2 * Compaq Hot Plug Controller Driver
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 * Send feedback to <greg@kroah.com>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/smp_lock.h>
38 #include <linux/pci.h>
39 #include <linux/pci_hotplug.h>
40 #include <linux/kthread.h>
43 static u32
configure_new_device(struct controller
* ctrl
, struct pci_func
*func
,
44 u8 behind_bridge
, struct resource_lists
*resources
);
45 static int configure_new_function(struct controller
* ctrl
, struct pci_func
*func
,
46 u8 behind_bridge
, struct resource_lists
*resources
);
47 static void interrupt_event_handler(struct controller
*ctrl
);
50 static struct task_struct
*cpqhp_event_thread
;
51 static unsigned long pushbutton_pending
; /* = 0 */
53 /* delay is in jiffies to wait for */
54 static void long_delay(int delay
)
57 * XXX(hch): if someone is bored please convert all callers
58 * to call msleep_interruptible directly. They really want
59 * to specify timeouts in natural units and spend a lot of
60 * effort converting them to jiffies..
62 msleep_interruptible(jiffies_to_msecs(delay
));
66 /* FIXME: The following line needs to be somewhere else... */
67 #define WRONG_BUS_FREQUENCY 0x07
68 static u8
handle_switch_change(u8 change
, struct controller
* ctrl
)
73 struct pci_func
*func
;
74 struct event_info
*taskInfo
;
80 dbg("cpqsbd: Switch interrupt received.\n");
82 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
83 if (change
& (0x1L
<< hp_slot
)) {
84 /**********************************
86 **********************************/
87 func
= cpqhp_slot_find(ctrl
->bus
,
88 (hp_slot
+ ctrl
->slot_device_offset
), 0);
90 /* this is the structure that tells the worker thread
92 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
93 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
94 taskInfo
->hp_slot
= hp_slot
;
98 temp_word
= ctrl
->ctrl_int_comp
>> 16;
99 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
100 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
102 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
103 /**********************************
105 **********************************/
107 func
->switch_save
= 0;
109 taskInfo
->event_type
= INT_SWITCH_OPEN
;
111 /**********************************
113 **********************************/
115 func
->switch_save
= 0x10;
117 taskInfo
->event_type
= INT_SWITCH_CLOSE
;
126 * cpqhp_find_slot - find the struct slot of given device
127 * @ctrl: scan lots of this controller
128 * @device: the device id to find
130 static struct slot
*cpqhp_find_slot(struct controller
*ctrl
, u8 device
)
132 struct slot
*slot
= ctrl
->slot
;
134 while (slot
&& (slot
->device
!= device
)) {
142 static u8
handle_presence_change(u16 change
, struct controller
* ctrl
)
148 struct pci_func
*func
;
149 struct event_info
*taskInfo
;
155 /**********************************
157 **********************************/
158 dbg("cpqsbd: Presence/Notify input change.\n");
159 dbg(" Changed bits are 0x%4.4x\n", change
);
161 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
162 if (change
& (0x0101 << hp_slot
)) {
163 /**********************************
165 **********************************/
166 func
= cpqhp_slot_find(ctrl
->bus
,
167 (hp_slot
+ ctrl
->slot_device_offset
), 0);
169 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
170 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
171 taskInfo
->hp_slot
= hp_slot
;
175 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ (readb(ctrl
->hpc_reg
+ SLOT_MASK
) >> 4));
179 /* If the switch closed, must be a button
180 * If not in button mode, nevermind */
181 if (func
->switch_save
&& (ctrl
->push_button
== 1)) {
182 temp_word
= ctrl
->ctrl_int_comp
>> 16;
183 temp_byte
= (temp_word
>> hp_slot
) & 0x01;
184 temp_byte
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
186 if (temp_byte
!= func
->presence_save
) {
187 /**************************************
188 * button Pressed (doesn't do anything)
189 **************************************/
190 dbg("hp_slot %d button pressed\n", hp_slot
);
191 taskInfo
->event_type
= INT_BUTTON_PRESS
;
193 /**********************************
194 * button Released - TAKE ACTION!!!!
195 **********************************/
196 dbg("hp_slot %d button released\n", hp_slot
);
197 taskInfo
->event_type
= INT_BUTTON_RELEASE
;
199 /* Cancel if we are still blinking */
200 if ((p_slot
->state
== BLINKINGON_STATE
)
201 || (p_slot
->state
== BLINKINGOFF_STATE
)) {
202 taskInfo
->event_type
= INT_BUTTON_CANCEL
;
203 dbg("hp_slot %d button cancel\n", hp_slot
);
204 } else if ((p_slot
->state
== POWERON_STATE
)
205 || (p_slot
->state
== POWEROFF_STATE
)) {
206 /* info(msg_button_ignore, p_slot->number); */
207 taskInfo
->event_type
= INT_BUTTON_IGNORE
;
208 dbg("hp_slot %d button ignore\n", hp_slot
);
212 /* Switch is open, assume a presence change
213 * Save the presence state */
214 temp_word
= ctrl
->ctrl_int_comp
>> 16;
215 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
216 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
218 if ((!(ctrl
->ctrl_int_comp
& (0x010000 << hp_slot
))) ||
219 (!(ctrl
->ctrl_int_comp
& (0x01000000 << hp_slot
)))) {
221 taskInfo
->event_type
= INT_PRESENCE_ON
;
224 taskInfo
->event_type
= INT_PRESENCE_OFF
;
234 static u8
handle_power_fault(u8 change
, struct controller
* ctrl
)
238 struct pci_func
*func
;
239 struct event_info
*taskInfo
;
244 /**********************************
246 **********************************/
248 info("power fault interrupt\n");
250 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
251 if (change
& (0x01 << hp_slot
)) {
252 /**********************************
254 **********************************/
255 func
= cpqhp_slot_find(ctrl
->bus
,
256 (hp_slot
+ ctrl
->slot_device_offset
), 0);
258 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
259 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
260 taskInfo
->hp_slot
= hp_slot
;
264 if (ctrl
->ctrl_int_comp
& (0x00000100 << hp_slot
)) {
265 /**********************************
266 * power fault Cleared
267 **********************************/
270 taskInfo
->event_type
= INT_POWER_FAULT_CLEAR
;
272 /**********************************
274 **********************************/
275 taskInfo
->event_type
= INT_POWER_FAULT
;
278 amber_LED_on (ctrl
, hp_slot
);
279 green_LED_off (ctrl
, hp_slot
);
282 /* this is a fatal condition, we want
283 * to crash the machine to protect from
284 * data corruption. simulated_NMI
285 * shouldn't ever return */
287 simulated_NMI(hp_slot, ctrl); */
289 /* The following code causes a software
290 * crash just in case simulated_NMI did
293 panic(msg_power_fault); */
295 /* set power fault status for this board */
297 info("power fault bit %x set\n", hp_slot
);
308 * sort_by_size - sort nodes on the list by their length, smallest first.
309 * @head: list to sort
311 static int sort_by_size(struct pci_resource
**head
)
313 struct pci_resource
*current_res
;
314 struct pci_resource
*next_res
;
315 int out_of_order
= 1;
320 if (!((*head
)->next
))
323 while (out_of_order
) {
326 /* Special case for swapping list head */
327 if (((*head
)->next
) &&
328 ((*head
)->length
> (*head
)->next
->length
)) {
331 *head
= (*head
)->next
;
332 current_res
->next
= (*head
)->next
;
333 (*head
)->next
= current_res
;
338 while (current_res
->next
&& current_res
->next
->next
) {
339 if (current_res
->next
->length
> current_res
->next
->next
->length
) {
341 next_res
= current_res
->next
;
342 current_res
->next
= current_res
->next
->next
;
343 current_res
= current_res
->next
;
344 next_res
->next
= current_res
->next
;
345 current_res
->next
= next_res
;
347 current_res
= current_res
->next
;
349 } /* End of out_of_order loop */
356 * sort_by_max_size - sort nodes on the list by their length, largest first.
357 * @head: list to sort
359 static int sort_by_max_size(struct pci_resource
**head
)
361 struct pci_resource
*current_res
;
362 struct pci_resource
*next_res
;
363 int out_of_order
= 1;
368 if (!((*head
)->next
))
371 while (out_of_order
) {
374 /* Special case for swapping list head */
375 if (((*head
)->next
) &&
376 ((*head
)->length
< (*head
)->next
->length
)) {
379 *head
= (*head
)->next
;
380 current_res
->next
= (*head
)->next
;
381 (*head
)->next
= current_res
;
386 while (current_res
->next
&& current_res
->next
->next
) {
387 if (current_res
->next
->length
< current_res
->next
->next
->length
) {
389 next_res
= current_res
->next
;
390 current_res
->next
= current_res
->next
->next
;
391 current_res
= current_res
->next
;
392 next_res
->next
= current_res
->next
;
393 current_res
->next
= next_res
;
395 current_res
= current_res
->next
;
397 } /* End of out_of_order loop */
404 * do_pre_bridge_resource_split - find node of resources that are unused
405 * @head: new list head
406 * @orig_head: original list head
407 * @alignment: max node size (?)
409 static struct pci_resource
*do_pre_bridge_resource_split(struct pci_resource
**head
,
410 struct pci_resource
**orig_head
, u32 alignment
)
412 struct pci_resource
*prevnode
= NULL
;
413 struct pci_resource
*node
;
414 struct pci_resource
*split_node
;
417 dbg("do_pre_bridge_resource_split\n");
419 if (!(*head
) || !(*orig_head
))
422 rc
= cpqhp_resource_sort_and_combine(head
);
427 if ((*head
)->base
!= (*orig_head
)->base
)
430 if ((*head
)->length
== (*orig_head
)->length
)
434 /* If we got here, there the bridge requires some of the resource, but
435 * we may be able to split some off of the front */
439 if (node
->length
& (alignment
-1)) {
440 /* this one isn't an aligned length, so we'll make a new entry
441 * and split it up. */
442 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
447 temp_dword
= (node
->length
| (alignment
-1)) + 1 - alignment
;
449 split_node
->base
= node
->base
;
450 split_node
->length
= temp_dword
;
452 node
->length
-= temp_dword
;
453 node
->base
+= split_node
->length
;
455 /* Put it in the list */
457 split_node
->next
= node
;
460 if (node
->length
< alignment
)
468 while (prevnode
->next
!= node
)
469 prevnode
= prevnode
->next
;
471 prevnode
->next
= node
->next
;
480 * do_bridge_resource_split - find one node of resources that aren't in use
482 * @alignment: max node size (?)
484 static struct pci_resource
*do_bridge_resource_split(struct pci_resource
**head
, u32 alignment
)
486 struct pci_resource
*prevnode
= NULL
;
487 struct pci_resource
*node
;
491 rc
= cpqhp_resource_sort_and_combine(head
);
504 if (node
->length
< alignment
)
507 if (node
->base
& (alignment
- 1)) {
508 /* Short circuit if adjusted size is too small */
509 temp_dword
= (node
->base
| (alignment
-1)) + 1;
510 if ((node
->length
- (temp_dword
- node
->base
)) < alignment
)
513 node
->length
-= (temp_dword
- node
->base
);
514 node
->base
= temp_dword
;
517 if (node
->length
& (alignment
- 1))
518 /* There's stuff in use after this node */
529 * get_io_resource - find first node of given size not in ISA aliasing window.
530 * @head: list to search
531 * @size: size of node to find, must be a power of two.
533 * Description: This function sorts the resource list by size and then returns
534 * returns the first node of "size" length that is not in the ISA aliasing
535 * window. If it finds a node larger than "size" it will split it up.
537 static struct pci_resource
*get_io_resource(struct pci_resource
**head
, u32 size
)
539 struct pci_resource
*prevnode
;
540 struct pci_resource
*node
;
541 struct pci_resource
*split_node
;
547 if ( cpqhp_resource_sort_and_combine(head
) )
550 if ( sort_by_size(head
) )
553 for (node
= *head
; node
; node
= node
->next
) {
554 if (node
->length
< size
)
557 if (node
->base
& (size
- 1)) {
558 /* this one isn't base aligned properly
559 * so we'll make a new entry and split it up */
560 temp_dword
= (node
->base
| (size
-1)) + 1;
562 /* Short circuit if adjusted size is too small */
563 if ((node
->length
- (temp_dword
- node
->base
)) < size
)
566 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
571 split_node
->base
= node
->base
;
572 split_node
->length
= temp_dword
- node
->base
;
573 node
->base
= temp_dword
;
574 node
->length
-= split_node
->length
;
576 /* Put it in the list */
577 split_node
->next
= node
->next
;
578 node
->next
= split_node
;
579 } /* End of non-aligned base */
581 /* Don't need to check if too small since we already did */
582 if (node
->length
> size
) {
583 /* this one is longer than we need
584 * so we'll make a new entry and split it up */
585 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
590 split_node
->base
= node
->base
+ size
;
591 split_node
->length
= node
->length
- size
;
594 /* Put it in the list */
595 split_node
->next
= node
->next
;
596 node
->next
= split_node
;
597 } /* End of too big on top end */
599 /* For IO make sure it's not in the ISA aliasing space */
600 if (node
->base
& 0x300L
)
603 /* If we got here, then it is the right size
604 * Now take it out of the list and break */
609 while (prevnode
->next
!= node
)
610 prevnode
= prevnode
->next
;
612 prevnode
->next
= node
->next
;
623 * get_max_resource - get largest node which has at least the given size.
624 * @head: the list to search the node in
625 * @size: the minimum size of the node to find
627 * Description: Gets the largest node that is at least "size" big from the
628 * list pointed to by head. It aligns the node on top and bottom
629 * to "size" alignment before returning it.
631 static struct pci_resource
*get_max_resource(struct pci_resource
**head
, u32 size
)
633 struct pci_resource
*max
;
634 struct pci_resource
*temp
;
635 struct pci_resource
*split_node
;
638 if (cpqhp_resource_sort_and_combine(head
))
641 if (sort_by_max_size(head
))
644 for (max
= *head
; max
; max
= max
->next
) {
645 /* If not big enough we could probably just bail,
646 * instead we'll continue to the next. */
647 if (max
->length
< size
)
650 if (max
->base
& (size
- 1)) {
651 /* this one isn't base aligned properly
652 * so we'll make a new entry and split it up */
653 temp_dword
= (max
->base
| (size
-1)) + 1;
655 /* Short circuit if adjusted size is too small */
656 if ((max
->length
- (temp_dword
- max
->base
)) < size
)
659 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
664 split_node
->base
= max
->base
;
665 split_node
->length
= temp_dword
- max
->base
;
666 max
->base
= temp_dword
;
667 max
->length
-= split_node
->length
;
669 split_node
->next
= max
->next
;
670 max
->next
= split_node
;
673 if ((max
->base
+ max
->length
) & (size
- 1)) {
674 /* this one isn't end aligned properly at the top
675 * so we'll make a new entry and split it up */
676 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
680 temp_dword
= ((max
->base
+ max
->length
) & ~(size
- 1));
681 split_node
->base
= temp_dword
;
682 split_node
->length
= max
->length
+ max
->base
684 max
->length
-= split_node
->length
;
686 split_node
->next
= max
->next
;
687 max
->next
= split_node
;
690 /* Make sure it didn't shrink too much when we aligned it */
691 if (max
->length
< size
)
694 /* Now take it out of the list */
699 while (temp
&& temp
->next
!= max
) {
703 temp
->next
= max
->next
;
715 * get_resource - find resource of given size and split up larger ones.
716 * @head: the list to search for resources
717 * @size: the size limit to use
719 * Description: This function sorts the resource list by size and then
720 * returns the first node of "size" length. If it finds a node
721 * larger than "size" it will split it up.
723 * size must be a power of two.
725 static struct pci_resource
*get_resource(struct pci_resource
**head
, u32 size
)
727 struct pci_resource
*prevnode
;
728 struct pci_resource
*node
;
729 struct pci_resource
*split_node
;
732 if (cpqhp_resource_sort_and_combine(head
))
735 if (sort_by_size(head
))
738 for (node
= *head
; node
; node
= node
->next
) {
739 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
740 __FUNCTION__
, size
, node
, node
->base
, node
->length
);
741 if (node
->length
< size
)
744 if (node
->base
& (size
- 1)) {
745 dbg("%s: not aligned\n", __FUNCTION__
);
746 /* this one isn't base aligned properly
747 * so we'll make a new entry and split it up */
748 temp_dword
= (node
->base
| (size
-1)) + 1;
750 /* Short circuit if adjusted size is too small */
751 if ((node
->length
- (temp_dword
- node
->base
)) < size
)
754 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
759 split_node
->base
= node
->base
;
760 split_node
->length
= temp_dword
- node
->base
;
761 node
->base
= temp_dword
;
762 node
->length
-= split_node
->length
;
764 split_node
->next
= node
->next
;
765 node
->next
= split_node
;
766 } /* End of non-aligned base */
768 /* Don't need to check if too small since we already did */
769 if (node
->length
> size
) {
770 dbg("%s: too big\n", __FUNCTION__
);
771 /* this one is longer than we need
772 * so we'll make a new entry and split it up */
773 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
778 split_node
->base
= node
->base
+ size
;
779 split_node
->length
= node
->length
- size
;
782 /* Put it in the list */
783 split_node
->next
= node
->next
;
784 node
->next
= split_node
;
785 } /* End of too big on top end */
787 dbg("%s: got one!!!\n", __FUNCTION__
);
788 /* If we got here, then it is the right size
789 * Now take it out of the list */
794 while (prevnode
->next
!= node
)
795 prevnode
= prevnode
->next
;
797 prevnode
->next
= node
->next
;
807 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
808 * @head: the list to sort and clean up
810 * Description: Sorts all of the nodes in the list in ascending order by
811 * their base addresses. Also does garbage collection by
812 * combining adjacent nodes.
814 * Returns %0 if success.
816 int cpqhp_resource_sort_and_combine(struct pci_resource
**head
)
818 struct pci_resource
*node1
;
819 struct pci_resource
*node2
;
820 int out_of_order
= 1;
822 dbg("%s: head = %p, *head = %p\n", __FUNCTION__
, head
, *head
);
827 dbg("*head->next = %p\n",(*head
)->next
);
830 return 0; /* only one item on the list, already sorted! */
832 dbg("*head->base = 0x%x\n",(*head
)->base
);
833 dbg("*head->next->base = 0x%x\n",(*head
)->next
->base
);
834 while (out_of_order
) {
837 /* Special case for swapping list head */
838 if (((*head
)->next
) &&
839 ((*head
)->base
> (*head
)->next
->base
)) {
841 (*head
) = (*head
)->next
;
842 node1
->next
= (*head
)->next
;
843 (*head
)->next
= node1
;
849 while (node1
->next
&& node1
->next
->next
) {
850 if (node1
->next
->base
> node1
->next
->next
->base
) {
853 node1
->next
= node1
->next
->next
;
855 node2
->next
= node1
->next
;
860 } /* End of out_of_order loop */
864 while (node1
&& node1
->next
) {
865 if ((node1
->base
+ node1
->length
) == node1
->next
->base
) {
868 node1
->length
+= node1
->next
->length
;
870 node1
->next
= node1
->next
->next
;
880 irqreturn_t
cpqhp_ctrl_intr(int IRQ
, void *data
)
882 struct controller
*ctrl
= data
;
883 u8 schedule_flag
= 0;
890 misc
= readw(ctrl
->hpc_reg
+ MISC
);
891 /***************************************
892 * Check to see if it was our interrupt
893 ***************************************/
894 if (!(misc
& 0x000C)) {
899 /**********************************
900 * Serial Output interrupt Pending
901 **********************************/
903 /* Clear the interrupt */
905 writew(misc
, ctrl
->hpc_reg
+ MISC
);
907 /* Read to clear posted writes */
908 misc
= readw(ctrl
->hpc_reg
+ MISC
);
910 dbg ("%s - waking up\n", __FUNCTION__
);
911 wake_up_interruptible(&ctrl
->queue
);
915 /* General-interrupt-input interrupt Pending */
916 Diff
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
) ^ ctrl
->ctrl_int_comp
;
918 ctrl
->ctrl_int_comp
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
920 /* Clear the interrupt */
921 writel(Diff
, ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
923 /* Read it back to clear any posted writes */
924 temp_dword
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
927 /* Clear all interrupts */
928 writel(0xFFFFFFFF, ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
930 schedule_flag
+= handle_switch_change((u8
)(Diff
& 0xFFL
), ctrl
);
931 schedule_flag
+= handle_presence_change((u16
)((Diff
& 0xFFFF0000L
) >> 16), ctrl
);
932 schedule_flag
+= handle_power_fault((u8
)((Diff
& 0xFF00L
) >> 8), ctrl
);
935 reset
= readb(ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
937 /* Bus reset has completed */
939 writeb(reset
, ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
940 reset
= readb(ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
941 wake_up_interruptible(&ctrl
->queue
);
945 wake_up_process(cpqhp_event_thread
);
946 dbg("Waking even thread");
953 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
954 * @busnumber: bus where new node is to be located
956 * Returns pointer to the new node or %NULL if unsuccessful.
958 struct pci_func
*cpqhp_slot_create(u8 busnumber
)
960 struct pci_func
*new_slot
;
961 struct pci_func
*next
;
963 new_slot
= kzalloc(sizeof(*new_slot
), GFP_KERNEL
);
964 if (new_slot
== NULL
) {
970 new_slot
->next
= NULL
;
971 new_slot
->configured
= 1;
973 if (cpqhp_slot_list
[busnumber
] == NULL
) {
974 cpqhp_slot_list
[busnumber
] = new_slot
;
976 next
= cpqhp_slot_list
[busnumber
];
977 while (next
->next
!= NULL
)
979 next
->next
= new_slot
;
986 * slot_remove - Removes a node from the linked list of slots.
987 * @old_slot: slot to remove
989 * Returns %0 if successful, !0 otherwise.
991 static int slot_remove(struct pci_func
* old_slot
)
993 struct pci_func
*next
;
995 if (old_slot
== NULL
)
998 next
= cpqhp_slot_list
[old_slot
->bus
];
1004 if (next
== old_slot
) {
1005 cpqhp_slot_list
[old_slot
->bus
] = old_slot
->next
;
1006 cpqhp_destroy_board_resources(old_slot
);
1011 while ((next
->next
!= old_slot
) && (next
->next
!= NULL
)) {
1015 if (next
->next
== old_slot
) {
1016 next
->next
= old_slot
->next
;
1017 cpqhp_destroy_board_resources(old_slot
);
1026 * bridge_slot_remove - Removes a node from the linked list of slots.
1027 * @bridge: bridge to remove
1029 * Returns %0 if successful, !0 otherwise.
1031 static int bridge_slot_remove(struct pci_func
*bridge
)
1033 u8 subordinateBus
, secondaryBus
;
1035 struct pci_func
*next
;
1037 secondaryBus
= (bridge
->config_space
[0x06] >> 8) & 0xFF;
1038 subordinateBus
= (bridge
->config_space
[0x06] >> 16) & 0xFF;
1040 for (tempBus
= secondaryBus
; tempBus
<= subordinateBus
; tempBus
++) {
1041 next
= cpqhp_slot_list
[tempBus
];
1043 while (!slot_remove(next
)) {
1044 next
= cpqhp_slot_list
[tempBus
];
1048 next
= cpqhp_slot_list
[bridge
->bus
];
1053 if (next
== bridge
) {
1054 cpqhp_slot_list
[bridge
->bus
] = bridge
->next
;
1058 while ((next
->next
!= bridge
) && (next
->next
!= NULL
))
1061 if (next
->next
!= bridge
)
1063 next
->next
= bridge
->next
;
1071 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1073 * @device: device to find
1074 * @index: is %0 for first function found, %1 for the second...
1076 * Returns pointer to the node if successful, %NULL otherwise.
1078 struct pci_func
*cpqhp_slot_find(u8 bus
, u8 device
, u8 index
)
1081 struct pci_func
*func
;
1083 func
= cpqhp_slot_list
[bus
];
1085 if ((func
== NULL
) || ((func
->device
== device
) && (index
== 0)))
1088 if (func
->device
== device
)
1091 while (func
->next
!= NULL
) {
1094 if (func
->device
== device
)
1105 /* DJZ: I don't think is_bridge will work as is.
1107 static int is_bridge(struct pci_func
* func
)
1109 /* Check the header type */
1110 if (((func
->config_space
[0x03] >> 16) & 0xFF) == 0x01)
1118 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1119 * @ctrl: controller to change frequency/mode for.
1120 * @adapter_speed: the speed of the adapter we want to match.
1121 * @hp_slot: the slot number where the adapter is installed.
1123 * Returns %0 if we successfully change frequency and/or mode to match the
1126 static u8
set_controller_speed(struct controller
*ctrl
, u8 adapter_speed
, u8 hp_slot
)
1130 u8 slot_power
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1132 u32 leds
= readl(ctrl
->hpc_reg
+ LED_CONTROL
);
1134 if (ctrl
->speed
== adapter_speed
)
1137 /* We don't allow freq/mode changes if we find another adapter running
1138 * in another slot on this controller */
1139 for(slot
= ctrl
->slot
; slot
; slot
= slot
->next
) {
1140 if (slot
->device
== (hp_slot
+ ctrl
->slot_device_offset
))
1142 if (!slot
->hotplug_slot
&& !slot
->hotplug_slot
->info
)
1144 if (slot
->hotplug_slot
->info
->adapter_status
== 0)
1146 /* If another adapter is running on the same segment but at a
1147 * lower speed/mode, we allow the new adapter to function at
1148 * this rate if supported */
1149 if (ctrl
->speed
< adapter_speed
)
1155 /* If the controller doesn't support freq/mode changes and the
1156 * controller is running at a higher mode, we bail */
1157 if ((ctrl
->speed
> adapter_speed
) && (!ctrl
->pcix_speed_capability
))
1160 /* But we allow the adapter to run at a lower rate if possible */
1161 if ((ctrl
->speed
< adapter_speed
) && (!ctrl
->pcix_speed_capability
))
1164 /* We try to set the max speed supported by both the adapter and
1166 if (ctrl
->speed_capability
< adapter_speed
) {
1167 if (ctrl
->speed
== ctrl
->speed_capability
)
1169 adapter_speed
= ctrl
->speed_capability
;
1172 writel(0x0L
, ctrl
->hpc_reg
+ LED_CONTROL
);
1173 writeb(0x00, ctrl
->hpc_reg
+ SLOT_ENABLE
);
1176 wait_for_ctrl_irq(ctrl
);
1178 if (adapter_speed
!= PCI_SPEED_133MHz_PCIX
)
1182 pci_write_config_byte(ctrl
->pci_dev
, 0x41, reg
);
1184 reg16
= readw(ctrl
->hpc_reg
+ NEXT_CURR_FREQ
);
1186 switch(adapter_speed
) {
1187 case(PCI_SPEED_133MHz_PCIX
):
1191 case(PCI_SPEED_100MHz_PCIX
):
1195 case(PCI_SPEED_66MHz_PCIX
):
1199 case(PCI_SPEED_66MHz
):
1203 default: /* 33MHz PCI 2.2 */
1209 writew(reg16
, ctrl
->hpc_reg
+ NEXT_CURR_FREQ
);
1213 /* Reenable interrupts */
1214 writel(0, ctrl
->hpc_reg
+ INT_MASK
);
1216 pci_write_config_byte(ctrl
->pci_dev
, 0x41, reg
);
1218 /* Restart state machine */
1220 pci_read_config_byte(ctrl
->pci_dev
, 0x43, ®
);
1221 pci_write_config_byte(ctrl
->pci_dev
, 0x43, reg
);
1223 /* Only if mode change...*/
1224 if (((ctrl
->speed
== PCI_SPEED_66MHz
) && (adapter_speed
== PCI_SPEED_66MHz_PCIX
)) ||
1225 ((ctrl
->speed
== PCI_SPEED_66MHz_PCIX
) && (adapter_speed
== PCI_SPEED_66MHz
)))
1228 wait_for_ctrl_irq(ctrl
);
1231 /* Restore LED/Slot state */
1232 writel(leds
, ctrl
->hpc_reg
+ LED_CONTROL
);
1233 writeb(slot_power
, ctrl
->hpc_reg
+ SLOT_ENABLE
);
1236 wait_for_ctrl_irq(ctrl
);
1238 ctrl
->speed
= adapter_speed
;
1239 slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1241 info("Successfully changed frequency/mode for adapter in slot %d\n",
1246 /* the following routines constitute the bulk of the
1247 hotplug controller logic
1252 * board_replaced - Called after a board has been replaced in the system.
1253 * @func: PCI device/function information
1254 * @ctrl: hotplug controller
1256 * This is only used if we don't have resources for hot add.
1257 * Turns power on for the board.
1258 * Checks to see if board is the same.
1259 * If board is same, reconfigures it.
1260 * If board isn't same, turns it back off.
1262 static u32
board_replaced(struct pci_func
*func
, struct controller
*ctrl
)
1269 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1271 if (readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
) & (0x01L
<< hp_slot
)) {
1272 /**********************************
1273 * The switch is open.
1274 **********************************/
1275 rc
= INTERLOCK_OPEN
;
1276 } else if (is_slot_enabled (ctrl
, hp_slot
)) {
1277 /**********************************
1278 * The board is already on
1279 **********************************/
1280 rc
= CARD_FUNCTIONING
;
1282 mutex_lock(&ctrl
->crit_sect
);
1284 /* turn on board without attaching to the bus */
1285 enable_slot_power (ctrl
, hp_slot
);
1289 /* Wait for SOBS to be unset */
1290 wait_for_ctrl_irq (ctrl
);
1292 /* Change bits in slot power register to force another shift out
1293 * NOTE: this is to work around the timer bug */
1294 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1295 writeb(0x00, ctrl
->hpc_reg
+ SLOT_POWER
);
1296 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_POWER
);
1300 /* Wait for SOBS to be unset */
1301 wait_for_ctrl_irq (ctrl
);
1303 adapter_speed
= get_adapter_speed(ctrl
, hp_slot
);
1304 if (ctrl
->speed
!= adapter_speed
)
1305 if (set_controller_speed(ctrl
, adapter_speed
, hp_slot
))
1306 rc
= WRONG_BUS_FREQUENCY
;
1308 /* turn off board without attaching to the bus */
1309 disable_slot_power (ctrl
, hp_slot
);
1313 /* Wait for SOBS to be unset */
1314 wait_for_ctrl_irq (ctrl
);
1316 mutex_unlock(&ctrl
->crit_sect
);
1321 mutex_lock(&ctrl
->crit_sect
);
1323 slot_enable (ctrl
, hp_slot
);
1324 green_LED_blink (ctrl
, hp_slot
);
1326 amber_LED_off (ctrl
, hp_slot
);
1330 /* Wait for SOBS to be unset */
1331 wait_for_ctrl_irq (ctrl
);
1333 mutex_unlock(&ctrl
->crit_sect
);
1335 /* Wait for ~1 second because of hot plug spec */
1338 /* Check for a power fault */
1339 if (func
->status
== 0xFF) {
1340 /* power fault occurred, but it was benign */
1344 rc
= cpqhp_valid_replace(ctrl
, func
);
1347 /* It must be the same board */
1349 rc
= cpqhp_configure_board(ctrl
, func
);
1351 /* If configuration fails, turn it off
1352 * Get slot won't work for devices behind
1353 * bridges, but in this case it will always be
1354 * called for the "base" bus/dev/func of an
1357 mutex_lock(&ctrl
->crit_sect
);
1359 amber_LED_on (ctrl
, hp_slot
);
1360 green_LED_off (ctrl
, hp_slot
);
1361 slot_disable (ctrl
, hp_slot
);
1365 /* Wait for SOBS to be unset */
1366 wait_for_ctrl_irq (ctrl
);
1368 mutex_unlock(&ctrl
->crit_sect
);
1376 /* Something is wrong
1378 * Get slot won't work for devices behind bridges, but
1379 * in this case it will always be called for the "base"
1380 * bus/dev/func of an adapter. */
1382 mutex_lock(&ctrl
->crit_sect
);
1384 amber_LED_on (ctrl
, hp_slot
);
1385 green_LED_off (ctrl
, hp_slot
);
1386 slot_disable (ctrl
, hp_slot
);
1390 /* Wait for SOBS to be unset */
1391 wait_for_ctrl_irq (ctrl
);
1393 mutex_unlock(&ctrl
->crit_sect
);
1403 * board_added - Called after a board has been added to the system.
1404 * @func: PCI device/function info
1405 * @ctrl: hotplug controller
1407 * Turns power on for the board.
1410 static u32
board_added(struct pci_func
*func
, struct controller
*ctrl
)
1416 u32 temp_register
= 0xFFFFFFFF;
1418 struct pci_func
*new_slot
= NULL
;
1419 struct slot
*p_slot
;
1420 struct resource_lists res_lists
;
1422 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1423 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1424 __FUNCTION__
, func
->device
, ctrl
->slot_device_offset
, hp_slot
);
1426 mutex_lock(&ctrl
->crit_sect
);
1428 /* turn on board without attaching to the bus */
1429 enable_slot_power(ctrl
, hp_slot
);
1433 /* Wait for SOBS to be unset */
1434 wait_for_ctrl_irq (ctrl
);
1436 /* Change bits in slot power register to force another shift out
1437 * NOTE: this is to work around the timer bug */
1438 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1439 writeb(0x00, ctrl
->hpc_reg
+ SLOT_POWER
);
1440 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_POWER
);
1444 /* Wait for SOBS to be unset */
1445 wait_for_ctrl_irq (ctrl
);
1447 adapter_speed
= get_adapter_speed(ctrl
, hp_slot
);
1448 if (ctrl
->speed
!= adapter_speed
)
1449 if (set_controller_speed(ctrl
, adapter_speed
, hp_slot
))
1450 rc
= WRONG_BUS_FREQUENCY
;
1452 /* turn off board without attaching to the bus */
1453 disable_slot_power (ctrl
, hp_slot
);
1457 /* Wait for SOBS to be unset */
1458 wait_for_ctrl_irq(ctrl
);
1460 mutex_unlock(&ctrl
->crit_sect
);
1465 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1467 /* turn on board and blink green LED */
1469 dbg("%s: before down\n", __FUNCTION__
);
1470 mutex_lock(&ctrl
->crit_sect
);
1471 dbg("%s: after down\n", __FUNCTION__
);
1473 dbg("%s: before slot_enable\n", __FUNCTION__
);
1474 slot_enable (ctrl
, hp_slot
);
1476 dbg("%s: before green_LED_blink\n", __FUNCTION__
);
1477 green_LED_blink (ctrl
, hp_slot
);
1479 dbg("%s: before amber_LED_blink\n", __FUNCTION__
);
1480 amber_LED_off (ctrl
, hp_slot
);
1482 dbg("%s: before set_SOGO\n", __FUNCTION__
);
1485 /* Wait for SOBS to be unset */
1486 dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__
);
1487 wait_for_ctrl_irq (ctrl
);
1488 dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__
);
1490 dbg("%s: before up\n", __FUNCTION__
);
1491 mutex_unlock(&ctrl
->crit_sect
);
1492 dbg("%s: after up\n", __FUNCTION__
);
1494 /* Wait for ~1 second because of hot plug spec */
1495 dbg("%s: before long_delay\n", __FUNCTION__
);
1497 dbg("%s: after long_delay\n", __FUNCTION__
);
1499 dbg("%s: func status = %x\n", __FUNCTION__
, func
->status
);
1500 /* Check for a power fault */
1501 if (func
->status
== 0xFF) {
1502 /* power fault occurred, but it was benign */
1503 temp_register
= 0xFFFFFFFF;
1504 dbg("%s: temp register set to %x by power fault\n", __FUNCTION__
, temp_register
);
1508 /* Get vendor/device ID u32 */
1509 ctrl
->pci_bus
->number
= func
->bus
;
1510 rc
= pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(func
->device
, func
->function
), PCI_VENDOR_ID
, &temp_register
);
1511 dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__
, rc
);
1512 dbg("%s: temp_register is %x\n", __FUNCTION__
, temp_register
);
1515 /* Something's wrong here */
1516 temp_register
= 0xFFFFFFFF;
1517 dbg("%s: temp register set to %x by error\n", __FUNCTION__
, temp_register
);
1519 /* Preset return code. It will be changed later if things go okay. */
1520 rc
= NO_ADAPTER_PRESENT
;
1523 /* All F's is an empty slot or an invalid board */
1524 if (temp_register
!= 0xFFFFFFFF) { /* Check for a board in the slot */
1525 res_lists
.io_head
= ctrl
->io_head
;
1526 res_lists
.mem_head
= ctrl
->mem_head
;
1527 res_lists
.p_mem_head
= ctrl
->p_mem_head
;
1528 res_lists
.bus_head
= ctrl
->bus_head
;
1529 res_lists
.irqs
= NULL
;
1531 rc
= configure_new_device(ctrl
, func
, 0, &res_lists
);
1533 dbg("%s: back from configure_new_device\n", __FUNCTION__
);
1534 ctrl
->io_head
= res_lists
.io_head
;
1535 ctrl
->mem_head
= res_lists
.mem_head
;
1536 ctrl
->p_mem_head
= res_lists
.p_mem_head
;
1537 ctrl
->bus_head
= res_lists
.bus_head
;
1539 cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1540 cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1541 cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1542 cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1545 mutex_lock(&ctrl
->crit_sect
);
1547 amber_LED_on (ctrl
, hp_slot
);
1548 green_LED_off (ctrl
, hp_slot
);
1549 slot_disable (ctrl
, hp_slot
);
1553 /* Wait for SOBS to be unset */
1554 wait_for_ctrl_irq (ctrl
);
1556 mutex_unlock(&ctrl
->crit_sect
);
1559 cpqhp_save_slot_config(ctrl
, func
);
1564 func
->switch_save
= 0x10;
1565 func
->is_a_board
= 0x01;
1567 /* next, we will instantiate the linux pci_dev structures (with
1568 * appropriate driver notification, if already present) */
1569 dbg("%s: configure linux pci_dev structure\n", __FUNCTION__
);
1572 new_slot
= cpqhp_slot_find(ctrl
->bus
, func
->device
, index
++);
1573 if (new_slot
&& !new_slot
->pci_dev
) {
1574 cpqhp_configure_device(ctrl
, new_slot
);
1578 mutex_lock(&ctrl
->crit_sect
);
1580 green_LED_on (ctrl
, hp_slot
);
1584 /* Wait for SOBS to be unset */
1585 wait_for_ctrl_irq (ctrl
);
1587 mutex_unlock(&ctrl
->crit_sect
);
1589 mutex_lock(&ctrl
->crit_sect
);
1591 amber_LED_on (ctrl
, hp_slot
);
1592 green_LED_off (ctrl
, hp_slot
);
1593 slot_disable (ctrl
, hp_slot
);
1597 /* Wait for SOBS to be unset */
1598 wait_for_ctrl_irq (ctrl
);
1600 mutex_unlock(&ctrl
->crit_sect
);
1609 * remove_board - Turns off slot and LEDs
1610 * @func: PCI device/function info
1611 * @replace_flag: whether replacing or adding a new device
1612 * @ctrl: target controller
1614 static u32
remove_board(struct pci_func
* func
, u32 replace_flag
, struct controller
* ctrl
)
1622 struct resource_lists res_lists
;
1623 struct pci_func
*temp_func
;
1625 if (cpqhp_unconfigure_device(func
))
1628 device
= func
->device
;
1630 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1631 dbg("In %s, hp_slot = %d\n", __FUNCTION__
, hp_slot
);
1633 /* When we get here, it is safe to change base address registers.
1634 * We will attempt to save the base address register lengths */
1635 if (replace_flag
|| !ctrl
->add_support
)
1636 rc
= cpqhp_save_base_addr_length(ctrl
, func
);
1637 else if (!func
->bus_head
&& !func
->mem_head
&&
1638 !func
->p_mem_head
&& !func
->io_head
) {
1639 /* Here we check to see if we've saved any of the board's
1640 * resources already. If so, we'll skip the attempt to
1641 * determine what's being used. */
1643 temp_func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1645 if (temp_func
->bus_head
|| temp_func
->mem_head
1646 || temp_func
->p_mem_head
|| temp_func
->io_head
) {
1650 temp_func
= cpqhp_slot_find(temp_func
->bus
, temp_func
->device
, index
++);
1654 rc
= cpqhp_save_used_resources(ctrl
, func
);
1656 /* Change status to shutdown */
1657 if (func
->is_a_board
)
1658 func
->status
= 0x01;
1659 func
->configured
= 0;
1661 mutex_lock(&ctrl
->crit_sect
);
1663 green_LED_off (ctrl
, hp_slot
);
1664 slot_disable (ctrl
, hp_slot
);
1668 /* turn off SERR for slot */
1669 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_SERR
);
1670 temp_byte
&= ~(0x01 << hp_slot
);
1671 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_SERR
);
1673 /* Wait for SOBS to be unset */
1674 wait_for_ctrl_irq (ctrl
);
1676 mutex_unlock(&ctrl
->crit_sect
);
1678 if (!replace_flag
&& ctrl
->add_support
) {
1680 res_lists
.io_head
= ctrl
->io_head
;
1681 res_lists
.mem_head
= ctrl
->mem_head
;
1682 res_lists
.p_mem_head
= ctrl
->p_mem_head
;
1683 res_lists
.bus_head
= ctrl
->bus_head
;
1685 cpqhp_return_board_resources(func
, &res_lists
);
1687 ctrl
->io_head
= res_lists
.io_head
;
1688 ctrl
->mem_head
= res_lists
.mem_head
;
1689 ctrl
->p_mem_head
= res_lists
.p_mem_head
;
1690 ctrl
->bus_head
= res_lists
.bus_head
;
1692 cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1693 cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1694 cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1695 cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1697 if (is_bridge(func
)) {
1698 bridge_slot_remove(func
);
1702 func
= cpqhp_slot_find(ctrl
->bus
, device
, 0);
1705 /* Setup slot structure with entry for empty slot */
1706 func
= cpqhp_slot_create(ctrl
->bus
);
1711 func
->bus
= ctrl
->bus
;
1712 func
->device
= device
;
1714 func
->configured
= 0;
1715 func
->switch_save
= 0x10;
1716 func
->is_a_board
= 0;
1717 func
->p_task_event
= NULL
;
1723 static void pushbutton_helper_thread(unsigned long data
)
1725 pushbutton_pending
= data
;
1726 wake_up_process(cpqhp_event_thread
);
1730 /* this is the main worker thread */
1731 static int event_thread(void* data
)
1733 struct controller
*ctrl
;
1736 dbg("!!!!event_thread sleeping\n");
1737 set_current_state(TASK_INTERRUPTIBLE
);
1740 if (kthread_should_stop())
1743 if (pushbutton_pending
)
1744 cpqhp_pushbutton_thread(pushbutton_pending
);
1746 for (ctrl
= cpqhp_ctrl_list
; ctrl
; ctrl
=ctrl
->next
)
1747 interrupt_event_handler(ctrl
);
1749 dbg("event_thread signals exit\n");
1753 int cpqhp_event_start_thread(void)
1755 cpqhp_event_thread
= kthread_run(event_thread
, NULL
, "phpd_event");
1756 if (IS_ERR(cpqhp_event_thread
)) {
1757 err ("Can't start up our event thread\n");
1758 return PTR_ERR(cpqhp_event_thread
);
1765 void cpqhp_event_stop_thread(void)
1767 kthread_stop(cpqhp_event_thread
);
1771 static int update_slot_info(struct controller
*ctrl
, struct slot
*slot
)
1773 struct hotplug_slot_info
*info
;
1776 info
= kmalloc(sizeof(*info
), GFP_KERNEL
);
1780 info
->power_status
= get_slot_enabled(ctrl
, slot
);
1781 info
->attention_status
= cpq_get_attention_status(ctrl
, slot
);
1782 info
->latch_status
= cpq_get_latch_status(ctrl
, slot
);
1783 info
->adapter_status
= get_presence_status(ctrl
, slot
);
1784 result
= pci_hp_change_slot_info(slot
->hotplug_slot
, info
);
1789 static void interrupt_event_handler(struct controller
*ctrl
)
1793 struct pci_func
*func
;
1795 struct slot
*p_slot
;
1800 for (loop
= 0; loop
< 10; loop
++) {
1801 /* dbg("loop %d\n", loop); */
1802 if (ctrl
->event_queue
[loop
].event_type
!= 0) {
1803 hp_slot
= ctrl
->event_queue
[loop
].hp_slot
;
1805 func
= cpqhp_slot_find(ctrl
->bus
, (hp_slot
+ ctrl
->slot_device_offset
), 0);
1809 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1813 dbg("hp_slot %d, func %p, p_slot %p\n",
1814 hp_slot
, func
, p_slot
);
1816 if (ctrl
->event_queue
[loop
].event_type
== INT_BUTTON_PRESS
) {
1817 dbg("button pressed\n");
1818 } else if (ctrl
->event_queue
[loop
].event_type
==
1819 INT_BUTTON_CANCEL
) {
1820 dbg("button cancel\n");
1821 del_timer(&p_slot
->task_event
);
1823 mutex_lock(&ctrl
->crit_sect
);
1825 if (p_slot
->state
== BLINKINGOFF_STATE
) {
1827 dbg("turn on green LED\n");
1828 green_LED_on (ctrl
, hp_slot
);
1829 } else if (p_slot
->state
== BLINKINGON_STATE
) {
1831 dbg("turn off green LED\n");
1832 green_LED_off (ctrl
, hp_slot
);
1835 info(msg_button_cancel
, p_slot
->number
);
1837 p_slot
->state
= STATIC_STATE
;
1839 amber_LED_off (ctrl
, hp_slot
);
1843 /* Wait for SOBS to be unset */
1844 wait_for_ctrl_irq (ctrl
);
1846 mutex_unlock(&ctrl
->crit_sect
);
1848 /*** button Released (No action on press...) */
1849 else if (ctrl
->event_queue
[loop
].event_type
== INT_BUTTON_RELEASE
) {
1850 dbg("button release\n");
1852 if (is_slot_enabled (ctrl
, hp_slot
)) {
1853 dbg("slot is on\n");
1854 p_slot
->state
= BLINKINGOFF_STATE
;
1855 info(msg_button_off
, p_slot
->number
);
1857 dbg("slot is off\n");
1858 p_slot
->state
= BLINKINGON_STATE
;
1859 info(msg_button_on
, p_slot
->number
);
1861 mutex_lock(&ctrl
->crit_sect
);
1863 dbg("blink green LED and turn off amber\n");
1865 amber_LED_off (ctrl
, hp_slot
);
1866 green_LED_blink (ctrl
, hp_slot
);
1870 /* Wait for SOBS to be unset */
1871 wait_for_ctrl_irq (ctrl
);
1873 mutex_unlock(&ctrl
->crit_sect
);
1874 init_timer(&p_slot
->task_event
);
1875 p_slot
->hp_slot
= hp_slot
;
1876 p_slot
->ctrl
= ctrl
;
1877 /* p_slot->physical_slot = physical_slot; */
1878 p_slot
->task_event
.expires
= jiffies
+ 5 * HZ
; /* 5 second delay */
1879 p_slot
->task_event
.function
= pushbutton_helper_thread
;
1880 p_slot
->task_event
.data
= (u32
) p_slot
;
1882 dbg("add_timer p_slot = %p\n", p_slot
);
1883 add_timer(&p_slot
->task_event
);
1885 /***********POWER FAULT */
1886 else if (ctrl
->event_queue
[loop
].event_type
== INT_POWER_FAULT
) {
1887 dbg("power fault\n");
1889 /* refresh notification */
1891 update_slot_info(ctrl
, p_slot
);
1894 ctrl
->event_queue
[loop
].event_type
= 0;
1898 } /* End of FOR loop */
1906 * cpqhp_pushbutton_thread - handle pushbutton events
1907 * @slot: target slot (struct)
1909 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1910 * Handles all pending events and exits.
1912 void cpqhp_pushbutton_thread(unsigned long slot
)
1916 struct pci_func
*func
;
1917 struct slot
*p_slot
= (struct slot
*) slot
;
1918 struct controller
*ctrl
= (struct controller
*) p_slot
->ctrl
;
1920 pushbutton_pending
= 0;
1921 hp_slot
= p_slot
->hp_slot
;
1923 device
= p_slot
->device
;
1925 if (is_slot_enabled(ctrl
, hp_slot
)) {
1926 p_slot
->state
= POWEROFF_STATE
;
1927 /* power Down board */
1928 func
= cpqhp_slot_find(p_slot
->bus
, p_slot
->device
, 0);
1929 dbg("In power_down_board, func = %p, ctrl = %p\n", func
, ctrl
);
1931 dbg("Error! func NULL in %s\n", __FUNCTION__
);
1935 if (cpqhp_process_SS(ctrl
, func
) != 0) {
1936 amber_LED_on(ctrl
, hp_slot
);
1937 green_LED_on(ctrl
, hp_slot
);
1941 /* Wait for SOBS to be unset */
1942 wait_for_ctrl_irq(ctrl
);
1945 p_slot
->state
= STATIC_STATE
;
1947 p_slot
->state
= POWERON_STATE
;
1950 func
= cpqhp_slot_find(p_slot
->bus
, p_slot
->device
, 0);
1951 dbg("In add_board, func = %p, ctrl = %p\n", func
, ctrl
);
1953 dbg("Error! func NULL in %s\n", __FUNCTION__
);
1957 if (func
!= NULL
&& ctrl
!= NULL
) {
1958 if (cpqhp_process_SI(ctrl
, func
) != 0) {
1959 amber_LED_on(ctrl
, hp_slot
);
1960 green_LED_off(ctrl
, hp_slot
);
1964 /* Wait for SOBS to be unset */
1965 wait_for_ctrl_irq (ctrl
);
1969 p_slot
->state
= STATIC_STATE
;
1976 int cpqhp_process_SI(struct controller
*ctrl
, struct pci_func
*func
)
1982 struct slot
* p_slot
;
1983 int physical_slot
= 0;
1987 device
= func
->device
;
1988 hp_slot
= device
- ctrl
->slot_device_offset
;
1989 p_slot
= cpqhp_find_slot(ctrl
, device
);
1991 physical_slot
= p_slot
->number
;
1993 /* Check to see if the interlock is closed */
1994 tempdword
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
1996 if (tempdword
& (0x01 << hp_slot
)) {
2000 if (func
->is_a_board
) {
2001 rc
= board_replaced(func
, ctrl
);
2006 func
= cpqhp_slot_create(ctrl
->bus
);
2010 func
->bus
= ctrl
->bus
;
2011 func
->device
= device
;
2013 func
->configured
= 0;
2014 func
->is_a_board
= 1;
2016 /* We have to save the presence info for these slots */
2017 temp_word
= ctrl
->ctrl_int_comp
>> 16;
2018 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
2019 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
2021 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
2022 func
->switch_save
= 0;
2024 func
->switch_save
= 0x10;
2027 rc
= board_added(func
, ctrl
);
2029 if (is_bridge(func
)) {
2030 bridge_slot_remove(func
);
2034 /* Setup slot structure with entry for empty slot */
2035 func
= cpqhp_slot_create(ctrl
->bus
);
2040 func
->bus
= ctrl
->bus
;
2041 func
->device
= device
;
2043 func
->configured
= 0;
2044 func
->is_a_board
= 0;
2046 /* We have to save the presence info for these slots */
2047 temp_word
= ctrl
->ctrl_int_comp
>> 16;
2048 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
2049 func
->presence_save
|=
2050 (temp_word
>> (hp_slot
+ 7)) & 0x02;
2052 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
2053 func
->switch_save
= 0;
2055 func
->switch_save
= 0x10;
2061 dbg("%s: rc = %d\n", __FUNCTION__
, rc
);
2065 update_slot_info(ctrl
, p_slot
);
2071 int cpqhp_process_SS(struct controller
*ctrl
, struct pci_func
*func
)
2073 u8 device
, class_code
, header_type
, BCR
;
2078 struct slot
* p_slot
;
2079 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
2080 int physical_slot
=0;
2082 device
= func
->device
;
2083 func
= cpqhp_slot_find(ctrl
->bus
, device
, index
++);
2084 p_slot
= cpqhp_find_slot(ctrl
, device
);
2086 physical_slot
= p_slot
->number
;
2089 /* Make sure there are no video controllers here */
2090 while (func
&& !rc
) {
2091 pci_bus
->number
= func
->bus
;
2092 devfn
= PCI_DEVFN(func
->device
, func
->function
);
2094 /* Check the Class Code */
2095 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, 0x0B, &class_code
);
2099 if (class_code
== PCI_BASE_CLASS_DISPLAY
) {
2100 /* Display/Video adapter (not supported) */
2101 rc
= REMOVE_NOT_SUPPORTED
;
2103 /* See if it's a bridge */
2104 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
2108 /* If it's a bridge, check the VGA Enable bit */
2109 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
2110 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, &BCR
);
2114 /* If the VGA Enable bit is set, remove isn't
2116 if (BCR
& PCI_BRIDGE_CTL_VGA
) {
2117 rc
= REMOVE_NOT_SUPPORTED
;
2122 func
= cpqhp_slot_find(ctrl
->bus
, device
, index
++);
2125 func
= cpqhp_slot_find(ctrl
->bus
, device
, 0);
2126 if ((func
!= NULL
) && !rc
) {
2127 /* FIXME: Replace flag should be passed into process_SS */
2128 replace_flag
= !(ctrl
->add_support
);
2129 rc
= remove_board(func
, replace_flag
, ctrl
);
2135 update_slot_info(ctrl
, p_slot
);
2141 * switch_leds - switch the leds, go from one site to the other.
2142 * @ctrl: controller to use
2143 * @num_of_slots: number of slots to use
2144 * @work_LED: LED control value
2145 * @direction: 1 to start from the left side, 0 to start right.
2147 static void switch_leds(struct controller
*ctrl
, const int num_of_slots
,
2148 u32
*work_LED
, const int direction
)
2152 for (loop
= 0; loop
< num_of_slots
; loop
++) {
2154 *work_LED
= *work_LED
>> 1;
2156 *work_LED
= *work_LED
<< 1;
2157 writel(*work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2161 /* Wait for SOGO interrupt */
2162 wait_for_ctrl_irq(ctrl
);
2164 /* Get ready for next iteration */
2165 long_delay((2*HZ
)/10);
2170 * cpqhp_hardware_test - runs hardware tests
2171 * @ctrl: target controller
2172 * @test_num: the number written to the "test" file in sysfs.
2174 * For hot plug ctrl folks to play with.
2176 int cpqhp_hardware_test(struct controller
*ctrl
, int test_num
)
2183 num_of_slots
= readb(ctrl
->hpc_reg
+ SLOT_MASK
) & 0x0f;
2187 /* Do stuff here! */
2189 /* Do that funky LED thing */
2190 /* so we can restore them later */
2191 save_LED
= readl(ctrl
->hpc_reg
+ LED_CONTROL
);
2192 work_LED
= 0x01010101;
2193 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2194 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2195 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2196 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2198 work_LED
= 0x01010000;
2199 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2200 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2201 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2202 work_LED
= 0x00000101;
2203 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2204 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2205 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2207 work_LED
= 0x01010000;
2208 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2209 for (loop
= 0; loop
< num_of_slots
; loop
++) {
2212 /* Wait for SOGO interrupt */
2213 wait_for_ctrl_irq (ctrl
);
2215 /* Get ready for next iteration */
2216 long_delay((3*HZ
)/10);
2217 work_LED
= work_LED
>> 16;
2218 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2222 /* Wait for SOGO interrupt */
2223 wait_for_ctrl_irq (ctrl
);
2225 /* Get ready for next iteration */
2226 long_delay((3*HZ
)/10);
2227 work_LED
= work_LED
<< 16;
2228 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2229 work_LED
= work_LED
<< 1;
2230 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2233 /* put it back the way it was */
2234 writel(save_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2238 /* Wait for SOBS to be unset */
2239 wait_for_ctrl_irq (ctrl
);
2242 /* Do other stuff here! */
2253 * configure_new_device - Configures the PCI header information of one board.
2254 * @ctrl: pointer to controller structure
2255 * @func: pointer to function structure
2256 * @behind_bridge: 1 if this is a recursive call, 0 if not
2257 * @resources: pointer to set of resource lists
2259 * Returns 0 if success.
2261 static u32
configure_new_device(struct controller
* ctrl
, struct pci_func
* func
,
2262 u8 behind_bridge
, struct resource_lists
* resources
)
2264 u8 temp_byte
, function
, max_functions
, stop_it
;
2267 struct pci_func
*new_slot
;
2272 dbg("%s\n", __FUNCTION__
);
2273 /* Check for Multi-function device */
2274 ctrl
->pci_bus
->number
= func
->bus
;
2275 rc
= pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(func
->device
, func
->function
), 0x0E, &temp_byte
);
2277 dbg("%s: rc = %d\n", __FUNCTION__
, rc
);
2281 if (temp_byte
& 0x80) /* Multi-function device */
2289 rc
= configure_new_function(ctrl
, new_slot
, behind_bridge
, resources
);
2292 dbg("configure_new_function failed %d\n",rc
);
2296 new_slot
= cpqhp_slot_find(new_slot
->bus
, new_slot
->device
, index
++);
2299 cpqhp_return_board_resources(new_slot
, resources
);
2309 /* The following loop skips to the next present function
2310 * and creates a board structure */
2312 while ((function
< max_functions
) && (!stop_it
)) {
2313 pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(func
->device
, function
), 0x00, &ID
);
2315 if (ID
== 0xFFFFFFFF) { /* There's nothing there. */
2317 } else { /* There's something there */
2318 /* Setup slot structure. */
2319 new_slot
= cpqhp_slot_create(func
->bus
);
2321 if (new_slot
== NULL
)
2324 new_slot
->bus
= func
->bus
;
2325 new_slot
->device
= func
->device
;
2326 new_slot
->function
= function
;
2327 new_slot
->is_a_board
= 1;
2328 new_slot
->status
= 0;
2334 } while (function
< max_functions
);
2335 dbg("returning from configure_new_device\n");
2342 Configuration logic that involves the hotplug data structures and
2348 * configure_new_function - Configures the PCI header information of one device
2349 * @ctrl: pointer to controller structure
2350 * @func: pointer to function structure
2351 * @behind_bridge: 1 if this is a recursive call, 0 if not
2352 * @resources: pointer to set of resource lists
2354 * Calls itself recursively for bridged devices.
2355 * Returns 0 if success.
2357 static int configure_new_function(struct controller
*ctrl
, struct pci_func
*func
,
2359 struct resource_lists
*resources
)
2374 struct pci_resource
*mem_node
;
2375 struct pci_resource
*p_mem_node
;
2376 struct pci_resource
*io_node
;
2377 struct pci_resource
*bus_node
;
2378 struct pci_resource
*hold_mem_node
;
2379 struct pci_resource
*hold_p_mem_node
;
2380 struct pci_resource
*hold_IO_node
;
2381 struct pci_resource
*hold_bus_node
;
2382 struct irq_mapping irqs
;
2383 struct pci_func
*new_slot
;
2384 struct pci_bus
*pci_bus
;
2385 struct resource_lists temp_resources
;
2387 pci_bus
= ctrl
->pci_bus
;
2388 pci_bus
->number
= func
->bus
;
2389 devfn
= PCI_DEVFN(func
->device
, func
->function
);
2391 /* Check for Bridge */
2392 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &temp_byte
);
2396 if ((temp_byte
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) { /* PCI-PCI Bridge */
2397 /* set Primary bus */
2398 dbg("set Primary bus = %d\n", func
->bus
);
2399 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_PRIMARY_BUS
, func
->bus
);
2403 /* find range of busses to use */
2404 dbg("find ranges of buses to use\n");
2405 bus_node
= get_max_resource(&(resources
->bus_head
), 1);
2407 /* If we don't have any busses to allocate, we can't continue */
2411 /* set Secondary bus */
2412 temp_byte
= bus_node
->base
;
2413 dbg("set Secondary bus = %d\n", bus_node
->base
);
2414 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SECONDARY_BUS
, temp_byte
);
2418 /* set subordinate bus */
2419 temp_byte
= bus_node
->base
+ bus_node
->length
- 1;
2420 dbg("set subordinate bus = %d\n", bus_node
->base
+ bus_node
->length
- 1);
2421 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, temp_byte
);
2425 /* set subordinate Latency Timer and base Latency Timer */
2427 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SEC_LATENCY_TIMER
, temp_byte
);
2430 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_LATENCY_TIMER
, temp_byte
);
2434 /* set Cache Line size */
2436 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_CACHE_LINE_SIZE
, temp_byte
);
2440 /* Setup the IO, memory, and prefetchable windows */
2441 io_node
= get_max_resource(&(resources
->io_head
), 0x1000);
2444 mem_node
= get_max_resource(&(resources
->mem_head
), 0x100000);
2447 p_mem_node
= get_max_resource(&(resources
->p_mem_head
), 0x100000);
2450 dbg("Setup the IO, memory, and prefetchable windows\n");
2452 dbg("(base, len, next) (%x, %x, %p)\n", io_node
->base
,
2453 io_node
->length
, io_node
->next
);
2455 dbg("(base, len, next) (%x, %x, %p)\n", mem_node
->base
,
2456 mem_node
->length
, mem_node
->next
);
2457 dbg("p_mem_node\n");
2458 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node
->base
,
2459 p_mem_node
->length
, p_mem_node
->next
);
2461 /* set up the IRQ info */
2462 if (!resources
->irqs
) {
2463 irqs
.barber_pole
= 0;
2464 irqs
.interrupt
[0] = 0;
2465 irqs
.interrupt
[1] = 0;
2466 irqs
.interrupt
[2] = 0;
2467 irqs
.interrupt
[3] = 0;
2470 irqs
.barber_pole
= resources
->irqs
->barber_pole
;
2471 irqs
.interrupt
[0] = resources
->irqs
->interrupt
[0];
2472 irqs
.interrupt
[1] = resources
->irqs
->interrupt
[1];
2473 irqs
.interrupt
[2] = resources
->irqs
->interrupt
[2];
2474 irqs
.interrupt
[3] = resources
->irqs
->interrupt
[3];
2475 irqs
.valid_INT
= resources
->irqs
->valid_INT
;
2478 /* set up resource lists that are now aligned on top and bottom
2479 * for anything behind the bridge. */
2480 temp_resources
.bus_head
= bus_node
;
2481 temp_resources
.io_head
= io_node
;
2482 temp_resources
.mem_head
= mem_node
;
2483 temp_resources
.p_mem_head
= p_mem_node
;
2484 temp_resources
.irqs
= &irqs
;
2486 /* Make copies of the nodes we are going to pass down so that
2487 * if there is a problem,we can just use these to free resources */
2488 hold_bus_node
= kmalloc(sizeof(*hold_bus_node
), GFP_KERNEL
);
2489 hold_IO_node
= kmalloc(sizeof(*hold_IO_node
), GFP_KERNEL
);
2490 hold_mem_node
= kmalloc(sizeof(*hold_mem_node
), GFP_KERNEL
);
2491 hold_p_mem_node
= kmalloc(sizeof(*hold_p_mem_node
), GFP_KERNEL
);
2493 if (!hold_bus_node
|| !hold_IO_node
|| !hold_mem_node
|| !hold_p_mem_node
) {
2494 kfree(hold_bus_node
);
2495 kfree(hold_IO_node
);
2496 kfree(hold_mem_node
);
2497 kfree(hold_p_mem_node
);
2502 memcpy(hold_bus_node
, bus_node
, sizeof(struct pci_resource
));
2504 bus_node
->base
+= 1;
2505 bus_node
->length
-= 1;
2506 bus_node
->next
= NULL
;
2508 /* If we have IO resources copy them and fill in the bridge's
2509 * IO range registers */
2511 memcpy(hold_IO_node
, io_node
, sizeof(struct pci_resource
));
2512 io_node
->next
= NULL
;
2514 /* set IO base and Limit registers */
2515 temp_byte
= io_node
->base
>> 8;
2516 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_BASE
, temp_byte
);
2518 temp_byte
= (io_node
->base
+ io_node
->length
- 1) >> 8;
2519 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_LIMIT
, temp_byte
);
2521 kfree(hold_IO_node
);
2522 hold_IO_node
= NULL
;
2525 /* If we have memory resources copy them and fill in the
2526 * bridge's memory range registers. Otherwise, fill in the
2527 * range registers with values that disable them. */
2529 memcpy(hold_mem_node
, mem_node
, sizeof(struct pci_resource
));
2530 mem_node
->next
= NULL
;
2532 /* set Mem base and Limit registers */
2533 temp_word
= mem_node
->base
>> 16;
2534 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2536 temp_word
= (mem_node
->base
+ mem_node
->length
- 1) >> 16;
2537 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2540 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2543 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2545 kfree(hold_mem_node
);
2546 hold_mem_node
= NULL
;
2549 memcpy(hold_p_mem_node
, p_mem_node
, sizeof(struct pci_resource
));
2550 p_mem_node
->next
= NULL
;
2552 /* set Pre Mem base and Limit registers */
2553 temp_word
= p_mem_node
->base
>> 16;
2554 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2556 temp_word
= (p_mem_node
->base
+ p_mem_node
->length
- 1) >> 16;
2557 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2559 /* Adjust this to compensate for extra adjustment in first loop */
2564 /* Here we actually find the devices and configure them */
2565 for (device
= 0; (device
<= 0x1F) && !rc
; device
++) {
2566 irqs
.barber_pole
= (irqs
.barber_pole
+ 1) & 0x03;
2569 pci_bus
->number
= hold_bus_node
->base
;
2570 pci_bus_read_config_dword (pci_bus
, PCI_DEVFN(device
, 0), 0x00, &ID
);
2571 pci_bus
->number
= func
->bus
;
2573 if (ID
!= 0xFFFFFFFF) { /* device present */
2574 /* Setup slot structure. */
2575 new_slot
= cpqhp_slot_create(hold_bus_node
->base
);
2577 if (new_slot
== NULL
) {
2582 new_slot
->bus
= hold_bus_node
->base
;
2583 new_slot
->device
= device
;
2584 new_slot
->function
= 0;
2585 new_slot
->is_a_board
= 1;
2586 new_slot
->status
= 0;
2588 rc
= configure_new_device(ctrl
, new_slot
, 1, &temp_resources
);
2589 dbg("configure_new_device rc=0x%x\n",rc
);
2590 } /* End of IF (device in slot?) */
2591 } /* End of FOR loop */
2595 /* save the interrupt routing information */
2596 if (resources
->irqs
) {
2597 resources
->irqs
->interrupt
[0] = irqs
.interrupt
[0];
2598 resources
->irqs
->interrupt
[1] = irqs
.interrupt
[1];
2599 resources
->irqs
->interrupt
[2] = irqs
.interrupt
[2];
2600 resources
->irqs
->interrupt
[3] = irqs
.interrupt
[3];
2601 resources
->irqs
->valid_INT
= irqs
.valid_INT
;
2602 } else if (!behind_bridge
) {
2603 /* We need to hook up the interrupts here */
2604 for (cloop
= 0; cloop
< 4; cloop
++) {
2605 if (irqs
.valid_INT
& (0x01 << cloop
)) {
2606 rc
= cpqhp_set_irq(func
->bus
, func
->device
,
2607 0x0A + cloop
, irqs
.interrupt
[cloop
]);
2611 } /* end of for loop */
2613 /* Return unused bus resources
2614 * First use the temporary node to store information for
2616 if (hold_bus_node
&& bus_node
&& temp_resources
.bus_head
) {
2617 hold_bus_node
->length
= bus_node
->base
- hold_bus_node
->base
;
2619 hold_bus_node
->next
= func
->bus_head
;
2620 func
->bus_head
= hold_bus_node
;
2622 temp_byte
= temp_resources
.bus_head
->base
- 1;
2624 /* set subordinate bus */
2625 rc
= pci_bus_write_config_byte (pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, temp_byte
);
2627 if (temp_resources
.bus_head
->length
== 0) {
2628 kfree(temp_resources
.bus_head
);
2629 temp_resources
.bus_head
= NULL
;
2631 return_resource(&(resources
->bus_head
), temp_resources
.bus_head
);
2635 /* If we have IO space available and there is some left,
2636 * return the unused portion */
2637 if (hold_IO_node
&& temp_resources
.io_head
) {
2638 io_node
= do_pre_bridge_resource_split(&(temp_resources
.io_head
),
2639 &hold_IO_node
, 0x1000);
2641 /* Check if we were able to split something off */
2643 hold_IO_node
->base
= io_node
->base
+ io_node
->length
;
2645 temp_byte
= (hold_IO_node
->base
) >> 8;
2646 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_IO_BASE
, temp_byte
);
2648 return_resource(&(resources
->io_head
), io_node
);
2651 io_node
= do_bridge_resource_split(&(temp_resources
.io_head
), 0x1000);
2653 /* Check if we were able to split something off */
2655 /* First use the temporary node to store
2656 * information for the board */
2657 hold_IO_node
->length
= io_node
->base
- hold_IO_node
->base
;
2659 /* If we used any, add it to the board's list */
2660 if (hold_IO_node
->length
) {
2661 hold_IO_node
->next
= func
->io_head
;
2662 func
->io_head
= hold_IO_node
;
2664 temp_byte
= (io_node
->base
- 1) >> 8;
2665 rc
= pci_bus_write_config_byte (pci_bus
, devfn
, PCI_IO_LIMIT
, temp_byte
);
2667 return_resource(&(resources
->io_head
), io_node
);
2669 /* it doesn't need any IO */
2671 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_IO_LIMIT
, temp_word
);
2673 return_resource(&(resources
->io_head
), io_node
);
2674 kfree(hold_IO_node
);
2677 /* it used most of the range */
2678 hold_IO_node
->next
= func
->io_head
;
2679 func
->io_head
= hold_IO_node
;
2681 } else if (hold_IO_node
) {
2682 /* it used the whole range */
2683 hold_IO_node
->next
= func
->io_head
;
2684 func
->io_head
= hold_IO_node
;
2686 /* If we have memory space available and there is some left,
2687 * return the unused portion */
2688 if (hold_mem_node
&& temp_resources
.mem_head
) {
2689 mem_node
= do_pre_bridge_resource_split(&(temp_resources
. mem_head
),
2690 &hold_mem_node
, 0x100000);
2692 /* Check if we were able to split something off */
2694 hold_mem_node
->base
= mem_node
->base
+ mem_node
->length
;
2696 temp_word
= (hold_mem_node
->base
) >> 16;
2697 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2699 return_resource(&(resources
->mem_head
), mem_node
);
2702 mem_node
= do_bridge_resource_split(&(temp_resources
.mem_head
), 0x100000);
2704 /* Check if we were able to split something off */
2706 /* First use the temporary node to store
2707 * information for the board */
2708 hold_mem_node
->length
= mem_node
->base
- hold_mem_node
->base
;
2710 if (hold_mem_node
->length
) {
2711 hold_mem_node
->next
= func
->mem_head
;
2712 func
->mem_head
= hold_mem_node
;
2714 /* configure end address */
2715 temp_word
= (mem_node
->base
- 1) >> 16;
2716 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2718 /* Return unused resources to the pool */
2719 return_resource(&(resources
->mem_head
), mem_node
);
2721 /* it doesn't need any Mem */
2723 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2725 return_resource(&(resources
->mem_head
), mem_node
);
2726 kfree(hold_mem_node
);
2729 /* it used most of the range */
2730 hold_mem_node
->next
= func
->mem_head
;
2731 func
->mem_head
= hold_mem_node
;
2733 } else if (hold_mem_node
) {
2734 /* it used the whole range */
2735 hold_mem_node
->next
= func
->mem_head
;
2736 func
->mem_head
= hold_mem_node
;
2738 /* If we have prefetchable memory space available and there
2739 * is some left at the end, return the unused portion */
2740 if (hold_p_mem_node
&& temp_resources
.p_mem_head
) {
2741 p_mem_node
= do_pre_bridge_resource_split(&(temp_resources
.p_mem_head
),
2742 &hold_p_mem_node
, 0x100000);
2744 /* Check if we were able to split something off */
2746 hold_p_mem_node
->base
= p_mem_node
->base
+ p_mem_node
->length
;
2748 temp_word
= (hold_p_mem_node
->base
) >> 16;
2749 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2751 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2754 p_mem_node
= do_bridge_resource_split(&(temp_resources
.p_mem_head
), 0x100000);
2756 /* Check if we were able to split something off */
2758 /* First use the temporary node to store
2759 * information for the board */
2760 hold_p_mem_node
->length
= p_mem_node
->base
- hold_p_mem_node
->base
;
2762 /* If we used any, add it to the board's list */
2763 if (hold_p_mem_node
->length
) {
2764 hold_p_mem_node
->next
= func
->p_mem_head
;
2765 func
->p_mem_head
= hold_p_mem_node
;
2767 temp_word
= (p_mem_node
->base
- 1) >> 16;
2768 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2770 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2772 /* it doesn't need any PMem */
2774 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2776 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2777 kfree(hold_p_mem_node
);
2780 /* it used the most of the range */
2781 hold_p_mem_node
->next
= func
->p_mem_head
;
2782 func
->p_mem_head
= hold_p_mem_node
;
2784 } else if (hold_p_mem_node
) {
2785 /* it used the whole range */
2786 hold_p_mem_node
->next
= func
->p_mem_head
;
2787 func
->p_mem_head
= hold_p_mem_node
;
2789 /* We should be configuring an IRQ and the bridge's base address
2790 * registers if it needs them. Although we have never seen such
2794 command
= 0x0157; /* = PCI_COMMAND_IO |
2795 * PCI_COMMAND_MEMORY |
2796 * PCI_COMMAND_MASTER |
2797 * PCI_COMMAND_INVALIDATE |
2798 * PCI_COMMAND_PARITY |
2799 * PCI_COMMAND_SERR */
2800 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_COMMAND
, command
);
2802 /* set Bridge Control Register */
2803 command
= 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2804 * PCI_BRIDGE_CTL_SERR |
2805 * PCI_BRIDGE_CTL_NO_ISA */
2806 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, command
);
2807 } else if ((temp_byte
& 0x7F) == PCI_HEADER_TYPE_NORMAL
) {
2808 /* Standard device */
2809 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, 0x0B, &class_code
);
2811 if (class_code
== PCI_BASE_CLASS_DISPLAY
) {
2812 /* Display (video) adapter (not supported) */
2813 return DEVICE_TYPE_NOT_SUPPORTED
;
2815 /* Figure out IO and memory needs */
2816 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
2817 temp_register
= 0xFFFFFFFF;
2819 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus
->number
, devfn
, cloop
);
2820 rc
= pci_bus_write_config_dword (pci_bus
, devfn
, cloop
, temp_register
);
2822 rc
= pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &temp_register
);
2823 dbg("CND: base = 0x%x\n", temp_register
);
2825 if (temp_register
) { /* If this register is implemented */
2826 if ((temp_register
& 0x03L
) == 0x01) {
2829 /* set base = amount of IO space */
2830 base
= temp_register
& 0xFFFFFFFC;
2833 dbg("CND: length = 0x%x\n", base
);
2834 io_node
= get_io_resource(&(resources
->io_head
), base
);
2835 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2836 io_node
->base
, io_node
->length
, io_node
->next
);
2837 dbg("func (%p) io_head (%p)\n", func
, func
->io_head
);
2839 /* allocate the resource to the board */
2841 base
= io_node
->base
;
2843 io_node
->next
= func
->io_head
;
2844 func
->io_head
= io_node
;
2847 } else if ((temp_register
& 0x0BL
) == 0x08) {
2848 /* Map prefetchable memory */
2849 base
= temp_register
& 0xFFFFFFF0;
2852 dbg("CND: length = 0x%x\n", base
);
2853 p_mem_node
= get_resource(&(resources
->p_mem_head
), base
);
2855 /* allocate the resource to the board */
2857 base
= p_mem_node
->base
;
2859 p_mem_node
->next
= func
->p_mem_head
;
2860 func
->p_mem_head
= p_mem_node
;
2863 } else if ((temp_register
& 0x0BL
) == 0x00) {
2865 base
= temp_register
& 0xFFFFFFF0;
2868 dbg("CND: length = 0x%x\n", base
);
2869 mem_node
= get_resource(&(resources
->mem_head
), base
);
2871 /* allocate the resource to the board */
2873 base
= mem_node
->base
;
2875 mem_node
->next
= func
->mem_head
;
2876 func
->mem_head
= mem_node
;
2879 } else if ((temp_register
& 0x0BL
) == 0x04) {
2881 base
= temp_register
& 0xFFFFFFF0;
2884 dbg("CND: length = 0x%x\n", base
);
2885 mem_node
= get_resource(&(resources
->mem_head
), base
);
2887 /* allocate the resource to the board */
2889 base
= mem_node
->base
;
2891 mem_node
->next
= func
->mem_head
;
2892 func
->mem_head
= mem_node
;
2895 } else if ((temp_register
& 0x0BL
) == 0x06) {
2896 /* Those bits are reserved, we can't handle this */
2899 /* Requesting space below 1M */
2900 return NOT_ENOUGH_RESOURCES
;
2903 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, base
);
2905 /* Check for 64-bit base */
2906 if ((temp_register
& 0x07L
) == 0x04) {
2909 /* Upper 32 bits of address always zero
2910 * on today's systems */
2911 /* FIXME this is probably not true on
2912 * Alpha and ia64??? */
2914 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, base
);
2917 } /* End of base register loop */
2918 if (cpqhp_legacy_mode
) {
2919 /* Figure out which interrupt pin this function uses */
2920 rc
= pci_bus_read_config_byte (pci_bus
, devfn
,
2921 PCI_INTERRUPT_PIN
, &temp_byte
);
2923 /* If this function needs an interrupt and we are behind
2924 * a bridge and the pin is tied to something that's
2925 * alread mapped, set this one the same */
2926 if (temp_byte
&& resources
->irqs
&&
2927 (resources
->irqs
->valid_INT
&
2928 (0x01 << ((temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03)))) {
2929 /* We have to share with something already set up */
2930 IRQ
= resources
->irqs
->interrupt
[(temp_byte
+
2931 resources
->irqs
->barber_pole
- 1) & 0x03];
2933 /* Program IRQ based on card type */
2934 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, 0x0B, &class_code
);
2936 if (class_code
== PCI_BASE_CLASS_STORAGE
) {
2937 IRQ
= cpqhp_disk_irq
;
2939 IRQ
= cpqhp_nic_irq
;
2944 rc
= pci_bus_write_config_byte (pci_bus
, devfn
, PCI_INTERRUPT_LINE
, IRQ
);
2947 if (!behind_bridge
) {
2948 rc
= cpqhp_set_irq(func
->bus
, func
->device
, temp_byte
+ 0x09, IRQ
);
2952 /* TBD - this code may also belong in the other clause
2953 * of this If statement */
2954 resources
->irqs
->interrupt
[(temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03] = IRQ
;
2955 resources
->irqs
->valid_INT
|= 0x01 << (temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03;
2960 rc
= pci_bus_write_config_byte(pci_bus
, devfn
,
2961 PCI_LATENCY_TIMER
, temp_byte
);
2963 /* Cache Line size */
2965 rc
= pci_bus_write_config_byte(pci_bus
, devfn
,
2966 PCI_CACHE_LINE_SIZE
, temp_byte
);
2968 /* disable ROM base Address */
2970 rc
= pci_bus_write_config_word(pci_bus
, devfn
,
2971 PCI_ROM_ADDRESS
, temp_dword
);
2974 temp_word
= 0x0157; /* = PCI_COMMAND_IO |
2975 * PCI_COMMAND_MEMORY |
2976 * PCI_COMMAND_MASTER |
2977 * PCI_COMMAND_INVALIDATE |
2978 * PCI_COMMAND_PARITY |
2979 * PCI_COMMAND_SERR */
2980 rc
= pci_bus_write_config_word (pci_bus
, devfn
,
2981 PCI_COMMAND
, temp_word
);
2982 } else { /* End of Not-A-Bridge else */
2983 /* It's some strange type of PCI adapter (Cardbus?) */
2984 return DEVICE_TYPE_NOT_SUPPORTED
;
2987 func
->configured
= 1;
2991 cpqhp_destroy_resource_list (&temp_resources
);
2993 return_resource(&(resources
-> bus_head
), hold_bus_node
);
2994 return_resource(&(resources
-> io_head
), hold_IO_node
);
2995 return_resource(&(resources
-> mem_head
), hold_mem_node
);
2996 return_resource(&(resources
-> p_mem_head
), hold_p_mem_node
);