[PATCH] w1: Make w1 connector notifications depend on connector.
[linux-2.6/verdex.git] / drivers / ieee1394 / eth1394.c
blob5bda15904a08fbfed971f0348c341d64df19132b
1 /*
2 * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 /* This driver intends to support RFC 2734, which describes a method for
26 * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27 * will ultimately support that method, but currently falls short in
28 * several areas.
30 * TODO:
31 * RFC 2734 related:
32 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
34 * Non-RFC 2734 related:
35 * - Handle fragmented skb's coming from the networking layer.
36 * - Move generic GASP reception to core 1394 code
37 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38 * - Stability improvements
39 * - Performance enhancements
40 * - Consider garbage collecting old partial datagrams after X amount of time
44 #include <linux/module.h>
46 #include <linux/sched.h>
47 #include <linux/kernel.h>
48 #include <linux/slab.h>
49 #include <linux/errno.h>
50 #include <linux/types.h>
51 #include <linux/delay.h>
52 #include <linux/init.h>
54 #include <linux/netdevice.h>
55 #include <linux/inetdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/if_arp.h>
58 #include <linux/if_ether.h>
59 #include <linux/ip.h>
60 #include <linux/in.h>
61 #include <linux/tcp.h>
62 #include <linux/skbuff.h>
63 #include <linux/bitops.h>
64 #include <linux/ethtool.h>
65 #include <asm/uaccess.h>
66 #include <asm/delay.h>
67 #include <asm/semaphore.h>
68 #include <net/arp.h>
70 #include "csr1212.h"
71 #include "ieee1394_types.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_transactions.h"
74 #include "ieee1394.h"
75 #include "highlevel.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78 #include "eth1394.h"
79 #include "config_roms.h"
81 #define ETH1394_PRINT_G(level, fmt, args...) \
82 printk(level "%s: " fmt, driver_name, ## args)
84 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
85 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
87 #define DEBUG(fmt, args...) \
88 printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
89 #define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
91 struct fragment_info {
92 struct list_head list;
93 int offset;
94 int len;
97 struct partial_datagram {
98 struct list_head list;
99 u16 dgl;
100 u16 dg_size;
101 u16 ether_type;
102 struct sk_buff *skb;
103 char *pbuf;
104 struct list_head frag_info;
107 struct pdg_list {
108 struct list_head list; /* partial datagram list per node */
109 unsigned int sz; /* partial datagram list size per node */
110 spinlock_t lock; /* partial datagram lock */
113 struct eth1394_host_info {
114 struct hpsb_host *host;
115 struct net_device *dev;
118 struct eth1394_node_ref {
119 struct unit_directory *ud;
120 struct list_head list;
123 struct eth1394_node_info {
124 u16 maxpayload; /* Max payload */
125 u8 sspd; /* Max speed */
126 u64 fifo; /* FIFO address */
127 struct pdg_list pdg; /* partial RX datagram lists */
128 int dgl; /* Outgoing datagram label */
131 /* Our ieee1394 highlevel driver */
132 #define ETH1394_DRIVER_NAME "eth1394"
133 static const char driver_name[] = ETH1394_DRIVER_NAME;
135 static kmem_cache_t *packet_task_cache;
137 static struct hpsb_highlevel eth1394_highlevel;
139 /* Use common.lf to determine header len */
140 static const int hdr_type_len[] = {
141 sizeof (struct eth1394_uf_hdr),
142 sizeof (struct eth1394_ff_hdr),
143 sizeof (struct eth1394_sf_hdr),
144 sizeof (struct eth1394_sf_hdr)
147 /* Change this to IEEE1394_SPEED_S100 to make testing easier */
148 #define ETH1394_SPEED_DEF IEEE1394_SPEED_MAX
150 /* For now, this needs to be 1500, so that XP works with us */
151 #define ETH1394_DATA_LEN ETH_DATA_LEN
153 static const u16 eth1394_speedto_maxpayload[] = {
154 /* S100, S200, S400, S800, S1600, S3200 */
155 512, 1024, 2048, 4096, 4096, 4096
158 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
159 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
160 MODULE_LICENSE("GPL");
162 /* The max_partial_datagrams parameter is the maximum number of fragmented
163 * datagrams per node that eth1394 will keep in memory. Providing an upper
164 * bound allows us to limit the amount of memory that partial datagrams
165 * consume in the event that some partial datagrams are never completed.
167 static int max_partial_datagrams = 25;
168 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
169 MODULE_PARM_DESC(max_partial_datagrams,
170 "Maximum number of partially received fragmented datagrams "
171 "(default = 25).");
174 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
175 unsigned short type, void *daddr, void *saddr,
176 unsigned len);
177 static int ether1394_rebuild_header(struct sk_buff *skb);
178 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
179 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
180 static void ether1394_header_cache_update(struct hh_cache *hh,
181 struct net_device *dev,
182 unsigned char * haddr);
183 static int ether1394_mac_addr(struct net_device *dev, void *p);
185 static void purge_partial_datagram(struct list_head *old);
186 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
187 static void ether1394_iso(struct hpsb_iso *iso);
189 static struct ethtool_ops ethtool_ops;
191 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
192 quadlet_t *data, u64 addr, size_t len, u16 flags);
193 static void ether1394_add_host (struct hpsb_host *host);
194 static void ether1394_remove_host (struct hpsb_host *host);
195 static void ether1394_host_reset (struct hpsb_host *host);
197 /* Function for incoming 1394 packets */
198 static struct hpsb_address_ops addr_ops = {
199 .write = ether1394_write,
202 /* Ieee1394 highlevel driver functions */
203 static struct hpsb_highlevel eth1394_highlevel = {
204 .name = driver_name,
205 .add_host = ether1394_add_host,
206 .remove_host = ether1394_remove_host,
207 .host_reset = ether1394_host_reset,
211 /* This is called after an "ifup" */
212 static int ether1394_open (struct net_device *dev)
214 struct eth1394_priv *priv = netdev_priv(dev);
215 int ret = 0;
217 /* Something bad happened, don't even try */
218 if (priv->bc_state == ETHER1394_BC_ERROR) {
219 /* we'll try again */
220 priv->iso = hpsb_iso_recv_init(priv->host,
221 ETHER1394_ISO_BUF_SIZE,
222 ETHER1394_GASP_BUFFERS,
223 priv->broadcast_channel,
224 HPSB_ISO_DMA_PACKET_PER_BUFFER,
225 1, ether1394_iso);
226 if (priv->iso == NULL) {
227 ETH1394_PRINT(KERN_ERR, dev->name,
228 "Could not allocate isochronous receive "
229 "context for the broadcast channel\n");
230 priv->bc_state = ETHER1394_BC_ERROR;
231 ret = -EAGAIN;
232 } else {
233 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
234 priv->bc_state = ETHER1394_BC_STOPPED;
235 else
236 priv->bc_state = ETHER1394_BC_RUNNING;
240 if (ret)
241 return ret;
243 netif_start_queue (dev);
244 return 0;
247 /* This is called after an "ifdown" */
248 static int ether1394_stop (struct net_device *dev)
250 netif_stop_queue (dev);
251 return 0;
254 /* Return statistics to the caller */
255 static struct net_device_stats *ether1394_stats (struct net_device *dev)
257 return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
260 /* What to do if we timeout. I think a host reset is probably in order, so
261 * that's what we do. Should we increment the stat counters too? */
262 static void ether1394_tx_timeout (struct net_device *dev)
264 ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
265 ((struct eth1394_priv *)netdev_priv(dev))->host->driver->name);
267 highlevel_host_reset (((struct eth1394_priv *)netdev_priv(dev))->host);
269 netif_wake_queue (dev);
272 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
274 struct eth1394_priv *priv = netdev_priv(dev);
276 if ((new_mtu < 68) ||
277 (new_mtu > min(ETH1394_DATA_LEN,
278 (int)((1 << (priv->host->csr.max_rec + 1)) -
279 (sizeof(union eth1394_hdr) +
280 ETHER1394_GASP_OVERHEAD)))))
281 return -EINVAL;
282 dev->mtu = new_mtu;
283 return 0;
286 static void purge_partial_datagram(struct list_head *old)
288 struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
289 struct list_head *lh, *n;
291 list_for_each_safe(lh, n, &pd->frag_info) {
292 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
293 list_del(lh);
294 kfree(fi);
296 list_del(old);
297 kfree_skb(pd->skb);
298 kfree(pd);
301 /******************************************
302 * 1394 bus activity functions
303 ******************************************/
305 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
306 struct unit_directory *ud)
308 struct eth1394_node_ref *node;
310 list_for_each_entry(node, inl, list)
311 if (node->ud == ud)
312 return node;
314 return NULL;
317 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
318 u64 guid)
320 struct eth1394_node_ref *node;
322 list_for_each_entry(node, inl, list)
323 if (node->ud->ne->guid == guid)
324 return node;
326 return NULL;
329 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
330 nodeid_t nodeid)
332 struct eth1394_node_ref *node;
333 list_for_each_entry(node, inl, list) {
334 if (node->ud->ne->nodeid == nodeid)
335 return node;
338 return NULL;
341 static int eth1394_probe(struct device *dev)
343 struct unit_directory *ud;
344 struct eth1394_host_info *hi;
345 struct eth1394_priv *priv;
346 struct eth1394_node_ref *new_node;
347 struct eth1394_node_info *node_info;
349 ud = container_of(dev, struct unit_directory, device);
351 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
352 if (!hi)
353 return -ENOENT;
355 new_node = kmalloc(sizeof(*new_node),
356 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
357 if (!new_node)
358 return -ENOMEM;
360 node_info = kmalloc(sizeof(*node_info),
361 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
362 if (!node_info) {
363 kfree(new_node);
364 return -ENOMEM;
367 spin_lock_init(&node_info->pdg.lock);
368 INIT_LIST_HEAD(&node_info->pdg.list);
369 node_info->pdg.sz = 0;
370 node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
372 ud->device.driver_data = node_info;
373 new_node->ud = ud;
375 priv = netdev_priv(hi->dev);
376 list_add_tail(&new_node->list, &priv->ip_node_list);
378 return 0;
381 static int eth1394_remove(struct device *dev)
383 struct unit_directory *ud;
384 struct eth1394_host_info *hi;
385 struct eth1394_priv *priv;
386 struct eth1394_node_ref *old_node;
387 struct eth1394_node_info *node_info;
388 struct list_head *lh, *n;
389 unsigned long flags;
391 ud = container_of(dev, struct unit_directory, device);
392 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
393 if (!hi)
394 return -ENOENT;
396 priv = netdev_priv(hi->dev);
398 old_node = eth1394_find_node(&priv->ip_node_list, ud);
400 if (old_node) {
401 list_del(&old_node->list);
402 kfree(old_node);
404 node_info = (struct eth1394_node_info*)ud->device.driver_data;
406 spin_lock_irqsave(&node_info->pdg.lock, flags);
407 /* The partial datagram list should be empty, but we'll just
408 * make sure anyway... */
409 list_for_each_safe(lh, n, &node_info->pdg.list) {
410 purge_partial_datagram(lh);
412 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
414 kfree(node_info);
415 ud->device.driver_data = NULL;
417 return 0;
420 static int eth1394_update(struct unit_directory *ud)
422 struct eth1394_host_info *hi;
423 struct eth1394_priv *priv;
424 struct eth1394_node_ref *node;
425 struct eth1394_node_info *node_info;
427 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
428 if (!hi)
429 return -ENOENT;
431 priv = netdev_priv(hi->dev);
433 node = eth1394_find_node(&priv->ip_node_list, ud);
435 if (!node) {
436 node = kmalloc(sizeof(*node),
437 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
438 if (!node)
439 return -ENOMEM;
441 node_info = kmalloc(sizeof(*node_info),
442 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
443 if (!node_info) {
444 kfree(node);
445 return -ENOMEM;
448 spin_lock_init(&node_info->pdg.lock);
449 INIT_LIST_HEAD(&node_info->pdg.list);
450 node_info->pdg.sz = 0;
452 ud->device.driver_data = node_info;
453 node->ud = ud;
455 priv = netdev_priv(hi->dev);
456 list_add_tail(&node->list, &priv->ip_node_list);
459 return 0;
463 static struct ieee1394_device_id eth1394_id_table[] = {
465 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
466 IEEE1394_MATCH_VERSION),
467 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
468 .version = ETHER1394_GASP_VERSION,
473 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
475 static struct hpsb_protocol_driver eth1394_proto_driver = {
476 .name = "IPv4 over 1394 Driver",
477 .id_table = eth1394_id_table,
478 .update = eth1394_update,
479 .driver = {
480 .name = ETH1394_DRIVER_NAME,
481 .bus = &ieee1394_bus_type,
482 .probe = eth1394_probe,
483 .remove = eth1394_remove,
488 static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
490 unsigned long flags;
491 int i;
492 struct eth1394_priv *priv = netdev_priv(dev);
493 struct hpsb_host *host = priv->host;
494 u64 guid = *((u64*)&(host->csr.rom->bus_info_data[3]));
495 u16 maxpayload = 1 << (host->csr.max_rec + 1);
496 int max_speed = IEEE1394_SPEED_MAX;
498 spin_lock_irqsave (&priv->lock, flags);
500 memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
501 priv->bc_maxpayload = 512;
503 /* Determine speed limit */
504 for (i = 0; i < host->node_count; i++)
505 if (max_speed > host->speed[i])
506 max_speed = host->speed[i];
507 priv->bc_sspd = max_speed;
509 /* We'll use our maxpayload as the default mtu */
510 if (set_mtu) {
511 dev->mtu = min(ETH1394_DATA_LEN,
512 (int)(maxpayload -
513 (sizeof(union eth1394_hdr) +
514 ETHER1394_GASP_OVERHEAD)));
516 /* Set our hardware address while we're at it */
517 *(u64*)dev->dev_addr = guid;
518 *(u64*)dev->broadcast = ~0x0ULL;
521 spin_unlock_irqrestore (&priv->lock, flags);
524 /* This function is called right before register_netdev */
525 static void ether1394_init_dev (struct net_device *dev)
527 /* Our functions */
528 dev->open = ether1394_open;
529 dev->stop = ether1394_stop;
530 dev->hard_start_xmit = ether1394_tx;
531 dev->get_stats = ether1394_stats;
532 dev->tx_timeout = ether1394_tx_timeout;
533 dev->change_mtu = ether1394_change_mtu;
535 dev->hard_header = ether1394_header;
536 dev->rebuild_header = ether1394_rebuild_header;
537 dev->hard_header_cache = ether1394_header_cache;
538 dev->header_cache_update= ether1394_header_cache_update;
539 dev->hard_header_parse = ether1394_header_parse;
540 dev->set_mac_address = ether1394_mac_addr;
541 SET_ETHTOOL_OPS(dev, &ethtool_ops);
543 /* Some constants */
544 dev->watchdog_timeo = ETHER1394_TIMEOUT;
545 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
546 dev->features = NETIF_F_HIGHDMA;
547 dev->addr_len = ETH1394_ALEN;
548 dev->hard_header_len = ETH1394_HLEN;
549 dev->type = ARPHRD_IEEE1394;
551 ether1394_reset_priv (dev, 1);
555 * This function is called every time a card is found. It is generally called
556 * when the module is installed. This is where we add all of our ethernet
557 * devices. One for each host.
559 static void ether1394_add_host (struct hpsb_host *host)
561 struct eth1394_host_info *hi = NULL;
562 struct net_device *dev = NULL;
563 struct eth1394_priv *priv;
564 u64 fifo_addr;
566 if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
567 return;
569 fifo_addr = hpsb_allocate_and_register_addrspace(
570 &eth1394_highlevel, host, &addr_ops,
571 ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
572 CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
573 if (fifo_addr == CSR1212_INVALID_ADDR_SPACE)
574 goto out;
576 /* We should really have our own alloc_hpsbdev() function in
577 * net_init.c instead of calling the one for ethernet then hijacking
578 * it for ourselves. That way we'd be a real networking device. */
579 dev = alloc_etherdev(sizeof (struct eth1394_priv));
581 if (dev == NULL) {
582 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
583 "etherdevice for IEEE 1394 device %s-%d\n",
584 host->driver->name, host->id);
585 goto out;
588 SET_MODULE_OWNER(dev);
589 SET_NETDEV_DEV(dev, &host->device);
591 priv = netdev_priv(dev);
593 INIT_LIST_HEAD(&priv->ip_node_list);
595 spin_lock_init(&priv->lock);
596 priv->host = host;
597 priv->local_fifo = fifo_addr;
599 hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
601 if (hi == NULL) {
602 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
603 "hostinfo for IEEE 1394 device %s-%d\n",
604 host->driver->name, host->id);
605 goto out;
608 ether1394_init_dev(dev);
610 if (register_netdev (dev)) {
611 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
612 goto out;
615 ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
616 host->id);
618 hi->host = host;
619 hi->dev = dev;
621 /* Ignore validity in hopes that it will be set in the future. It'll
622 * be checked when the eth device is opened. */
623 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
625 priv->iso = hpsb_iso_recv_init(host,
626 ETHER1394_ISO_BUF_SIZE,
627 ETHER1394_GASP_BUFFERS,
628 priv->broadcast_channel,
629 HPSB_ISO_DMA_PACKET_PER_BUFFER,
630 1, ether1394_iso);
631 if (priv->iso == NULL) {
632 ETH1394_PRINT(KERN_ERR, dev->name,
633 "Could not allocate isochronous receive context "
634 "for the broadcast channel\n");
635 priv->bc_state = ETHER1394_BC_ERROR;
636 } else {
637 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
638 priv->bc_state = ETHER1394_BC_STOPPED;
639 else
640 priv->bc_state = ETHER1394_BC_RUNNING;
643 return;
645 out:
646 if (dev != NULL)
647 free_netdev(dev);
648 if (hi)
649 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
651 return;
654 /* Remove a card from our list */
655 static void ether1394_remove_host (struct hpsb_host *host)
657 struct eth1394_host_info *hi;
659 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
660 if (hi != NULL) {
661 struct eth1394_priv *priv = netdev_priv(hi->dev);
663 hpsb_unregister_addrspace(&eth1394_highlevel, host,
664 priv->local_fifo);
666 if (priv->iso != NULL)
667 hpsb_iso_shutdown(priv->iso);
669 if (hi->dev) {
670 unregister_netdev (hi->dev);
671 free_netdev(hi->dev);
675 return;
678 /* A reset has just arisen */
679 static void ether1394_host_reset (struct hpsb_host *host)
681 struct eth1394_host_info *hi;
682 struct eth1394_priv *priv;
683 struct net_device *dev;
684 struct list_head *lh, *n;
685 struct eth1394_node_ref *node;
686 struct eth1394_node_info *node_info;
687 unsigned long flags;
689 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
691 /* This can happen for hosts that we don't use */
692 if (hi == NULL)
693 return;
695 dev = hi->dev;
696 priv = (struct eth1394_priv *)netdev_priv(dev);
698 /* Reset our private host data, but not our mtu */
699 netif_stop_queue (dev);
700 ether1394_reset_priv (dev, 0);
702 list_for_each_entry(node, &priv->ip_node_list, list) {
703 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
705 spin_lock_irqsave(&node_info->pdg.lock, flags);
707 list_for_each_safe(lh, n, &node_info->pdg.list) {
708 purge_partial_datagram(lh);
711 INIT_LIST_HEAD(&(node_info->pdg.list));
712 node_info->pdg.sz = 0;
714 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
717 netif_wake_queue (dev);
720 /******************************************
721 * HW Header net device functions
722 ******************************************/
723 /* These functions have been adapted from net/ethernet/eth.c */
726 /* Create a fake MAC header for an arbitrary protocol layer.
727 * saddr=NULL means use device source address
728 * daddr=NULL means leave destination address (eg unresolved arp). */
729 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
730 unsigned short type, void *daddr, void *saddr,
731 unsigned len)
733 struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
735 eth->h_proto = htons(type);
737 if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
738 memset(eth->h_dest, 0, dev->addr_len);
739 return(dev->hard_header_len);
742 if (daddr) {
743 memcpy(eth->h_dest,daddr,dev->addr_len);
744 return dev->hard_header_len;
747 return -dev->hard_header_len;
752 /* Rebuild the faked MAC header. This is called after an ARP
753 * (or in future other address resolution) has completed on this
754 * sk_buff. We now let ARP fill in the other fields.
756 * This routine CANNOT use cached dst->neigh!
757 * Really, it is used only when dst->neigh is wrong.
759 static int ether1394_rebuild_header(struct sk_buff *skb)
761 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
762 struct net_device *dev = skb->dev;
764 switch (eth->h_proto) {
766 #ifdef CONFIG_INET
767 case __constant_htons(ETH_P_IP):
768 return arp_find((unsigned char*)&eth->h_dest, skb);
769 #endif
770 default:
771 ETH1394_PRINT(KERN_DEBUG, dev->name,
772 "unable to resolve type %04x addresses.\n",
773 ntohs(eth->h_proto));
774 break;
777 return 0;
780 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
782 struct net_device *dev = skb->dev;
783 memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
784 return ETH1394_ALEN;
788 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
790 unsigned short type = hh->hh_type;
791 struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
792 (16 - ETH1394_HLEN));
793 struct net_device *dev = neigh->dev;
795 if (type == htons(ETH_P_802_3))
796 return -1;
798 eth->h_proto = type;
799 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
801 hh->hh_len = ETH1394_HLEN;
802 return 0;
805 /* Called by Address Resolution module to notify changes in address. */
806 static void ether1394_header_cache_update(struct hh_cache *hh,
807 struct net_device *dev,
808 unsigned char * haddr)
810 memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
813 static int ether1394_mac_addr(struct net_device *dev, void *p)
815 if (netif_running(dev))
816 return -EBUSY;
818 /* Not going to allow setting the MAC address, we really need to use
819 * the real one supplied by the hardware */
820 return -EINVAL;
825 /******************************************
826 * Datagram reception code
827 ******************************************/
829 /* Copied from net/ethernet/eth.c */
830 static inline u16 ether1394_type_trans(struct sk_buff *skb,
831 struct net_device *dev)
833 struct eth1394hdr *eth;
834 unsigned char *rawp;
836 skb->mac.raw = skb->data;
837 skb_pull (skb, ETH1394_HLEN);
838 eth = eth1394_hdr(skb);
840 if (*eth->h_dest & 1) {
841 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
842 skb->pkt_type = PACKET_BROADCAST;
843 #if 0
844 else
845 skb->pkt_type = PACKET_MULTICAST;
846 #endif
847 } else {
848 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
849 skb->pkt_type = PACKET_OTHERHOST;
852 if (ntohs (eth->h_proto) >= 1536)
853 return eth->h_proto;
855 rawp = skb->data;
857 if (*(unsigned short *)rawp == 0xFFFF)
858 return htons (ETH_P_802_3);
860 return htons (ETH_P_802_2);
863 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
864 * We also perform ARP translation here, if need be. */
865 static inline u16 ether1394_parse_encap(struct sk_buff *skb,
866 struct net_device *dev,
867 nodeid_t srcid, nodeid_t destid,
868 u16 ether_type)
870 struct eth1394_priv *priv = netdev_priv(dev);
871 u64 dest_hw;
872 unsigned short ret = 0;
874 /* Setup our hw addresses. We use these to build the
875 * ethernet header. */
876 if (destid == (LOCAL_BUS | ALL_NODES))
877 dest_hw = ~0ULL; /* broadcast */
878 else
879 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
880 priv->host->csr.guid_lo);
882 /* If this is an ARP packet, convert it. First, we want to make
883 * use of some of the fields, since they tell us a little bit
884 * about the sending machine. */
885 if (ether_type == htons(ETH_P_ARP)) {
886 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
887 struct arphdr *arp = (struct arphdr *)skb->data;
888 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
889 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
890 ntohl(arp1394->fifo_lo);
891 u8 max_rec = min(priv->host->csr.max_rec,
892 (u8)(arp1394->max_rec));
893 int sspd = arp1394->sspd;
894 u16 maxpayload;
895 struct eth1394_node_ref *node;
896 struct eth1394_node_info *node_info;
898 /* Sanity check. MacOSX seems to be sending us 131 in this
899 * field (atleast on my Panther G5). Not sure why. */
900 if (sspd > 5 || sspd < 0)
901 sspd = 0;
903 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
905 node = eth1394_find_node_guid(&priv->ip_node_list,
906 be64_to_cpu(arp1394->s_uniq_id));
907 if (!node) {
908 return 0;
911 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
913 /* Update our speed/payload/fifo_offset table */
914 node_info->maxpayload = maxpayload;
915 node_info->sspd = sspd;
916 node_info->fifo = fifo_addr;
918 /* Now that we're done with the 1394 specific stuff, we'll
919 * need to alter some of the data. Believe it or not, all
920 * that needs to be done is sender_IP_address needs to be
921 * moved, the destination hardware address get stuffed
922 * in and the hardware address length set to 8.
924 * IMPORTANT: The code below overwrites 1394 specific data
925 * needed above so keep the munging of the data for the
926 * higher level IP stack last. */
928 arp->ar_hln = 8;
929 arp_ptr += arp->ar_hln; /* skip over sender unique id */
930 *(u32*)arp_ptr = arp1394->sip; /* move sender IP addr */
931 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
933 if (arp->ar_op == htons(ARPOP_REQUEST))
934 /* just set ARP req target unique ID to 0 */
935 *((u64*)arp_ptr) = 0;
936 else
937 *((u64*)arp_ptr) = *((u64*)dev->dev_addr);
940 /* Now add the ethernet header. */
941 if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
942 skb->len) >= 0)
943 ret = ether1394_type_trans(skb, dev);
945 return ret;
948 static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
950 struct fragment_info *fi;
952 list_for_each_entry(fi, frag_list, list) {
953 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
954 ((offset + len - 1) < fi->offset)))
955 return 1;
957 return 0;
960 static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
962 struct partial_datagram *pd;
964 list_for_each_entry(pd, pdgl, list) {
965 if (pd->dgl == dgl)
966 return &pd->list;
968 return NULL;
971 /* Assumes that new fragment does not overlap any existing fragments */
972 static inline int new_fragment(struct list_head *frag_info, int offset, int len)
974 struct list_head *lh;
975 struct fragment_info *fi, *fi2, *new;
977 list_for_each(lh, frag_info) {
978 fi = list_entry(lh, struct fragment_info, list);
979 if ((fi->offset + fi->len) == offset) {
980 /* The new fragment can be tacked on to the end */
981 fi->len += len;
982 /* Did the new fragment plug a hole? */
983 fi2 = list_entry(lh->next, struct fragment_info, list);
984 if ((fi->offset + fi->len) == fi2->offset) {
985 /* glue fragments together */
986 fi->len += fi2->len;
987 list_del(lh->next);
988 kfree(fi2);
990 return 0;
991 } else if ((offset + len) == fi->offset) {
992 /* The new fragment can be tacked on to the beginning */
993 fi->offset = offset;
994 fi->len += len;
995 /* Did the new fragment plug a hole? */
996 fi2 = list_entry(lh->prev, struct fragment_info, list);
997 if ((fi2->offset + fi2->len) == fi->offset) {
998 /* glue fragments together */
999 fi2->len += fi->len;
1000 list_del(lh);
1001 kfree(fi);
1003 return 0;
1004 } else if (offset > (fi->offset + fi->len)) {
1005 break;
1006 } else if ((offset + len) < fi->offset) {
1007 lh = lh->prev;
1008 break;
1012 new = kmalloc(sizeof(*new), GFP_ATOMIC);
1013 if (!new)
1014 return -ENOMEM;
1016 new->offset = offset;
1017 new->len = len;
1019 list_add(&new->list, lh);
1021 return 0;
1024 static inline int new_partial_datagram(struct net_device *dev,
1025 struct list_head *pdgl, int dgl,
1026 int dg_size, char *frag_buf,
1027 int frag_off, int frag_len)
1029 struct partial_datagram *new;
1031 new = kmalloc(sizeof(*new), GFP_ATOMIC);
1032 if (!new)
1033 return -ENOMEM;
1035 INIT_LIST_HEAD(&new->frag_info);
1037 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1038 kfree(new);
1039 return -ENOMEM;
1042 new->dgl = dgl;
1043 new->dg_size = dg_size;
1045 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1046 if (!new->skb) {
1047 struct fragment_info *fi = list_entry(new->frag_info.next,
1048 struct fragment_info,
1049 list);
1050 kfree(fi);
1051 kfree(new);
1052 return -ENOMEM;
1055 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1056 new->pbuf = skb_put(new->skb, dg_size);
1057 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1059 list_add(&new->list, pdgl);
1061 return 0;
1064 static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1065 char *frag_buf, int frag_off, int frag_len)
1067 struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1069 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1070 return -ENOMEM;
1073 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1075 /* Move list entry to beginnig of list so that oldest partial
1076 * datagrams percolate to the end of the list */
1077 list_del(lh);
1078 list_add(lh, pdgl);
1080 return 0;
1083 static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1085 struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1086 struct fragment_info *fi = list_entry(pd->frag_info.next,
1087 struct fragment_info, list);
1089 return (fi->len == dg_size);
1092 /* Packet reception. We convert the IP1394 encapsulation header to an
1093 * ethernet header, and fill it with some of our other fields. This is
1094 * an incoming packet from the 1394 bus. */
1095 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1096 char *buf, int len)
1098 struct sk_buff *skb;
1099 unsigned long flags;
1100 struct eth1394_priv *priv = netdev_priv(dev);
1101 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1102 u16 ether_type = 0; /* initialized to clear warning */
1103 int hdr_len;
1104 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1105 struct eth1394_node_info *node_info;
1107 if (!ud) {
1108 struct eth1394_node_ref *node;
1109 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1110 if (!node) {
1111 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1112 "lookup failure: " NODE_BUS_FMT,
1113 NODE_BUS_ARGS(priv->host, srcid));
1114 priv->stats.rx_dropped++;
1115 return -1;
1117 ud = node->ud;
1119 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1122 node_info = (struct eth1394_node_info*)ud->device.driver_data;
1124 /* First, did we receive a fragmented or unfragmented datagram? */
1125 hdr->words.word1 = ntohs(hdr->words.word1);
1127 hdr_len = hdr_type_len[hdr->common.lf];
1129 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1130 /* An unfragmented datagram has been received by the ieee1394
1131 * bus. Build an skbuff around it so we can pass it to the
1132 * high level network layer. */
1134 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1135 if (!skb) {
1136 HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1137 priv->stats.rx_dropped++;
1138 return -1;
1140 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1141 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1142 ether_type = hdr->uf.ether_type;
1143 } else {
1144 /* A datagram fragment has been received, now the fun begins. */
1146 struct list_head *pdgl, *lh;
1147 struct partial_datagram *pd;
1148 int fg_off;
1149 int fg_len = len - hdr_len;
1150 int dg_size;
1151 int dgl;
1152 int retval;
1153 struct pdg_list *pdg = &(node_info->pdg);
1155 hdr->words.word3 = ntohs(hdr->words.word3);
1156 /* The 4th header word is reserved so no need to do ntohs() */
1158 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1159 ether_type = hdr->ff.ether_type;
1160 dgl = hdr->ff.dgl;
1161 dg_size = hdr->ff.dg_size + 1;
1162 fg_off = 0;
1163 } else {
1164 hdr->words.word2 = ntohs(hdr->words.word2);
1165 dgl = hdr->sf.dgl;
1166 dg_size = hdr->sf.dg_size + 1;
1167 fg_off = hdr->sf.fg_off;
1169 spin_lock_irqsave(&pdg->lock, flags);
1171 pdgl = &(pdg->list);
1172 lh = find_partial_datagram(pdgl, dgl);
1174 if (lh == NULL) {
1175 while (pdg->sz >= max_partial_datagrams) {
1176 /* remove the oldest */
1177 purge_partial_datagram(pdgl->prev);
1178 pdg->sz--;
1181 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1182 buf + hdr_len, fg_off,
1183 fg_len);
1184 if (retval < 0) {
1185 spin_unlock_irqrestore(&pdg->lock, flags);
1186 goto bad_proto;
1188 pdg->sz++;
1189 lh = find_partial_datagram(pdgl, dgl);
1190 } else {
1191 struct partial_datagram *pd;
1193 pd = list_entry(lh, struct partial_datagram, list);
1195 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1196 /* Overlapping fragments, obliterate old
1197 * datagram and start new one. */
1198 purge_partial_datagram(lh);
1199 retval = new_partial_datagram(dev, pdgl, dgl,
1200 dg_size,
1201 buf + hdr_len,
1202 fg_off, fg_len);
1203 if (retval < 0) {
1204 pdg->sz--;
1205 spin_unlock_irqrestore(&pdg->lock, flags);
1206 goto bad_proto;
1208 } else {
1209 retval = update_partial_datagram(pdgl, lh,
1210 buf + hdr_len,
1211 fg_off, fg_len);
1212 if (retval < 0) {
1213 /* Couldn't save off fragment anyway
1214 * so might as well obliterate the
1215 * datagram now. */
1216 purge_partial_datagram(lh);
1217 pdg->sz--;
1218 spin_unlock_irqrestore(&pdg->lock, flags);
1219 goto bad_proto;
1221 } /* fragment overlap */
1222 } /* new datagram or add to existing one */
1224 pd = list_entry(lh, struct partial_datagram, list);
1226 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1227 pd->ether_type = ether_type;
1230 if (is_datagram_complete(lh, dg_size)) {
1231 ether_type = pd->ether_type;
1232 pdg->sz--;
1233 skb = skb_get(pd->skb);
1234 purge_partial_datagram(lh);
1235 spin_unlock_irqrestore(&pdg->lock, flags);
1236 } else {
1237 /* Datagram is not complete, we're done for the
1238 * moment. */
1239 spin_unlock_irqrestore(&pdg->lock, flags);
1240 return 0;
1242 } /* unframgented datagram or fragmented one */
1244 /* Write metadata, and then pass to the receive level */
1245 skb->dev = dev;
1246 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1248 /* Parse the encapsulation header. This actually does the job of
1249 * converting to an ethernet frame header, aswell as arp
1250 * conversion if needed. ARP conversion is easier in this
1251 * direction, since we are using ethernet as our backend. */
1252 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1253 ether_type);
1256 spin_lock_irqsave(&priv->lock, flags);
1257 if (!skb->protocol) {
1258 priv->stats.rx_errors++;
1259 priv->stats.rx_dropped++;
1260 dev_kfree_skb_any(skb);
1261 goto bad_proto;
1264 if (netif_rx(skb) == NET_RX_DROP) {
1265 priv->stats.rx_errors++;
1266 priv->stats.rx_dropped++;
1267 goto bad_proto;
1270 /* Statistics */
1271 priv->stats.rx_packets++;
1272 priv->stats.rx_bytes += skb->len;
1274 bad_proto:
1275 if (netif_queue_stopped(dev))
1276 netif_wake_queue(dev);
1277 spin_unlock_irqrestore(&priv->lock, flags);
1279 dev->last_rx = jiffies;
1281 return 0;
1284 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1285 quadlet_t *data, u64 addr, size_t len, u16 flags)
1287 struct eth1394_host_info *hi;
1289 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1290 if (hi == NULL) {
1291 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1292 host->driver->name);
1293 return RCODE_ADDRESS_ERROR;
1296 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1297 return RCODE_ADDRESS_ERROR;
1298 else
1299 return RCODE_COMPLETE;
1302 static void ether1394_iso(struct hpsb_iso *iso)
1304 quadlet_t *data;
1305 char *buf;
1306 struct eth1394_host_info *hi;
1307 struct net_device *dev;
1308 struct eth1394_priv *priv;
1309 unsigned int len;
1310 u32 specifier_id;
1311 u16 source_id;
1312 int i;
1313 int nready;
1315 hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1316 if (hi == NULL) {
1317 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1318 iso->host->driver->name);
1319 return;
1322 dev = hi->dev;
1324 nready = hpsb_iso_n_ready(iso);
1325 for (i = 0; i < nready; i++) {
1326 struct hpsb_iso_packet_info *info =
1327 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1328 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1330 /* skip over GASP header */
1331 buf = (char *)data + 8;
1332 len = info->len - 8;
1334 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1335 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1336 source_id = be32_to_cpu(data[0]) >> 16;
1338 priv = netdev_priv(dev);
1340 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1341 specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1342 /* This packet is not for us */
1343 continue;
1345 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1346 buf, len);
1349 hpsb_iso_recv_release_packets(iso, i);
1351 dev->last_rx = jiffies;
1354 /******************************************
1355 * Datagram transmission code
1356 ******************************************/
1358 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1359 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1360 * needs to be munged a bit. The remainder of the arphdr is formatted based
1361 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1362 * judge.
1364 * Now that the EUI is used for the hardware address all we need to do to make
1365 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1366 * speed, and unicast FIFO address information between the sender_unique_id
1367 * and the IP addresses.
1369 static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1370 struct net_device *dev)
1372 struct eth1394_priv *priv = netdev_priv(dev);
1374 struct arphdr *arp = (struct arphdr *)skb->data;
1375 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1376 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1378 /* Believe it or not, all that need to happen is sender IP get moved
1379 * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo. */
1380 arp1394->hw_addr_len = 16;
1381 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1382 arp1394->max_rec = priv->host->csr.max_rec;
1383 arp1394->sspd = priv->host->csr.lnk_spd;
1384 arp1394->fifo_hi = htons (priv->local_fifo >> 32);
1385 arp1394->fifo_lo = htonl (priv->local_fifo & ~0x0);
1387 return;
1390 /* We need to encapsulate the standard header with our own. We use the
1391 * ethernet header's proto for our own. */
1392 static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1393 __be16 proto,
1394 union eth1394_hdr *hdr,
1395 u16 dg_size, u16 dgl)
1397 unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1399 /* Does it all fit in one packet? */
1400 if (dg_size <= adj_max_payload) {
1401 hdr->uf.lf = ETH1394_HDR_LF_UF;
1402 hdr->uf.ether_type = proto;
1403 } else {
1404 hdr->ff.lf = ETH1394_HDR_LF_FF;
1405 hdr->ff.ether_type = proto;
1406 hdr->ff.dg_size = dg_size - 1;
1407 hdr->ff.dgl = dgl;
1408 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1410 return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1413 static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1414 unsigned int max_payload,
1415 union eth1394_hdr *hdr)
1417 union eth1394_hdr *bufhdr;
1418 int ftype = hdr->common.lf;
1419 int hdrsz = hdr_type_len[ftype];
1420 unsigned int adj_max_payload = max_payload - hdrsz;
1422 switch(ftype) {
1423 case ETH1394_HDR_LF_UF:
1424 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1425 bufhdr->words.word1 = htons(hdr->words.word1);
1426 bufhdr->words.word2 = hdr->words.word2;
1427 break;
1429 case ETH1394_HDR_LF_FF:
1430 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1431 bufhdr->words.word1 = htons(hdr->words.word1);
1432 bufhdr->words.word2 = hdr->words.word2;
1433 bufhdr->words.word3 = htons(hdr->words.word3);
1434 bufhdr->words.word4 = 0;
1436 /* Set frag type here for future interior fragments */
1437 hdr->common.lf = ETH1394_HDR_LF_IF;
1438 hdr->sf.fg_off = 0;
1439 break;
1441 default:
1442 hdr->sf.fg_off += adj_max_payload;
1443 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1444 if (max_payload >= skb->len)
1445 hdr->common.lf = ETH1394_HDR_LF_LF;
1446 bufhdr->words.word1 = htons(hdr->words.word1);
1447 bufhdr->words.word2 = htons(hdr->words.word2);
1448 bufhdr->words.word3 = htons(hdr->words.word3);
1449 bufhdr->words.word4 = 0;
1452 return min(max_payload, skb->len);
1455 static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1457 struct hpsb_packet *p;
1459 p = hpsb_alloc_packet(0);
1460 if (p) {
1461 p->host = host;
1462 p->generation = get_hpsb_generation(host);
1463 p->type = hpsb_async;
1465 return p;
1468 static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1469 struct hpsb_host *host,
1470 nodeid_t node, u64 addr,
1471 void * data, int tx_len)
1473 p->node_id = node;
1474 p->data = NULL;
1476 p->tcode = TCODE_WRITEB;
1477 p->header[1] = (host->node_id << 16) | (addr >> 32);
1478 p->header[2] = addr & 0xffffffff;
1480 p->header_size = 16;
1481 p->expect_response = 1;
1483 if (hpsb_get_tlabel(p)) {
1484 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1485 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1486 return -1;
1488 p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1489 | (1 << 8) | (TCODE_WRITEB << 4);
1491 p->header[3] = tx_len << 16;
1492 p->data_size = (tx_len + 3) & ~3;
1493 p->data = (quadlet_t*)data;
1495 return 0;
1498 static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1499 struct eth1394_priv *priv,
1500 struct sk_buff *skb, int length)
1502 p->header_size = 4;
1503 p->tcode = TCODE_STREAM_DATA;
1505 p->header[0] = (length << 16) | (3 << 14)
1506 | ((priv->broadcast_channel) << 8)
1507 | (TCODE_STREAM_DATA << 4);
1508 p->data_size = length;
1509 p->data = ((quadlet_t*)skb->data) - 2;
1510 p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1511 ETHER1394_GASP_SPECIFIER_ID_HI);
1512 p->data[1] = cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1513 ETHER1394_GASP_VERSION);
1515 /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1516 * prevents hpsb_send_packet() from setting the speed to an arbitrary
1517 * value based on packet->node_id if packet->node_id is not set. */
1518 p->node_id = ALL_NODES;
1519 p->speed_code = priv->bc_sspd;
1522 static inline void ether1394_free_packet(struct hpsb_packet *packet)
1524 if (packet->tcode != TCODE_STREAM_DATA)
1525 hpsb_free_tlabel(packet);
1526 hpsb_free_packet(packet);
1529 static void ether1394_complete_cb(void *__ptask);
1531 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1533 struct eth1394_priv *priv = ptask->priv;
1534 struct hpsb_packet *packet = NULL;
1536 packet = ether1394_alloc_common_packet(priv->host);
1537 if (!packet)
1538 return -1;
1540 if (ptask->tx_type == ETH1394_GASP) {
1541 int length = tx_len + (2 * sizeof(quadlet_t));
1543 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1544 } else if (ether1394_prep_write_packet(packet, priv->host,
1545 ptask->dest_node,
1546 ptask->addr, ptask->skb->data,
1547 tx_len)) {
1548 hpsb_free_packet(packet);
1549 return -1;
1552 ptask->packet = packet;
1553 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1554 ptask);
1556 if (hpsb_send_packet(packet) < 0) {
1557 ether1394_free_packet(packet);
1558 return -1;
1561 return 0;
1565 /* Task function to be run when a datagram transmission is completed */
1566 static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1568 struct sk_buff *skb = ptask->skb;
1569 struct net_device *dev = skb->dev;
1570 struct eth1394_priv *priv = netdev_priv(dev);
1571 unsigned long flags;
1573 /* Statistics */
1574 spin_lock_irqsave(&priv->lock, flags);
1575 if (fail) {
1576 priv->stats.tx_dropped++;
1577 priv->stats.tx_errors++;
1578 } else {
1579 priv->stats.tx_bytes += skb->len;
1580 priv->stats.tx_packets++;
1582 spin_unlock_irqrestore(&priv->lock, flags);
1584 dev_kfree_skb_any(skb);
1585 kmem_cache_free(packet_task_cache, ptask);
1589 /* Callback for when a packet has been sent and the status of that packet is
1590 * known */
1591 static void ether1394_complete_cb(void *__ptask)
1593 struct packet_task *ptask = (struct packet_task *)__ptask;
1594 struct hpsb_packet *packet = ptask->packet;
1595 int fail = 0;
1597 if (packet->tcode != TCODE_STREAM_DATA)
1598 fail = hpsb_packet_success(packet);
1600 ether1394_free_packet(packet);
1602 ptask->outstanding_pkts--;
1603 if (ptask->outstanding_pkts > 0 && !fail) {
1604 int tx_len;
1606 /* Add the encapsulation header to the fragment */
1607 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1608 &ptask->hdr);
1609 if (ether1394_send_packet(ptask, tx_len))
1610 ether1394_dg_complete(ptask, 1);
1611 } else {
1612 ether1394_dg_complete(ptask, fail);
1618 /* Transmit a packet (called by kernel) */
1619 static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1621 gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1622 struct eth1394hdr *eth;
1623 struct eth1394_priv *priv = netdev_priv(dev);
1624 __be16 proto;
1625 unsigned long flags;
1626 nodeid_t dest_node;
1627 eth1394_tx_type tx_type;
1628 int ret = 0;
1629 unsigned int tx_len;
1630 unsigned int max_payload;
1631 u16 dg_size;
1632 u16 dgl;
1633 struct packet_task *ptask;
1634 struct eth1394_node_ref *node;
1635 struct eth1394_node_info *node_info = NULL;
1637 ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1638 if (ptask == NULL) {
1639 ret = -ENOMEM;
1640 goto fail;
1643 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1644 * it does not set our validity bit. We need to compensate for
1645 * that somewhere else, but not in eth1394. */
1646 #if 0
1647 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1648 ret = -EAGAIN;
1649 goto fail;
1651 #endif
1653 if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1654 ret = -ENOMEM;
1655 goto fail;
1658 /* Get rid of the fake eth1394 header, but save a pointer */
1659 eth = (struct eth1394hdr*)skb->data;
1660 skb_pull(skb, ETH1394_HLEN);
1662 proto = eth->h_proto;
1663 dg_size = skb->len;
1665 /* Set the transmission type for the packet. ARP packets and IP
1666 * broadcast packets are sent via GASP. */
1667 if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1668 proto == htons(ETH_P_ARP) ||
1669 (proto == htons(ETH_P_IP) &&
1670 IN_MULTICAST(ntohl(skb->nh.iph->daddr)))) {
1671 tx_type = ETH1394_GASP;
1672 dest_node = LOCAL_BUS | ALL_NODES;
1673 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1674 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1675 dgl = priv->bc_dgl;
1676 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1677 priv->bc_dgl++;
1678 } else {
1679 node = eth1394_find_node_guid(&priv->ip_node_list,
1680 be64_to_cpu(*(u64*)eth->h_dest));
1681 if (!node) {
1682 ret = -EAGAIN;
1683 goto fail;
1685 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1686 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1687 ret = -EAGAIN;
1688 goto fail;
1691 dest_node = node->ud->ne->nodeid;
1692 max_payload = node_info->maxpayload;
1693 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1695 dgl = node_info->dgl;
1696 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1697 node_info->dgl++;
1698 tx_type = ETH1394_WRREQ;
1701 /* If this is an ARP packet, convert it */
1702 if (proto == htons(ETH_P_ARP))
1703 ether1394_arp_to_1394arp (skb, dev);
1705 ptask->hdr.words.word1 = 0;
1706 ptask->hdr.words.word2 = 0;
1707 ptask->hdr.words.word3 = 0;
1708 ptask->hdr.words.word4 = 0;
1709 ptask->skb = skb;
1710 ptask->priv = priv;
1711 ptask->tx_type = tx_type;
1713 if (tx_type != ETH1394_GASP) {
1714 u64 addr;
1716 spin_lock_irqsave(&priv->lock, flags);
1717 addr = node_info->fifo;
1718 spin_unlock_irqrestore(&priv->lock, flags);
1720 ptask->addr = addr;
1721 ptask->dest_node = dest_node;
1724 ptask->tx_type = tx_type;
1725 ptask->max_payload = max_payload;
1726 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1727 &ptask->hdr, dg_size,
1728 dgl);
1730 /* Add the encapsulation header to the fragment */
1731 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1732 dev->trans_start = jiffies;
1733 if (ether1394_send_packet(ptask, tx_len))
1734 goto fail;
1736 netif_wake_queue(dev);
1737 return 0;
1738 fail:
1739 if (ptask)
1740 kmem_cache_free(packet_task_cache, ptask);
1742 if (skb != NULL)
1743 dev_kfree_skb(skb);
1745 spin_lock_irqsave (&priv->lock, flags);
1746 priv->stats.tx_dropped++;
1747 priv->stats.tx_errors++;
1748 spin_unlock_irqrestore (&priv->lock, flags);
1750 if (netif_queue_stopped(dev))
1751 netif_wake_queue(dev);
1753 return 0; /* returning non-zero causes serious problems */
1756 static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1758 strcpy (info->driver, driver_name);
1759 /* FIXME XXX provide sane businfo */
1760 strcpy (info->bus_info, "ieee1394");
1763 static struct ethtool_ops ethtool_ops = {
1764 .get_drvinfo = ether1394_get_drvinfo
1767 static int __init ether1394_init_module (void)
1769 packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1770 0, 0, NULL, NULL);
1772 /* Register ourselves as a highlevel driver */
1773 hpsb_register_highlevel(&eth1394_highlevel);
1775 return hpsb_register_protocol(&eth1394_proto_driver);
1778 static void __exit ether1394_exit_module (void)
1780 hpsb_unregister_protocol(&eth1394_proto_driver);
1781 hpsb_unregister_highlevel(&eth1394_highlevel);
1782 kmem_cache_destroy(packet_task_cache);
1785 module_init(ether1394_init_module);
1786 module_exit(ether1394_exit_module);