Copyright (c) 1999-2007 Intel Corporation.\n",
4130 e1000e_driver_name
);
4131 ret
= pci_register_driver(&e1000_driver
);
4135 module_init(e1000_init_module
);
4138 * e1000_exit_module - Driver Exit Cleanup Routine
4140 * e1000_exit_module is called just before the driver is removed
4143 static void __exit
e1000_exit_module(void)
4145 pci_unregister_driver(&e1000_driver
);
4147 module_exit(e1000_exit_module
);
4150 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4151 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4152 MODULE_LICENSE("GPL");
4153 MODULE_VERSION(DRV_VERSION
);