[ALSA] Remove xxx_t typedefs: SPARC DBRI
[linux-2.6/verdex.git] / arch / mips / sgi-ip27 / ip27-irq.c
blob73e5e52781d8c96aa3107c33e46b5c1cf805959f
1 /*
2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
7 */
9 #undef DEBUG
11 #include <linux/config.h>
12 #include <linux/init.h>
13 #include <linux/irq.h>
14 #include <linux/errno.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/types.h>
18 #include <linux/interrupt.h>
19 #include <linux/ioport.h>
20 #include <linux/timex.h>
21 #include <linux/slab.h>
22 #include <linux/random.h>
23 #include <linux/smp_lock.h>
24 #include <linux/kernel.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/delay.h>
27 #include <linux/bitops.h>
29 #include <asm/bootinfo.h>
30 #include <asm/io.h>
31 #include <asm/mipsregs.h>
32 #include <asm/system.h>
34 #include <asm/ptrace.h>
35 #include <asm/processor.h>
36 #include <asm/pci/bridge.h>
37 #include <asm/sn/addrs.h>
38 #include <asm/sn/agent.h>
39 #include <asm/sn/arch.h>
40 #include <asm/sn/hub.h>
41 #include <asm/sn/intr.h>
44 * Linux has a controller-independent x86 interrupt architecture.
45 * every controller has a 'controller-template', that is used
46 * by the main code to do the right thing. Each driver-visible
47 * interrupt source is transparently wired to the apropriate
48 * controller. Thus drivers need not be aware of the
49 * interrupt-controller.
51 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
52 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
53 * (IO-APICs assumed to be messaging to Pentium local-APICs)
55 * the code is designed to be easily extended with new/different
56 * interrupt controllers, without having to do assembly magic.
59 extern asmlinkage void ip27_irq(void);
61 extern struct bridge_controller *irq_to_bridge[];
62 extern int irq_to_slot[];
65 * use these macros to get the encoded nasid and widget id
66 * from the irq value
68 #define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
69 #define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
71 static inline int alloc_level(int cpu, int irq)
73 struct hub_data *hub = hub_data(cpu_to_node(cpu));
74 struct slice_data *si = cpu_data[cpu].data;
75 int level;
77 level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE);
78 if (level >= LEVELS_PER_SLICE)
79 panic("Cpu %d flooded with devices\n", cpu);
81 __set_bit(level, hub->irq_alloc_mask);
82 si->level_to_irq[level] = irq;
84 return level;
87 static inline int find_level(cpuid_t *cpunum, int irq)
89 int cpu, i;
91 for (cpu = 0; cpu <= NR_CPUS; cpu++) {
92 struct slice_data *si = cpu_data[cpu].data;
94 if (!cpu_online(cpu))
95 continue;
97 for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
98 if (si->level_to_irq[i] == irq) {
99 *cpunum = cpu;
101 return i;
105 panic("Could not identify cpu/level for irq %d\n", irq);
109 * Find first bit set
111 static int ms1bit(unsigned long x)
113 int b = 0, s;
115 s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
116 s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s;
117 s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s;
118 s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s;
119 s = 1; if (x >> 1 == 0) s = 0; b += s;
121 return b;
125 * This code is unnecessarily complex, because we do SA_INTERRUPT
126 * intr enabling. Basically, once we grab the set of intrs we need
127 * to service, we must mask _all_ these interrupts; firstly, to make
128 * sure the same intr does not intr again, causing recursion that
129 * can lead to stack overflow. Secondly, we can not just mask the
130 * one intr we are do_IRQing, because the non-masked intrs in the
131 * first set might intr again, causing multiple servicings of the
132 * same intr. This effect is mostly seen for intercpu intrs.
133 * Kanoj 05.13.00
136 void ip27_do_irq_mask0(struct pt_regs *regs)
138 int irq, swlevel;
139 hubreg_t pend0, mask0;
140 cpuid_t cpu = smp_processor_id();
141 int pi_int_mask0 =
142 (cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B;
144 /* copied from Irix intpend0() */
145 pend0 = LOCAL_HUB_L(PI_INT_PEND0);
146 mask0 = LOCAL_HUB_L(pi_int_mask0);
148 pend0 &= mask0; /* Pick intrs we should look at */
149 if (!pend0)
150 return;
152 swlevel = ms1bit(pend0);
153 #ifdef CONFIG_SMP
154 if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
155 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
156 } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
157 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
158 } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
159 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
160 smp_call_function_interrupt();
161 } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
162 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
163 smp_call_function_interrupt();
164 } else
165 #endif
167 /* "map" swlevel to irq */
168 struct slice_data *si = cpu_data[cpu].data;
170 irq = si->level_to_irq[swlevel];
171 do_IRQ(irq, regs);
174 LOCAL_HUB_L(PI_INT_PEND0);
177 void ip27_do_irq_mask1(struct pt_regs *regs)
179 int irq, swlevel;
180 hubreg_t pend1, mask1;
181 cpuid_t cpu = smp_processor_id();
182 int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B;
183 struct slice_data *si = cpu_data[cpu].data;
185 /* copied from Irix intpend0() */
186 pend1 = LOCAL_HUB_L(PI_INT_PEND1);
187 mask1 = LOCAL_HUB_L(pi_int_mask1);
189 pend1 &= mask1; /* Pick intrs we should look at */
190 if (!pend1)
191 return;
193 swlevel = ms1bit(pend1);
194 /* "map" swlevel to irq */
195 irq = si->level_to_irq[swlevel];
196 LOCAL_HUB_CLR_INTR(swlevel);
197 do_IRQ(irq, regs);
199 LOCAL_HUB_L(PI_INT_PEND1);
202 void ip27_prof_timer(struct pt_regs *regs)
204 panic("CPU %d got a profiling interrupt", smp_processor_id());
207 void ip27_hub_error(struct pt_regs *regs)
209 panic("CPU %d got a hub error interrupt", smp_processor_id());
212 static int intr_connect_level(int cpu, int bit)
214 nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
215 struct slice_data *si = cpu_data[cpu].data;
216 unsigned long flags;
218 set_bit(bit, si->irq_enable_mask);
220 local_irq_save(flags);
221 if (!cputoslice(cpu)) {
222 REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
223 REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
224 } else {
225 REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
226 REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
228 local_irq_restore(flags);
230 return 0;
233 static int intr_disconnect_level(int cpu, int bit)
235 nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
236 struct slice_data *si = cpu_data[cpu].data;
238 clear_bit(bit, si->irq_enable_mask);
240 if (!cputoslice(cpu)) {
241 REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
242 REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
243 } else {
244 REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
245 REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
248 return 0;
251 /* Startup one of the (PCI ...) IRQs routes over a bridge. */
252 static unsigned int startup_bridge_irq(unsigned int irq)
254 struct bridge_controller *bc;
255 bridgereg_t device;
256 bridge_t *bridge;
257 int pin, swlevel;
258 cpuid_t cpu;
260 pin = SLOT_FROM_PCI_IRQ(irq);
261 bc = IRQ_TO_BRIDGE(irq);
262 bridge = bc->base;
264 pr_debug("bridge_startup(): irq= 0x%x pin=%d\n", irq, pin);
266 * "map" irq to a swlevel greater than 6 since the first 6 bits
267 * of INT_PEND0 are taken
269 swlevel = find_level(&cpu, irq);
270 bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
271 bridge->b_int_enable |= (1 << pin);
272 bridge->b_int_enable |= 0x7ffffe00; /* more stuff in int_enable */
275 * Enable sending of an interrupt clear packt to the hub on a high to
276 * low transition of the interrupt pin.
278 * IRIX sets additional bits in the address which are documented as
279 * reserved in the bridge docs.
281 bridge->b_int_mode |= (1UL << pin);
284 * We assume the bridge to have a 1:1 mapping between devices
285 * (slots) and intr pins.
287 device = bridge->b_int_device;
288 device &= ~(7 << (pin*3));
289 device |= (pin << (pin*3));
290 bridge->b_int_device = device;
292 bridge->b_wid_tflush;
294 return 0; /* Never anything pending. */
297 /* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
298 static void shutdown_bridge_irq(unsigned int irq)
300 struct bridge_controller *bc = IRQ_TO_BRIDGE(irq);
301 struct hub_data *hub = hub_data(cpu_to_node(bc->irq_cpu));
302 bridge_t *bridge = bc->base;
303 struct slice_data *si = cpu_data[bc->irq_cpu].data;
304 int pin, swlevel;
305 cpuid_t cpu;
307 pr_debug("bridge_shutdown: irq 0x%x\n", irq);
308 pin = SLOT_FROM_PCI_IRQ(irq);
311 * map irq to a swlevel greater than 6 since the first 6 bits
312 * of INT_PEND0 are taken
314 swlevel = find_level(&cpu, irq);
315 intr_disconnect_level(cpu, swlevel);
317 __clear_bit(swlevel, hub->irq_alloc_mask);
318 si->level_to_irq[swlevel] = -1;
320 bridge->b_int_enable &= ~(1 << pin);
321 bridge->b_wid_tflush;
324 static inline void enable_bridge_irq(unsigned int irq)
326 cpuid_t cpu;
327 int swlevel;
329 swlevel = find_level(&cpu, irq); /* Criminal offence */
330 intr_connect_level(cpu, swlevel);
333 static inline void disable_bridge_irq(unsigned int irq)
335 cpuid_t cpu;
336 int swlevel;
338 swlevel = find_level(&cpu, irq); /* Criminal offence */
339 intr_disconnect_level(cpu, swlevel);
342 static void mask_and_ack_bridge_irq(unsigned int irq)
344 disable_bridge_irq(irq);
347 static void end_bridge_irq(unsigned int irq)
349 if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)) &&
350 irq_desc[irq].action)
351 enable_bridge_irq(irq);
354 static struct hw_interrupt_type bridge_irq_type = {
355 .typename = "bridge",
356 .startup = startup_bridge_irq,
357 .shutdown = shutdown_bridge_irq,
358 .enable = enable_bridge_irq,
359 .disable = disable_bridge_irq,
360 .ack = mask_and_ack_bridge_irq,
361 .end = end_bridge_irq,
364 static unsigned long irq_map[NR_IRQS / BITS_PER_LONG];
366 static int allocate_irqno(void)
368 int irq;
370 again:
371 irq = find_first_zero_bit(irq_map, NR_IRQS);
373 if (irq >= NR_IRQS)
374 return -ENOSPC;
376 if (test_and_set_bit(irq, irq_map))
377 goto again;
379 return irq;
382 void free_irqno(unsigned int irq)
384 clear_bit(irq, irq_map);
387 void __devinit register_bridge_irq(unsigned int irq)
389 irq_desc[irq].status = IRQ_DISABLED;
390 irq_desc[irq].action = 0;
391 irq_desc[irq].depth = 1;
392 irq_desc[irq].handler = &bridge_irq_type;
395 int __devinit request_bridge_irq(struct bridge_controller *bc)
397 int irq = allocate_irqno();
398 int swlevel, cpu;
399 nasid_t nasid;
401 if (irq < 0)
402 return irq;
405 * "map" irq to a swlevel greater than 6 since the first 6 bits
406 * of INT_PEND0 are taken
408 cpu = bc->irq_cpu;
409 swlevel = alloc_level(cpu, irq);
410 if (unlikely(swlevel < 0)) {
411 free_irqno(irq);
413 return -EAGAIN;
416 /* Make sure it's not already pending when we connect it. */
417 nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
418 REMOTE_HUB_CLR_INTR(nasid, swlevel);
420 intr_connect_level(cpu, swlevel);
422 register_bridge_irq(irq);
424 return irq;
427 void __init arch_init_irq(void)
429 set_except_vector(0, ip27_irq);
432 void install_ipi(void)
434 int slice = LOCAL_HUB_L(PI_CPU_NUM);
435 int cpu = smp_processor_id();
436 struct slice_data *si = cpu_data[cpu].data;
437 struct hub_data *hub = hub_data(cpu_to_node(cpu));
438 int resched, call;
440 resched = CPU_RESCHED_A_IRQ + slice;
441 __set_bit(resched, hub->irq_alloc_mask);
442 __set_bit(resched, si->irq_enable_mask);
443 LOCAL_HUB_CLR_INTR(resched);
445 call = CPU_CALL_A_IRQ + slice;
446 __set_bit(call, hub->irq_alloc_mask);
447 __set_bit(call, si->irq_enable_mask);
448 LOCAL_HUB_CLR_INTR(call);
450 if (slice == 0) {
451 LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
452 LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
453 } else {
454 LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
455 LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);