V4L/DVB (6715): ivtv: Remove unnecessary register update
[linux-2.6/verdex.git] / drivers / s390 / crypto / ap_bus.c
blob67aaff3e668d8a3354c06ae23099e8611b921065
1 /*
2 * linux/drivers/s390/crypto/ap_bus.c
4 * Copyright (C) 2006 IBM Corporation
5 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * Ralph Wuerthner <rwuerthn@de.ibm.com>
9 * Adjunct processor bus.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/err.h>
30 #include <linux/interrupt.h>
31 #include <linux/workqueue.h>
32 #include <linux/notifier.h>
33 #include <linux/kthread.h>
34 #include <linux/mutex.h>
35 #include <asm/s390_rdev.h>
36 #include <asm/reset.h>
38 #include "ap_bus.h"
40 /* Some prototypes. */
41 static void ap_scan_bus(struct work_struct *);
42 static void ap_poll_all(unsigned long);
43 static void ap_poll_timeout(unsigned long);
44 static int ap_poll_thread_start(void);
45 static void ap_poll_thread_stop(void);
46 static void ap_request_timeout(unsigned long);
48 /**
49 * Module description.
51 MODULE_AUTHOR("IBM Corporation");
52 MODULE_DESCRIPTION("Adjunct Processor Bus driver, "
53 "Copyright 2006 IBM Corporation");
54 MODULE_LICENSE("GPL");
56 /**
57 * Module parameter
59 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
60 module_param_named(domain, ap_domain_index, int, 0000);
61 MODULE_PARM_DESC(domain, "domain index for ap devices");
62 EXPORT_SYMBOL(ap_domain_index);
64 static int ap_thread_flag = 1;
65 module_param_named(poll_thread, ap_thread_flag, int, 0000);
66 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 1 (on).");
68 static struct device *ap_root_device = NULL;
69 static DEFINE_SPINLOCK(ap_device_lock);
70 static LIST_HEAD(ap_device_list);
72 /**
73 * Workqueue & timer for bus rescan.
75 static struct workqueue_struct *ap_work_queue;
76 static struct timer_list ap_config_timer;
77 static int ap_config_time = AP_CONFIG_TIME;
78 static DECLARE_WORK(ap_config_work, ap_scan_bus);
80 /**
81 * Tasklet & timer for AP request polling.
83 static struct timer_list ap_poll_timer = TIMER_INITIALIZER(ap_poll_timeout,0,0);
84 static DECLARE_TASKLET(ap_tasklet, ap_poll_all, 0);
85 static atomic_t ap_poll_requests = ATOMIC_INIT(0);
86 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
87 static struct task_struct *ap_poll_kthread = NULL;
88 static DEFINE_MUTEX(ap_poll_thread_mutex);
90 /**
91 * Test if ap instructions are available.
93 * Returns 0 if the ap instructions are installed.
95 static inline int ap_instructions_available(void)
97 register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
98 register unsigned long reg1 asm ("1") = -ENODEV;
99 register unsigned long reg2 asm ("2") = 0UL;
101 asm volatile(
102 " .long 0xb2af0000\n" /* PQAP(TAPQ) */
103 "0: la %1,0\n"
104 "1:\n"
105 EX_TABLE(0b, 1b)
106 : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
107 return reg1;
111 * Test adjunct processor queue.
112 * @qid: the ap queue number
113 * @queue_depth: pointer to queue depth value
114 * @device_type: pointer to device type value
116 * Returns ap queue status structure.
118 static inline struct ap_queue_status
119 ap_test_queue(ap_qid_t qid, int *queue_depth, int *device_type)
121 register unsigned long reg0 asm ("0") = qid;
122 register struct ap_queue_status reg1 asm ("1");
123 register unsigned long reg2 asm ("2") = 0UL;
125 asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */
126 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
127 *device_type = (int) (reg2 >> 24);
128 *queue_depth = (int) (reg2 & 0xff);
129 return reg1;
133 * Reset adjunct processor queue.
134 * @qid: the ap queue number
136 * Returns ap queue status structure.
138 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
140 register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
141 register struct ap_queue_status reg1 asm ("1");
142 register unsigned long reg2 asm ("2") = 0UL;
144 asm volatile(
145 ".long 0xb2af0000" /* PQAP(RAPQ) */
146 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
147 return reg1;
151 * Send message to adjunct processor queue.
152 * @qid: the ap queue number
153 * @psmid: the program supplied message identifier
154 * @msg: the message text
155 * @length: the message length
157 * Returns ap queue status structure.
159 * Condition code 1 on NQAP can't happen because the L bit is 1.
161 * Condition code 2 on NQAP also means the send is incomplete,
162 * because a segment boundary was reached. The NQAP is repeated.
164 static inline struct ap_queue_status
165 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
167 typedef struct { char _[length]; } msgblock;
168 register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
169 register struct ap_queue_status reg1 asm ("1");
170 register unsigned long reg2 asm ("2") = (unsigned long) msg;
171 register unsigned long reg3 asm ("3") = (unsigned long) length;
172 register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
173 register unsigned long reg5 asm ("5") = (unsigned int) psmid;
175 asm volatile (
176 "0: .long 0xb2ad0042\n" /* DQAP */
177 " brc 2,0b"
178 : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
179 : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
180 : "cc" );
181 return reg1;
184 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
186 struct ap_queue_status status;
188 status = __ap_send(qid, psmid, msg, length);
189 switch (status.response_code) {
190 case AP_RESPONSE_NORMAL:
191 return 0;
192 case AP_RESPONSE_Q_FULL:
193 case AP_RESPONSE_RESET_IN_PROGRESS:
194 return -EBUSY;
195 default: /* Device is gone. */
196 return -ENODEV;
199 EXPORT_SYMBOL(ap_send);
202 * Receive message from adjunct processor queue.
203 * @qid: the ap queue number
204 * @psmid: pointer to program supplied message identifier
205 * @msg: the message text
206 * @length: the message length
208 * Returns ap queue status structure.
210 * Condition code 1 on DQAP means the receive has taken place
211 * but only partially. The response is incomplete, hence the
212 * DQAP is repeated.
214 * Condition code 2 on DQAP also means the receive is incomplete,
215 * this time because a segment boundary was reached. Again, the
216 * DQAP is repeated.
218 * Note that gpr2 is used by the DQAP instruction to keep track of
219 * any 'residual' length, in case the instruction gets interrupted.
220 * Hence it gets zeroed before the instruction.
222 static inline struct ap_queue_status
223 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
225 typedef struct { char _[length]; } msgblock;
226 register unsigned long reg0 asm("0") = qid | 0x80000000UL;
227 register struct ap_queue_status reg1 asm ("1");
228 register unsigned long reg2 asm("2") = 0UL;
229 register unsigned long reg4 asm("4") = (unsigned long) msg;
230 register unsigned long reg5 asm("5") = (unsigned long) length;
231 register unsigned long reg6 asm("6") = 0UL;
232 register unsigned long reg7 asm("7") = 0UL;
235 asm volatile(
236 "0: .long 0xb2ae0064\n"
237 " brc 6,0b\n"
238 : "+d" (reg0), "=d" (reg1), "+d" (reg2),
239 "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
240 "=m" (*(msgblock *) msg) : : "cc" );
241 *psmid = (((unsigned long long) reg6) << 32) + reg7;
242 return reg1;
245 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
247 struct ap_queue_status status;
249 status = __ap_recv(qid, psmid, msg, length);
250 switch (status.response_code) {
251 case AP_RESPONSE_NORMAL:
252 return 0;
253 case AP_RESPONSE_NO_PENDING_REPLY:
254 if (status.queue_empty)
255 return -ENOENT;
256 return -EBUSY;
257 case AP_RESPONSE_RESET_IN_PROGRESS:
258 return -EBUSY;
259 default:
260 return -ENODEV;
263 EXPORT_SYMBOL(ap_recv);
266 * Check if an AP queue is available. The test is repeated for
267 * AP_MAX_RESET times.
268 * @qid: the ap queue number
269 * @queue_depth: pointer to queue depth value
270 * @device_type: pointer to device type value
272 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type)
274 struct ap_queue_status status;
275 int t_depth, t_device_type, rc, i;
277 rc = -EBUSY;
278 for (i = 0; i < AP_MAX_RESET; i++) {
279 status = ap_test_queue(qid, &t_depth, &t_device_type);
280 switch (status.response_code) {
281 case AP_RESPONSE_NORMAL:
282 *queue_depth = t_depth + 1;
283 *device_type = t_device_type;
284 rc = 0;
285 break;
286 case AP_RESPONSE_Q_NOT_AVAIL:
287 rc = -ENODEV;
288 break;
289 case AP_RESPONSE_RESET_IN_PROGRESS:
290 break;
291 case AP_RESPONSE_DECONFIGURED:
292 rc = -ENODEV;
293 break;
294 case AP_RESPONSE_CHECKSTOPPED:
295 rc = -ENODEV;
296 break;
297 case AP_RESPONSE_BUSY:
298 break;
299 default:
300 BUG();
302 if (rc != -EBUSY)
303 break;
304 if (i < AP_MAX_RESET - 1)
305 udelay(5);
307 return rc;
311 * Reset an AP queue and wait for it to become available again.
312 * @qid: the ap queue number
314 static int ap_init_queue(ap_qid_t qid)
316 struct ap_queue_status status;
317 int rc, dummy, i;
319 rc = -ENODEV;
320 status = ap_reset_queue(qid);
321 for (i = 0; i < AP_MAX_RESET; i++) {
322 switch (status.response_code) {
323 case AP_RESPONSE_NORMAL:
324 if (status.queue_empty)
325 rc = 0;
326 break;
327 case AP_RESPONSE_Q_NOT_AVAIL:
328 case AP_RESPONSE_DECONFIGURED:
329 case AP_RESPONSE_CHECKSTOPPED:
330 i = AP_MAX_RESET; /* return with -ENODEV */
331 break;
332 case AP_RESPONSE_RESET_IN_PROGRESS:
333 rc = -EBUSY;
334 case AP_RESPONSE_BUSY:
335 default:
336 break;
338 if (rc != -ENODEV && rc != -EBUSY)
339 break;
340 if (i < AP_MAX_RESET - 1) {
341 udelay(5);
342 status = ap_test_queue(qid, &dummy, &dummy);
345 return rc;
349 * Arm request timeout if a AP device was idle and a new request is submitted.
351 static void ap_increase_queue_count(struct ap_device *ap_dev)
353 int timeout = ap_dev->drv->request_timeout;
355 ap_dev->queue_count++;
356 if (ap_dev->queue_count == 1) {
357 mod_timer(&ap_dev->timeout, jiffies + timeout);
358 ap_dev->reset = AP_RESET_ARMED;
363 * AP device is still alive, re-schedule request timeout if there are still
364 * pending requests.
366 static void ap_decrease_queue_count(struct ap_device *ap_dev)
368 int timeout = ap_dev->drv->request_timeout;
370 ap_dev->queue_count--;
371 if (ap_dev->queue_count > 0)
372 mod_timer(&ap_dev->timeout, jiffies + timeout);
373 else
375 * The timeout timer should to be disabled now - since
376 * del_timer_sync() is very expensive, we just tell via the
377 * reset flag to ignore the pending timeout timer.
379 ap_dev->reset = AP_RESET_IGNORE;
383 * AP device related attributes.
385 static ssize_t ap_hwtype_show(struct device *dev,
386 struct device_attribute *attr, char *buf)
388 struct ap_device *ap_dev = to_ap_dev(dev);
389 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
391 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
393 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
394 char *buf)
396 struct ap_device *ap_dev = to_ap_dev(dev);
397 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
399 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
401 static ssize_t ap_request_count_show(struct device *dev,
402 struct device_attribute *attr,
403 char *buf)
405 struct ap_device *ap_dev = to_ap_dev(dev);
406 int rc;
408 spin_lock_bh(&ap_dev->lock);
409 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
410 spin_unlock_bh(&ap_dev->lock);
411 return rc;
414 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
416 static ssize_t ap_modalias_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
419 return sprintf(buf, "ap:t%02X", to_ap_dev(dev)->device_type);
422 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
424 static struct attribute *ap_dev_attrs[] = {
425 &dev_attr_hwtype.attr,
426 &dev_attr_depth.attr,
427 &dev_attr_request_count.attr,
428 &dev_attr_modalias.attr,
429 NULL
431 static struct attribute_group ap_dev_attr_group = {
432 .attrs = ap_dev_attrs
436 * AP bus driver registration/unregistration.
438 static int ap_bus_match(struct device *dev, struct device_driver *drv)
440 struct ap_device *ap_dev = to_ap_dev(dev);
441 struct ap_driver *ap_drv = to_ap_drv(drv);
442 struct ap_device_id *id;
445 * Compare device type of the device with the list of
446 * supported types of the device_driver.
448 for (id = ap_drv->ids; id->match_flags; id++) {
449 if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
450 (id->dev_type != ap_dev->device_type))
451 continue;
452 return 1;
454 return 0;
458 * uevent function for AP devices. It sets up a single environment
459 * variable DEV_TYPE which contains the hardware device type.
461 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
463 struct ap_device *ap_dev = to_ap_dev(dev);
464 int retval = 0;
466 if (!ap_dev)
467 return -ENODEV;
469 /* Set up DEV_TYPE environment variable. */
470 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
471 if (retval)
472 return retval;
474 /* Add MODALIAS= */
475 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
477 return retval;
480 static struct bus_type ap_bus_type = {
481 .name = "ap",
482 .match = &ap_bus_match,
483 .uevent = &ap_uevent,
486 static int ap_device_probe(struct device *dev)
488 struct ap_device *ap_dev = to_ap_dev(dev);
489 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
490 int rc;
492 ap_dev->drv = ap_drv;
493 spin_lock_bh(&ap_device_lock);
494 list_add(&ap_dev->list, &ap_device_list);
495 spin_unlock_bh(&ap_device_lock);
496 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
497 return rc;
501 * Flush all requests from the request/pending queue of an AP device.
502 * @ap_dev: pointer to the AP device.
504 static void __ap_flush_queue(struct ap_device *ap_dev)
506 struct ap_message *ap_msg, *next;
508 list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
509 list_del_init(&ap_msg->list);
510 ap_dev->pendingq_count--;
511 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
513 list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
514 list_del_init(&ap_msg->list);
515 ap_dev->requestq_count--;
516 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
520 void ap_flush_queue(struct ap_device *ap_dev)
522 spin_lock_bh(&ap_dev->lock);
523 __ap_flush_queue(ap_dev);
524 spin_unlock_bh(&ap_dev->lock);
526 EXPORT_SYMBOL(ap_flush_queue);
528 static int ap_device_remove(struct device *dev)
530 struct ap_device *ap_dev = to_ap_dev(dev);
531 struct ap_driver *ap_drv = ap_dev->drv;
533 ap_flush_queue(ap_dev);
534 del_timer_sync(&ap_dev->timeout);
535 if (ap_drv->remove)
536 ap_drv->remove(ap_dev);
537 spin_lock_bh(&ap_device_lock);
538 list_del_init(&ap_dev->list);
539 spin_unlock_bh(&ap_device_lock);
540 spin_lock_bh(&ap_dev->lock);
541 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
542 spin_unlock_bh(&ap_dev->lock);
543 return 0;
546 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
547 char *name)
549 struct device_driver *drv = &ap_drv->driver;
551 drv->bus = &ap_bus_type;
552 drv->probe = ap_device_probe;
553 drv->remove = ap_device_remove;
554 drv->owner = owner;
555 drv->name = name;
556 return driver_register(drv);
558 EXPORT_SYMBOL(ap_driver_register);
560 void ap_driver_unregister(struct ap_driver *ap_drv)
562 driver_unregister(&ap_drv->driver);
564 EXPORT_SYMBOL(ap_driver_unregister);
567 * AP bus attributes.
569 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
571 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
574 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
576 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
578 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
581 static ssize_t ap_config_time_store(struct bus_type *bus,
582 const char *buf, size_t count)
584 int time;
586 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
587 return -EINVAL;
588 ap_config_time = time;
589 if (!timer_pending(&ap_config_timer) ||
590 !mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ)) {
591 ap_config_timer.expires = jiffies + ap_config_time * HZ;
592 add_timer(&ap_config_timer);
594 return count;
597 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
599 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
601 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
604 static ssize_t ap_poll_thread_store(struct bus_type *bus,
605 const char *buf, size_t count)
607 int flag, rc;
609 if (sscanf(buf, "%d\n", &flag) != 1)
610 return -EINVAL;
611 if (flag) {
612 rc = ap_poll_thread_start();
613 if (rc)
614 return rc;
616 else
617 ap_poll_thread_stop();
618 return count;
621 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
623 static struct bus_attribute *const ap_bus_attrs[] = {
624 &bus_attr_ap_domain,
625 &bus_attr_config_time,
626 &bus_attr_poll_thread,
627 NULL
631 * Pick one of the 16 ap domains.
633 static int ap_select_domain(void)
635 int queue_depth, device_type, count, max_count, best_domain;
636 int rc, i, j;
639 * We want to use a single domain. Either the one specified with
640 * the "domain=" parameter or the domain with the maximum number
641 * of devices.
643 if (ap_domain_index >= 0 && ap_domain_index < AP_DOMAINS)
644 /* Domain has already been selected. */
645 return 0;
646 best_domain = -1;
647 max_count = 0;
648 for (i = 0; i < AP_DOMAINS; i++) {
649 count = 0;
650 for (j = 0; j < AP_DEVICES; j++) {
651 ap_qid_t qid = AP_MKQID(j, i);
652 rc = ap_query_queue(qid, &queue_depth, &device_type);
653 if (rc)
654 continue;
655 count++;
657 if (count > max_count) {
658 max_count = count;
659 best_domain = i;
662 if (best_domain >= 0){
663 ap_domain_index = best_domain;
664 return 0;
666 return -ENODEV;
670 * Find the device type if query queue returned a device type of 0.
671 * @ap_dev: pointer to the AP device.
673 static int ap_probe_device_type(struct ap_device *ap_dev)
675 static unsigned char msg[] = {
676 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,
677 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
678 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,
679 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
680 0x01,0x00,0x43,0x43,0x41,0x2d,0x41,0x50,
681 0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,
682 0x00,0x00,0x00,0x00,0x50,0x4b,0x00,0x00,
683 0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,
684 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
685 0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,
686 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
687 0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,
688 0x00,0x00,0x54,0x32,0x01,0x00,0xa0,0x00,
689 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
690 0x00,0x00,0x00,0x00,0xb8,0x05,0x00,0x00,
691 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
692 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
693 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
694 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
695 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
696 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
697 0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,
698 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
699 0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,
700 0x49,0x43,0x53,0x46,0x20,0x20,0x20,0x20,
701 0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,
702 0x2d,0x31,0x2e,0x32,0x37,0x00,0x11,0x22,
703 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
704 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,
705 0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
706 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
707 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,
708 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
709 0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,
710 0x88,0x1e,0x00,0x00,0x57,0x00,0x00,0x00,
711 0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,
712 0x03,0x02,0x00,0x00,0x40,0x01,0x00,0x01,
713 0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,
714 0xf6,0xd2,0x7b,0x58,0x4b,0xf9,0x28,0x68,
715 0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,
716 0x63,0x42,0xef,0xf8,0xfd,0xa4,0xf8,0xb0,
717 0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,
718 0x53,0x8c,0x6f,0x4e,0x72,0x8f,0x6c,0x04,
719 0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,
720 0xf7,0xdd,0xfd,0x4f,0x11,0x36,0x95,0x5d,
722 struct ap_queue_status status;
723 unsigned long long psmid;
724 char *reply;
725 int rc, i;
727 reply = (void *) get_zeroed_page(GFP_KERNEL);
728 if (!reply) {
729 rc = -ENOMEM;
730 goto out;
733 status = __ap_send(ap_dev->qid, 0x0102030405060708ULL,
734 msg, sizeof(msg));
735 if (status.response_code != AP_RESPONSE_NORMAL) {
736 rc = -ENODEV;
737 goto out_free;
740 /* Wait for the test message to complete. */
741 for (i = 0; i < 6; i++) {
742 mdelay(300);
743 status = __ap_recv(ap_dev->qid, &psmid, reply, 4096);
744 if (status.response_code == AP_RESPONSE_NORMAL &&
745 psmid == 0x0102030405060708ULL)
746 break;
748 if (i < 6) {
749 /* Got an answer. */
750 if (reply[0] == 0x00 && reply[1] == 0x86)
751 ap_dev->device_type = AP_DEVICE_TYPE_PCICC;
752 else
753 ap_dev->device_type = AP_DEVICE_TYPE_PCICA;
754 rc = 0;
755 } else
756 rc = -ENODEV;
758 out_free:
759 free_page((unsigned long) reply);
760 out:
761 return rc;
765 * Scan the ap bus for new devices.
767 static int __ap_scan_bus(struct device *dev, void *data)
769 return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
772 static void ap_device_release(struct device *dev)
774 struct ap_device *ap_dev = to_ap_dev(dev);
776 kfree(ap_dev);
779 static void ap_scan_bus(struct work_struct *unused)
781 struct ap_device *ap_dev;
782 struct device *dev;
783 ap_qid_t qid;
784 int queue_depth, device_type;
785 int rc, i;
787 if (ap_select_domain() != 0)
788 return;
789 for (i = 0; i < AP_DEVICES; i++) {
790 qid = AP_MKQID(i, ap_domain_index);
791 dev = bus_find_device(&ap_bus_type, NULL,
792 (void *)(unsigned long)qid,
793 __ap_scan_bus);
794 rc = ap_query_queue(qid, &queue_depth, &device_type);
795 if (dev) {
796 if (rc == -EBUSY) {
797 set_current_state(TASK_UNINTERRUPTIBLE);
798 schedule_timeout(AP_RESET_TIMEOUT);
799 rc = ap_query_queue(qid, &queue_depth,
800 &device_type);
802 ap_dev = to_ap_dev(dev);
803 spin_lock_bh(&ap_dev->lock);
804 if (rc || ap_dev->unregistered) {
805 spin_unlock_bh(&ap_dev->lock);
806 device_unregister(dev);
807 put_device(dev);
808 continue;
810 spin_unlock_bh(&ap_dev->lock);
811 put_device(dev);
812 continue;
814 if (rc)
815 continue;
816 rc = ap_init_queue(qid);
817 if (rc)
818 continue;
819 ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
820 if (!ap_dev)
821 break;
822 ap_dev->qid = qid;
823 ap_dev->queue_depth = queue_depth;
824 ap_dev->unregistered = 1;
825 spin_lock_init(&ap_dev->lock);
826 INIT_LIST_HEAD(&ap_dev->pendingq);
827 INIT_LIST_HEAD(&ap_dev->requestq);
828 INIT_LIST_HEAD(&ap_dev->list);
829 setup_timer(&ap_dev->timeout, ap_request_timeout,
830 (unsigned long) ap_dev);
831 if (device_type == 0)
832 ap_probe_device_type(ap_dev);
833 else
834 ap_dev->device_type = device_type;
836 ap_dev->device.bus = &ap_bus_type;
837 ap_dev->device.parent = ap_root_device;
838 snprintf(ap_dev->device.bus_id, BUS_ID_SIZE, "card%02x",
839 AP_QID_DEVICE(ap_dev->qid));
840 ap_dev->device.release = ap_device_release;
841 rc = device_register(&ap_dev->device);
842 if (rc) {
843 kfree(ap_dev);
844 continue;
846 /* Add device attributes. */
847 rc = sysfs_create_group(&ap_dev->device.kobj,
848 &ap_dev_attr_group);
849 if (!rc) {
850 spin_lock_bh(&ap_dev->lock);
851 ap_dev->unregistered = 0;
852 spin_unlock_bh(&ap_dev->lock);
854 else
855 device_unregister(&ap_dev->device);
859 static void
860 ap_config_timeout(unsigned long ptr)
862 queue_work(ap_work_queue, &ap_config_work);
863 ap_config_timer.expires = jiffies + ap_config_time * HZ;
864 add_timer(&ap_config_timer);
868 * Set up the timer to run the poll tasklet
870 static inline void ap_schedule_poll_timer(void)
872 if (timer_pending(&ap_poll_timer))
873 return;
874 mod_timer(&ap_poll_timer, jiffies + AP_POLL_TIME);
878 * Receive pending reply messages from an AP device.
879 * @ap_dev: pointer to the AP device
880 * @flags: pointer to control flags, bit 2^0 is set if another poll is
881 * required, bit 2^1 is set if the poll timer needs to get armed
882 * Returns 0 if the device is still present, -ENODEV if not.
884 static int ap_poll_read(struct ap_device *ap_dev, unsigned long *flags)
886 struct ap_queue_status status;
887 struct ap_message *ap_msg;
889 if (ap_dev->queue_count <= 0)
890 return 0;
891 status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
892 ap_dev->reply->message, ap_dev->reply->length);
893 switch (status.response_code) {
894 case AP_RESPONSE_NORMAL:
895 atomic_dec(&ap_poll_requests);
896 ap_decrease_queue_count(ap_dev);
897 list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
898 if (ap_msg->psmid != ap_dev->reply->psmid)
899 continue;
900 list_del_init(&ap_msg->list);
901 ap_dev->pendingq_count--;
902 ap_dev->drv->receive(ap_dev, ap_msg, ap_dev->reply);
903 break;
905 if (ap_dev->queue_count > 0)
906 *flags |= 1;
907 break;
908 case AP_RESPONSE_NO_PENDING_REPLY:
909 if (status.queue_empty) {
910 /* The card shouldn't forget requests but who knows. */
911 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
912 ap_dev->queue_count = 0;
913 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
914 ap_dev->requestq_count += ap_dev->pendingq_count;
915 ap_dev->pendingq_count = 0;
916 } else
917 *flags |= 2;
918 break;
919 default:
920 return -ENODEV;
922 return 0;
926 * Send messages from the request queue to an AP device.
927 * @ap_dev: pointer to the AP device
928 * @flags: pointer to control flags, bit 2^0 is set if another poll is
929 * required, bit 2^1 is set if the poll timer needs to get armed
930 * Returns 0 if the device is still present, -ENODEV if not.
932 static int ap_poll_write(struct ap_device *ap_dev, unsigned long *flags)
934 struct ap_queue_status status;
935 struct ap_message *ap_msg;
937 if (ap_dev->requestq_count <= 0 ||
938 ap_dev->queue_count >= ap_dev->queue_depth)
939 return 0;
940 /* Start the next request on the queue. */
941 ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
942 status = __ap_send(ap_dev->qid, ap_msg->psmid,
943 ap_msg->message, ap_msg->length);
944 switch (status.response_code) {
945 case AP_RESPONSE_NORMAL:
946 atomic_inc(&ap_poll_requests);
947 ap_increase_queue_count(ap_dev);
948 list_move_tail(&ap_msg->list, &ap_dev->pendingq);
949 ap_dev->requestq_count--;
950 ap_dev->pendingq_count++;
951 if (ap_dev->queue_count < ap_dev->queue_depth &&
952 ap_dev->requestq_count > 0)
953 *flags |= 1;
954 *flags |= 2;
955 break;
956 case AP_RESPONSE_Q_FULL:
957 case AP_RESPONSE_RESET_IN_PROGRESS:
958 *flags |= 2;
959 break;
960 case AP_RESPONSE_MESSAGE_TOO_BIG:
961 return -EINVAL;
962 default:
963 return -ENODEV;
965 return 0;
969 * Poll AP device for pending replies and send new messages. If either
970 * ap_poll_read or ap_poll_write returns -ENODEV unregister the device.
971 * @ap_dev: pointer to the bus device
972 * @flags: pointer to control flags, bit 2^0 is set if another poll is
973 * required, bit 2^1 is set if the poll timer needs to get armed
974 * Returns 0.
976 static inline int ap_poll_queue(struct ap_device *ap_dev, unsigned long *flags)
978 int rc;
980 rc = ap_poll_read(ap_dev, flags);
981 if (rc)
982 return rc;
983 return ap_poll_write(ap_dev, flags);
987 * Queue a message to a device.
988 * @ap_dev: pointer to the AP device
989 * @ap_msg: the message to be queued
991 static int __ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
993 struct ap_queue_status status;
995 if (list_empty(&ap_dev->requestq) &&
996 ap_dev->queue_count < ap_dev->queue_depth) {
997 status = __ap_send(ap_dev->qid, ap_msg->psmid,
998 ap_msg->message, ap_msg->length);
999 switch (status.response_code) {
1000 case AP_RESPONSE_NORMAL:
1001 list_add_tail(&ap_msg->list, &ap_dev->pendingq);
1002 atomic_inc(&ap_poll_requests);
1003 ap_dev->pendingq_count++;
1004 ap_increase_queue_count(ap_dev);
1005 ap_dev->total_request_count++;
1006 break;
1007 case AP_RESPONSE_Q_FULL:
1008 case AP_RESPONSE_RESET_IN_PROGRESS:
1009 list_add_tail(&ap_msg->list, &ap_dev->requestq);
1010 ap_dev->requestq_count++;
1011 ap_dev->total_request_count++;
1012 return -EBUSY;
1013 case AP_RESPONSE_MESSAGE_TOO_BIG:
1014 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-EINVAL));
1015 return -EINVAL;
1016 default: /* Device is gone. */
1017 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
1018 return -ENODEV;
1020 } else {
1021 list_add_tail(&ap_msg->list, &ap_dev->requestq);
1022 ap_dev->requestq_count++;
1023 ap_dev->total_request_count++;
1024 return -EBUSY;
1026 ap_schedule_poll_timer();
1027 return 0;
1030 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1032 unsigned long flags;
1033 int rc;
1035 spin_lock_bh(&ap_dev->lock);
1036 if (!ap_dev->unregistered) {
1037 /* Make room on the queue by polling for finished requests. */
1038 rc = ap_poll_queue(ap_dev, &flags);
1039 if (!rc)
1040 rc = __ap_queue_message(ap_dev, ap_msg);
1041 if (!rc)
1042 wake_up(&ap_poll_wait);
1043 if (rc == -ENODEV)
1044 ap_dev->unregistered = 1;
1045 } else {
1046 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
1047 rc = -ENODEV;
1049 spin_unlock_bh(&ap_dev->lock);
1050 if (rc == -ENODEV)
1051 device_unregister(&ap_dev->device);
1053 EXPORT_SYMBOL(ap_queue_message);
1056 * Cancel a crypto request. This is done by removing the request
1057 * from the devive pendingq or requestq queue. Note that the
1058 * request stays on the AP queue. When it finishes the message
1059 * reply will be discarded because the psmid can't be found.
1060 * @ap_dev: AP device that has the message queued
1061 * @ap_msg: the message that is to be removed
1063 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1065 struct ap_message *tmp;
1067 spin_lock_bh(&ap_dev->lock);
1068 if (!list_empty(&ap_msg->list)) {
1069 list_for_each_entry(tmp, &ap_dev->pendingq, list)
1070 if (tmp->psmid == ap_msg->psmid) {
1071 ap_dev->pendingq_count--;
1072 goto found;
1074 ap_dev->requestq_count--;
1075 found:
1076 list_del_init(&ap_msg->list);
1078 spin_unlock_bh(&ap_dev->lock);
1080 EXPORT_SYMBOL(ap_cancel_message);
1083 * AP receive polling for finished AP requests
1085 static void ap_poll_timeout(unsigned long unused)
1087 tasklet_schedule(&ap_tasklet);
1091 * Reset a not responding AP device and move all requests from the
1092 * pending queue to the request queue.
1094 static void ap_reset(struct ap_device *ap_dev)
1096 int rc;
1098 ap_dev->reset = AP_RESET_IGNORE;
1099 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1100 ap_dev->queue_count = 0;
1101 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
1102 ap_dev->requestq_count += ap_dev->pendingq_count;
1103 ap_dev->pendingq_count = 0;
1104 rc = ap_init_queue(ap_dev->qid);
1105 if (rc == -ENODEV)
1106 ap_dev->unregistered = 1;
1110 * Poll all AP devices on the bus in a round robin fashion. Continue
1111 * polling until bit 2^0 of the control flags is not set. If bit 2^1
1112 * of the control flags has been set arm the poll timer.
1114 static int __ap_poll_all(struct ap_device *ap_dev, unsigned long *flags)
1116 spin_lock(&ap_dev->lock);
1117 if (!ap_dev->unregistered) {
1118 if (ap_poll_queue(ap_dev, flags))
1119 ap_dev->unregistered = 1;
1120 if (ap_dev->reset == AP_RESET_DO)
1121 ap_reset(ap_dev);
1123 spin_unlock(&ap_dev->lock);
1124 return 0;
1127 static void ap_poll_all(unsigned long dummy)
1129 unsigned long flags;
1130 struct ap_device *ap_dev;
1132 do {
1133 flags = 0;
1134 spin_lock(&ap_device_lock);
1135 list_for_each_entry(ap_dev, &ap_device_list, list) {
1136 __ap_poll_all(ap_dev, &flags);
1138 spin_unlock(&ap_device_lock);
1139 } while (flags & 1);
1140 if (flags & 2)
1141 ap_schedule_poll_timer();
1145 * AP bus poll thread. The purpose of this thread is to poll for
1146 * finished requests in a loop if there is a "free" cpu - that is
1147 * a cpu that doesn't have anything better to do. The polling stops
1148 * as soon as there is another task or if all messages have been
1149 * delivered.
1151 static int ap_poll_thread(void *data)
1153 DECLARE_WAITQUEUE(wait, current);
1154 unsigned long flags;
1155 int requests;
1156 struct ap_device *ap_dev;
1158 set_user_nice(current, 19);
1159 while (1) {
1160 if (need_resched()) {
1161 schedule();
1162 continue;
1164 add_wait_queue(&ap_poll_wait, &wait);
1165 set_current_state(TASK_INTERRUPTIBLE);
1166 if (kthread_should_stop())
1167 break;
1168 requests = atomic_read(&ap_poll_requests);
1169 if (requests <= 0)
1170 schedule();
1171 set_current_state(TASK_RUNNING);
1172 remove_wait_queue(&ap_poll_wait, &wait);
1174 flags = 0;
1175 spin_lock_bh(&ap_device_lock);
1176 list_for_each_entry(ap_dev, &ap_device_list, list) {
1177 __ap_poll_all(ap_dev, &flags);
1179 spin_unlock_bh(&ap_device_lock);
1181 set_current_state(TASK_RUNNING);
1182 remove_wait_queue(&ap_poll_wait, &wait);
1183 return 0;
1186 static int ap_poll_thread_start(void)
1188 int rc;
1190 mutex_lock(&ap_poll_thread_mutex);
1191 if (!ap_poll_kthread) {
1192 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
1193 rc = IS_ERR(ap_poll_kthread) ? PTR_ERR(ap_poll_kthread) : 0;
1194 if (rc)
1195 ap_poll_kthread = NULL;
1197 else
1198 rc = 0;
1199 mutex_unlock(&ap_poll_thread_mutex);
1200 return rc;
1203 static void ap_poll_thread_stop(void)
1205 mutex_lock(&ap_poll_thread_mutex);
1206 if (ap_poll_kthread) {
1207 kthread_stop(ap_poll_kthread);
1208 ap_poll_kthread = NULL;
1210 mutex_unlock(&ap_poll_thread_mutex);
1214 * Handling of request timeouts
1216 static void ap_request_timeout(unsigned long data)
1218 struct ap_device *ap_dev = (struct ap_device *) data;
1220 if (ap_dev->reset == AP_RESET_ARMED)
1221 ap_dev->reset = AP_RESET_DO;
1224 static void ap_reset_domain(void)
1226 int i;
1228 if (ap_domain_index != -1)
1229 for (i = 0; i < AP_DEVICES; i++)
1230 ap_reset_queue(AP_MKQID(i, ap_domain_index));
1233 static void ap_reset_all(void)
1235 int i, j;
1237 for (i = 0; i < AP_DOMAINS; i++)
1238 for (j = 0; j < AP_DEVICES; j++)
1239 ap_reset_queue(AP_MKQID(j, i));
1242 static struct reset_call ap_reset_call = {
1243 .fn = ap_reset_all,
1247 * The module initialization code.
1249 int __init ap_module_init(void)
1251 int rc, i;
1253 if (ap_domain_index < -1 || ap_domain_index >= AP_DOMAINS) {
1254 printk(KERN_WARNING "Invalid param: domain = %d. "
1255 " Not loading.\n", ap_domain_index);
1256 return -EINVAL;
1258 if (ap_instructions_available() != 0) {
1259 printk(KERN_WARNING "AP instructions not installed.\n");
1260 return -ENODEV;
1262 register_reset_call(&ap_reset_call);
1264 /* Create /sys/bus/ap. */
1265 rc = bus_register(&ap_bus_type);
1266 if (rc)
1267 goto out;
1268 for (i = 0; ap_bus_attrs[i]; i++) {
1269 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1270 if (rc)
1271 goto out_bus;
1274 /* Create /sys/devices/ap. */
1275 ap_root_device = s390_root_dev_register("ap");
1276 rc = IS_ERR(ap_root_device) ? PTR_ERR(ap_root_device) : 0;
1277 if (rc)
1278 goto out_bus;
1280 ap_work_queue = create_singlethread_workqueue("kapwork");
1281 if (!ap_work_queue) {
1282 rc = -ENOMEM;
1283 goto out_root;
1286 if (ap_select_domain() == 0)
1287 ap_scan_bus(NULL);
1289 /* Setup the ap bus rescan timer. */
1290 init_timer(&ap_config_timer);
1291 ap_config_timer.function = ap_config_timeout;
1292 ap_config_timer.data = 0;
1293 ap_config_timer.expires = jiffies + ap_config_time * HZ;
1294 add_timer(&ap_config_timer);
1296 /* Start the low priority AP bus poll thread. */
1297 if (ap_thread_flag) {
1298 rc = ap_poll_thread_start();
1299 if (rc)
1300 goto out_work;
1303 return 0;
1305 out_work:
1306 del_timer_sync(&ap_config_timer);
1307 del_timer_sync(&ap_poll_timer);
1308 destroy_workqueue(ap_work_queue);
1309 out_root:
1310 s390_root_dev_unregister(ap_root_device);
1311 out_bus:
1312 while (i--)
1313 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1314 bus_unregister(&ap_bus_type);
1315 out:
1316 unregister_reset_call(&ap_reset_call);
1317 return rc;
1320 static int __ap_match_all(struct device *dev, void *data)
1322 return 1;
1326 * The module termination code
1328 void ap_module_exit(void)
1330 int i;
1331 struct device *dev;
1333 ap_reset_domain();
1334 ap_poll_thread_stop();
1335 del_timer_sync(&ap_config_timer);
1336 del_timer_sync(&ap_poll_timer);
1337 destroy_workqueue(ap_work_queue);
1338 tasklet_kill(&ap_tasklet);
1339 s390_root_dev_unregister(ap_root_device);
1340 while ((dev = bus_find_device(&ap_bus_type, NULL, NULL,
1341 __ap_match_all)))
1343 device_unregister(dev);
1344 put_device(dev);
1346 for (i = 0; ap_bus_attrs[i]; i++)
1347 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1348 bus_unregister(&ap_bus_type);
1349 unregister_reset_call(&ap_reset_call);
1352 #ifndef CONFIG_ZCRYPT_MONOLITHIC
1353 module_init(ap_module_init);
1354 module_exit(ap_module_exit);
1355 #endif