[PATCH] ARM: Fix VFP to use do_div()
[linux-2.6/verdex.git] / include / asm-i386 / system.h
blob3db717a244f0c4df75a06102c522e6cdf19f82b1
1 #ifndef __ASM_SYSTEM_H
2 #define __ASM_SYSTEM_H
4 #include <linux/config.h>
5 #include <linux/kernel.h>
6 #include <asm/segment.h>
7 #include <asm/cpufeature.h>
8 #include <linux/bitops.h> /* for LOCK_PREFIX */
10 #ifdef __KERNEL__
12 struct task_struct; /* one of the stranger aspects of C forward declarations.. */
13 extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
15 #define switch_to(prev,next,last) do { \
16 unsigned long esi,edi; \
17 asm volatile("pushfl\n\t" \
18 "pushl %%ebp\n\t" \
19 "movl %%esp,%0\n\t" /* save ESP */ \
20 "movl %5,%%esp\n\t" /* restore ESP */ \
21 "movl $1f,%1\n\t" /* save EIP */ \
22 "pushl %6\n\t" /* restore EIP */ \
23 "jmp __switch_to\n" \
24 "1:\t" \
25 "popl %%ebp\n\t" \
26 "popfl" \
27 :"=m" (prev->thread.esp),"=m" (prev->thread.eip), \
28 "=a" (last),"=S" (esi),"=D" (edi) \
29 :"m" (next->thread.esp),"m" (next->thread.eip), \
30 "2" (prev), "d" (next)); \
31 } while (0)
33 #define _set_base(addr,base) do { unsigned long __pr; \
34 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
35 "rorl $16,%%edx\n\t" \
36 "movb %%dl,%2\n\t" \
37 "movb %%dh,%3" \
38 :"=&d" (__pr) \
39 :"m" (*((addr)+2)), \
40 "m" (*((addr)+4)), \
41 "m" (*((addr)+7)), \
42 "0" (base) \
43 ); } while(0)
45 #define _set_limit(addr,limit) do { unsigned long __lr; \
46 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
47 "rorl $16,%%edx\n\t" \
48 "movb %2,%%dh\n\t" \
49 "andb $0xf0,%%dh\n\t" \
50 "orb %%dh,%%dl\n\t" \
51 "movb %%dl,%2" \
52 :"=&d" (__lr) \
53 :"m" (*(addr)), \
54 "m" (*((addr)+6)), \
55 "0" (limit) \
56 ); } while(0)
58 #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
59 #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1)>>12 )
61 static inline unsigned long _get_base(char * addr)
63 unsigned long __base;
64 __asm__("movb %3,%%dh\n\t"
65 "movb %2,%%dl\n\t"
66 "shll $16,%%edx\n\t"
67 "movw %1,%%dx"
68 :"=&d" (__base)
69 :"m" (*((addr)+2)),
70 "m" (*((addr)+4)),
71 "m" (*((addr)+7)));
72 return __base;
75 #define get_base(ldt) _get_base( ((char *)&(ldt)) )
78 * Load a segment. Fall back on loading the zero
79 * segment if something goes wrong..
81 #define loadsegment(seg,value) \
82 asm volatile("\n" \
83 "1:\t" \
84 "mov %0,%%" #seg "\n" \
85 "2:\n" \
86 ".section .fixup,\"ax\"\n" \
87 "3:\t" \
88 "pushl $0\n\t" \
89 "popl %%" #seg "\n\t" \
90 "jmp 2b\n" \
91 ".previous\n" \
92 ".section __ex_table,\"a\"\n\t" \
93 ".align 4\n\t" \
94 ".long 1b,3b\n" \
95 ".previous" \
96 : :"m" (value))
99 * Save a segment register away
101 #define savesegment(seg, value) \
102 asm volatile("mov %%" #seg ",%0":"=m" (value))
105 * Clear and set 'TS' bit respectively
107 #define clts() __asm__ __volatile__ ("clts")
108 #define read_cr0() ({ \
109 unsigned int __dummy; \
110 __asm__( \
111 "movl %%cr0,%0\n\t" \
112 :"=r" (__dummy)); \
113 __dummy; \
115 #define write_cr0(x) \
116 __asm__("movl %0,%%cr0": :"r" (x));
118 #define read_cr4() ({ \
119 unsigned int __dummy; \
120 __asm__( \
121 "movl %%cr4,%0\n\t" \
122 :"=r" (__dummy)); \
123 __dummy; \
125 #define write_cr4(x) \
126 __asm__("movl %0,%%cr4": :"r" (x));
127 #define stts() write_cr0(8 | read_cr0())
129 #endif /* __KERNEL__ */
131 #define wbinvd() \
132 __asm__ __volatile__ ("wbinvd": : :"memory");
134 static inline unsigned long get_limit(unsigned long segment)
136 unsigned long __limit;
137 __asm__("lsll %1,%0"
138 :"=r" (__limit):"r" (segment));
139 return __limit+1;
142 #define nop() __asm__ __volatile__ ("nop")
144 #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
146 #define tas(ptr) (xchg((ptr),1))
148 struct __xchg_dummy { unsigned long a[100]; };
149 #define __xg(x) ((struct __xchg_dummy *)(x))
153 * The semantics of XCHGCMP8B are a bit strange, this is why
154 * there is a loop and the loading of %%eax and %%edx has to
155 * be inside. This inlines well in most cases, the cached
156 * cost is around ~38 cycles. (in the future we might want
157 * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
158 * might have an implicit FPU-save as a cost, so it's not
159 * clear which path to go.)
161 * cmpxchg8b must be used with the lock prefix here to allow
162 * the instruction to be executed atomically, see page 3-102
163 * of the instruction set reference 24319102.pdf. We need
164 * the reader side to see the coherent 64bit value.
166 static inline void __set_64bit (unsigned long long * ptr,
167 unsigned int low, unsigned int high)
169 __asm__ __volatile__ (
170 "\n1:\t"
171 "movl (%0), %%eax\n\t"
172 "movl 4(%0), %%edx\n\t"
173 "lock cmpxchg8b (%0)\n\t"
174 "jnz 1b"
175 : /* no outputs */
176 : "D"(ptr),
177 "b"(low),
178 "c"(high)
179 : "ax","dx","memory");
182 static inline void __set_64bit_constant (unsigned long long *ptr,
183 unsigned long long value)
185 __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
187 #define ll_low(x) *(((unsigned int*)&(x))+0)
188 #define ll_high(x) *(((unsigned int*)&(x))+1)
190 static inline void __set_64bit_var (unsigned long long *ptr,
191 unsigned long long value)
193 __set_64bit(ptr,ll_low(value), ll_high(value));
196 #define set_64bit(ptr,value) \
197 (__builtin_constant_p(value) ? \
198 __set_64bit_constant(ptr, value) : \
199 __set_64bit_var(ptr, value) )
201 #define _set_64bit(ptr,value) \
202 (__builtin_constant_p(value) ? \
203 __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
204 __set_64bit(ptr, ll_low(value), ll_high(value)) )
207 * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
208 * Note 2: xchg has side effect, so that attribute volatile is necessary,
209 * but generally the primitive is invalid, *ptr is output argument. --ANK
211 static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
213 switch (size) {
214 case 1:
215 __asm__ __volatile__("xchgb %b0,%1"
216 :"=q" (x)
217 :"m" (*__xg(ptr)), "0" (x)
218 :"memory");
219 break;
220 case 2:
221 __asm__ __volatile__("xchgw %w0,%1"
222 :"=r" (x)
223 :"m" (*__xg(ptr)), "0" (x)
224 :"memory");
225 break;
226 case 4:
227 __asm__ __volatile__("xchgl %0,%1"
228 :"=r" (x)
229 :"m" (*__xg(ptr)), "0" (x)
230 :"memory");
231 break;
233 return x;
237 * Atomic compare and exchange. Compare OLD with MEM, if identical,
238 * store NEW in MEM. Return the initial value in MEM. Success is
239 * indicated by comparing RETURN with OLD.
242 #ifdef CONFIG_X86_CMPXCHG
243 #define __HAVE_ARCH_CMPXCHG 1
244 #endif
246 static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
247 unsigned long new, int size)
249 unsigned long prev;
250 switch (size) {
251 case 1:
252 __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
253 : "=a"(prev)
254 : "q"(new), "m"(*__xg(ptr)), "0"(old)
255 : "memory");
256 return prev;
257 case 2:
258 __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
259 : "=a"(prev)
260 : "q"(new), "m"(*__xg(ptr)), "0"(old)
261 : "memory");
262 return prev;
263 case 4:
264 __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
265 : "=a"(prev)
266 : "q"(new), "m"(*__xg(ptr)), "0"(old)
267 : "memory");
268 return prev;
270 return old;
273 #define cmpxchg(ptr,o,n)\
274 ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
275 (unsigned long)(n),sizeof(*(ptr))))
277 #ifdef __KERNEL__
278 struct alt_instr {
279 __u8 *instr; /* original instruction */
280 __u8 *replacement;
281 __u8 cpuid; /* cpuid bit set for replacement */
282 __u8 instrlen; /* length of original instruction */
283 __u8 replacementlen; /* length of new instruction, <= instrlen */
284 __u8 pad;
286 #endif
289 * Alternative instructions for different CPU types or capabilities.
291 * This allows to use optimized instructions even on generic binary
292 * kernels.
294 * length of oldinstr must be longer or equal the length of newinstr
295 * It can be padded with nops as needed.
297 * For non barrier like inlines please define new variants
298 * without volatile and memory clobber.
300 #define alternative(oldinstr, newinstr, feature) \
301 asm volatile ("661:\n\t" oldinstr "\n662:\n" \
302 ".section .altinstructions,\"a\"\n" \
303 " .align 4\n" \
304 " .long 661b\n" /* label */ \
305 " .long 663f\n" /* new instruction */ \
306 " .byte %c0\n" /* feature bit */ \
307 " .byte 662b-661b\n" /* sourcelen */ \
308 " .byte 664f-663f\n" /* replacementlen */ \
309 ".previous\n" \
310 ".section .altinstr_replacement,\"ax\"\n" \
311 "663:\n\t" newinstr "\n664:\n" /* replacement */ \
312 ".previous" :: "i" (feature) : "memory")
315 * Alternative inline assembly with input.
317 * Pecularities:
318 * No memory clobber here.
319 * Argument numbers start with 1.
320 * Best is to use constraints that are fixed size (like (%1) ... "r")
321 * If you use variable sized constraints like "m" or "g" in the
322 * replacement maake sure to pad to the worst case length.
324 #define alternative_input(oldinstr, newinstr, feature, input...) \
325 asm volatile ("661:\n\t" oldinstr "\n662:\n" \
326 ".section .altinstructions,\"a\"\n" \
327 " .align 4\n" \
328 " .long 661b\n" /* label */ \
329 " .long 663f\n" /* new instruction */ \
330 " .byte %c0\n" /* feature bit */ \
331 " .byte 662b-661b\n" /* sourcelen */ \
332 " .byte 664f-663f\n" /* replacementlen */ \
333 ".previous\n" \
334 ".section .altinstr_replacement,\"ax\"\n" \
335 "663:\n\t" newinstr "\n664:\n" /* replacement */ \
336 ".previous" :: "i" (feature), ##input)
339 * Force strict CPU ordering.
340 * And yes, this is required on UP too when we're talking
341 * to devices.
343 * For now, "wmb()" doesn't actually do anything, as all
344 * Intel CPU's follow what Intel calls a *Processor Order*,
345 * in which all writes are seen in the program order even
346 * outside the CPU.
348 * I expect future Intel CPU's to have a weaker ordering,
349 * but I'd also expect them to finally get their act together
350 * and add some real memory barriers if so.
352 * Some non intel clones support out of order store. wmb() ceases to be a
353 * nop for these.
358 * Actually only lfence would be needed for mb() because all stores done
359 * by the kernel should be already ordered. But keep a full barrier for now.
362 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
363 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
366 * read_barrier_depends - Flush all pending reads that subsequents reads
367 * depend on.
369 * No data-dependent reads from memory-like regions are ever reordered
370 * over this barrier. All reads preceding this primitive are guaranteed
371 * to access memory (but not necessarily other CPUs' caches) before any
372 * reads following this primitive that depend on the data return by
373 * any of the preceding reads. This primitive is much lighter weight than
374 * rmb() on most CPUs, and is never heavier weight than is
375 * rmb().
377 * These ordering constraints are respected by both the local CPU
378 * and the compiler.
380 * Ordering is not guaranteed by anything other than these primitives,
381 * not even by data dependencies. See the documentation for
382 * memory_barrier() for examples and URLs to more information.
384 * For example, the following code would force ordering (the initial
385 * value of "a" is zero, "b" is one, and "p" is "&a"):
387 * <programlisting>
388 * CPU 0 CPU 1
390 * b = 2;
391 * memory_barrier();
392 * p = &b; q = p;
393 * read_barrier_depends();
394 * d = *q;
395 * </programlisting>
397 * because the read of "*q" depends on the read of "p" and these
398 * two reads are separated by a read_barrier_depends(). However,
399 * the following code, with the same initial values for "a" and "b":
401 * <programlisting>
402 * CPU 0 CPU 1
404 * a = 2;
405 * memory_barrier();
406 * b = 3; y = b;
407 * read_barrier_depends();
408 * x = a;
409 * </programlisting>
411 * does not enforce ordering, since there is no data dependency between
412 * the read of "a" and the read of "b". Therefore, on some CPUs, such
413 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
414 * in cases like thiswhere there are no data dependencies.
417 #define read_barrier_depends() do { } while(0)
419 #ifdef CONFIG_X86_OOSTORE
420 /* Actually there are no OOO store capable CPUs for now that do SSE,
421 but make it already an possibility. */
422 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
423 #else
424 #define wmb() __asm__ __volatile__ ("": : :"memory")
425 #endif
427 #ifdef CONFIG_SMP
428 #define smp_mb() mb()
429 #define smp_rmb() rmb()
430 #define smp_wmb() wmb()
431 #define smp_read_barrier_depends() read_barrier_depends()
432 #define set_mb(var, value) do { xchg(&var, value); } while (0)
433 #else
434 #define smp_mb() barrier()
435 #define smp_rmb() barrier()
436 #define smp_wmb() barrier()
437 #define smp_read_barrier_depends() do { } while(0)
438 #define set_mb(var, value) do { var = value; barrier(); } while (0)
439 #endif
441 #define set_wmb(var, value) do { var = value; wmb(); } while (0)
443 /* interrupt control.. */
444 #define local_save_flags(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushfl ; popl %0":"=g" (x): /* no input */); } while (0)
445 #define local_irq_restore(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushl %0 ; popfl": /* no output */ :"g" (x):"memory", "cc"); } while (0)
446 #define local_irq_disable() __asm__ __volatile__("cli": : :"memory")
447 #define local_irq_enable() __asm__ __volatile__("sti": : :"memory")
448 /* used in the idle loop; sti takes one instruction cycle to complete */
449 #define safe_halt() __asm__ __volatile__("sti; hlt": : :"memory")
451 #define irqs_disabled() \
452 ({ \
453 unsigned long flags; \
454 local_save_flags(flags); \
455 !(flags & (1<<9)); \
458 /* For spinlocks etc */
459 #define local_irq_save(x) __asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory")
462 * disable hlt during certain critical i/o operations
464 #define HAVE_DISABLE_HLT
465 void disable_hlt(void);
466 void enable_hlt(void);
468 extern int es7000_plat;
469 void cpu_idle_wait(void);
471 extern unsigned long arch_align_stack(unsigned long sp);
473 #endif