V4L/DVB (6715): ivtv: Remove unnecessary register update
[linux-2.6/verdex.git] / drivers / net / skfp / skfddi.c
blob7cf9b9f35dee4defb5277648ff4f3f50426c5d07
1 /*
2 * File Name:
3 * skfddi.c
5 * Copyright Information:
6 * Copyright SysKonnect 1998,1999.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * The information in this file is provided "AS IS" without warranty.
15 * Abstract:
16 * A Linux device driver supporting the SysKonnect FDDI PCI controller
17 * familie.
19 * Maintainers:
20 * CG Christoph Goos (cgoos@syskonnect.de)
22 * Contributors:
23 * DM David S. Miller
25 * Address all question to:
26 * linux@syskonnect.de
28 * The technical manual for the adapters is available from SysKonnect's
29 * web pages: www.syskonnect.com
30 * Goto "Support" and search Knowledge Base for "manual".
32 * Driver Architecture:
33 * The driver architecture is based on the DEC FDDI driver by
34 * Lawrence V. Stefani and several ethernet drivers.
35 * I also used an existing Windows NT miniport driver.
36 * All hardware dependent fuctions are handled by the SysKonnect
37 * Hardware Module.
38 * The only headerfiles that are directly related to this source
39 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40 * The others belong to the SysKonnect FDDI Hardware Module and
41 * should better not be changed.
43 * Modification History:
44 * Date Name Description
45 * 02-Mar-98 CG Created.
47 * 10-Mar-99 CG Support for 2.2.x added.
48 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC)
49 * 26-Oct-99 CG Fixed compilation error on 2.2.13
50 * 12-Nov-99 CG Source code release
51 * 22-Nov-99 CG Included in kernel source.
52 * 07-May-00 DM 64 bit fixes, new dma interface
53 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl
54 * Daniele Bellucci <bellucda@tiscali.it>
55 * 03-Dec-03 SH Convert to PCI device model
57 * Compilation options (-Dxxx):
58 * DRIVERDEBUG print lots of messages to log file
59 * DUMPPACKETS print received/transmitted packets to logfile
61 * Tested cpu architectures:
62 * - i386
63 * - sparc64
66 /* Version information string - should be updated prior to */
67 /* each new release!!! */
68 #define VERSION "2.07"
70 static const char * const boot_msg =
71 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
74 /* Include files */
76 #include <linux/module.h>
77 #include <linux/kernel.h>
78 #include <linux/errno.h>
79 #include <linux/ioport.h>
80 #include <linux/slab.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/netdevice.h>
84 #include <linux/fddidevice.h>
85 #include <linux/skbuff.h>
86 #include <linux/bitops.h>
88 #include <asm/byteorder.h>
89 #include <asm/io.h>
90 #include <asm/uaccess.h>
92 #include "h/types.h"
93 #undef ADDR // undo Linux definition
94 #include "h/skfbi.h"
95 #include "h/fddi.h"
96 #include "h/smc.h"
97 #include "h/smtstate.h"
100 // Define module-wide (static) routines
101 static int skfp_driver_init(struct net_device *dev);
102 static int skfp_open(struct net_device *dev);
103 static int skfp_close(struct net_device *dev);
104 static irqreturn_t skfp_interrupt(int irq, void *dev_id);
105 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
106 static void skfp_ctl_set_multicast_list(struct net_device *dev);
107 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
108 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
109 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
110 static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev);
111 static void send_queued_packets(struct s_smc *smc);
112 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
113 static void ResetAdapter(struct s_smc *smc);
116 // Functions needed by the hardware module
117 void *mac_drv_get_space(struct s_smc *smc, u_int size);
118 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
119 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
120 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
121 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
122 int flag);
123 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
124 void llc_restart_tx(struct s_smc *smc);
125 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
126 int frag_count, int len);
127 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128 int frag_count);
129 void mac_drv_fill_rxd(struct s_smc *smc);
130 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
131 int frag_count);
132 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
133 int la_len);
134 void dump_data(unsigned char *Data, int length);
136 // External functions from the hardware module
137 extern u_int mac_drv_check_space(void);
138 extern void read_address(struct s_smc *smc, u_char * mac_addr);
139 extern void card_stop(struct s_smc *smc);
140 extern int mac_drv_init(struct s_smc *smc);
141 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142 int len, int frame_status);
143 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144 int frame_len, int frame_status);
145 extern int init_smt(struct s_smc *smc, u_char * mac_addr);
146 extern void fddi_isr(struct s_smc *smc);
147 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
148 int len, int frame_status);
149 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
150 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
151 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
153 static struct pci_device_id skfddi_pci_tbl[] = {
154 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
155 { } /* Terminating entry */
157 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
158 MODULE_LICENSE("GPL");
159 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
161 // Define module-wide (static) variables
163 static int num_boards; /* total number of adapters configured */
165 #ifdef DRIVERDEBUG
166 #define PRINTK(s, args...) printk(s, ## args)
167 #else
168 #define PRINTK(s, args...)
169 #endif // DRIVERDEBUG
172 * =================
173 * = skfp_init_one =
174 * =================
176 * Overview:
177 * Probes for supported FDDI PCI controllers
179 * Returns:
180 * Condition code
182 * Arguments:
183 * pdev - pointer to PCI device information
185 * Functional Description:
186 * This is now called by PCI driver registration process
187 * for each board found.
189 * Return Codes:
190 * 0 - This device (fddi0, fddi1, etc) configured successfully
191 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device
192 * present for this device name
195 * Side Effects:
196 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
197 * initialized and the board resources are read and stored in
198 * the device structure.
200 static int skfp_init_one(struct pci_dev *pdev,
201 const struct pci_device_id *ent)
203 struct net_device *dev;
204 struct s_smc *smc; /* board pointer */
205 void __iomem *mem;
206 int err;
208 PRINTK(KERN_INFO "entering skfp_init_one\n");
210 if (num_boards == 0)
211 printk("%s\n", boot_msg);
213 err = pci_enable_device(pdev);
214 if (err)
215 return err;
217 err = pci_request_regions(pdev, "skfddi");
218 if (err)
219 goto err_out1;
221 pci_set_master(pdev);
223 #ifdef MEM_MAPPED_IO
224 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
225 printk(KERN_ERR "skfp: region is not an MMIO resource\n");
226 err = -EIO;
227 goto err_out2;
230 mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
231 #else
232 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
233 printk(KERN_ERR "skfp: region is not PIO resource\n");
234 err = -EIO;
235 goto err_out2;
238 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
239 #endif
240 if (!mem) {
241 printk(KERN_ERR "skfp: Unable to map register, "
242 "FDDI adapter will be disabled.\n");
243 err = -EIO;
244 goto err_out2;
247 dev = alloc_fddidev(sizeof(struct s_smc));
248 if (!dev) {
249 printk(KERN_ERR "skfp: Unable to allocate fddi device, "
250 "FDDI adapter will be disabled.\n");
251 err = -ENOMEM;
252 goto err_out3;
255 dev->irq = pdev->irq;
256 dev->get_stats = &skfp_ctl_get_stats;
257 dev->open = &skfp_open;
258 dev->stop = &skfp_close;
259 dev->hard_start_xmit = &skfp_send_pkt;
260 dev->set_multicast_list = &skfp_ctl_set_multicast_list;
261 dev->set_mac_address = &skfp_ctl_set_mac_address;
262 dev->do_ioctl = &skfp_ioctl;
264 SET_NETDEV_DEV(dev, &pdev->dev);
266 /* Initialize board structure with bus-specific info */
267 smc = netdev_priv(dev);
268 smc->os.dev = dev;
269 smc->os.bus_type = SK_BUS_TYPE_PCI;
270 smc->os.pdev = *pdev;
271 smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
272 smc->os.MaxFrameSize = MAX_FRAME_SIZE;
273 smc->os.dev = dev;
274 smc->hw.slot = -1;
275 smc->hw.iop = mem;
276 smc->os.ResetRequested = FALSE;
277 skb_queue_head_init(&smc->os.SendSkbQueue);
279 dev->base_addr = (unsigned long)mem;
281 err = skfp_driver_init(dev);
282 if (err)
283 goto err_out4;
285 err = register_netdev(dev);
286 if (err)
287 goto err_out5;
289 ++num_boards;
290 pci_set_drvdata(pdev, dev);
292 if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
293 (pdev->subsystem_device & 0xff00) == 0x5800)
294 printk("%s: SysKonnect FDDI PCI adapter"
295 " found (SK-%04X)\n", dev->name,
296 pdev->subsystem_device);
297 else
298 printk("%s: FDDI PCI adapter found\n", dev->name);
300 return 0;
301 err_out5:
302 if (smc->os.SharedMemAddr)
303 pci_free_consistent(pdev, smc->os.SharedMemSize,
304 smc->os.SharedMemAddr,
305 smc->os.SharedMemDMA);
306 pci_free_consistent(pdev, MAX_FRAME_SIZE,
307 smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
308 err_out4:
309 free_netdev(dev);
310 err_out3:
311 #ifdef MEM_MAPPED_IO
312 iounmap(mem);
313 #else
314 ioport_unmap(mem);
315 #endif
316 err_out2:
317 pci_release_regions(pdev);
318 err_out1:
319 pci_disable_device(pdev);
320 return err;
324 * Called for each adapter board from pci_unregister_driver
326 static void __devexit skfp_remove_one(struct pci_dev *pdev)
328 struct net_device *p = pci_get_drvdata(pdev);
329 struct s_smc *lp = netdev_priv(p);
331 unregister_netdev(p);
333 if (lp->os.SharedMemAddr) {
334 pci_free_consistent(&lp->os.pdev,
335 lp->os.SharedMemSize,
336 lp->os.SharedMemAddr,
337 lp->os.SharedMemDMA);
338 lp->os.SharedMemAddr = NULL;
340 if (lp->os.LocalRxBuffer) {
341 pci_free_consistent(&lp->os.pdev,
342 MAX_FRAME_SIZE,
343 lp->os.LocalRxBuffer,
344 lp->os.LocalRxBufferDMA);
345 lp->os.LocalRxBuffer = NULL;
347 #ifdef MEM_MAPPED_IO
348 iounmap(lp->hw.iop);
349 #else
350 ioport_unmap(lp->hw.iop);
351 #endif
352 pci_release_regions(pdev);
353 free_netdev(p);
355 pci_disable_device(pdev);
356 pci_set_drvdata(pdev, NULL);
360 * ====================
361 * = skfp_driver_init =
362 * ====================
364 * Overview:
365 * Initializes remaining adapter board structure information
366 * and makes sure adapter is in a safe state prior to skfp_open().
368 * Returns:
369 * Condition code
371 * Arguments:
372 * dev - pointer to device information
374 * Functional Description:
375 * This function allocates additional resources such as the host memory
376 * blocks needed by the adapter.
377 * The adapter is also reset. The OS must call skfp_open() to open
378 * the adapter and bring it on-line.
380 * Return Codes:
381 * 0 - initialization succeeded
382 * -1 - initialization failed
384 static int skfp_driver_init(struct net_device *dev)
386 struct s_smc *smc = netdev_priv(dev);
387 skfddi_priv *bp = &smc->os;
388 int err = -EIO;
390 PRINTK(KERN_INFO "entering skfp_driver_init\n");
392 // set the io address in private structures
393 bp->base_addr = dev->base_addr;
395 // Get the interrupt level from the PCI Configuration Table
396 smc->hw.irq = dev->irq;
398 spin_lock_init(&bp->DriverLock);
400 // Allocate invalid frame
401 bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
402 if (!bp->LocalRxBuffer) {
403 printk("could not allocate mem for ");
404 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
405 goto fail;
408 // Determine the required size of the 'shared' memory area.
409 bp->SharedMemSize = mac_drv_check_space();
410 PRINTK(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
411 if (bp->SharedMemSize > 0) {
412 bp->SharedMemSize += 16; // for descriptor alignment
414 bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
415 bp->SharedMemSize,
416 &bp->SharedMemDMA);
417 if (!bp->SharedMemSize) {
418 printk("could not allocate mem for ");
419 printk("hardware module: %ld byte\n",
420 bp->SharedMemSize);
421 goto fail;
423 bp->SharedMemHeap = 0; // Nothing used yet.
425 } else {
426 bp->SharedMemAddr = NULL;
427 bp->SharedMemHeap = 0;
428 } // SharedMemSize > 0
430 memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
432 card_stop(smc); // Reset adapter.
434 PRINTK(KERN_INFO "mac_drv_init()..\n");
435 if (mac_drv_init(smc) != 0) {
436 PRINTK(KERN_INFO "mac_drv_init() failed.\n");
437 goto fail;
439 read_address(smc, NULL);
440 PRINTK(KERN_INFO "HW-Addr: %02x %02x %02x %02x %02x %02x\n",
441 smc->hw.fddi_canon_addr.a[0],
442 smc->hw.fddi_canon_addr.a[1],
443 smc->hw.fddi_canon_addr.a[2],
444 smc->hw.fddi_canon_addr.a[3],
445 smc->hw.fddi_canon_addr.a[4],
446 smc->hw.fddi_canon_addr.a[5]);
447 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
449 smt_reset_defaults(smc, 0);
451 return (0);
453 fail:
454 if (bp->SharedMemAddr) {
455 pci_free_consistent(&bp->pdev,
456 bp->SharedMemSize,
457 bp->SharedMemAddr,
458 bp->SharedMemDMA);
459 bp->SharedMemAddr = NULL;
461 if (bp->LocalRxBuffer) {
462 pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
463 bp->LocalRxBuffer, bp->LocalRxBufferDMA);
464 bp->LocalRxBuffer = NULL;
466 return err;
467 } // skfp_driver_init
471 * =============
472 * = skfp_open =
473 * =============
475 * Overview:
476 * Opens the adapter
478 * Returns:
479 * Condition code
481 * Arguments:
482 * dev - pointer to device information
484 * Functional Description:
485 * This function brings the adapter to an operational state.
487 * Return Codes:
488 * 0 - Adapter was successfully opened
489 * -EAGAIN - Could not register IRQ
491 static int skfp_open(struct net_device *dev)
493 struct s_smc *smc = netdev_priv(dev);
494 int err;
496 PRINTK(KERN_INFO "entering skfp_open\n");
497 /* Register IRQ - support shared interrupts by passing device ptr */
498 err = request_irq(dev->irq, (void *) skfp_interrupt, IRQF_SHARED,
499 dev->name, dev);
500 if (err)
501 return err;
504 * Set current address to factory MAC address
506 * Note: We've already done this step in skfp_driver_init.
507 * However, it's possible that a user has set a node
508 * address override, then closed and reopened the
509 * adapter. Unless we reset the device address field
510 * now, we'll continue to use the existing modified
511 * address.
513 read_address(smc, NULL);
514 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
516 init_smt(smc, NULL);
517 smt_online(smc, 1);
518 STI_FBI();
520 /* Clear local multicast address tables */
521 mac_clear_multicast(smc);
523 /* Disable promiscuous filter settings */
524 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
526 netif_start_queue(dev);
527 return (0);
528 } // skfp_open
532 * ==============
533 * = skfp_close =
534 * ==============
536 * Overview:
537 * Closes the device/module.
539 * Returns:
540 * Condition code
542 * Arguments:
543 * dev - pointer to device information
545 * Functional Description:
546 * This routine closes the adapter and brings it to a safe state.
547 * The interrupt service routine is deregistered with the OS.
548 * The adapter can be opened again with another call to skfp_open().
550 * Return Codes:
551 * Always return 0.
553 * Assumptions:
554 * No further requests for this adapter are made after this routine is
555 * called. skfp_open() can be called to reset and reinitialize the
556 * adapter.
558 static int skfp_close(struct net_device *dev)
560 struct s_smc *smc = netdev_priv(dev);
561 skfddi_priv *bp = &smc->os;
563 CLI_FBI();
564 smt_reset_defaults(smc, 1);
565 card_stop(smc);
566 mac_drv_clear_tx_queue(smc);
567 mac_drv_clear_rx_queue(smc);
569 netif_stop_queue(dev);
570 /* Deregister (free) IRQ */
571 free_irq(dev->irq, dev);
573 skb_queue_purge(&bp->SendSkbQueue);
574 bp->QueueSkb = MAX_TX_QUEUE_LEN;
576 return (0);
577 } // skfp_close
581 * ==================
582 * = skfp_interrupt =
583 * ==================
585 * Overview:
586 * Interrupt processing routine
588 * Returns:
589 * None
591 * Arguments:
592 * irq - interrupt vector
593 * dev_id - pointer to device information
595 * Functional Description:
596 * This routine calls the interrupt processing routine for this adapter. It
597 * disables and reenables adapter interrupts, as appropriate. We can support
598 * shared interrupts since the incoming dev_id pointer provides our device
599 * structure context. All the real work is done in the hardware module.
601 * Return Codes:
602 * None
604 * Assumptions:
605 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
606 * on Intel-based systems) is done by the operating system outside this
607 * routine.
609 * System interrupts are enabled through this call.
611 * Side Effects:
612 * Interrupts are disabled, then reenabled at the adapter.
615 irqreturn_t skfp_interrupt(int irq, void *dev_id)
617 struct net_device *dev = dev_id;
618 struct s_smc *smc; /* private board structure pointer */
619 skfddi_priv *bp;
621 smc = netdev_priv(dev);
622 bp = &smc->os;
624 // IRQs enabled or disabled ?
625 if (inpd(ADDR(B0_IMSK)) == 0) {
626 // IRQs are disabled: must be shared interrupt
627 return IRQ_NONE;
629 // Note: At this point, IRQs are enabled.
630 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ?
631 // Adapter did not issue an IRQ: must be shared interrupt
632 return IRQ_NONE;
634 CLI_FBI(); // Disable IRQs from our adapter.
635 spin_lock(&bp->DriverLock);
637 // Call interrupt handler in hardware module (HWM).
638 fddi_isr(smc);
640 if (smc->os.ResetRequested) {
641 ResetAdapter(smc);
642 smc->os.ResetRequested = FALSE;
644 spin_unlock(&bp->DriverLock);
645 STI_FBI(); // Enable IRQs from our adapter.
647 return IRQ_HANDLED;
648 } // skfp_interrupt
652 * ======================
653 * = skfp_ctl_get_stats =
654 * ======================
656 * Overview:
657 * Get statistics for FDDI adapter
659 * Returns:
660 * Pointer to FDDI statistics structure
662 * Arguments:
663 * dev - pointer to device information
665 * Functional Description:
666 * Gets current MIB objects from adapter, then
667 * returns FDDI statistics structure as defined
668 * in if_fddi.h.
670 * Note: Since the FDDI statistics structure is
671 * still new and the device structure doesn't
672 * have an FDDI-specific get statistics handler,
673 * we'll return the FDDI statistics structure as
674 * a pointer to an Ethernet statistics structure.
675 * That way, at least the first part of the statistics
676 * structure can be decoded properly.
677 * We'll have to pay attention to this routine as the
678 * device structure becomes more mature and LAN media
679 * independent.
682 struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
684 struct s_smc *bp = netdev_priv(dev);
686 /* Fill the bp->stats structure with driver-maintained counters */
688 bp->os.MacStat.port_bs_flag[0] = 0x1234;
689 bp->os.MacStat.port_bs_flag[1] = 0x5678;
690 // goos: need to fill out fddi statistic
691 #if 0
692 /* Get FDDI SMT MIB objects */
694 /* Fill the bp->stats structure with the SMT MIB object values */
696 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
697 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
698 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
699 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
700 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
701 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
702 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
703 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
704 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
705 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
706 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
707 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
708 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
709 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
710 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
711 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
712 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
713 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
714 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
715 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
716 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
717 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
718 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
719 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
720 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
721 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
722 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
723 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
724 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
725 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
726 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
727 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
728 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
729 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
730 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
731 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
732 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
733 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
734 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
735 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
736 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
737 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
738 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
739 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
740 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
741 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
742 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
743 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
744 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
745 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
746 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
747 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
748 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
749 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
750 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
751 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
752 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
753 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
754 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
755 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
756 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
757 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
758 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
759 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
760 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
761 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
762 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
763 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
764 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
765 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
766 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
767 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
768 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
769 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
770 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
771 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
772 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
773 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
774 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
775 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
776 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
777 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
778 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
779 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
780 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
781 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
782 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
783 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
784 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
785 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
786 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
787 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
790 /* Fill the bp->stats structure with the FDDI counter values */
792 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
793 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
794 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
795 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
796 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
797 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
798 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
799 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
800 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
801 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
802 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
804 #endif
805 return ((struct net_device_stats *) &bp->os.MacStat);
806 } // ctl_get_stat
810 * ==============================
811 * = skfp_ctl_set_multicast_list =
812 * ==============================
814 * Overview:
815 * Enable/Disable LLC frame promiscuous mode reception
816 * on the adapter and/or update multicast address table.
818 * Returns:
819 * None
821 * Arguments:
822 * dev - pointer to device information
824 * Functional Description:
825 * This function acquires the driver lock and only calls
826 * skfp_ctl_set_multicast_list_wo_lock then.
827 * This routine follows a fairly simple algorithm for setting the
828 * adapter filters and CAM:
830 * if IFF_PROMISC flag is set
831 * enable promiscuous mode
832 * else
833 * disable promiscuous mode
834 * if number of multicast addresses <= max. multicast number
835 * add mc addresses to adapter table
836 * else
837 * enable promiscuous mode
838 * update adapter filters
840 * Assumptions:
841 * Multicast addresses are presented in canonical (LSB) format.
843 * Side Effects:
844 * On-board adapter filters are updated.
846 static void skfp_ctl_set_multicast_list(struct net_device *dev)
848 struct s_smc *smc = netdev_priv(dev);
849 skfddi_priv *bp = &smc->os;
850 unsigned long Flags;
852 spin_lock_irqsave(&bp->DriverLock, Flags);
853 skfp_ctl_set_multicast_list_wo_lock(dev);
854 spin_unlock_irqrestore(&bp->DriverLock, Flags);
855 return;
856 } // skfp_ctl_set_multicast_list
860 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
862 struct s_smc *smc = netdev_priv(dev);
863 struct dev_mc_list *dmi; /* ptr to multicast addr entry */
864 int i;
866 /* Enable promiscuous mode, if necessary */
867 if (dev->flags & IFF_PROMISC) {
868 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
869 PRINTK(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
871 /* Else, update multicast address table */
872 else {
873 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
874 PRINTK(KERN_INFO "PROMISCUOUS MODE DISABLED\n");
876 // Reset all MC addresses
877 mac_clear_multicast(smc);
878 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
880 if (dev->flags & IFF_ALLMULTI) {
881 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
882 PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
883 } else if (dev->mc_count > 0) {
884 if (dev->mc_count <= FPMAX_MULTICAST) {
885 /* use exact filtering */
887 // point to first multicast addr
888 dmi = dev->mc_list;
890 for (i = 0; i < dev->mc_count; i++) {
891 mac_add_multicast(smc,
892 (struct fddi_addr *)dmi->dmi_addr,
895 PRINTK(KERN_INFO "ENABLE MC ADDRESS:");
896 PRINTK(" %02x %02x %02x ",
897 dmi->dmi_addr[0],
898 dmi->dmi_addr[1],
899 dmi->dmi_addr[2]);
900 PRINTK("%02x %02x %02x\n",
901 dmi->dmi_addr[3],
902 dmi->dmi_addr[4],
903 dmi->dmi_addr[5]);
904 dmi = dmi->next;
905 } // for
907 } else { // more MC addresses than HW supports
909 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
910 PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
912 } else { // no MC addresses
914 PRINTK(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
917 /* Update adapter filters */
918 mac_update_multicast(smc);
920 return;
921 } // skfp_ctl_set_multicast_list_wo_lock
925 * ===========================
926 * = skfp_ctl_set_mac_address =
927 * ===========================
929 * Overview:
930 * set new mac address on adapter and update dev_addr field in device table.
932 * Returns:
933 * None
935 * Arguments:
936 * dev - pointer to device information
937 * addr - pointer to sockaddr structure containing unicast address to set
939 * Assumptions:
940 * The address pointed to by addr->sa_data is a valid unicast
941 * address and is presented in canonical (LSB) format.
943 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
945 struct s_smc *smc = netdev_priv(dev);
946 struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
947 skfddi_priv *bp = &smc->os;
948 unsigned long Flags;
951 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
952 spin_lock_irqsave(&bp->DriverLock, Flags);
953 ResetAdapter(smc);
954 spin_unlock_irqrestore(&bp->DriverLock, Flags);
956 return (0); /* always return zero */
957 } // skfp_ctl_set_mac_address
961 * ==============
962 * = skfp_ioctl =
963 * ==============
965 * Overview:
967 * Perform IOCTL call functions here. Some are privileged operations and the
968 * effective uid is checked in those cases.
970 * Returns:
971 * status value
972 * 0 - success
973 * other - failure
975 * Arguments:
976 * dev - pointer to device information
977 * rq - pointer to ioctl request structure
978 * cmd - ?
983 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
985 struct s_smc *smc = netdev_priv(dev);
986 skfddi_priv *lp = &smc->os;
987 struct s_skfp_ioctl ioc;
988 int status = 0;
990 if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
991 return -EFAULT;
993 switch (ioc.cmd) {
994 case SKFP_GET_STATS: /* Get the driver statistics */
995 ioc.len = sizeof(lp->MacStat);
996 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
997 ? -EFAULT : 0;
998 break;
999 case SKFP_CLR_STATS: /* Zero out the driver statistics */
1000 if (!capable(CAP_NET_ADMIN)) {
1001 memset(&lp->MacStat, 0, sizeof(lp->MacStat));
1002 } else {
1003 status = -EPERM;
1005 break;
1006 default:
1007 printk("ioctl for %s: unknow cmd: %04x\n", dev->name, ioc.cmd);
1008 status = -EOPNOTSUPP;
1010 } // switch
1012 return status;
1013 } // skfp_ioctl
1017 * =====================
1018 * = skfp_send_pkt =
1019 * =====================
1021 * Overview:
1022 * Queues a packet for transmission and try to transmit it.
1024 * Returns:
1025 * Condition code
1027 * Arguments:
1028 * skb - pointer to sk_buff to queue for transmission
1029 * dev - pointer to device information
1031 * Functional Description:
1032 * Here we assume that an incoming skb transmit request
1033 * is contained in a single physically contiguous buffer
1034 * in which the virtual address of the start of packet
1035 * (skb->data) can be converted to a physical address
1036 * by using pci_map_single().
1038 * We have an internal queue for packets we can not send
1039 * immediately. Packets in this queue can be given to the
1040 * adapter if transmit buffers are freed.
1042 * We can't free the skb until after it's been DMA'd
1043 * out by the adapter, so we'll keep it in the driver and
1044 * return it in mac_drv_tx_complete.
1046 * Return Codes:
1047 * 0 - driver has queued and/or sent packet
1048 * 1 - caller should requeue the sk_buff for later transmission
1050 * Assumptions:
1051 * The entire packet is stored in one physically
1052 * contiguous buffer which is not cached and whose
1053 * 32-bit physical address can be determined.
1055 * It's vital that this routine is NOT reentered for the
1056 * same board and that the OS is not in another section of
1057 * code (eg. skfp_interrupt) for the same board on a
1058 * different thread.
1060 * Side Effects:
1061 * None
1063 static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev)
1065 struct s_smc *smc = netdev_priv(dev);
1066 skfddi_priv *bp = &smc->os;
1068 PRINTK(KERN_INFO "skfp_send_pkt\n");
1071 * Verify that incoming transmit request is OK
1073 * Note: The packet size check is consistent with other
1074 * Linux device drivers, although the correct packet
1075 * size should be verified before calling the
1076 * transmit routine.
1079 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1080 bp->MacStat.gen.tx_errors++; /* bump error counter */
1081 // dequeue packets from xmt queue and send them
1082 netif_start_queue(dev);
1083 dev_kfree_skb(skb);
1084 return (0); /* return "success" */
1086 if (bp->QueueSkb == 0) { // return with tbusy set: queue full
1088 netif_stop_queue(dev);
1089 return 1;
1091 bp->QueueSkb--;
1092 skb_queue_tail(&bp->SendSkbQueue, skb);
1093 send_queued_packets(netdev_priv(dev));
1094 if (bp->QueueSkb == 0) {
1095 netif_stop_queue(dev);
1097 dev->trans_start = jiffies;
1098 return 0;
1100 } // skfp_send_pkt
1104 * =======================
1105 * = send_queued_packets =
1106 * =======================
1108 * Overview:
1109 * Send packets from the driver queue as long as there are some and
1110 * transmit resources are available.
1112 * Returns:
1113 * None
1115 * Arguments:
1116 * smc - pointer to smc (adapter) structure
1118 * Functional Description:
1119 * Take a packet from queue if there is any. If not, then we are done.
1120 * Check if there are resources to send the packet. If not, requeue it
1121 * and exit.
1122 * Set packet descriptor flags and give packet to adapter.
1123 * Check if any send resources can be freed (we do not use the
1124 * transmit complete interrupt).
1126 static void send_queued_packets(struct s_smc *smc)
1128 skfddi_priv *bp = &smc->os;
1129 struct sk_buff *skb;
1130 unsigned char fc;
1131 int queue;
1132 struct s_smt_fp_txd *txd; // Current TxD.
1133 dma_addr_t dma_address;
1134 unsigned long Flags;
1136 int frame_status; // HWM tx frame status.
1138 PRINTK(KERN_INFO "send queued packets\n");
1139 for (;;) {
1140 // send first buffer from queue
1141 skb = skb_dequeue(&bp->SendSkbQueue);
1143 if (!skb) {
1144 PRINTK(KERN_INFO "queue empty\n");
1145 return;
1146 } // queue empty !
1148 spin_lock_irqsave(&bp->DriverLock, Flags);
1149 fc = skb->data[0];
1150 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1151 #ifdef ESS
1152 // Check if the frame may/must be sent as a synchronous frame.
1154 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1155 // It's an LLC frame.
1156 if (!smc->ess.sync_bw_available)
1157 fc &= ~FC_SYNC_BIT; // No bandwidth available.
1159 else { // Bandwidth is available.
1161 if (smc->mib.fddiESSSynchTxMode) {
1162 // Send as sync. frame.
1163 fc |= FC_SYNC_BIT;
1167 #endif // ESS
1168 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1170 if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1171 // Unable to send the frame.
1173 if ((frame_status & RING_DOWN) != 0) {
1174 // Ring is down.
1175 PRINTK("Tx attempt while ring down.\n");
1176 } else if ((frame_status & OUT_OF_TXD) != 0) {
1177 PRINTK("%s: out of TXDs.\n", bp->dev->name);
1178 } else {
1179 PRINTK("%s: out of transmit resources",
1180 bp->dev->name);
1183 // Note: We will retry the operation as soon as
1184 // transmit resources become available.
1185 skb_queue_head(&bp->SendSkbQueue, skb);
1186 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1187 return; // Packet has been queued.
1189 } // if (unable to send frame)
1191 bp->QueueSkb++; // one packet less in local queue
1193 // source address in packet ?
1194 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1196 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1198 dma_address = pci_map_single(&bp->pdev, skb->data,
1199 skb->len, PCI_DMA_TODEVICE);
1200 if (frame_status & LAN_TX) {
1201 txd->txd_os.skb = skb; // save skb
1202 txd->txd_os.dma_addr = dma_address; // save dma mapping
1204 hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1205 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1207 if (!(frame_status & LAN_TX)) { // local only frame
1208 pci_unmap_single(&bp->pdev, dma_address,
1209 skb->len, PCI_DMA_TODEVICE);
1210 dev_kfree_skb_irq(skb);
1212 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1213 } // for
1215 return; // never reached
1217 } // send_queued_packets
1220 /************************
1222 * CheckSourceAddress
1224 * Verify if the source address is set. Insert it if necessary.
1226 ************************/
1227 void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1229 unsigned char SRBit;
1231 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1233 return;
1234 if ((unsigned short) frame[1 + 10] != 0)
1235 return;
1236 SRBit = frame[1 + 6] & 0x01;
1237 memcpy(&frame[1 + 6], hw_addr, 6);
1238 frame[8] |= SRBit;
1239 } // CheckSourceAddress
1242 /************************
1244 * ResetAdapter
1246 * Reset the adapter and bring it back to operational mode.
1247 * Args
1248 * smc - A pointer to the SMT context struct.
1249 * Out
1250 * Nothing.
1252 ************************/
1253 static void ResetAdapter(struct s_smc *smc)
1256 PRINTK(KERN_INFO "[fddi: ResetAdapter]\n");
1258 // Stop the adapter.
1260 card_stop(smc); // Stop all activity.
1262 // Clear the transmit and receive descriptor queues.
1263 mac_drv_clear_tx_queue(smc);
1264 mac_drv_clear_rx_queue(smc);
1266 // Restart the adapter.
1268 smt_reset_defaults(smc, 1); // Initialize the SMT module.
1270 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1272 smt_online(smc, 1); // Insert into the ring again.
1273 STI_FBI();
1275 // Restore original receive mode (multicasts, promiscuous, etc.).
1276 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1277 } // ResetAdapter
1280 //--------------- functions called by hardware module ----------------
1282 /************************
1284 * llc_restart_tx
1286 * The hardware driver calls this routine when the transmit complete
1287 * interrupt bits (end of frame) for the synchronous or asynchronous
1288 * queue is set.
1290 * NOTE The hardware driver calls this function also if no packets are queued.
1291 * The routine must be able to handle this case.
1292 * Args
1293 * smc - A pointer to the SMT context struct.
1294 * Out
1295 * Nothing.
1297 ************************/
1298 void llc_restart_tx(struct s_smc *smc)
1300 skfddi_priv *bp = &smc->os;
1302 PRINTK(KERN_INFO "[llc_restart_tx]\n");
1304 // Try to send queued packets
1305 spin_unlock(&bp->DriverLock);
1306 send_queued_packets(smc);
1307 spin_lock(&bp->DriverLock);
1308 netif_start_queue(bp->dev);// system may send again if it was blocked
1310 } // llc_restart_tx
1313 /************************
1315 * mac_drv_get_space
1317 * The hardware module calls this function to allocate the memory
1318 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1319 * Args
1320 * smc - A pointer to the SMT context struct.
1322 * size - Size of memory in bytes to allocate.
1323 * Out
1324 * != 0 A pointer to the virtual address of the allocated memory.
1325 * == 0 Allocation error.
1327 ************************/
1328 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1330 void *virt;
1332 PRINTK(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
1333 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1335 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1336 printk("Unexpected SMT memory size requested: %d\n", size);
1337 return (NULL);
1339 smc->os.SharedMemHeap += size; // Move heap pointer.
1341 PRINTK(KERN_INFO "mac_drv_get_space end\n");
1342 PRINTK(KERN_INFO "virt addr: %lx\n", (ulong) virt);
1343 PRINTK(KERN_INFO "bus addr: %lx\n", (ulong)
1344 (smc->os.SharedMemDMA +
1345 ((char *) virt - (char *)smc->os.SharedMemAddr)));
1346 return (virt);
1347 } // mac_drv_get_space
1350 /************************
1352 * mac_drv_get_desc_mem
1354 * This function is called by the hardware dependent module.
1355 * It allocates the memory for the RxD and TxD descriptors.
1357 * This memory must be non-cached, non-movable and non-swappable.
1358 * This memory should start at a physical page boundary.
1359 * Args
1360 * smc - A pointer to the SMT context struct.
1362 * size - Size of memory in bytes to allocate.
1363 * Out
1364 * != 0 A pointer to the virtual address of the allocated memory.
1365 * == 0 Allocation error.
1367 ************************/
1368 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1371 char *virt;
1373 PRINTK(KERN_INFO "mac_drv_get_desc_mem\n");
1375 // Descriptor memory must be aligned on 16-byte boundary.
1377 virt = mac_drv_get_space(smc, size);
1379 size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1380 size = size % 16;
1382 PRINTK("Allocate %u bytes alignment gap ", size);
1383 PRINTK("for descriptor memory.\n");
1385 if (!mac_drv_get_space(smc, size)) {
1386 printk("fddi: Unable to align descriptor memory.\n");
1387 return (NULL);
1389 return (virt + size);
1390 } // mac_drv_get_desc_mem
1393 /************************
1395 * mac_drv_virt2phys
1397 * Get the physical address of a given virtual address.
1398 * Args
1399 * smc - A pointer to the SMT context struct.
1401 * virt - A (virtual) pointer into our 'shared' memory area.
1402 * Out
1403 * Physical address of the given virtual address.
1405 ************************/
1406 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1408 return (smc->os.SharedMemDMA +
1409 ((char *) virt - (char *)smc->os.SharedMemAddr));
1410 } // mac_drv_virt2phys
1413 /************************
1415 * dma_master
1417 * The HWM calls this function, when the driver leads through a DMA
1418 * transfer. If the OS-specific module must prepare the system hardware
1419 * for the DMA transfer, it should do it in this function.
1421 * The hardware module calls this dma_master if it wants to send an SMT
1422 * frame. This means that the virt address passed in here is part of
1423 * the 'shared' memory area.
1424 * Args
1425 * smc - A pointer to the SMT context struct.
1427 * virt - The virtual address of the data.
1429 * len - The length in bytes of the data.
1431 * flag - Indicates the transmit direction and the buffer type:
1432 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1433 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1434 * SMT_BUF (0x80) SMT buffer
1436 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1437 * Out
1438 * Returns the pyhsical address for the DMA transfer.
1440 ************************/
1441 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1443 return (smc->os.SharedMemDMA +
1444 ((char *) virt - (char *)smc->os.SharedMemAddr));
1445 } // dma_master
1448 /************************
1450 * dma_complete
1452 * The hardware module calls this routine when it has completed a DMA
1453 * transfer. If the operating system dependent module has set up the DMA
1454 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1455 * the DMA channel.
1456 * Args
1457 * smc - A pointer to the SMT context struct.
1459 * descr - A pointer to a TxD or RxD, respectively.
1461 * flag - Indicates the DMA transfer direction / SMT buffer:
1462 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1463 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1464 * SMT_BUF (0x80) SMT buffer (managed by HWM)
1465 * Out
1466 * Nothing.
1468 ************************/
1469 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1471 /* For TX buffers, there are two cases. If it is an SMT transmit
1472 * buffer, there is nothing to do since we use consistent memory
1473 * for the 'shared' memory area. The other case is for normal
1474 * transmit packets given to us by the networking stack, and in
1475 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1476 * below.
1478 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1479 * because the hardware module is about to potentially look at
1480 * the contents of the buffer. If we did not call the PCI DMA
1481 * unmap first, the hardware module could read inconsistent data.
1483 if (flag & DMA_WR) {
1484 skfddi_priv *bp = &smc->os;
1485 volatile struct s_smt_fp_rxd *r = &descr->r;
1487 /* If SKB is NULL, we used the local buffer. */
1488 if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1489 int MaxFrameSize = bp->MaxFrameSize;
1491 pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1492 MaxFrameSize, PCI_DMA_FROMDEVICE);
1493 r->rxd_os.dma_addr = 0;
1496 } // dma_complete
1499 /************************
1501 * mac_drv_tx_complete
1503 * Transmit of a packet is complete. Release the tx staging buffer.
1505 * Args
1506 * smc - A pointer to the SMT context struct.
1508 * txd - A pointer to the last TxD which is used by the frame.
1509 * Out
1510 * Returns nothing.
1512 ************************/
1513 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1515 struct sk_buff *skb;
1517 PRINTK(KERN_INFO "entering mac_drv_tx_complete\n");
1518 // Check if this TxD points to a skb
1520 if (!(skb = txd->txd_os.skb)) {
1521 PRINTK("TXD with no skb assigned.\n");
1522 return;
1524 txd->txd_os.skb = NULL;
1526 // release the DMA mapping
1527 pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1528 skb->len, PCI_DMA_TODEVICE);
1529 txd->txd_os.dma_addr = 0;
1531 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets.
1532 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1534 // free the skb
1535 dev_kfree_skb_irq(skb);
1537 PRINTK(KERN_INFO "leaving mac_drv_tx_complete\n");
1538 } // mac_drv_tx_complete
1541 /************************
1543 * dump packets to logfile
1545 ************************/
1546 #ifdef DUMPPACKETS
1547 void dump_data(unsigned char *Data, int length)
1549 int i, j;
1550 unsigned char s[255], sh[10];
1551 if (length > 64) {
1552 length = 64;
1554 printk(KERN_INFO "---Packet start---\n");
1555 for (i = 0, j = 0; i < length / 8; i++, j += 8)
1556 printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1557 Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1558 Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1559 strcpy(s, "");
1560 for (i = 0; i < length % 8; i++) {
1561 sprintf(sh, "%02x ", Data[j + i]);
1562 strcat(s, sh);
1564 printk(KERN_INFO "%s\n", s);
1565 printk(KERN_INFO "------------------\n");
1566 } // dump_data
1567 #else
1568 #define dump_data(data,len)
1569 #endif // DUMPPACKETS
1571 /************************
1573 * mac_drv_rx_complete
1575 * The hardware module calls this function if an LLC frame is received
1576 * in a receive buffer. Also the SMT, NSA, and directed beacon frames
1577 * from the network will be passed to the LLC layer by this function
1578 * if passing is enabled.
1580 * mac_drv_rx_complete forwards the frame to the LLC layer if it should
1581 * be received. It also fills the RxD ring with new receive buffers if
1582 * some can be queued.
1583 * Args
1584 * smc - A pointer to the SMT context struct.
1586 * rxd - A pointer to the first RxD which is used by the receive frame.
1588 * frag_count - Count of RxDs used by the received frame.
1590 * len - Frame length.
1591 * Out
1592 * Nothing.
1594 ************************/
1595 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1596 int frag_count, int len)
1598 skfddi_priv *bp = &smc->os;
1599 struct sk_buff *skb;
1600 unsigned char *virt, *cp;
1601 unsigned short ri;
1602 u_int RifLength;
1604 PRINTK(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
1605 if (frag_count != 1) { // This is not allowed to happen.
1607 printk("fddi: Multi-fragment receive!\n");
1608 goto RequeueRxd; // Re-use the given RXD(s).
1611 skb = rxd->rxd_os.skb;
1612 if (!skb) {
1613 PRINTK(KERN_INFO "No skb in rxd\n");
1614 smc->os.MacStat.gen.rx_errors++;
1615 goto RequeueRxd;
1617 virt = skb->data;
1619 // The DMA mapping was released in dma_complete above.
1621 dump_data(skb->data, len);
1624 * FDDI Frame format:
1625 * +-------+-------+-------+------------+--------+------------+
1626 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1627 * +-------+-------+-------+------------+--------+------------+
1629 * FC = Frame Control
1630 * DA = Destination Address
1631 * SA = Source Address
1632 * RIF = Routing Information Field
1633 * LLC = Logical Link Control
1636 // Remove Routing Information Field (RIF), if present.
1638 if ((virt[1 + 6] & FDDI_RII) == 0)
1639 RifLength = 0;
1640 else {
1641 int n;
1642 // goos: RIF removal has still to be tested
1643 PRINTK(KERN_INFO "RIF found\n");
1644 // Get RIF length from Routing Control (RC) field.
1645 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.
1647 ri = ntohs(*((unsigned short *) cp));
1648 RifLength = ri & FDDI_RCF_LEN_MASK;
1649 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1650 printk("fddi: Invalid RIF.\n");
1651 goto RequeueRxd; // Discard the frame.
1654 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit.
1655 // regions overlap
1657 virt = cp + RifLength;
1658 for (n = FDDI_MAC_HDR_LEN; n; n--)
1659 *--virt = *--cp;
1660 // adjust sbd->data pointer
1661 skb_pull(skb, RifLength);
1662 len -= RifLength;
1663 RifLength = 0;
1666 // Count statistics.
1667 smc->os.MacStat.gen.rx_packets++; // Count indicated receive
1668 // packets.
1669 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes.
1671 // virt points to header again
1672 if (virt[1] & 0x01) { // Check group (multicast) bit.
1674 smc->os.MacStat.gen.multicast++;
1677 // deliver frame to system
1678 rxd->rxd_os.skb = NULL;
1679 skb_trim(skb, len);
1680 skb->protocol = fddi_type_trans(skb, bp->dev);
1682 netif_rx(skb);
1683 bp->dev->last_rx = jiffies;
1685 HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1686 return;
1688 RequeueRxd:
1689 PRINTK(KERN_INFO "Rx: re-queue RXD.\n");
1690 mac_drv_requeue_rxd(smc, rxd, frag_count);
1691 smc->os.MacStat.gen.rx_errors++; // Count receive packets
1692 // not indicated.
1694 } // mac_drv_rx_complete
1697 /************************
1699 * mac_drv_requeue_rxd
1701 * The hardware module calls this function to request the OS-specific
1702 * module to queue the receive buffer(s) represented by the pointer
1703 * to the RxD and the frag_count into the receive queue again. This
1704 * buffer was filled with an invalid frame or an SMT frame.
1705 * Args
1706 * smc - A pointer to the SMT context struct.
1708 * rxd - A pointer to the first RxD which is used by the receive frame.
1710 * frag_count - Count of RxDs used by the received frame.
1711 * Out
1712 * Nothing.
1714 ************************/
1715 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1716 int frag_count)
1718 volatile struct s_smt_fp_rxd *next_rxd;
1719 volatile struct s_smt_fp_rxd *src_rxd;
1720 struct sk_buff *skb;
1721 int MaxFrameSize;
1722 unsigned char *v_addr;
1723 dma_addr_t b_addr;
1725 if (frag_count != 1) // This is not allowed to happen.
1727 printk("fddi: Multi-fragment requeue!\n");
1729 MaxFrameSize = smc->os.MaxFrameSize;
1730 src_rxd = rxd;
1731 for (; frag_count > 0; frag_count--) {
1732 next_rxd = src_rxd->rxd_next;
1733 rxd = HWM_GET_CURR_RXD(smc);
1735 skb = src_rxd->rxd_os.skb;
1736 if (skb == NULL) { // this should not happen
1738 PRINTK("Requeue with no skb in rxd!\n");
1739 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1740 if (skb) {
1741 // we got a skb
1742 rxd->rxd_os.skb = skb;
1743 skb_reserve(skb, 3);
1744 skb_put(skb, MaxFrameSize);
1745 v_addr = skb->data;
1746 b_addr = pci_map_single(&smc->os.pdev,
1747 v_addr,
1748 MaxFrameSize,
1749 PCI_DMA_FROMDEVICE);
1750 rxd->rxd_os.dma_addr = b_addr;
1751 } else {
1752 // no skb available, use local buffer
1753 PRINTK("Queueing invalid buffer!\n");
1754 rxd->rxd_os.skb = NULL;
1755 v_addr = smc->os.LocalRxBuffer;
1756 b_addr = smc->os.LocalRxBufferDMA;
1758 } else {
1759 // we use skb from old rxd
1760 rxd->rxd_os.skb = skb;
1761 v_addr = skb->data;
1762 b_addr = pci_map_single(&smc->os.pdev,
1763 v_addr,
1764 MaxFrameSize,
1765 PCI_DMA_FROMDEVICE);
1766 rxd->rxd_os.dma_addr = b_addr;
1768 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1769 FIRST_FRAG | LAST_FRAG);
1771 src_rxd = next_rxd;
1773 } // mac_drv_requeue_rxd
1776 /************************
1778 * mac_drv_fill_rxd
1780 * The hardware module calls this function at initialization time
1781 * to fill the RxD ring with receive buffers. It is also called by
1782 * mac_drv_rx_complete if rx_free is large enough to queue some new
1783 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1784 * receive buffers as long as enough RxDs and receive buffers are
1785 * available.
1786 * Args
1787 * smc - A pointer to the SMT context struct.
1788 * Out
1789 * Nothing.
1791 ************************/
1792 void mac_drv_fill_rxd(struct s_smc *smc)
1794 int MaxFrameSize;
1795 unsigned char *v_addr;
1796 unsigned long b_addr;
1797 struct sk_buff *skb;
1798 volatile struct s_smt_fp_rxd *rxd;
1800 PRINTK(KERN_INFO "entering mac_drv_fill_rxd\n");
1802 // Walk through the list of free receive buffers, passing receive
1803 // buffers to the HWM as long as RXDs are available.
1805 MaxFrameSize = smc->os.MaxFrameSize;
1806 // Check if there is any RXD left.
1807 while (HWM_GET_RX_FREE(smc) > 0) {
1808 PRINTK(KERN_INFO ".\n");
1810 rxd = HWM_GET_CURR_RXD(smc);
1811 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1812 if (skb) {
1813 // we got a skb
1814 skb_reserve(skb, 3);
1815 skb_put(skb, MaxFrameSize);
1816 v_addr = skb->data;
1817 b_addr = pci_map_single(&smc->os.pdev,
1818 v_addr,
1819 MaxFrameSize,
1820 PCI_DMA_FROMDEVICE);
1821 rxd->rxd_os.dma_addr = b_addr;
1822 } else {
1823 // no skb available, use local buffer
1824 // System has run out of buffer memory, but we want to
1825 // keep the receiver running in hope of better times.
1826 // Multiple descriptors may point to this local buffer,
1827 // so data in it must be considered invalid.
1828 PRINTK("Queueing invalid buffer!\n");
1829 v_addr = smc->os.LocalRxBuffer;
1830 b_addr = smc->os.LocalRxBufferDMA;
1833 rxd->rxd_os.skb = skb;
1835 // Pass receive buffer to HWM.
1836 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1837 FIRST_FRAG | LAST_FRAG);
1839 PRINTK(KERN_INFO "leaving mac_drv_fill_rxd\n");
1840 } // mac_drv_fill_rxd
1843 /************************
1845 * mac_drv_clear_rxd
1847 * The hardware module calls this function to release unused
1848 * receive buffers.
1849 * Args
1850 * smc - A pointer to the SMT context struct.
1852 * rxd - A pointer to the first RxD which is used by the receive buffer.
1854 * frag_count - Count of RxDs used by the receive buffer.
1855 * Out
1856 * Nothing.
1858 ************************/
1859 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1860 int frag_count)
1863 struct sk_buff *skb;
1865 PRINTK("entering mac_drv_clear_rxd\n");
1867 if (frag_count != 1) // This is not allowed to happen.
1869 printk("fddi: Multi-fragment clear!\n");
1871 for (; frag_count > 0; frag_count--) {
1872 skb = rxd->rxd_os.skb;
1873 if (skb != NULL) {
1874 skfddi_priv *bp = &smc->os;
1875 int MaxFrameSize = bp->MaxFrameSize;
1877 pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1878 MaxFrameSize, PCI_DMA_FROMDEVICE);
1880 dev_kfree_skb(skb);
1881 rxd->rxd_os.skb = NULL;
1883 rxd = rxd->rxd_next; // Next RXD.
1886 } // mac_drv_clear_rxd
1889 /************************
1891 * mac_drv_rx_init
1893 * The hardware module calls this routine when an SMT or NSA frame of the
1894 * local SMT should be delivered to the LLC layer.
1896 * It is necessary to have this function, because there is no other way to
1897 * copy the contents of SMT MBufs into receive buffers.
1899 * mac_drv_rx_init allocates the required target memory for this frame,
1900 * and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1901 * Args
1902 * smc - A pointer to the SMT context struct.
1904 * len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1906 * fc - The Frame Control field of the received frame.
1908 * look_ahead - A pointer to the lookahead data buffer (may be NULL).
1910 * la_len - The length of the lookahead data stored in the lookahead
1911 * buffer (may be zero).
1912 * Out
1913 * Always returns zero (0).
1915 ************************/
1916 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1917 char *look_ahead, int la_len)
1919 struct sk_buff *skb;
1921 PRINTK("entering mac_drv_rx_init(len=%d)\n", len);
1923 // "Received" a SMT or NSA frame of the local SMT.
1925 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1926 PRINTK("fddi: Discard invalid local SMT frame\n");
1927 PRINTK(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1928 len, la_len, (unsigned long) look_ahead);
1929 return (0);
1931 skb = alloc_skb(len + 3, GFP_ATOMIC);
1932 if (!skb) {
1933 PRINTK("fddi: Local SMT: skb memory exhausted.\n");
1934 return (0);
1936 skb_reserve(skb, 3);
1937 skb_put(skb, len);
1938 skb_copy_to_linear_data(skb, look_ahead, len);
1940 // deliver frame to system
1941 skb->protocol = fddi_type_trans(skb, smc->os.dev);
1942 skb->dev->last_rx = jiffies;
1943 netif_rx(skb);
1945 return (0);
1946 } // mac_drv_rx_init
1949 /************************
1951 * smt_timer_poll
1953 * This routine is called periodically by the SMT module to clean up the
1954 * driver.
1956 * Return any queued frames back to the upper protocol layers if the ring
1957 * is down.
1958 * Args
1959 * smc - A pointer to the SMT context struct.
1960 * Out
1961 * Nothing.
1963 ************************/
1964 void smt_timer_poll(struct s_smc *smc)
1966 } // smt_timer_poll
1969 /************************
1971 * ring_status_indication
1973 * This function indicates a change of the ring state.
1974 * Args
1975 * smc - A pointer to the SMT context struct.
1977 * status - The current ring status.
1978 * Out
1979 * Nothing.
1981 ************************/
1982 void ring_status_indication(struct s_smc *smc, u_long status)
1984 PRINTK("ring_status_indication( ");
1985 if (status & RS_RES15)
1986 PRINTK("RS_RES15 ");
1987 if (status & RS_HARDERROR)
1988 PRINTK("RS_HARDERROR ");
1989 if (status & RS_SOFTERROR)
1990 PRINTK("RS_SOFTERROR ");
1991 if (status & RS_BEACON)
1992 PRINTK("RS_BEACON ");
1993 if (status & RS_PATHTEST)
1994 PRINTK("RS_PATHTEST ");
1995 if (status & RS_SELFTEST)
1996 PRINTK("RS_SELFTEST ");
1997 if (status & RS_RES9)
1998 PRINTK("RS_RES9 ");
1999 if (status & RS_DISCONNECT)
2000 PRINTK("RS_DISCONNECT ");
2001 if (status & RS_RES7)
2002 PRINTK("RS_RES7 ");
2003 if (status & RS_DUPADDR)
2004 PRINTK("RS_DUPADDR ");
2005 if (status & RS_NORINGOP)
2006 PRINTK("RS_NORINGOP ");
2007 if (status & RS_VERSION)
2008 PRINTK("RS_VERSION ");
2009 if (status & RS_STUCKBYPASSS)
2010 PRINTK("RS_STUCKBYPASSS ");
2011 if (status & RS_EVENT)
2012 PRINTK("RS_EVENT ");
2013 if (status & RS_RINGOPCHANGE)
2014 PRINTK("RS_RINGOPCHANGE ");
2015 if (status & RS_RES0)
2016 PRINTK("RS_RES0 ");
2017 PRINTK("]\n");
2018 } // ring_status_indication
2021 /************************
2023 * smt_get_time
2025 * Gets the current time from the system.
2026 * Args
2027 * None.
2028 * Out
2029 * The current time in TICKS_PER_SECOND.
2031 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2032 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2033 * to the time returned by smt_get_time().
2035 ************************/
2036 unsigned long smt_get_time(void)
2038 return jiffies;
2039 } // smt_get_time
2042 /************************
2044 * smt_stat_counter
2046 * Status counter update (ring_op, fifo full).
2047 * Args
2048 * smc - A pointer to the SMT context struct.
2050 * stat - = 0: A ring operational change occurred.
2051 * = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2052 * Out
2053 * Nothing.
2055 ************************/
2056 void smt_stat_counter(struct s_smc *smc, int stat)
2058 // BOOLEAN RingIsUp ;
2060 PRINTK(KERN_INFO "smt_stat_counter\n");
2061 switch (stat) {
2062 case 0:
2063 PRINTK(KERN_INFO "Ring operational change.\n");
2064 break;
2065 case 1:
2066 PRINTK(KERN_INFO "Receive fifo overflow.\n");
2067 smc->os.MacStat.gen.rx_errors++;
2068 break;
2069 default:
2070 PRINTK(KERN_INFO "Unknown status (%d).\n", stat);
2071 break;
2073 } // smt_stat_counter
2076 /************************
2078 * cfm_state_change
2080 * Sets CFM state in custom statistics.
2081 * Args
2082 * smc - A pointer to the SMT context struct.
2084 * c_state - Possible values are:
2086 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2087 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2088 * Out
2089 * Nothing.
2091 ************************/
2092 void cfm_state_change(struct s_smc *smc, int c_state)
2094 #ifdef DRIVERDEBUG
2095 char *s;
2097 switch (c_state) {
2098 case SC0_ISOLATED:
2099 s = "SC0_ISOLATED";
2100 break;
2101 case SC1_WRAP_A:
2102 s = "SC1_WRAP_A";
2103 break;
2104 case SC2_WRAP_B:
2105 s = "SC2_WRAP_B";
2106 break;
2107 case SC4_THRU_A:
2108 s = "SC4_THRU_A";
2109 break;
2110 case SC5_THRU_B:
2111 s = "SC5_THRU_B";
2112 break;
2113 case SC7_WRAP_S:
2114 s = "SC7_WRAP_S";
2115 break;
2116 case SC9_C_WRAP_A:
2117 s = "SC9_C_WRAP_A";
2118 break;
2119 case SC10_C_WRAP_B:
2120 s = "SC10_C_WRAP_B";
2121 break;
2122 case SC11_C_WRAP_S:
2123 s = "SC11_C_WRAP_S";
2124 break;
2125 default:
2126 PRINTK(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
2127 return;
2129 PRINTK(KERN_INFO "cfm_state_change: %s\n", s);
2130 #endif // DRIVERDEBUG
2131 } // cfm_state_change
2134 /************************
2136 * ecm_state_change
2138 * Sets ECM state in custom statistics.
2139 * Args
2140 * smc - A pointer to the SMT context struct.
2142 * e_state - Possible values are:
2144 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2145 * SC5_THRU_B (7), SC7_WRAP_S (8)
2146 * Out
2147 * Nothing.
2149 ************************/
2150 void ecm_state_change(struct s_smc *smc, int e_state)
2152 #ifdef DRIVERDEBUG
2153 char *s;
2155 switch (e_state) {
2156 case EC0_OUT:
2157 s = "EC0_OUT";
2158 break;
2159 case EC1_IN:
2160 s = "EC1_IN";
2161 break;
2162 case EC2_TRACE:
2163 s = "EC2_TRACE";
2164 break;
2165 case EC3_LEAVE:
2166 s = "EC3_LEAVE";
2167 break;
2168 case EC4_PATH_TEST:
2169 s = "EC4_PATH_TEST";
2170 break;
2171 case EC5_INSERT:
2172 s = "EC5_INSERT";
2173 break;
2174 case EC6_CHECK:
2175 s = "EC6_CHECK";
2176 break;
2177 case EC7_DEINSERT:
2178 s = "EC7_DEINSERT";
2179 break;
2180 default:
2181 s = "unknown";
2182 break;
2184 PRINTK(KERN_INFO "ecm_state_change: %s\n", s);
2185 #endif //DRIVERDEBUG
2186 } // ecm_state_change
2189 /************************
2191 * rmt_state_change
2193 * Sets RMT state in custom statistics.
2194 * Args
2195 * smc - A pointer to the SMT context struct.
2197 * r_state - Possible values are:
2199 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2200 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2201 * Out
2202 * Nothing.
2204 ************************/
2205 void rmt_state_change(struct s_smc *smc, int r_state)
2207 #ifdef DRIVERDEBUG
2208 char *s;
2210 switch (r_state) {
2211 case RM0_ISOLATED:
2212 s = "RM0_ISOLATED";
2213 break;
2214 case RM1_NON_OP:
2215 s = "RM1_NON_OP - not operational";
2216 break;
2217 case RM2_RING_OP:
2218 s = "RM2_RING_OP - ring operational";
2219 break;
2220 case RM3_DETECT:
2221 s = "RM3_DETECT - detect dupl addresses";
2222 break;
2223 case RM4_NON_OP_DUP:
2224 s = "RM4_NON_OP_DUP - dupl. addr detected";
2225 break;
2226 case RM5_RING_OP_DUP:
2227 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2228 break;
2229 case RM6_DIRECTED:
2230 s = "RM6_DIRECTED - sending directed beacons";
2231 break;
2232 case RM7_TRACE:
2233 s = "RM7_TRACE - trace initiated";
2234 break;
2235 default:
2236 s = "unknown";
2237 break;
2239 PRINTK(KERN_INFO "[rmt_state_change: %s]\n", s);
2240 #endif // DRIVERDEBUG
2241 } // rmt_state_change
2244 /************************
2246 * drv_reset_indication
2248 * This function is called by the SMT when it has detected a severe
2249 * hardware problem. The driver should perform a reset on the adapter
2250 * as soon as possible, but not from within this function.
2251 * Args
2252 * smc - A pointer to the SMT context struct.
2253 * Out
2254 * Nothing.
2256 ************************/
2257 void drv_reset_indication(struct s_smc *smc)
2259 PRINTK(KERN_INFO "entering drv_reset_indication\n");
2261 smc->os.ResetRequested = TRUE; // Set flag.
2263 } // drv_reset_indication
2265 static struct pci_driver skfddi_pci_driver = {
2266 .name = "skfddi",
2267 .id_table = skfddi_pci_tbl,
2268 .probe = skfp_init_one,
2269 .remove = __devexit_p(skfp_remove_one),
2272 static int __init skfd_init(void)
2274 return pci_register_driver(&skfddi_pci_driver);
2277 static void __exit skfd_exit(void)
2279 pci_unregister_driver(&skfddi_pci_driver);
2282 module_init(skfd_init);
2283 module_exit(skfd_exit);