V4L/DVB (6715): ivtv: Remove unnecessary register update
[linux-2.6/verdex.git] / drivers / net / sunhme.c
blob9cc13dd8a82182cd2718ebf01d9c45fc255e9610
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2 * auto carrier detecting ethernet driver. Also known as the
3 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
5 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6 2006 David S. Miller (davem@davemloft.net)
8 * Changes :
9 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10 * - port to non-sparc architectures. Tested only on x86 and
11 * only currently works with QFE PCI cards.
12 * - ability to specify the MAC address at module load time by passing this
13 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/mm.h>
36 #include <linux/bitops.h>
38 #include <asm/system.h>
39 #include <asm/io.h>
40 #include <asm/dma.h>
41 #include <asm/byteorder.h>
43 #ifdef CONFIG_SPARC
44 #include <asm/idprom.h>
45 #include <asm/sbus.h>
46 #include <asm/openprom.h>
47 #include <asm/oplib.h>
48 #include <asm/prom.h>
49 #include <asm/auxio.h>
50 #endif
51 #include <asm/uaccess.h>
53 #include <asm/pgtable.h>
54 #include <asm/irq.h>
56 #ifdef CONFIG_PCI
57 #include <linux/pci.h>
58 #endif
60 #include "sunhme.h"
62 #define DRV_NAME "sunhme"
63 #define DRV_VERSION "3.00"
64 #define DRV_RELDATE "June 23, 2006"
65 #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
67 static char version[] =
68 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_AUTHOR);
72 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
73 MODULE_LICENSE("GPL");
75 static int macaddr[6];
77 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
78 module_param_array(macaddr, int, NULL, 0);
79 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
81 #ifdef CONFIG_SBUS
82 static struct quattro *qfe_sbus_list;
83 #endif
85 #ifdef CONFIG_PCI
86 static struct quattro *qfe_pci_list;
87 #endif
89 #undef HMEDEBUG
90 #undef SXDEBUG
91 #undef RXDEBUG
92 #undef TXDEBUG
93 #undef TXLOGGING
95 #ifdef TXLOGGING
96 struct hme_tx_logent {
97 unsigned int tstamp;
98 int tx_new, tx_old;
99 unsigned int action;
100 #define TXLOG_ACTION_IRQ 0x01
101 #define TXLOG_ACTION_TXMIT 0x02
102 #define TXLOG_ACTION_TBUSY 0x04
103 #define TXLOG_ACTION_NBUFS 0x08
104 unsigned int status;
106 #define TX_LOG_LEN 128
107 static struct hme_tx_logent tx_log[TX_LOG_LEN];
108 static int txlog_cur_entry;
109 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
111 struct hme_tx_logent *tlp;
112 unsigned long flags;
114 save_and_cli(flags);
115 tlp = &tx_log[txlog_cur_entry];
116 tlp->tstamp = (unsigned int)jiffies;
117 tlp->tx_new = hp->tx_new;
118 tlp->tx_old = hp->tx_old;
119 tlp->action = a;
120 tlp->status = s;
121 txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
122 restore_flags(flags);
124 static __inline__ void tx_dump_log(void)
126 int i, this;
128 this = txlog_cur_entry;
129 for (i = 0; i < TX_LOG_LEN; i++) {
130 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
131 tx_log[this].tstamp,
132 tx_log[this].tx_new, tx_log[this].tx_old,
133 tx_log[this].action, tx_log[this].status);
134 this = (this + 1) & (TX_LOG_LEN - 1);
137 static __inline__ void tx_dump_ring(struct happy_meal *hp)
139 struct hmeal_init_block *hb = hp->happy_block;
140 struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
141 int i;
143 for (i = 0; i < TX_RING_SIZE; i+=4) {
144 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
145 i, i + 4,
146 le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
147 le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
148 le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
149 le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
152 #else
153 #define tx_add_log(hp, a, s) do { } while(0)
154 #define tx_dump_log() do { } while(0)
155 #define tx_dump_ring(hp) do { } while(0)
156 #endif
158 #ifdef HMEDEBUG
159 #define HMD(x) printk x
160 #else
161 #define HMD(x)
162 #endif
164 /* #define AUTO_SWITCH_DEBUG */
166 #ifdef AUTO_SWITCH_DEBUG
167 #define ASD(x) printk x
168 #else
169 #define ASD(x)
170 #endif
172 #define DEFAULT_IPG0 16 /* For lance-mode only */
173 #define DEFAULT_IPG1 8 /* For all modes */
174 #define DEFAULT_IPG2 4 /* For all modes */
175 #define DEFAULT_JAMSIZE 4 /* Toe jam */
177 /* NOTE: In the descriptor writes one _must_ write the address
178 * member _first_. The card must not be allowed to see
179 * the updated descriptor flags until the address is
180 * correct. I've added a write memory barrier between
181 * the two stores so that I can sleep well at night... -DaveM
184 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
185 static void sbus_hme_write32(void __iomem *reg, u32 val)
187 sbus_writel(val, reg);
190 static u32 sbus_hme_read32(void __iomem *reg)
192 return sbus_readl(reg);
195 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
197 rxd->rx_addr = addr;
198 wmb();
199 rxd->rx_flags = flags;
202 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
204 txd->tx_addr = addr;
205 wmb();
206 txd->tx_flags = flags;
209 static u32 sbus_hme_read_desc32(u32 *p)
211 return *p;
214 static void pci_hme_write32(void __iomem *reg, u32 val)
216 writel(val, reg);
219 static u32 pci_hme_read32(void __iomem *reg)
221 return readl(reg);
224 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
226 rxd->rx_addr = cpu_to_le32(addr);
227 wmb();
228 rxd->rx_flags = cpu_to_le32(flags);
231 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
233 txd->tx_addr = cpu_to_le32(addr);
234 wmb();
235 txd->tx_flags = cpu_to_le32(flags);
238 static u32 pci_hme_read_desc32(u32 *p)
240 return cpu_to_le32p(p);
243 #define hme_write32(__hp, __reg, __val) \
244 ((__hp)->write32((__reg), (__val)))
245 #define hme_read32(__hp, __reg) \
246 ((__hp)->read32(__reg))
247 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
248 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
249 #define hme_write_txd(__hp, __txd, __flags, __addr) \
250 ((__hp)->write_txd((__txd), (__flags), (__addr)))
251 #define hme_read_desc32(__hp, __p) \
252 ((__hp)->read_desc32(__p))
253 #define hme_dma_map(__hp, __ptr, __size, __dir) \
254 ((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir)))
255 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
256 ((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir)))
257 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
258 ((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)))
259 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
260 ((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)))
261 #else
262 #ifdef CONFIG_SBUS
263 /* SBUS only compilation */
264 #define hme_write32(__hp, __reg, __val) \
265 sbus_writel((__val), (__reg))
266 #define hme_read32(__hp, __reg) \
267 sbus_readl(__reg)
268 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
269 do { (__rxd)->rx_addr = (__addr); \
270 wmb(); \
271 (__rxd)->rx_flags = (__flags); \
272 } while(0)
273 #define hme_write_txd(__hp, __txd, __flags, __addr) \
274 do { (__txd)->tx_addr = (__addr); \
275 wmb(); \
276 (__txd)->tx_flags = (__flags); \
277 } while(0)
278 #define hme_read_desc32(__hp, __p) (*(__p))
279 #define hme_dma_map(__hp, __ptr, __size, __dir) \
280 sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
281 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
282 sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
283 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
284 sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
285 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
286 sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
287 #else
288 /* PCI only compilation */
289 #define hme_write32(__hp, __reg, __val) \
290 writel((__val), (__reg))
291 #define hme_read32(__hp, __reg) \
292 readl(__reg)
293 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
294 do { (__rxd)->rx_addr = cpu_to_le32(__addr); \
295 wmb(); \
296 (__rxd)->rx_flags = cpu_to_le32(__flags); \
297 } while(0)
298 #define hme_write_txd(__hp, __txd, __flags, __addr) \
299 do { (__txd)->tx_addr = cpu_to_le32(__addr); \
300 wmb(); \
301 (__txd)->tx_flags = cpu_to_le32(__flags); \
302 } while(0)
303 #define hme_read_desc32(__hp, __p) cpu_to_le32p(__p)
304 #define hme_dma_map(__hp, __ptr, __size, __dir) \
305 pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
306 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
307 pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
308 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
309 pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
310 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
311 pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
312 #endif
313 #endif
316 #ifdef SBUS_DMA_BIDIRECTIONAL
317 # define DMA_BIDIRECTIONAL SBUS_DMA_BIDIRECTIONAL
318 #else
319 # define DMA_BIDIRECTIONAL 0
320 #endif
322 #ifdef SBUS_DMA_FROMDEVICE
323 # define DMA_FROMDEVICE SBUS_DMA_FROMDEVICE
324 #else
325 # define DMA_TODEVICE 1
326 #endif
328 #ifdef SBUS_DMA_TODEVICE
329 # define DMA_TODEVICE SBUS_DMA_TODEVICE
330 #else
331 # define DMA_FROMDEVICE 2
332 #endif
335 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
336 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
338 hme_write32(hp, tregs + TCVR_BBDATA, bit);
339 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
340 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
343 #if 0
344 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
346 u32 ret;
348 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
349 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
350 ret = hme_read32(hp, tregs + TCVR_CFG);
351 if (internal)
352 ret &= TCV_CFG_MDIO0;
353 else
354 ret &= TCV_CFG_MDIO1;
356 return ret;
358 #endif
360 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
362 u32 retval;
364 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
365 udelay(1);
366 retval = hme_read32(hp, tregs + TCVR_CFG);
367 if (internal)
368 retval &= TCV_CFG_MDIO0;
369 else
370 retval &= TCV_CFG_MDIO1;
371 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
373 return retval;
376 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
378 static int happy_meal_bb_read(struct happy_meal *hp,
379 void __iomem *tregs, int reg)
381 u32 tmp;
382 int retval = 0;
383 int i;
385 ASD(("happy_meal_bb_read: reg=%d ", reg));
387 /* Enable the MIF BitBang outputs. */
388 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
390 /* Force BitBang into the idle state. */
391 for (i = 0; i < 32; i++)
392 BB_PUT_BIT(hp, tregs, 1);
394 /* Give it the read sequence. */
395 BB_PUT_BIT(hp, tregs, 0);
396 BB_PUT_BIT(hp, tregs, 1);
397 BB_PUT_BIT(hp, tregs, 1);
398 BB_PUT_BIT(hp, tregs, 0);
400 /* Give it the PHY address. */
401 tmp = hp->paddr & 0xff;
402 for (i = 4; i >= 0; i--)
403 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
405 /* Tell it what register we want to read. */
406 tmp = (reg & 0xff);
407 for (i = 4; i >= 0; i--)
408 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
410 /* Close down the MIF BitBang outputs. */
411 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
413 /* Now read in the value. */
414 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
415 for (i = 15; i >= 0; i--)
416 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
417 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
418 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
419 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
420 ASD(("value=%x\n", retval));
421 return retval;
424 static void happy_meal_bb_write(struct happy_meal *hp,
425 void __iomem *tregs, int reg,
426 unsigned short value)
428 u32 tmp;
429 int i;
431 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
433 /* Enable the MIF BitBang outputs. */
434 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
436 /* Force BitBang into the idle state. */
437 for (i = 0; i < 32; i++)
438 BB_PUT_BIT(hp, tregs, 1);
440 /* Give it write sequence. */
441 BB_PUT_BIT(hp, tregs, 0);
442 BB_PUT_BIT(hp, tregs, 1);
443 BB_PUT_BIT(hp, tregs, 0);
444 BB_PUT_BIT(hp, tregs, 1);
446 /* Give it the PHY address. */
447 tmp = (hp->paddr & 0xff);
448 for (i = 4; i >= 0; i--)
449 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
451 /* Tell it what register we will be writing. */
452 tmp = (reg & 0xff);
453 for (i = 4; i >= 0; i--)
454 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
456 /* Tell it to become ready for the bits. */
457 BB_PUT_BIT(hp, tregs, 1);
458 BB_PUT_BIT(hp, tregs, 0);
460 for (i = 15; i >= 0; i--)
461 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
463 /* Close down the MIF BitBang outputs. */
464 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
467 #define TCVR_READ_TRIES 16
469 static int happy_meal_tcvr_read(struct happy_meal *hp,
470 void __iomem *tregs, int reg)
472 int tries = TCVR_READ_TRIES;
473 int retval;
475 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
476 if (hp->tcvr_type == none) {
477 ASD(("no transceiver, value=TCVR_FAILURE\n"));
478 return TCVR_FAILURE;
481 if (!(hp->happy_flags & HFLAG_FENABLE)) {
482 ASD(("doing bit bang\n"));
483 return happy_meal_bb_read(hp, tregs, reg);
486 hme_write32(hp, tregs + TCVR_FRAME,
487 (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
488 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
489 udelay(20);
490 if (!tries) {
491 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
492 return TCVR_FAILURE;
494 retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
495 ASD(("value=%04x\n", retval));
496 return retval;
499 #define TCVR_WRITE_TRIES 16
501 static void happy_meal_tcvr_write(struct happy_meal *hp,
502 void __iomem *tregs, int reg,
503 unsigned short value)
505 int tries = TCVR_WRITE_TRIES;
507 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
509 /* Welcome to Sun Microsystems, can I take your order please? */
510 if (!(hp->happy_flags & HFLAG_FENABLE)) {
511 happy_meal_bb_write(hp, tregs, reg, value);
512 return;
515 /* Would you like fries with that? */
516 hme_write32(hp, tregs + TCVR_FRAME,
517 (FRAME_WRITE | (hp->paddr << 23) |
518 ((reg & 0xff) << 18) | (value & 0xffff)));
519 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
520 udelay(20);
522 /* Anything else? */
523 if (!tries)
524 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
526 /* Fifty-two cents is your change, have a nice day. */
529 /* Auto negotiation. The scheme is very simple. We have a timer routine
530 * that keeps watching the auto negotiation process as it progresses.
531 * The DP83840 is first told to start doing it's thing, we set up the time
532 * and place the timer state machine in it's initial state.
534 * Here the timer peeks at the DP83840 status registers at each click to see
535 * if the auto negotiation has completed, we assume here that the DP83840 PHY
536 * will time out at some point and just tell us what (didn't) happen. For
537 * complete coverage we only allow so many of the ticks at this level to run,
538 * when this has expired we print a warning message and try another strategy.
539 * This "other" strategy is to force the interface into various speed/duplex
540 * configurations and we stop when we see a link-up condition before the
541 * maximum number of "peek" ticks have occurred.
543 * Once a valid link status has been detected we configure the BigMAC and
544 * the rest of the Happy Meal to speak the most efficient protocol we could
545 * get a clean link for. The priority for link configurations, highest first
546 * is:
547 * 100 Base-T Full Duplex
548 * 100 Base-T Half Duplex
549 * 10 Base-T Full Duplex
550 * 10 Base-T Half Duplex
552 * We start a new timer now, after a successful auto negotiation status has
553 * been detected. This timer just waits for the link-up bit to get set in
554 * the BMCR of the DP83840. When this occurs we print a kernel log message
555 * describing the link type in use and the fact that it is up.
557 * If a fatal error of some sort is signalled and detected in the interrupt
558 * service routine, and the chip is reset, or the link is ifconfig'd down
559 * and then back up, this entire process repeats itself all over again.
561 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
563 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
565 /* Downgrade from full to half duplex. Only possible
566 * via ethtool.
568 if (hp->sw_bmcr & BMCR_FULLDPLX) {
569 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
570 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
571 return 0;
574 /* Downgrade from 100 to 10. */
575 if (hp->sw_bmcr & BMCR_SPEED100) {
576 hp->sw_bmcr &= ~(BMCR_SPEED100);
577 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
578 return 0;
581 /* We've tried everything. */
582 return -1;
585 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
587 printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
588 if (hp->tcvr_type == external)
589 printk("external ");
590 else
591 printk("internal ");
592 printk("transceiver at ");
593 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
594 if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
595 if (hp->sw_lpa & LPA_100FULL)
596 printk("100Mb/s, Full Duplex.\n");
597 else
598 printk("100Mb/s, Half Duplex.\n");
599 } else {
600 if (hp->sw_lpa & LPA_10FULL)
601 printk("10Mb/s, Full Duplex.\n");
602 else
603 printk("10Mb/s, Half Duplex.\n");
607 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
609 printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
610 if (hp->tcvr_type == external)
611 printk("external ");
612 else
613 printk("internal ");
614 printk("transceiver at ");
615 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
616 if (hp->sw_bmcr & BMCR_SPEED100)
617 printk("100Mb/s, ");
618 else
619 printk("10Mb/s, ");
620 if (hp->sw_bmcr & BMCR_FULLDPLX)
621 printk("Full Duplex.\n");
622 else
623 printk("Half Duplex.\n");
626 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
628 int full;
630 /* All we care about is making sure the bigmac tx_cfg has a
631 * proper duplex setting.
633 if (hp->timer_state == arbwait) {
634 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
635 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
636 goto no_response;
637 if (hp->sw_lpa & LPA_100FULL)
638 full = 1;
639 else if (hp->sw_lpa & LPA_100HALF)
640 full = 0;
641 else if (hp->sw_lpa & LPA_10FULL)
642 full = 1;
643 else
644 full = 0;
645 } else {
646 /* Forcing a link mode. */
647 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
648 if (hp->sw_bmcr & BMCR_FULLDPLX)
649 full = 1;
650 else
651 full = 0;
654 /* Before changing other bits in the tx_cfg register, and in
655 * general any of other the TX config registers too, you
656 * must:
657 * 1) Clear Enable
658 * 2) Poll with reads until that bit reads back as zero
659 * 3) Make TX configuration changes
660 * 4) Set Enable once more
662 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
663 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
664 ~(BIGMAC_TXCFG_ENABLE));
665 while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
666 barrier();
667 if (full) {
668 hp->happy_flags |= HFLAG_FULL;
669 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
670 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
671 BIGMAC_TXCFG_FULLDPLX);
672 } else {
673 hp->happy_flags &= ~(HFLAG_FULL);
674 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
675 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
676 ~(BIGMAC_TXCFG_FULLDPLX));
678 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
679 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
680 BIGMAC_TXCFG_ENABLE);
681 return 0;
682 no_response:
683 return 1;
686 static int happy_meal_init(struct happy_meal *hp);
688 static int is_lucent_phy(struct happy_meal *hp)
690 void __iomem *tregs = hp->tcvregs;
691 unsigned short mr2, mr3;
692 int ret = 0;
694 mr2 = happy_meal_tcvr_read(hp, tregs, 2);
695 mr3 = happy_meal_tcvr_read(hp, tregs, 3);
696 if ((mr2 & 0xffff) == 0x0180 &&
697 ((mr3 & 0xffff) >> 10) == 0x1d)
698 ret = 1;
700 return ret;
703 static void happy_meal_timer(unsigned long data)
705 struct happy_meal *hp = (struct happy_meal *) data;
706 void __iomem *tregs = hp->tcvregs;
707 int restart_timer = 0;
709 spin_lock_irq(&hp->happy_lock);
711 hp->timer_ticks++;
712 switch(hp->timer_state) {
713 case arbwait:
714 /* Only allow for 5 ticks, thats 10 seconds and much too
715 * long to wait for arbitration to complete.
717 if (hp->timer_ticks >= 10) {
718 /* Enter force mode. */
719 do_force_mode:
720 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
721 printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
722 hp->dev->name);
723 hp->sw_bmcr = BMCR_SPEED100;
724 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
726 if (!is_lucent_phy(hp)) {
727 /* OK, seems we need do disable the transceiver for the first
728 * tick to make sure we get an accurate link state at the
729 * second tick.
731 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
732 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
733 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
735 hp->timer_state = ltrywait;
736 hp->timer_ticks = 0;
737 restart_timer = 1;
738 } else {
739 /* Anything interesting happen? */
740 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
741 if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
742 int ret;
744 /* Just what we've been waiting for... */
745 ret = set_happy_link_modes(hp, tregs);
746 if (ret) {
747 /* Ooops, something bad happened, go to force
748 * mode.
750 * XXX Broken hubs which don't support 802.3u
751 * XXX auto-negotiation make this happen as well.
753 goto do_force_mode;
756 /* Success, at least so far, advance our state engine. */
757 hp->timer_state = lupwait;
758 restart_timer = 1;
759 } else {
760 restart_timer = 1;
763 break;
765 case lupwait:
766 /* Auto negotiation was successful and we are awaiting a
767 * link up status. I have decided to let this timer run
768 * forever until some sort of error is signalled, reporting
769 * a message to the user at 10 second intervals.
771 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
772 if (hp->sw_bmsr & BMSR_LSTATUS) {
773 /* Wheee, it's up, display the link mode in use and put
774 * the timer to sleep.
776 display_link_mode(hp, tregs);
777 hp->timer_state = asleep;
778 restart_timer = 0;
779 } else {
780 if (hp->timer_ticks >= 10) {
781 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
782 "not completely up.\n", hp->dev->name);
783 hp->timer_ticks = 0;
784 restart_timer = 1;
785 } else {
786 restart_timer = 1;
789 break;
791 case ltrywait:
792 /* Making the timeout here too long can make it take
793 * annoyingly long to attempt all of the link mode
794 * permutations, but then again this is essentially
795 * error recovery code for the most part.
797 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
798 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
799 if (hp->timer_ticks == 1) {
800 if (!is_lucent_phy(hp)) {
801 /* Re-enable transceiver, we'll re-enable the transceiver next
802 * tick, then check link state on the following tick.
804 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
805 happy_meal_tcvr_write(hp, tregs,
806 DP83840_CSCONFIG, hp->sw_csconfig);
808 restart_timer = 1;
809 break;
811 if (hp->timer_ticks == 2) {
812 if (!is_lucent_phy(hp)) {
813 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
814 happy_meal_tcvr_write(hp, tregs,
815 DP83840_CSCONFIG, hp->sw_csconfig);
817 restart_timer = 1;
818 break;
820 if (hp->sw_bmsr & BMSR_LSTATUS) {
821 /* Force mode selection success. */
822 display_forced_link_mode(hp, tregs);
823 set_happy_link_modes(hp, tregs); /* XXX error? then what? */
824 hp->timer_state = asleep;
825 restart_timer = 0;
826 } else {
827 if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
828 int ret;
830 ret = try_next_permutation(hp, tregs);
831 if (ret == -1) {
832 /* Aieee, tried them all, reset the
833 * chip and try all over again.
836 /* Let the user know... */
837 printk(KERN_NOTICE "%s: Link down, cable problem?\n",
838 hp->dev->name);
840 ret = happy_meal_init(hp);
841 if (ret) {
842 /* ho hum... */
843 printk(KERN_ERR "%s: Error, cannot re-init the "
844 "Happy Meal.\n", hp->dev->name);
846 goto out;
848 if (!is_lucent_phy(hp)) {
849 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
850 DP83840_CSCONFIG);
851 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
852 happy_meal_tcvr_write(hp, tregs,
853 DP83840_CSCONFIG, hp->sw_csconfig);
855 hp->timer_ticks = 0;
856 restart_timer = 1;
857 } else {
858 restart_timer = 1;
861 break;
863 case asleep:
864 default:
865 /* Can't happens.... */
866 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
867 hp->dev->name);
868 restart_timer = 0;
869 hp->timer_ticks = 0;
870 hp->timer_state = asleep; /* foo on you */
871 break;
874 if (restart_timer) {
875 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
876 add_timer(&hp->happy_timer);
879 out:
880 spin_unlock_irq(&hp->happy_lock);
883 #define TX_RESET_TRIES 32
884 #define RX_RESET_TRIES 32
886 /* hp->happy_lock must be held */
887 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
889 int tries = TX_RESET_TRIES;
891 HMD(("happy_meal_tx_reset: reset, "));
893 /* Would you like to try our SMCC Delux? */
894 hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
895 while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
896 udelay(20);
898 /* Lettuce, tomato, buggy hardware (no extra charge)? */
899 if (!tries)
900 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
902 /* Take care. */
903 HMD(("done\n"));
906 /* hp->happy_lock must be held */
907 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
909 int tries = RX_RESET_TRIES;
911 HMD(("happy_meal_rx_reset: reset, "));
913 /* We have a special on GNU/Viking hardware bugs today. */
914 hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
915 while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
916 udelay(20);
918 /* Will that be all? */
919 if (!tries)
920 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
922 /* Don't forget your vik_1137125_wa. Have a nice day. */
923 HMD(("done\n"));
926 #define STOP_TRIES 16
928 /* hp->happy_lock must be held */
929 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
931 int tries = STOP_TRIES;
933 HMD(("happy_meal_stop: reset, "));
935 /* We're consolidating our STB products, it's your lucky day. */
936 hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
937 while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
938 udelay(20);
940 /* Come back next week when we are "Sun Microelectronics". */
941 if (!tries)
942 printk(KERN_ERR "happy meal: Fry guys.");
944 /* Remember: "Different name, same old buggy as shit hardware." */
945 HMD(("done\n"));
948 /* hp->happy_lock must be held */
949 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
951 struct net_device_stats *stats = &hp->net_stats;
953 stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
954 hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
956 stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
957 hme_write32(hp, bregs + BMAC_UNALECTR, 0);
959 stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
960 hme_write32(hp, bregs + BMAC_GLECTR, 0);
962 stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
964 stats->collisions +=
965 (hme_read32(hp, bregs + BMAC_EXCTR) +
966 hme_read32(hp, bregs + BMAC_LTCTR));
967 hme_write32(hp, bregs + BMAC_EXCTR, 0);
968 hme_write32(hp, bregs + BMAC_LTCTR, 0);
971 /* hp->happy_lock must be held */
972 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
974 ASD(("happy_meal_poll_stop: "));
976 /* If polling disabled or not polling already, nothing to do. */
977 if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
978 (HFLAG_POLLENABLE | HFLAG_POLL)) {
979 HMD(("not polling, return\n"));
980 return;
983 /* Shut up the MIF. */
984 ASD(("were polling, mif ints off, "));
985 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
987 /* Turn off polling. */
988 ASD(("polling off, "));
989 hme_write32(hp, tregs + TCVR_CFG,
990 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
992 /* We are no longer polling. */
993 hp->happy_flags &= ~(HFLAG_POLL);
995 /* Let the bits set. */
996 udelay(200);
997 ASD(("done\n"));
1000 /* Only Sun can take such nice parts and fuck up the programming interface
1001 * like this. Good job guys...
1003 #define TCVR_RESET_TRIES 16 /* It should reset quickly */
1004 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
1006 /* hp->happy_lock must be held */
1007 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
1009 u32 tconfig;
1010 int result, tries = TCVR_RESET_TRIES;
1012 tconfig = hme_read32(hp, tregs + TCVR_CFG);
1013 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1014 if (hp->tcvr_type == external) {
1015 ASD(("external<"));
1016 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1017 hp->tcvr_type = internal;
1018 hp->paddr = TCV_PADDR_ITX;
1019 ASD(("ISOLATE,"));
1020 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1021 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1022 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1023 if (result == TCVR_FAILURE) {
1024 ASD(("phyread_fail>\n"));
1025 return -1;
1027 ASD(("phyread_ok,PSELECT>"));
1028 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1029 hp->tcvr_type = external;
1030 hp->paddr = TCV_PADDR_ETX;
1031 } else {
1032 if (tconfig & TCV_CFG_MDIO1) {
1033 ASD(("internal<PSELECT,"));
1034 hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1035 ASD(("ISOLATE,"));
1036 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1037 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1038 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1039 if (result == TCVR_FAILURE) {
1040 ASD(("phyread_fail>\n"));
1041 return -1;
1043 ASD(("phyread_ok,~PSELECT>"));
1044 hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1045 hp->tcvr_type = internal;
1046 hp->paddr = TCV_PADDR_ITX;
1050 ASD(("BMCR_RESET "));
1051 happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1053 while (--tries) {
1054 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1055 if (result == TCVR_FAILURE)
1056 return -1;
1057 hp->sw_bmcr = result;
1058 if (!(result & BMCR_RESET))
1059 break;
1060 udelay(20);
1062 if (!tries) {
1063 ASD(("BMCR RESET FAILED!\n"));
1064 return -1;
1066 ASD(("RESET_OK\n"));
1068 /* Get fresh copies of the PHY registers. */
1069 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1070 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1071 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1072 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1074 ASD(("UNISOLATE"));
1075 hp->sw_bmcr &= ~(BMCR_ISOLATE);
1076 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1078 tries = TCVR_UNISOLATE_TRIES;
1079 while (--tries) {
1080 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1081 if (result == TCVR_FAILURE)
1082 return -1;
1083 if (!(result & BMCR_ISOLATE))
1084 break;
1085 udelay(20);
1087 if (!tries) {
1088 ASD((" FAILED!\n"));
1089 return -1;
1091 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1092 if (!is_lucent_phy(hp)) {
1093 result = happy_meal_tcvr_read(hp, tregs,
1094 DP83840_CSCONFIG);
1095 happy_meal_tcvr_write(hp, tregs,
1096 DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1098 return 0;
1101 /* Figure out whether we have an internal or external transceiver.
1103 * hp->happy_lock must be held
1105 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1107 unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1109 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1110 if (hp->happy_flags & HFLAG_POLL) {
1111 /* If we are polling, we must stop to get the transceiver type. */
1112 ASD(("<polling> "));
1113 if (hp->tcvr_type == internal) {
1114 if (tconfig & TCV_CFG_MDIO1) {
1115 ASD(("<internal> <poll stop> "));
1116 happy_meal_poll_stop(hp, tregs);
1117 hp->paddr = TCV_PADDR_ETX;
1118 hp->tcvr_type = external;
1119 ASD(("<external>\n"));
1120 tconfig &= ~(TCV_CFG_PENABLE);
1121 tconfig |= TCV_CFG_PSELECT;
1122 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1124 } else {
1125 if (hp->tcvr_type == external) {
1126 ASD(("<external> "));
1127 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1128 ASD(("<poll stop> "));
1129 happy_meal_poll_stop(hp, tregs);
1130 hp->paddr = TCV_PADDR_ITX;
1131 hp->tcvr_type = internal;
1132 ASD(("<internal>\n"));
1133 hme_write32(hp, tregs + TCVR_CFG,
1134 hme_read32(hp, tregs + TCVR_CFG) &
1135 ~(TCV_CFG_PSELECT));
1137 ASD(("\n"));
1138 } else {
1139 ASD(("<none>\n"));
1142 } else {
1143 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1145 /* Else we can just work off of the MDIO bits. */
1146 ASD(("<not polling> "));
1147 if (reread & TCV_CFG_MDIO1) {
1148 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1149 hp->paddr = TCV_PADDR_ETX;
1150 hp->tcvr_type = external;
1151 ASD(("<external>\n"));
1152 } else {
1153 if (reread & TCV_CFG_MDIO0) {
1154 hme_write32(hp, tregs + TCVR_CFG,
1155 tconfig & ~(TCV_CFG_PSELECT));
1156 hp->paddr = TCV_PADDR_ITX;
1157 hp->tcvr_type = internal;
1158 ASD(("<internal>\n"));
1159 } else {
1160 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1161 hp->tcvr_type = none; /* Grrr... */
1162 ASD(("<none>\n"));
1168 /* The receive ring buffers are a bit tricky to get right. Here goes...
1170 * The buffers we dma into must be 64 byte aligned. So we use a special
1171 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1172 * we really need.
1174 * We use skb_reserve() to align the data block we get in the skb. We
1175 * also program the etxregs->cfg register to use an offset of 2. This
1176 * imperical constant plus the ethernet header size will always leave
1177 * us with a nicely aligned ip header once we pass things up to the
1178 * protocol layers.
1180 * The numbers work out to:
1182 * Max ethernet frame size 1518
1183 * Ethernet header size 14
1184 * Happy Meal base offset 2
1186 * Say a skb data area is at 0xf001b010, and its size alloced is
1187 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1189 * First our alloc_skb() routine aligns the data base to a 64 byte
1190 * boundary. We now have 0xf001b040 as our skb data address. We
1191 * plug this into the receive descriptor address.
1193 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1194 * So now the data we will end up looking at starts at 0xf001b042. When
1195 * the packet arrives, we will check out the size received and subtract
1196 * this from the skb->length. Then we just pass the packet up to the
1197 * protocols as is, and allocate a new skb to replace this slot we have
1198 * just received from.
1200 * The ethernet layer will strip the ether header from the front of the
1201 * skb we just sent to it, this leaves us with the ip header sitting
1202 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1203 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1204 * bit checksum is obtained from the low bits of the receive descriptor
1205 * flags, thus:
1207 * skb->csum = rxd->rx_flags & 0xffff;
1208 * skb->ip_summed = CHECKSUM_COMPLETE;
1210 * before sending off the skb to the protocols, and we are good as gold.
1212 static void happy_meal_clean_rings(struct happy_meal *hp)
1214 int i;
1216 for (i = 0; i < RX_RING_SIZE; i++) {
1217 if (hp->rx_skbs[i] != NULL) {
1218 struct sk_buff *skb = hp->rx_skbs[i];
1219 struct happy_meal_rxd *rxd;
1220 u32 dma_addr;
1222 rxd = &hp->happy_block->happy_meal_rxd[i];
1223 dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1224 hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
1225 dev_kfree_skb_any(skb);
1226 hp->rx_skbs[i] = NULL;
1230 for (i = 0; i < TX_RING_SIZE; i++) {
1231 if (hp->tx_skbs[i] != NULL) {
1232 struct sk_buff *skb = hp->tx_skbs[i];
1233 struct happy_meal_txd *txd;
1234 u32 dma_addr;
1235 int frag;
1237 hp->tx_skbs[i] = NULL;
1239 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1240 txd = &hp->happy_block->happy_meal_txd[i];
1241 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1242 hme_dma_unmap(hp, dma_addr,
1243 (hme_read_desc32(hp, &txd->tx_flags)
1244 & TXFLAG_SIZE),
1245 DMA_TODEVICE);
1247 if (frag != skb_shinfo(skb)->nr_frags)
1248 i++;
1251 dev_kfree_skb_any(skb);
1256 /* hp->happy_lock must be held */
1257 static void happy_meal_init_rings(struct happy_meal *hp)
1259 struct hmeal_init_block *hb = hp->happy_block;
1260 struct net_device *dev = hp->dev;
1261 int i;
1263 HMD(("happy_meal_init_rings: counters to zero, "));
1264 hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1266 /* Free any skippy bufs left around in the rings. */
1267 HMD(("clean, "));
1268 happy_meal_clean_rings(hp);
1270 /* Now get new skippy bufs for the receive ring. */
1271 HMD(("init rxring, "));
1272 for (i = 0; i < RX_RING_SIZE; i++) {
1273 struct sk_buff *skb;
1275 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1276 if (!skb) {
1277 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1278 continue;
1280 hp->rx_skbs[i] = skb;
1281 skb->dev = dev;
1283 /* Because we reserve afterwards. */
1284 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1285 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1286 (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1287 hme_dma_map(hp, skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
1288 skb_reserve(skb, RX_OFFSET);
1291 HMD(("init txring, "));
1292 for (i = 0; i < TX_RING_SIZE; i++)
1293 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1295 HMD(("done\n"));
1298 /* hp->happy_lock must be held */
1299 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1300 void __iomem *tregs,
1301 struct ethtool_cmd *ep)
1303 int timeout;
1305 /* Read all of the registers we are interested in now. */
1306 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1307 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1308 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1309 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1311 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1313 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1314 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1315 /* Advertise everything we can support. */
1316 if (hp->sw_bmsr & BMSR_10HALF)
1317 hp->sw_advertise |= (ADVERTISE_10HALF);
1318 else
1319 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1321 if (hp->sw_bmsr & BMSR_10FULL)
1322 hp->sw_advertise |= (ADVERTISE_10FULL);
1323 else
1324 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1325 if (hp->sw_bmsr & BMSR_100HALF)
1326 hp->sw_advertise |= (ADVERTISE_100HALF);
1327 else
1328 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1329 if (hp->sw_bmsr & BMSR_100FULL)
1330 hp->sw_advertise |= (ADVERTISE_100FULL);
1331 else
1332 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1333 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1335 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1336 * XXX and this is because the DP83840 does not support it, changes
1337 * XXX would need to be made to the tx/rx logic in the driver as well
1338 * XXX so I completely skip checking for it in the BMSR for now.
1341 #ifdef AUTO_SWITCH_DEBUG
1342 ASD(("%s: Advertising [ ", hp->dev->name));
1343 if (hp->sw_advertise & ADVERTISE_10HALF)
1344 ASD(("10H "));
1345 if (hp->sw_advertise & ADVERTISE_10FULL)
1346 ASD(("10F "));
1347 if (hp->sw_advertise & ADVERTISE_100HALF)
1348 ASD(("100H "));
1349 if (hp->sw_advertise & ADVERTISE_100FULL)
1350 ASD(("100F "));
1351 #endif
1353 /* Enable Auto-Negotiation, this is usually on already... */
1354 hp->sw_bmcr |= BMCR_ANENABLE;
1355 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1357 /* Restart it to make sure it is going. */
1358 hp->sw_bmcr |= BMCR_ANRESTART;
1359 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1361 /* BMCR_ANRESTART self clears when the process has begun. */
1363 timeout = 64; /* More than enough. */
1364 while (--timeout) {
1365 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1366 if (!(hp->sw_bmcr & BMCR_ANRESTART))
1367 break; /* got it. */
1368 udelay(10);
1370 if (!timeout) {
1371 printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1372 "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1373 printk(KERN_NOTICE "%s: Performing force link detection.\n",
1374 hp->dev->name);
1375 goto force_link;
1376 } else {
1377 hp->timer_state = arbwait;
1379 } else {
1380 force_link:
1381 /* Force the link up, trying first a particular mode.
1382 * Either we are here at the request of ethtool or
1383 * because the Happy Meal would not start to autoneg.
1386 /* Disable auto-negotiation in BMCR, enable the duplex and
1387 * speed setting, init the timer state machine, and fire it off.
1389 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1390 hp->sw_bmcr = BMCR_SPEED100;
1391 } else {
1392 if (ep->speed == SPEED_100)
1393 hp->sw_bmcr = BMCR_SPEED100;
1394 else
1395 hp->sw_bmcr = 0;
1396 if (ep->duplex == DUPLEX_FULL)
1397 hp->sw_bmcr |= BMCR_FULLDPLX;
1399 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1401 if (!is_lucent_phy(hp)) {
1402 /* OK, seems we need do disable the transceiver for the first
1403 * tick to make sure we get an accurate link state at the
1404 * second tick.
1406 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1407 DP83840_CSCONFIG);
1408 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1409 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1410 hp->sw_csconfig);
1412 hp->timer_state = ltrywait;
1415 hp->timer_ticks = 0;
1416 hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
1417 hp->happy_timer.data = (unsigned long) hp;
1418 hp->happy_timer.function = &happy_meal_timer;
1419 add_timer(&hp->happy_timer);
1422 /* hp->happy_lock must be held */
1423 static int happy_meal_init(struct happy_meal *hp)
1425 void __iomem *gregs = hp->gregs;
1426 void __iomem *etxregs = hp->etxregs;
1427 void __iomem *erxregs = hp->erxregs;
1428 void __iomem *bregs = hp->bigmacregs;
1429 void __iomem *tregs = hp->tcvregs;
1430 u32 regtmp, rxcfg;
1431 unsigned char *e = &hp->dev->dev_addr[0];
1433 /* If auto-negotiation timer is running, kill it. */
1434 del_timer(&hp->happy_timer);
1436 HMD(("happy_meal_init: happy_flags[%08x] ",
1437 hp->happy_flags));
1438 if (!(hp->happy_flags & HFLAG_INIT)) {
1439 HMD(("set HFLAG_INIT, "));
1440 hp->happy_flags |= HFLAG_INIT;
1441 happy_meal_get_counters(hp, bregs);
1444 /* Stop polling. */
1445 HMD(("to happy_meal_poll_stop\n"));
1446 happy_meal_poll_stop(hp, tregs);
1448 /* Stop transmitter and receiver. */
1449 HMD(("happy_meal_init: to happy_meal_stop\n"));
1450 happy_meal_stop(hp, gregs);
1452 /* Alloc and reset the tx/rx descriptor chains. */
1453 HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1454 happy_meal_init_rings(hp);
1456 /* Shut up the MIF. */
1457 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1458 hme_read32(hp, tregs + TCVR_IMASK)));
1459 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1461 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1462 if (hp->happy_flags & HFLAG_FENABLE) {
1463 HMD(("use frame old[%08x], ",
1464 hme_read32(hp, tregs + TCVR_CFG)));
1465 hme_write32(hp, tregs + TCVR_CFG,
1466 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1467 } else {
1468 HMD(("use bitbang old[%08x], ",
1469 hme_read32(hp, tregs + TCVR_CFG)));
1470 hme_write32(hp, tregs + TCVR_CFG,
1471 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1474 /* Check the state of the transceiver. */
1475 HMD(("to happy_meal_transceiver_check\n"));
1476 happy_meal_transceiver_check(hp, tregs);
1478 /* Put the Big Mac into a sane state. */
1479 HMD(("happy_meal_init: "));
1480 switch(hp->tcvr_type) {
1481 case none:
1482 /* Cannot operate if we don't know the transceiver type! */
1483 HMD(("AAIEEE no transceiver type, EAGAIN"));
1484 return -EAGAIN;
1486 case internal:
1487 /* Using the MII buffers. */
1488 HMD(("internal, using MII, "));
1489 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1490 break;
1492 case external:
1493 /* Not using the MII, disable it. */
1494 HMD(("external, disable MII, "));
1495 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1496 break;
1499 if (happy_meal_tcvr_reset(hp, tregs))
1500 return -EAGAIN;
1502 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1503 HMD(("tx/rx reset, "));
1504 happy_meal_tx_reset(hp, bregs);
1505 happy_meal_rx_reset(hp, bregs);
1507 /* Set jam size and inter-packet gaps to reasonable defaults. */
1508 HMD(("jsize/ipg1/ipg2, "));
1509 hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1510 hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1511 hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1513 /* Load up the MAC address and random seed. */
1514 HMD(("rseed/macaddr, "));
1516 /* The docs recommend to use the 10LSB of our MAC here. */
1517 hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1519 hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1520 hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1521 hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1523 HMD(("htable, "));
1524 if ((hp->dev->flags & IFF_ALLMULTI) ||
1525 (hp->dev->mc_count > 64)) {
1526 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1527 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1528 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1529 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1530 } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1531 u16 hash_table[4];
1532 struct dev_mc_list *dmi = hp->dev->mc_list;
1533 char *addrs;
1534 int i;
1535 u32 crc;
1537 for (i = 0; i < 4; i++)
1538 hash_table[i] = 0;
1540 for (i = 0; i < hp->dev->mc_count; i++) {
1541 addrs = dmi->dmi_addr;
1542 dmi = dmi->next;
1544 if (!(*addrs & 1))
1545 continue;
1547 crc = ether_crc_le(6, addrs);
1548 crc >>= 26;
1549 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1551 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1552 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1553 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1554 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1555 } else {
1556 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1557 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1558 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1559 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1562 /* Set the RX and TX ring ptrs. */
1563 HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1564 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1565 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1566 hme_write32(hp, erxregs + ERX_RING,
1567 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1568 hme_write32(hp, etxregs + ETX_RING,
1569 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1571 /* Parity issues in the ERX unit of some HME revisions can cause some
1572 * registers to not be written unless their parity is even. Detect such
1573 * lost writes and simply rewrite with a low bit set (which will be ignored
1574 * since the rxring needs to be 2K aligned).
1576 if (hme_read32(hp, erxregs + ERX_RING) !=
1577 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1578 hme_write32(hp, erxregs + ERX_RING,
1579 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1580 | 0x4);
1582 /* Set the supported burst sizes. */
1583 HMD(("happy_meal_init: old[%08x] bursts<",
1584 hme_read32(hp, gregs + GREG_CFG)));
1586 #ifndef CONFIG_SPARC
1587 /* It is always PCI and can handle 64byte bursts. */
1588 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1589 #else
1590 if ((hp->happy_bursts & DMA_BURST64) &&
1591 ((hp->happy_flags & HFLAG_PCI) != 0
1592 #ifdef CONFIG_SBUS
1593 || sbus_can_burst64(hp->happy_dev)
1594 #endif
1595 || 0)) {
1596 u32 gcfg = GREG_CFG_BURST64;
1598 /* I have no idea if I should set the extended
1599 * transfer mode bit for Cheerio, so for now I
1600 * do not. -DaveM
1602 #ifdef CONFIG_SBUS
1603 if ((hp->happy_flags & HFLAG_PCI) == 0 &&
1604 sbus_can_dma_64bit(hp->happy_dev)) {
1605 sbus_set_sbus64(hp->happy_dev,
1606 hp->happy_bursts);
1607 gcfg |= GREG_CFG_64BIT;
1609 #endif
1611 HMD(("64>"));
1612 hme_write32(hp, gregs + GREG_CFG, gcfg);
1613 } else if (hp->happy_bursts & DMA_BURST32) {
1614 HMD(("32>"));
1615 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1616 } else if (hp->happy_bursts & DMA_BURST16) {
1617 HMD(("16>"));
1618 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1619 } else {
1620 HMD(("XXX>"));
1621 hme_write32(hp, gregs + GREG_CFG, 0);
1623 #endif /* CONFIG_SPARC */
1625 /* Turn off interrupts we do not want to hear. */
1626 HMD((", enable global interrupts, "));
1627 hme_write32(hp, gregs + GREG_IMASK,
1628 (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1629 GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1631 /* Set the transmit ring buffer size. */
1632 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1633 hme_read32(hp, etxregs + ETX_RSIZE)));
1634 hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1636 /* Enable transmitter DVMA. */
1637 HMD(("tx dma enable old[%08x], ",
1638 hme_read32(hp, etxregs + ETX_CFG)));
1639 hme_write32(hp, etxregs + ETX_CFG,
1640 hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1642 /* This chip really rots, for the receiver sometimes when you
1643 * write to its control registers not all the bits get there
1644 * properly. I cannot think of a sane way to provide complete
1645 * coverage for this hardware bug yet.
1647 HMD(("erx regs bug old[%08x]\n",
1648 hme_read32(hp, erxregs + ERX_CFG)));
1649 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1650 regtmp = hme_read32(hp, erxregs + ERX_CFG);
1651 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1652 if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1653 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1654 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1655 ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1656 /* XXX Should return failure here... */
1659 /* Enable Big Mac hash table filter. */
1660 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1661 hme_read32(hp, bregs + BMAC_RXCFG)));
1662 rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1663 if (hp->dev->flags & IFF_PROMISC)
1664 rxcfg |= BIGMAC_RXCFG_PMISC;
1665 hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1667 /* Let the bits settle in the chip. */
1668 udelay(10);
1670 /* Ok, configure the Big Mac transmitter. */
1671 HMD(("BIGMAC init, "));
1672 regtmp = 0;
1673 if (hp->happy_flags & HFLAG_FULL)
1674 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1676 /* Don't turn on the "don't give up" bit for now. It could cause hme
1677 * to deadlock with the PHY if a Jabber occurs.
1679 hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1681 /* Give up after 16 TX attempts. */
1682 hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1684 /* Enable the output drivers no matter what. */
1685 regtmp = BIGMAC_XCFG_ODENABLE;
1687 /* If card can do lance mode, enable it. */
1688 if (hp->happy_flags & HFLAG_LANCE)
1689 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1691 /* Disable the MII buffers if using external transceiver. */
1692 if (hp->tcvr_type == external)
1693 regtmp |= BIGMAC_XCFG_MIIDISAB;
1695 HMD(("XIF config old[%08x], ",
1696 hme_read32(hp, bregs + BMAC_XIFCFG)));
1697 hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1699 /* Start things up. */
1700 HMD(("tx old[%08x] and rx [%08x] ON!\n",
1701 hme_read32(hp, bregs + BMAC_TXCFG),
1702 hme_read32(hp, bregs + BMAC_RXCFG)));
1704 /* Set larger TX/RX size to allow for 802.1q */
1705 hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1706 hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1708 hme_write32(hp, bregs + BMAC_TXCFG,
1709 hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1710 hme_write32(hp, bregs + BMAC_RXCFG,
1711 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1713 /* Get the autonegotiation started, and the watch timer ticking. */
1714 happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1716 /* Success. */
1717 return 0;
1720 /* hp->happy_lock must be held */
1721 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1723 void __iomem *tregs = hp->tcvregs;
1724 void __iomem *bregs = hp->bigmacregs;
1725 void __iomem *gregs = hp->gregs;
1727 happy_meal_stop(hp, gregs);
1728 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1729 if (hp->happy_flags & HFLAG_FENABLE)
1730 hme_write32(hp, tregs + TCVR_CFG,
1731 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1732 else
1733 hme_write32(hp, tregs + TCVR_CFG,
1734 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1735 happy_meal_transceiver_check(hp, tregs);
1736 switch(hp->tcvr_type) {
1737 case none:
1738 return;
1739 case internal:
1740 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1741 break;
1742 case external:
1743 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1744 break;
1746 if (happy_meal_tcvr_reset(hp, tregs))
1747 return;
1749 /* Latch PHY registers as of now. */
1750 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1751 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1753 /* Advertise everything we can support. */
1754 if (hp->sw_bmsr & BMSR_10HALF)
1755 hp->sw_advertise |= (ADVERTISE_10HALF);
1756 else
1757 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1759 if (hp->sw_bmsr & BMSR_10FULL)
1760 hp->sw_advertise |= (ADVERTISE_10FULL);
1761 else
1762 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1763 if (hp->sw_bmsr & BMSR_100HALF)
1764 hp->sw_advertise |= (ADVERTISE_100HALF);
1765 else
1766 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1767 if (hp->sw_bmsr & BMSR_100FULL)
1768 hp->sw_advertise |= (ADVERTISE_100FULL);
1769 else
1770 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1772 /* Update the PHY advertisement register. */
1773 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1776 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1777 * the hardware, so we cannot re-read it and get a correct value.
1779 * hp->happy_lock must be held
1781 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1783 int reset = 0;
1785 /* Only print messages for non-counter related interrupts. */
1786 if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1787 GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1788 GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1789 GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1790 GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1791 GREG_STAT_SLVPERR))
1792 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1793 hp->dev->name, status);
1795 if (status & GREG_STAT_RFIFOVF) {
1796 /* Receive FIFO overflow is harmless and the hardware will take
1797 care of it, just some packets are lost. Who cares. */
1798 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1801 if (status & GREG_STAT_STSTERR) {
1802 /* BigMAC SQE link test failed. */
1803 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1804 reset = 1;
1807 if (status & GREG_STAT_TFIFO_UND) {
1808 /* Transmit FIFO underrun, again DMA error likely. */
1809 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1810 hp->dev->name);
1811 reset = 1;
1814 if (status & GREG_STAT_MAXPKTERR) {
1815 /* Driver error, tried to transmit something larger
1816 * than ethernet max mtu.
1818 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1819 reset = 1;
1822 if (status & GREG_STAT_NORXD) {
1823 /* This is harmless, it just means the system is
1824 * quite loaded and the incoming packet rate was
1825 * faster than the interrupt handler could keep up
1826 * with.
1828 printk(KERN_INFO "%s: Happy Meal out of receive "
1829 "descriptors, packet dropped.\n",
1830 hp->dev->name);
1833 if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1834 /* All sorts of DMA receive errors. */
1835 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1836 if (status & GREG_STAT_RXERR)
1837 printk("GenericError ");
1838 if (status & GREG_STAT_RXPERR)
1839 printk("ParityError ");
1840 if (status & GREG_STAT_RXTERR)
1841 printk("RxTagBotch ");
1842 printk("]\n");
1843 reset = 1;
1846 if (status & GREG_STAT_EOPERR) {
1847 /* Driver bug, didn't set EOP bit in tx descriptor given
1848 * to the happy meal.
1850 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1851 hp->dev->name);
1852 reset = 1;
1855 if (status & GREG_STAT_MIFIRQ) {
1856 /* MIF signalled an interrupt, were we polling it? */
1857 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1860 if (status &
1861 (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1862 /* All sorts of transmit DMA errors. */
1863 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1864 if (status & GREG_STAT_TXEACK)
1865 printk("GenericError ");
1866 if (status & GREG_STAT_TXLERR)
1867 printk("LateError ");
1868 if (status & GREG_STAT_TXPERR)
1869 printk("ParityErro ");
1870 if (status & GREG_STAT_TXTERR)
1871 printk("TagBotch ");
1872 printk("]\n");
1873 reset = 1;
1876 if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1877 /* Bus or parity error when cpu accessed happy meal registers
1878 * or it's internal FIFO's. Should never see this.
1880 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1881 hp->dev->name,
1882 (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1883 reset = 1;
1886 if (reset) {
1887 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1888 happy_meal_init(hp);
1889 return 1;
1891 return 0;
1894 /* hp->happy_lock must be held */
1895 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1897 void __iomem *tregs = hp->tcvregs;
1899 printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1900 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1901 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1903 /* Use the fastest transmission protocol possible. */
1904 if (hp->sw_lpa & LPA_100FULL) {
1905 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1906 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1907 } else if (hp->sw_lpa & LPA_100HALF) {
1908 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1909 hp->sw_bmcr |= BMCR_SPEED100;
1910 } else if (hp->sw_lpa & LPA_10FULL) {
1911 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1912 hp->sw_bmcr |= BMCR_FULLDPLX;
1913 } else {
1914 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1916 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1918 /* Finally stop polling and shut up the MIF. */
1919 happy_meal_poll_stop(hp, tregs);
1922 #ifdef TXDEBUG
1923 #define TXD(x) printk x
1924 #else
1925 #define TXD(x)
1926 #endif
1928 /* hp->happy_lock must be held */
1929 static void happy_meal_tx(struct happy_meal *hp)
1931 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1932 struct happy_meal_txd *this;
1933 struct net_device *dev = hp->dev;
1934 int elem;
1936 elem = hp->tx_old;
1937 TXD(("TX<"));
1938 while (elem != hp->tx_new) {
1939 struct sk_buff *skb;
1940 u32 flags, dma_addr, dma_len;
1941 int frag;
1943 TXD(("[%d]", elem));
1944 this = &txbase[elem];
1945 flags = hme_read_desc32(hp, &this->tx_flags);
1946 if (flags & TXFLAG_OWN)
1947 break;
1948 skb = hp->tx_skbs[elem];
1949 if (skb_shinfo(skb)->nr_frags) {
1950 int last;
1952 last = elem + skb_shinfo(skb)->nr_frags;
1953 last &= (TX_RING_SIZE - 1);
1954 flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1955 if (flags & TXFLAG_OWN)
1956 break;
1958 hp->tx_skbs[elem] = NULL;
1959 hp->net_stats.tx_bytes += skb->len;
1961 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1962 dma_addr = hme_read_desc32(hp, &this->tx_addr);
1963 dma_len = hme_read_desc32(hp, &this->tx_flags);
1965 dma_len &= TXFLAG_SIZE;
1966 hme_dma_unmap(hp, dma_addr, dma_len, DMA_TODEVICE);
1968 elem = NEXT_TX(elem);
1969 this = &txbase[elem];
1972 dev_kfree_skb_irq(skb);
1973 hp->net_stats.tx_packets++;
1975 hp->tx_old = elem;
1976 TXD((">"));
1978 if (netif_queue_stopped(dev) &&
1979 TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1980 netif_wake_queue(dev);
1983 #ifdef RXDEBUG
1984 #define RXD(x) printk x
1985 #else
1986 #define RXD(x)
1987 #endif
1989 /* Originally I used to handle the allocation failure by just giving back just
1990 * that one ring buffer to the happy meal. Problem is that usually when that
1991 * condition is triggered, the happy meal expects you to do something reasonable
1992 * with all of the packets it has DMA'd in. So now I just drop the entire
1993 * ring when we cannot get a new skb and give them all back to the happy meal,
1994 * maybe things will be "happier" now.
1996 * hp->happy_lock must be held
1998 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
2000 struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
2001 struct happy_meal_rxd *this;
2002 int elem = hp->rx_new, drops = 0;
2003 u32 flags;
2005 RXD(("RX<"));
2006 this = &rxbase[elem];
2007 while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2008 struct sk_buff *skb;
2009 int len = flags >> 16;
2010 u16 csum = flags & RXFLAG_CSUM;
2011 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2013 RXD(("[%d ", elem));
2015 /* Check for errors. */
2016 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2017 RXD(("ERR(%08x)]", flags));
2018 hp->net_stats.rx_errors++;
2019 if (len < ETH_ZLEN)
2020 hp->net_stats.rx_length_errors++;
2021 if (len & (RXFLAG_OVERFLOW >> 16)) {
2022 hp->net_stats.rx_over_errors++;
2023 hp->net_stats.rx_fifo_errors++;
2026 /* Return it to the Happy meal. */
2027 drop_it:
2028 hp->net_stats.rx_dropped++;
2029 hme_write_rxd(hp, this,
2030 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2031 dma_addr);
2032 goto next;
2034 skb = hp->rx_skbs[elem];
2035 if (len > RX_COPY_THRESHOLD) {
2036 struct sk_buff *new_skb;
2038 /* Now refill the entry, if we can. */
2039 new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2040 if (new_skb == NULL) {
2041 drops++;
2042 goto drop_it;
2044 hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
2045 hp->rx_skbs[elem] = new_skb;
2046 new_skb->dev = dev;
2047 skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2048 hme_write_rxd(hp, this,
2049 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2050 hme_dma_map(hp, new_skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
2051 skb_reserve(new_skb, RX_OFFSET);
2053 /* Trim the original skb for the netif. */
2054 skb_trim(skb, len);
2055 } else {
2056 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
2058 if (copy_skb == NULL) {
2059 drops++;
2060 goto drop_it;
2063 skb_reserve(copy_skb, 2);
2064 skb_put(copy_skb, len);
2065 hme_dma_sync_for_cpu(hp, dma_addr, len, DMA_FROMDEVICE);
2066 skb_copy_from_linear_data(skb, copy_skb->data, len);
2067 hme_dma_sync_for_device(hp, dma_addr, len, DMA_FROMDEVICE);
2069 /* Reuse original ring buffer. */
2070 hme_write_rxd(hp, this,
2071 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2072 dma_addr);
2074 skb = copy_skb;
2077 /* This card is _fucking_ hot... */
2078 skb->csum = ntohs(csum ^ 0xffff);
2079 skb->ip_summed = CHECKSUM_COMPLETE;
2081 RXD(("len=%d csum=%4x]", len, csum));
2082 skb->protocol = eth_type_trans(skb, dev);
2083 netif_rx(skb);
2085 dev->last_rx = jiffies;
2086 hp->net_stats.rx_packets++;
2087 hp->net_stats.rx_bytes += len;
2088 next:
2089 elem = NEXT_RX(elem);
2090 this = &rxbase[elem];
2092 hp->rx_new = elem;
2093 if (drops)
2094 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2095 RXD((">"));
2098 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2100 struct net_device *dev = dev_id;
2101 struct happy_meal *hp = netdev_priv(dev);
2102 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2104 HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2106 spin_lock(&hp->happy_lock);
2108 if (happy_status & GREG_STAT_ERRORS) {
2109 HMD(("ERRORS "));
2110 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2111 goto out;
2114 if (happy_status & GREG_STAT_MIFIRQ) {
2115 HMD(("MIFIRQ "));
2116 happy_meal_mif_interrupt(hp);
2119 if (happy_status & GREG_STAT_TXALL) {
2120 HMD(("TXALL "));
2121 happy_meal_tx(hp);
2124 if (happy_status & GREG_STAT_RXTOHOST) {
2125 HMD(("RXTOHOST "));
2126 happy_meal_rx(hp, dev);
2129 HMD(("done\n"));
2130 out:
2131 spin_unlock(&hp->happy_lock);
2133 return IRQ_HANDLED;
2136 #ifdef CONFIG_SBUS
2137 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2139 struct quattro *qp = (struct quattro *) cookie;
2140 int i;
2142 for (i = 0; i < 4; i++) {
2143 struct net_device *dev = qp->happy_meals[i];
2144 struct happy_meal *hp = dev->priv;
2145 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2147 HMD(("quattro_interrupt: status=%08x ", happy_status));
2149 if (!(happy_status & (GREG_STAT_ERRORS |
2150 GREG_STAT_MIFIRQ |
2151 GREG_STAT_TXALL |
2152 GREG_STAT_RXTOHOST)))
2153 continue;
2155 spin_lock(&hp->happy_lock);
2157 if (happy_status & GREG_STAT_ERRORS) {
2158 HMD(("ERRORS "));
2159 if (happy_meal_is_not_so_happy(hp, happy_status))
2160 goto next;
2163 if (happy_status & GREG_STAT_MIFIRQ) {
2164 HMD(("MIFIRQ "));
2165 happy_meal_mif_interrupt(hp);
2168 if (happy_status & GREG_STAT_TXALL) {
2169 HMD(("TXALL "));
2170 happy_meal_tx(hp);
2173 if (happy_status & GREG_STAT_RXTOHOST) {
2174 HMD(("RXTOHOST "));
2175 happy_meal_rx(hp, dev);
2178 next:
2179 spin_unlock(&hp->happy_lock);
2181 HMD(("done\n"));
2183 return IRQ_HANDLED;
2185 #endif
2187 static int happy_meal_open(struct net_device *dev)
2189 struct happy_meal *hp = dev->priv;
2190 int res;
2192 HMD(("happy_meal_open: "));
2194 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2195 * into a single source which we register handling at probe time.
2197 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2198 if (request_irq(dev->irq, &happy_meal_interrupt,
2199 IRQF_SHARED, dev->name, (void *)dev)) {
2200 HMD(("EAGAIN\n"));
2201 printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2202 dev->irq);
2204 return -EAGAIN;
2208 HMD(("to happy_meal_init\n"));
2210 spin_lock_irq(&hp->happy_lock);
2211 res = happy_meal_init(hp);
2212 spin_unlock_irq(&hp->happy_lock);
2214 if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2215 free_irq(dev->irq, dev);
2216 return res;
2219 static int happy_meal_close(struct net_device *dev)
2221 struct happy_meal *hp = dev->priv;
2223 spin_lock_irq(&hp->happy_lock);
2224 happy_meal_stop(hp, hp->gregs);
2225 happy_meal_clean_rings(hp);
2227 /* If auto-negotiation timer is running, kill it. */
2228 del_timer(&hp->happy_timer);
2230 spin_unlock_irq(&hp->happy_lock);
2232 /* On Quattro QFE cards, all hme interrupts are concentrated
2233 * into a single source which we register handling at probe
2234 * time and never unregister.
2236 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2237 free_irq(dev->irq, dev);
2239 return 0;
2242 #ifdef SXDEBUG
2243 #define SXD(x) printk x
2244 #else
2245 #define SXD(x)
2246 #endif
2248 static void happy_meal_tx_timeout(struct net_device *dev)
2250 struct happy_meal *hp = dev->priv;
2252 printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2253 tx_dump_log();
2254 printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2255 hme_read32(hp, hp->gregs + GREG_STAT),
2256 hme_read32(hp, hp->etxregs + ETX_CFG),
2257 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2259 spin_lock_irq(&hp->happy_lock);
2260 happy_meal_init(hp);
2261 spin_unlock_irq(&hp->happy_lock);
2263 netif_wake_queue(dev);
2266 static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev)
2268 struct happy_meal *hp = dev->priv;
2269 int entry;
2270 u32 tx_flags;
2272 tx_flags = TXFLAG_OWN;
2273 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2274 const u32 csum_start_off = skb_transport_offset(skb);
2275 const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2277 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2278 ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2279 ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2282 spin_lock_irq(&hp->happy_lock);
2284 if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2285 netif_stop_queue(dev);
2286 spin_unlock_irq(&hp->happy_lock);
2287 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2288 dev->name);
2289 return 1;
2292 entry = hp->tx_new;
2293 SXD(("SX<l[%d]e[%d]>", len, entry));
2294 hp->tx_skbs[entry] = skb;
2296 if (skb_shinfo(skb)->nr_frags == 0) {
2297 u32 mapping, len;
2299 len = skb->len;
2300 mapping = hme_dma_map(hp, skb->data, len, DMA_TODEVICE);
2301 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2302 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2303 (tx_flags | (len & TXFLAG_SIZE)),
2304 mapping);
2305 entry = NEXT_TX(entry);
2306 } else {
2307 u32 first_len, first_mapping;
2308 int frag, first_entry = entry;
2310 /* We must give this initial chunk to the device last.
2311 * Otherwise we could race with the device.
2313 first_len = skb_headlen(skb);
2314 first_mapping = hme_dma_map(hp, skb->data, first_len, DMA_TODEVICE);
2315 entry = NEXT_TX(entry);
2317 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2318 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2319 u32 len, mapping, this_txflags;
2321 len = this_frag->size;
2322 mapping = hme_dma_map(hp,
2323 ((void *) page_address(this_frag->page) +
2324 this_frag->page_offset),
2325 len, DMA_TODEVICE);
2326 this_txflags = tx_flags;
2327 if (frag == skb_shinfo(skb)->nr_frags - 1)
2328 this_txflags |= TXFLAG_EOP;
2329 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2330 (this_txflags | (len & TXFLAG_SIZE)),
2331 mapping);
2332 entry = NEXT_TX(entry);
2334 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2335 (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2336 first_mapping);
2339 hp->tx_new = entry;
2341 if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2342 netif_stop_queue(dev);
2344 /* Get it going. */
2345 hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2347 spin_unlock_irq(&hp->happy_lock);
2349 dev->trans_start = jiffies;
2351 tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2352 return 0;
2355 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2357 struct happy_meal *hp = dev->priv;
2359 spin_lock_irq(&hp->happy_lock);
2360 happy_meal_get_counters(hp, hp->bigmacregs);
2361 spin_unlock_irq(&hp->happy_lock);
2363 return &hp->net_stats;
2366 static void happy_meal_set_multicast(struct net_device *dev)
2368 struct happy_meal *hp = dev->priv;
2369 void __iomem *bregs = hp->bigmacregs;
2370 struct dev_mc_list *dmi = dev->mc_list;
2371 char *addrs;
2372 int i;
2373 u32 crc;
2375 spin_lock_irq(&hp->happy_lock);
2377 netif_stop_queue(dev);
2379 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
2380 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2381 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2382 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2383 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2384 } else if (dev->flags & IFF_PROMISC) {
2385 hme_write32(hp, bregs + BMAC_RXCFG,
2386 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2387 } else {
2388 u16 hash_table[4];
2390 for (i = 0; i < 4; i++)
2391 hash_table[i] = 0;
2393 for (i = 0; i < dev->mc_count; i++) {
2394 addrs = dmi->dmi_addr;
2395 dmi = dmi->next;
2397 if (!(*addrs & 1))
2398 continue;
2400 crc = ether_crc_le(6, addrs);
2401 crc >>= 26;
2402 hash_table[crc >> 4] |= 1 << (crc & 0xf);
2404 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2405 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2406 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2407 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2410 netif_wake_queue(dev);
2412 spin_unlock_irq(&hp->happy_lock);
2415 /* Ethtool support... */
2416 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2418 struct happy_meal *hp = dev->priv;
2420 cmd->supported =
2421 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2422 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2423 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2425 /* XXX hardcoded stuff for now */
2426 cmd->port = PORT_TP; /* XXX no MII support */
2427 cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2428 cmd->phy_address = 0; /* XXX fixed PHYAD */
2430 /* Record PHY settings. */
2431 spin_lock_irq(&hp->happy_lock);
2432 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2433 hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2434 spin_unlock_irq(&hp->happy_lock);
2436 if (hp->sw_bmcr & BMCR_ANENABLE) {
2437 cmd->autoneg = AUTONEG_ENABLE;
2438 cmd->speed =
2439 (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2440 SPEED_100 : SPEED_10;
2441 if (cmd->speed == SPEED_100)
2442 cmd->duplex =
2443 (hp->sw_lpa & (LPA_100FULL)) ?
2444 DUPLEX_FULL : DUPLEX_HALF;
2445 else
2446 cmd->duplex =
2447 (hp->sw_lpa & (LPA_10FULL)) ?
2448 DUPLEX_FULL : DUPLEX_HALF;
2449 } else {
2450 cmd->autoneg = AUTONEG_DISABLE;
2451 cmd->speed =
2452 (hp->sw_bmcr & BMCR_SPEED100) ?
2453 SPEED_100 : SPEED_10;
2454 cmd->duplex =
2455 (hp->sw_bmcr & BMCR_FULLDPLX) ?
2456 DUPLEX_FULL : DUPLEX_HALF;
2458 return 0;
2461 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2463 struct happy_meal *hp = dev->priv;
2465 /* Verify the settings we care about. */
2466 if (cmd->autoneg != AUTONEG_ENABLE &&
2467 cmd->autoneg != AUTONEG_DISABLE)
2468 return -EINVAL;
2469 if (cmd->autoneg == AUTONEG_DISABLE &&
2470 ((cmd->speed != SPEED_100 &&
2471 cmd->speed != SPEED_10) ||
2472 (cmd->duplex != DUPLEX_HALF &&
2473 cmd->duplex != DUPLEX_FULL)))
2474 return -EINVAL;
2476 /* Ok, do it to it. */
2477 spin_lock_irq(&hp->happy_lock);
2478 del_timer(&hp->happy_timer);
2479 happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2480 spin_unlock_irq(&hp->happy_lock);
2482 return 0;
2485 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2487 struct happy_meal *hp = dev->priv;
2489 strcpy(info->driver, "sunhme");
2490 strcpy(info->version, "2.02");
2491 if (hp->happy_flags & HFLAG_PCI) {
2492 struct pci_dev *pdev = hp->happy_dev;
2493 strcpy(info->bus_info, pci_name(pdev));
2495 #ifdef CONFIG_SBUS
2496 else {
2497 struct sbus_dev *sdev = hp->happy_dev;
2498 sprintf(info->bus_info, "SBUS:%d",
2499 sdev->slot);
2501 #endif
2504 static u32 hme_get_link(struct net_device *dev)
2506 struct happy_meal *hp = dev->priv;
2508 spin_lock_irq(&hp->happy_lock);
2509 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2510 spin_unlock_irq(&hp->happy_lock);
2512 return (hp->sw_bmsr & BMSR_LSTATUS);
2515 static const struct ethtool_ops hme_ethtool_ops = {
2516 .get_settings = hme_get_settings,
2517 .set_settings = hme_set_settings,
2518 .get_drvinfo = hme_get_drvinfo,
2519 .get_link = hme_get_link,
2522 static int hme_version_printed;
2524 #ifdef CONFIG_SBUS
2525 void __devinit quattro_get_ranges(struct quattro *qp)
2527 struct sbus_dev *sdev = qp->quattro_dev;
2528 int err;
2530 err = prom_getproperty(sdev->prom_node,
2531 "ranges",
2532 (char *)&qp->ranges[0],
2533 sizeof(qp->ranges));
2534 if (err == 0 || err == -1) {
2535 qp->nranges = 0;
2536 return;
2538 qp->nranges = (err / sizeof(struct linux_prom_ranges));
2541 static void __devinit quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp)
2543 struct sbus_dev *sdev = hp->happy_dev;
2544 int rng;
2546 for (rng = 0; rng < qp->nranges; rng++) {
2547 struct linux_prom_ranges *rngp = &qp->ranges[rng];
2548 int reg;
2550 for (reg = 0; reg < 5; reg++) {
2551 if (sdev->reg_addrs[reg].which_io ==
2552 rngp->ot_child_space)
2553 break;
2555 if (reg == 5)
2556 continue;
2558 sdev->reg_addrs[reg].which_io = rngp->ot_parent_space;
2559 sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base;
2563 /* Given a happy meal sbus device, find it's quattro parent.
2564 * If none exist, allocate and return a new one.
2566 * Return NULL on failure.
2568 static struct quattro * __devinit quattro_sbus_find(struct sbus_dev *goal_sdev)
2570 struct sbus_dev *sdev;
2571 struct quattro *qp;
2572 int i;
2574 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2575 for (i = 0, sdev = qp->quattro_dev;
2576 (sdev != NULL) && (i < 4);
2577 sdev = sdev->next, i++) {
2578 if (sdev == goal_sdev)
2579 return qp;
2583 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2584 if (qp != NULL) {
2585 int i;
2587 for (i = 0; i < 4; i++)
2588 qp->happy_meals[i] = NULL;
2590 qp->quattro_dev = goal_sdev;
2591 qp->next = qfe_sbus_list;
2592 qfe_sbus_list = qp;
2593 quattro_get_ranges(qp);
2595 return qp;
2598 /* After all quattro cards have been probed, we call these functions
2599 * to register the IRQ handlers.
2601 static void __init quattro_sbus_register_irqs(void)
2603 struct quattro *qp;
2605 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2606 struct sbus_dev *sdev = qp->quattro_dev;
2607 int err;
2609 err = request_irq(sdev->irqs[0],
2610 quattro_sbus_interrupt,
2611 IRQF_SHARED, "Quattro",
2612 qp);
2613 if (err != 0) {
2614 printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err);
2615 panic("QFE request irq");
2620 static void quattro_sbus_free_irqs(void)
2622 struct quattro *qp;
2624 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2625 struct sbus_dev *sdev = qp->quattro_dev;
2627 free_irq(sdev->irqs[0], qp);
2630 #endif /* CONFIG_SBUS */
2632 #ifdef CONFIG_PCI
2633 static struct quattro * __devinit quattro_pci_find(struct pci_dev *pdev)
2635 struct pci_dev *bdev = pdev->bus->self;
2636 struct quattro *qp;
2638 if (!bdev) return NULL;
2639 for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2640 struct pci_dev *qpdev = qp->quattro_dev;
2642 if (qpdev == bdev)
2643 return qp;
2645 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2646 if (qp != NULL) {
2647 int i;
2649 for (i = 0; i < 4; i++)
2650 qp->happy_meals[i] = NULL;
2652 qp->quattro_dev = bdev;
2653 qp->next = qfe_pci_list;
2654 qfe_pci_list = qp;
2656 /* No range tricks necessary on PCI. */
2657 qp->nranges = 0;
2659 return qp;
2661 #endif /* CONFIG_PCI */
2663 #ifdef CONFIG_SBUS
2664 static int __devinit happy_meal_sbus_probe_one(struct sbus_dev *sdev, int is_qfe)
2666 struct device_node *dp = sdev->ofdev.node;
2667 struct quattro *qp = NULL;
2668 struct happy_meal *hp;
2669 struct net_device *dev;
2670 int i, qfe_slot = -1;
2671 int err = -ENODEV;
2672 DECLARE_MAC_BUF(mac);
2674 if (is_qfe) {
2675 qp = quattro_sbus_find(sdev);
2676 if (qp == NULL)
2677 goto err_out;
2678 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2679 if (qp->happy_meals[qfe_slot] == NULL)
2680 break;
2681 if (qfe_slot == 4)
2682 goto err_out;
2685 err = -ENOMEM;
2686 dev = alloc_etherdev(sizeof(struct happy_meal));
2687 if (!dev)
2688 goto err_out;
2689 SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
2691 if (hme_version_printed++ == 0)
2692 printk(KERN_INFO "%s", version);
2694 /* If user did not specify a MAC address specifically, use
2695 * the Quattro local-mac-address property...
2697 for (i = 0; i < 6; i++) {
2698 if (macaddr[i] != 0)
2699 break;
2701 if (i < 6) { /* a mac address was given */
2702 for (i = 0; i < 6; i++)
2703 dev->dev_addr[i] = macaddr[i];
2704 macaddr[5]++;
2705 } else {
2706 const unsigned char *addr;
2707 int len;
2709 addr = of_get_property(dp, "local-mac-address", &len);
2711 if (qfe_slot != -1 && addr && len == 6)
2712 memcpy(dev->dev_addr, addr, 6);
2713 else
2714 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2717 hp = dev->priv;
2719 hp->happy_dev = sdev;
2721 spin_lock_init(&hp->happy_lock);
2723 err = -ENODEV;
2724 if (sdev->num_registers != 5) {
2725 printk(KERN_ERR "happymeal: Device needs 5 regs, has %d.\n",
2726 sdev->num_registers);
2727 goto err_out_free_netdev;
2730 if (qp != NULL) {
2731 hp->qfe_parent = qp;
2732 hp->qfe_ent = qfe_slot;
2733 qp->happy_meals[qfe_slot] = dev;
2734 quattro_apply_ranges(qp, hp);
2737 hp->gregs = sbus_ioremap(&sdev->resource[0], 0,
2738 GREG_REG_SIZE, "HME Global Regs");
2739 if (!hp->gregs) {
2740 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2741 goto err_out_free_netdev;
2744 hp->etxregs = sbus_ioremap(&sdev->resource[1], 0,
2745 ETX_REG_SIZE, "HME TX Regs");
2746 if (!hp->etxregs) {
2747 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2748 goto err_out_iounmap;
2751 hp->erxregs = sbus_ioremap(&sdev->resource[2], 0,
2752 ERX_REG_SIZE, "HME RX Regs");
2753 if (!hp->erxregs) {
2754 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2755 goto err_out_iounmap;
2758 hp->bigmacregs = sbus_ioremap(&sdev->resource[3], 0,
2759 BMAC_REG_SIZE, "HME BIGMAC Regs");
2760 if (!hp->bigmacregs) {
2761 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2762 goto err_out_iounmap;
2765 hp->tcvregs = sbus_ioremap(&sdev->resource[4], 0,
2766 TCVR_REG_SIZE, "HME Tranceiver Regs");
2767 if (!hp->tcvregs) {
2768 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2769 goto err_out_iounmap;
2772 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2773 if (hp->hm_revision == 0xff)
2774 hp->hm_revision = 0xa0;
2776 /* Now enable the feature flags we can. */
2777 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2778 hp->happy_flags = HFLAG_20_21;
2779 else if (hp->hm_revision != 0xa0)
2780 hp->happy_flags = HFLAG_NOT_A0;
2782 if (qp != NULL)
2783 hp->happy_flags |= HFLAG_QUATTRO;
2785 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2786 hp->happy_bursts = of_getintprop_default(sdev->bus->ofdev.node,
2787 "burst-sizes", 0x00);
2789 hp->happy_block = sbus_alloc_consistent(hp->happy_dev,
2790 PAGE_SIZE,
2791 &hp->hblock_dvma);
2792 err = -ENOMEM;
2793 if (!hp->happy_block) {
2794 printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
2795 goto err_out_iounmap;
2798 /* Force check of the link first time we are brought up. */
2799 hp->linkcheck = 0;
2801 /* Force timer state to 'asleep' with count of zero. */
2802 hp->timer_state = asleep;
2803 hp->timer_ticks = 0;
2805 init_timer(&hp->happy_timer);
2807 hp->dev = dev;
2808 dev->open = &happy_meal_open;
2809 dev->stop = &happy_meal_close;
2810 dev->hard_start_xmit = &happy_meal_start_xmit;
2811 dev->get_stats = &happy_meal_get_stats;
2812 dev->set_multicast_list = &happy_meal_set_multicast;
2813 dev->tx_timeout = &happy_meal_tx_timeout;
2814 dev->watchdog_timeo = 5*HZ;
2815 dev->ethtool_ops = &hme_ethtool_ops;
2817 /* Happy Meal can do it all... */
2818 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
2820 dev->irq = sdev->irqs[0];
2822 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2823 /* Hook up PCI register/dma accessors. */
2824 hp->read_desc32 = sbus_hme_read_desc32;
2825 hp->write_txd = sbus_hme_write_txd;
2826 hp->write_rxd = sbus_hme_write_rxd;
2827 hp->dma_map = (u32 (*)(void *, void *, long, int))sbus_map_single;
2828 hp->dma_unmap = (void (*)(void *, u32, long, int))sbus_unmap_single;
2829 hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
2830 sbus_dma_sync_single_for_cpu;
2831 hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
2832 sbus_dma_sync_single_for_device;
2833 hp->read32 = sbus_hme_read32;
2834 hp->write32 = sbus_hme_write32;
2835 #endif
2837 /* Grrr, Happy Meal comes up by default not advertising
2838 * full duplex 100baseT capabilities, fix this.
2840 spin_lock_irq(&hp->happy_lock);
2841 happy_meal_set_initial_advertisement(hp);
2842 spin_unlock_irq(&hp->happy_lock);
2844 if (register_netdev(hp->dev)) {
2845 printk(KERN_ERR "happymeal: Cannot register net device, "
2846 "aborting.\n");
2847 goto err_out_free_consistent;
2850 dev_set_drvdata(&sdev->ofdev.dev, hp);
2852 if (qfe_slot != -1)
2853 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2854 dev->name, qfe_slot);
2855 else
2856 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2857 dev->name);
2859 printk("%s\n", print_mac(mac, dev->dev_addr));
2861 return 0;
2863 err_out_free_consistent:
2864 sbus_free_consistent(hp->happy_dev,
2865 PAGE_SIZE,
2866 hp->happy_block,
2867 hp->hblock_dvma);
2869 err_out_iounmap:
2870 if (hp->gregs)
2871 sbus_iounmap(hp->gregs, GREG_REG_SIZE);
2872 if (hp->etxregs)
2873 sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
2874 if (hp->erxregs)
2875 sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
2876 if (hp->bigmacregs)
2877 sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
2878 if (hp->tcvregs)
2879 sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
2881 err_out_free_netdev:
2882 free_netdev(dev);
2884 err_out:
2885 return err;
2887 #endif
2889 #ifdef CONFIG_PCI
2890 #ifndef CONFIG_SPARC
2891 static int is_quattro_p(struct pci_dev *pdev)
2893 struct pci_dev *busdev = pdev->bus->self;
2894 struct list_head *tmp;
2895 int n_hmes;
2897 if (busdev == NULL ||
2898 busdev->vendor != PCI_VENDOR_ID_DEC ||
2899 busdev->device != PCI_DEVICE_ID_DEC_21153)
2900 return 0;
2902 n_hmes = 0;
2903 tmp = pdev->bus->devices.next;
2904 while (tmp != &pdev->bus->devices) {
2905 struct pci_dev *this_pdev = pci_dev_b(tmp);
2907 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2908 this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2909 n_hmes++;
2911 tmp = tmp->next;
2914 if (n_hmes != 4)
2915 return 0;
2917 return 1;
2920 /* Fetch MAC address from vital product data of PCI ROM. */
2921 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2923 int this_offset;
2925 for (this_offset = 0x20; this_offset < len; this_offset++) {
2926 void __iomem *p = rom_base + this_offset;
2928 if (readb(p + 0) != 0x90 ||
2929 readb(p + 1) != 0x00 ||
2930 readb(p + 2) != 0x09 ||
2931 readb(p + 3) != 0x4e ||
2932 readb(p + 4) != 0x41 ||
2933 readb(p + 5) != 0x06)
2934 continue;
2936 this_offset += 6;
2937 p += 6;
2939 if (index == 0) {
2940 int i;
2942 for (i = 0; i < 6; i++)
2943 dev_addr[i] = readb(p + i);
2944 return 1;
2946 index--;
2948 return 0;
2951 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2953 size_t size;
2954 void __iomem *p = pci_map_rom(pdev, &size);
2956 if (p) {
2957 int index = 0;
2958 int found;
2960 if (is_quattro_p(pdev))
2961 index = PCI_SLOT(pdev->devfn);
2963 found = readb(p) == 0x55 &&
2964 readb(p + 1) == 0xaa &&
2965 find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2966 pci_unmap_rom(pdev, p);
2967 if (found)
2968 return;
2971 /* Sun MAC prefix then 3 random bytes. */
2972 dev_addr[0] = 0x08;
2973 dev_addr[1] = 0x00;
2974 dev_addr[2] = 0x20;
2975 get_random_bytes(&dev_addr[3], 3);
2976 return;
2978 #endif /* !(CONFIG_SPARC) */
2980 static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
2981 const struct pci_device_id *ent)
2983 struct quattro *qp = NULL;
2984 #ifdef CONFIG_SPARC
2985 struct device_node *dp;
2986 #endif
2987 struct happy_meal *hp;
2988 struct net_device *dev;
2989 void __iomem *hpreg_base;
2990 unsigned long hpreg_res;
2991 int i, qfe_slot = -1;
2992 char prom_name[64];
2993 int err;
2994 DECLARE_MAC_BUF(mac);
2996 /* Now make sure pci_dev cookie is there. */
2997 #ifdef CONFIG_SPARC
2998 dp = pci_device_to_OF_node(pdev);
2999 strcpy(prom_name, dp->name);
3000 #else
3001 if (is_quattro_p(pdev))
3002 strcpy(prom_name, "SUNW,qfe");
3003 else
3004 strcpy(prom_name, "SUNW,hme");
3005 #endif
3007 err = -ENODEV;
3009 if (pci_enable_device(pdev))
3010 goto err_out;
3011 pci_set_master(pdev);
3013 if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3014 qp = quattro_pci_find(pdev);
3015 if (qp == NULL)
3016 goto err_out;
3017 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3018 if (qp->happy_meals[qfe_slot] == NULL)
3019 break;
3020 if (qfe_slot == 4)
3021 goto err_out;
3024 dev = alloc_etherdev(sizeof(struct happy_meal));
3025 err = -ENOMEM;
3026 if (!dev)
3027 goto err_out;
3028 SET_NETDEV_DEV(dev, &pdev->dev);
3030 if (hme_version_printed++ == 0)
3031 printk(KERN_INFO "%s", version);
3033 dev->base_addr = (long) pdev;
3035 hp = (struct happy_meal *)dev->priv;
3036 memset(hp, 0, sizeof(*hp));
3038 hp->happy_dev = pdev;
3040 spin_lock_init(&hp->happy_lock);
3042 if (qp != NULL) {
3043 hp->qfe_parent = qp;
3044 hp->qfe_ent = qfe_slot;
3045 qp->happy_meals[qfe_slot] = dev;
3048 hpreg_res = pci_resource_start(pdev, 0);
3049 err = -ENODEV;
3050 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3051 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3052 goto err_out_clear_quattro;
3054 if (pci_request_regions(pdev, DRV_NAME)) {
3055 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3056 "aborting.\n");
3057 goto err_out_clear_quattro;
3060 if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == 0) {
3061 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3062 goto err_out_free_res;
3065 for (i = 0; i < 6; i++) {
3066 if (macaddr[i] != 0)
3067 break;
3069 if (i < 6) { /* a mac address was given */
3070 for (i = 0; i < 6; i++)
3071 dev->dev_addr[i] = macaddr[i];
3072 macaddr[5]++;
3073 } else {
3074 #ifdef CONFIG_SPARC
3075 const unsigned char *addr;
3076 int len;
3078 if (qfe_slot != -1 &&
3079 (addr = of_get_property(dp,
3080 "local-mac-address", &len)) != NULL
3081 && len == 6) {
3082 memcpy(dev->dev_addr, addr, 6);
3083 } else {
3084 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3086 #else
3087 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3088 #endif
3091 /* Layout registers. */
3092 hp->gregs = (hpreg_base + 0x0000UL);
3093 hp->etxregs = (hpreg_base + 0x2000UL);
3094 hp->erxregs = (hpreg_base + 0x4000UL);
3095 hp->bigmacregs = (hpreg_base + 0x6000UL);
3096 hp->tcvregs = (hpreg_base + 0x7000UL);
3098 #ifdef CONFIG_SPARC
3099 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3100 if (hp->hm_revision == 0xff)
3101 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3102 #else
3103 /* works with this on non-sparc hosts */
3104 hp->hm_revision = 0x20;
3105 #endif
3107 /* Now enable the feature flags we can. */
3108 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3109 hp->happy_flags = HFLAG_20_21;
3110 else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3111 hp->happy_flags = HFLAG_NOT_A0;
3113 if (qp != NULL)
3114 hp->happy_flags |= HFLAG_QUATTRO;
3116 /* And of course, indicate this is PCI. */
3117 hp->happy_flags |= HFLAG_PCI;
3119 #ifdef CONFIG_SPARC
3120 /* Assume PCI happy meals can handle all burst sizes. */
3121 hp->happy_bursts = DMA_BURSTBITS;
3122 #endif
3124 hp->happy_block = (struct hmeal_init_block *)
3125 pci_alloc_consistent(pdev, PAGE_SIZE, &hp->hblock_dvma);
3127 err = -ENODEV;
3128 if (!hp->happy_block) {
3129 printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
3130 goto err_out_iounmap;
3133 hp->linkcheck = 0;
3134 hp->timer_state = asleep;
3135 hp->timer_ticks = 0;
3137 init_timer(&hp->happy_timer);
3139 hp->dev = dev;
3140 dev->open = &happy_meal_open;
3141 dev->stop = &happy_meal_close;
3142 dev->hard_start_xmit = &happy_meal_start_xmit;
3143 dev->get_stats = &happy_meal_get_stats;
3144 dev->set_multicast_list = &happy_meal_set_multicast;
3145 dev->tx_timeout = &happy_meal_tx_timeout;
3146 dev->watchdog_timeo = 5*HZ;
3147 dev->ethtool_ops = &hme_ethtool_ops;
3148 dev->irq = pdev->irq;
3149 dev->dma = 0;
3151 /* Happy Meal can do it all... */
3152 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
3154 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3155 /* Hook up PCI register/dma accessors. */
3156 hp->read_desc32 = pci_hme_read_desc32;
3157 hp->write_txd = pci_hme_write_txd;
3158 hp->write_rxd = pci_hme_write_rxd;
3159 hp->dma_map = (u32 (*)(void *, void *, long, int))pci_map_single;
3160 hp->dma_unmap = (void (*)(void *, u32, long, int))pci_unmap_single;
3161 hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
3162 pci_dma_sync_single_for_cpu;
3163 hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
3164 pci_dma_sync_single_for_device;
3165 hp->read32 = pci_hme_read32;
3166 hp->write32 = pci_hme_write32;
3167 #endif
3169 /* Grrr, Happy Meal comes up by default not advertising
3170 * full duplex 100baseT capabilities, fix this.
3172 spin_lock_irq(&hp->happy_lock);
3173 happy_meal_set_initial_advertisement(hp);
3174 spin_unlock_irq(&hp->happy_lock);
3176 if (register_netdev(hp->dev)) {
3177 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3178 "aborting.\n");
3179 goto err_out_iounmap;
3182 dev_set_drvdata(&pdev->dev, hp);
3184 if (!qfe_slot) {
3185 struct pci_dev *qpdev = qp->quattro_dev;
3187 prom_name[0] = 0;
3188 if (!strncmp(dev->name, "eth", 3)) {
3189 int i = simple_strtoul(dev->name + 3, NULL, 10);
3190 sprintf(prom_name, "-%d", i + 3);
3192 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3193 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3194 qpdev->device == PCI_DEVICE_ID_DEC_21153)
3195 printk("DEC 21153 PCI Bridge\n");
3196 else
3197 printk("unknown bridge %04x.%04x\n",
3198 qpdev->vendor, qpdev->device);
3201 if (qfe_slot != -1)
3202 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3203 dev->name, qfe_slot);
3204 else
3205 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3206 dev->name);
3208 printk("%s\n", print_mac(mac, dev->dev_addr));
3210 return 0;
3212 err_out_iounmap:
3213 iounmap(hp->gregs);
3215 err_out_free_res:
3216 pci_release_regions(pdev);
3218 err_out_clear_quattro:
3219 if (qp != NULL)
3220 qp->happy_meals[qfe_slot] = NULL;
3222 free_netdev(dev);
3224 err_out:
3225 return err;
3228 static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
3230 struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3231 struct net_device *net_dev = hp->dev;
3233 unregister_netdev(net_dev);
3235 pci_free_consistent(hp->happy_dev,
3236 PAGE_SIZE,
3237 hp->happy_block,
3238 hp->hblock_dvma);
3239 iounmap(hp->gregs);
3240 pci_release_regions(hp->happy_dev);
3242 free_netdev(net_dev);
3244 dev_set_drvdata(&pdev->dev, NULL);
3247 static struct pci_device_id happymeal_pci_ids[] = {
3248 { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3249 { } /* Terminating entry */
3252 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3254 static struct pci_driver hme_pci_driver = {
3255 .name = "hme",
3256 .id_table = happymeal_pci_ids,
3257 .probe = happy_meal_pci_probe,
3258 .remove = __devexit_p(happy_meal_pci_remove),
3261 static int __init happy_meal_pci_init(void)
3263 return pci_register_driver(&hme_pci_driver);
3266 static void happy_meal_pci_exit(void)
3268 pci_unregister_driver(&hme_pci_driver);
3270 while (qfe_pci_list) {
3271 struct quattro *qfe = qfe_pci_list;
3272 struct quattro *next = qfe->next;
3274 kfree(qfe);
3276 qfe_pci_list = next;
3280 #endif
3282 #ifdef CONFIG_SBUS
3283 static int __devinit hme_sbus_probe(struct of_device *dev, const struct of_device_id *match)
3285 struct sbus_dev *sdev = to_sbus_device(&dev->dev);
3286 struct device_node *dp = dev->node;
3287 const char *model = of_get_property(dp, "model", NULL);
3288 int is_qfe = (match->data != NULL);
3290 if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3291 is_qfe = 1;
3293 return happy_meal_sbus_probe_one(sdev, is_qfe);
3296 static int __devexit hme_sbus_remove(struct of_device *dev)
3298 struct happy_meal *hp = dev_get_drvdata(&dev->dev);
3299 struct net_device *net_dev = hp->dev;
3301 unregister_netdev(net_dev);
3303 /* XXX qfe parent interrupt... */
3305 sbus_iounmap(hp->gregs, GREG_REG_SIZE);
3306 sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
3307 sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
3308 sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
3309 sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
3310 sbus_free_consistent(hp->happy_dev,
3311 PAGE_SIZE,
3312 hp->happy_block,
3313 hp->hblock_dvma);
3315 free_netdev(net_dev);
3317 dev_set_drvdata(&dev->dev, NULL);
3319 return 0;
3322 static struct of_device_id hme_sbus_match[] = {
3324 .name = "SUNW,hme",
3327 .name = "SUNW,qfe",
3328 .data = (void *) 1,
3331 .name = "qfe",
3332 .data = (void *) 1,
3337 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3339 static struct of_platform_driver hme_sbus_driver = {
3340 .name = "hme",
3341 .match_table = hme_sbus_match,
3342 .probe = hme_sbus_probe,
3343 .remove = __devexit_p(hme_sbus_remove),
3346 static int __init happy_meal_sbus_init(void)
3348 int err;
3350 err = of_register_driver(&hme_sbus_driver, &sbus_bus_type);
3351 if (!err)
3352 quattro_sbus_register_irqs();
3354 return err;
3357 static void happy_meal_sbus_exit(void)
3359 of_unregister_driver(&hme_sbus_driver);
3360 quattro_sbus_free_irqs();
3362 while (qfe_sbus_list) {
3363 struct quattro *qfe = qfe_sbus_list;
3364 struct quattro *next = qfe->next;
3366 kfree(qfe);
3368 qfe_sbus_list = next;
3371 #endif
3373 static int __init happy_meal_probe(void)
3375 int err = 0;
3377 #ifdef CONFIG_SBUS
3378 err = happy_meal_sbus_init();
3379 #endif
3380 #ifdef CONFIG_PCI
3381 if (!err) {
3382 err = happy_meal_pci_init();
3383 #ifdef CONFIG_SBUS
3384 if (err)
3385 happy_meal_sbus_exit();
3386 #endif
3388 #endif
3390 return err;
3394 static void __exit happy_meal_exit(void)
3396 #ifdef CONFIG_SBUS
3397 happy_meal_sbus_exit();
3398 #endif
3399 #ifdef CONFIG_PCI
3400 happy_meal_pci_exit();
3401 #endif
3404 module_init(happy_meal_probe);
3405 module_exit(happy_meal_exit);