[PATCH] cfq-iosched: style cleanups and comments
[linux-2.6/verdex.git] / block / cfq-iosched.c
blob29284fa06e6b2adc7097d6f951495be8cdf5dd09
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
17 * tunables
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
30 * grace period before allowing idle class to get disk access
32 #define CFQ_IDLE_GRACE (HZ / 10)
35 * below this threshold, we consider thinktime immediate
37 #define CFQ_MIN_TT (2)
39 #define CFQ_SLICE_SCALE (5)
41 #define CFQ_KEY_ASYNC (0)
44 * for the hash of cfqq inside the cfqd
46 #define CFQ_QHASH_SHIFT 6
47 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
48 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
50 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
52 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
53 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
55 static struct kmem_cache *cfq_pool;
56 static struct kmem_cache *cfq_ioc_pool;
58 static DEFINE_PER_CPU(unsigned long, ioc_count);
59 static struct completion *ioc_gone;
61 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
62 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
63 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
65 #define ASYNC (0)
66 #define SYNC (1)
68 #define cfq_cfqq_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
70 #define sample_valid(samples) ((samples) > 80)
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
78 struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
82 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
85 * Per block device queue structure
87 struct cfq_data {
88 request_queue_t *queue;
91 * rr list of queues with requests and the count of them
93 struct cfq_rb_root service_tree;
94 struct list_head cur_rr;
95 unsigned int busy_queues;
98 * cfqq lookup hash
100 struct hlist_head *cfq_hash;
102 int rq_in_driver;
103 int hw_tag;
106 * idle window management
108 struct timer_list idle_slice_timer;
109 struct work_struct unplug_work;
111 struct cfq_queue *active_queue;
112 struct cfq_io_context *active_cic;
113 unsigned int dispatch_slice;
115 struct timer_list idle_class_timer;
117 sector_t last_position;
118 unsigned long last_end_request;
121 * tunables, see top of file
123 unsigned int cfq_quantum;
124 unsigned int cfq_fifo_expire[2];
125 unsigned int cfq_back_penalty;
126 unsigned int cfq_back_max;
127 unsigned int cfq_slice[2];
128 unsigned int cfq_slice_async_rq;
129 unsigned int cfq_slice_idle;
131 struct list_head cic_list;
133 sector_t new_seek_mean;
134 u64 new_seek_total;
138 * Per process-grouping structure
140 struct cfq_queue {
141 /* reference count */
142 atomic_t ref;
143 /* parent cfq_data */
144 struct cfq_data *cfqd;
145 /* cfqq lookup hash */
146 struct hlist_node cfq_hash;
147 /* hash key */
148 unsigned int key;
149 /* member of the rr/busy/cur/idle cfqd list */
150 struct list_head cfq_list;
151 /* service_tree member */
152 struct rb_node rb_node;
153 /* service_tree key */
154 unsigned long rb_key;
155 /* sorted list of pending requests */
156 struct rb_root sort_list;
157 /* if fifo isn't expired, next request to serve */
158 struct request *next_rq;
159 /* requests queued in sort_list */
160 int queued[2];
161 /* currently allocated requests */
162 int allocated[2];
163 /* pending metadata requests */
164 int meta_pending;
165 /* fifo list of requests in sort_list */
166 struct list_head fifo;
168 unsigned long slice_end;
169 long slice_resid;
171 /* number of requests that are on the dispatch list or inside driver */
172 int dispatched;
174 /* io prio of this group */
175 unsigned short ioprio, org_ioprio;
176 unsigned short ioprio_class, org_ioprio_class;
178 /* various state flags, see below */
179 unsigned int flags;
181 sector_t last_request_pos;
184 enum cfqq_state_flags {
185 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
186 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
187 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
188 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
189 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
190 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
191 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
192 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
193 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
194 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
197 #define CFQ_CFQQ_FNS(name) \
198 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
200 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
202 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
204 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
206 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
208 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
211 CFQ_CFQQ_FNS(on_rr);
212 CFQ_CFQQ_FNS(wait_request);
213 CFQ_CFQQ_FNS(must_alloc);
214 CFQ_CFQQ_FNS(must_alloc_slice);
215 CFQ_CFQQ_FNS(must_dispatch);
216 CFQ_CFQQ_FNS(fifo_expire);
217 CFQ_CFQQ_FNS(idle_window);
218 CFQ_CFQQ_FNS(prio_changed);
219 CFQ_CFQQ_FNS(queue_new);
220 CFQ_CFQQ_FNS(slice_new);
221 #undef CFQ_CFQQ_FNS
223 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
224 static void cfq_dispatch_insert(request_queue_t *, struct request *);
225 static struct cfq_queue *cfq_get_queue(struct cfq_data *, unsigned int, struct task_struct *, gfp_t);
228 * scheduler run of queue, if there are requests pending and no one in the
229 * driver that will restart queueing
231 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
233 if (cfqd->busy_queues)
234 kblockd_schedule_work(&cfqd->unplug_work);
237 static int cfq_queue_empty(request_queue_t *q)
239 struct cfq_data *cfqd = q->elevator->elevator_data;
241 return !cfqd->busy_queues;
244 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
247 * Use the per-process queue, for read requests and syncronous writes
249 if (!(rw & REQ_RW) || is_sync)
250 return task->pid;
252 return CFQ_KEY_ASYNC;
256 * Scale schedule slice based on io priority. Use the sync time slice only
257 * if a queue is marked sync and has sync io queued. A sync queue with async
258 * io only, should not get full sync slice length.
260 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
261 unsigned short prio)
263 const int base_slice = cfqd->cfq_slice[sync];
265 WARN_ON(prio >= IOPRIO_BE_NR);
267 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
270 static inline int
271 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
273 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
276 static inline void
277 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
279 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
283 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
284 * isn't valid until the first request from the dispatch is activated
285 * and the slice time set.
287 static inline int cfq_slice_used(struct cfq_queue *cfqq)
289 if (cfq_cfqq_slice_new(cfqq))
290 return 0;
291 if (time_before(jiffies, cfqq->slice_end))
292 return 0;
294 return 1;
298 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
299 * We choose the request that is closest to the head right now. Distance
300 * behind the head is penalized and only allowed to a certain extent.
302 static struct request *
303 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
305 sector_t last, s1, s2, d1 = 0, d2 = 0;
306 unsigned long back_max;
307 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
308 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
309 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
311 if (rq1 == NULL || rq1 == rq2)
312 return rq2;
313 if (rq2 == NULL)
314 return rq1;
316 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
317 return rq1;
318 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
319 return rq2;
320 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
321 return rq1;
322 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
323 return rq2;
325 s1 = rq1->sector;
326 s2 = rq2->sector;
328 last = cfqd->last_position;
331 * by definition, 1KiB is 2 sectors
333 back_max = cfqd->cfq_back_max * 2;
336 * Strict one way elevator _except_ in the case where we allow
337 * short backward seeks which are biased as twice the cost of a
338 * similar forward seek.
340 if (s1 >= last)
341 d1 = s1 - last;
342 else if (s1 + back_max >= last)
343 d1 = (last - s1) * cfqd->cfq_back_penalty;
344 else
345 wrap |= CFQ_RQ1_WRAP;
347 if (s2 >= last)
348 d2 = s2 - last;
349 else if (s2 + back_max >= last)
350 d2 = (last - s2) * cfqd->cfq_back_penalty;
351 else
352 wrap |= CFQ_RQ2_WRAP;
354 /* Found required data */
357 * By doing switch() on the bit mask "wrap" we avoid having to
358 * check two variables for all permutations: --> faster!
360 switch (wrap) {
361 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
362 if (d1 < d2)
363 return rq1;
364 else if (d2 < d1)
365 return rq2;
366 else {
367 if (s1 >= s2)
368 return rq1;
369 else
370 return rq2;
373 case CFQ_RQ2_WRAP:
374 return rq1;
375 case CFQ_RQ1_WRAP:
376 return rq2;
377 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
378 default:
380 * Since both rqs are wrapped,
381 * start with the one that's further behind head
382 * (--> only *one* back seek required),
383 * since back seek takes more time than forward.
385 if (s1 <= s2)
386 return rq1;
387 else
388 return rq2;
393 * The below is leftmost cache rbtree addon
395 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
397 if (!root->left)
398 root->left = rb_first(&root->rb);
400 return root->left;
403 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
405 if (root->left == n)
406 root->left = NULL;
408 rb_erase(n, &root->rb);
409 RB_CLEAR_NODE(n);
413 * would be nice to take fifo expire time into account as well
415 static struct request *
416 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
417 struct request *last)
419 struct rb_node *rbnext = rb_next(&last->rb_node);
420 struct rb_node *rbprev = rb_prev(&last->rb_node);
421 struct request *next = NULL, *prev = NULL;
423 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
425 if (rbprev)
426 prev = rb_entry_rq(rbprev);
428 if (rbnext)
429 next = rb_entry_rq(rbnext);
430 else {
431 rbnext = rb_first(&cfqq->sort_list);
432 if (rbnext && rbnext != &last->rb_node)
433 next = rb_entry_rq(rbnext);
436 return cfq_choose_req(cfqd, next, prev);
439 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
440 struct cfq_queue *cfqq)
443 * just an approximation, should be ok.
445 return ((cfqd->busy_queues - 1) * cfq_prio_slice(cfqd, 1, 0));
449 * The cfqd->service_tree holds all pending cfq_queue's that have
450 * requests waiting to be processed. It is sorted in the order that
451 * we will service the queues.
453 static void cfq_service_tree_add(struct cfq_data *cfqd,
454 struct cfq_queue *cfqq)
456 struct rb_node **p = &cfqd->service_tree.rb.rb_node;
457 struct rb_node *parent = NULL;
458 unsigned long rb_key;
459 int left;
461 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
462 rb_key += cfqq->slice_resid;
463 cfqq->slice_resid = 0;
465 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
467 * same position, nothing more to do
469 if (rb_key == cfqq->rb_key)
470 return;
472 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
475 left = 1;
476 while (*p) {
477 struct cfq_queue *__cfqq;
478 struct rb_node **n;
480 parent = *p;
481 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
484 * sort RT queues first, we always want to give
485 * preference to them. IDLE queues goes to the back.
486 * after that, sort on the next service time.
488 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
489 n = &(*p)->rb_left;
490 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
491 n = &(*p)->rb_right;
492 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
493 n = &(*p)->rb_left;
494 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
495 n = &(*p)->rb_right;
496 else if (rb_key < __cfqq->rb_key)
497 n = &(*p)->rb_left;
498 else
499 n = &(*p)->rb_right;
501 if (n == &(*p)->rb_right)
502 left = 0;
504 p = n;
507 if (left)
508 cfqd->service_tree.left = &cfqq->rb_node;
510 cfqq->rb_key = rb_key;
511 rb_link_node(&cfqq->rb_node, parent, p);
512 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
516 * Update cfqq's position in the service tree.
518 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
521 * Resorting requires the cfqq to be on the RR list already.
523 if (cfq_cfqq_on_rr(cfqq))
524 cfq_service_tree_add(cfqq->cfqd, cfqq);
528 * add to busy list of queues for service, trying to be fair in ordering
529 * the pending list according to last request service
531 static inline void
532 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
534 BUG_ON(cfq_cfqq_on_rr(cfqq));
535 cfq_mark_cfqq_on_rr(cfqq);
536 cfqd->busy_queues++;
538 cfq_resort_rr_list(cfqq, 0);
542 * Called when the cfqq no longer has requests pending, remove it from
543 * the service tree.
545 static inline void
546 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
548 BUG_ON(!cfq_cfqq_on_rr(cfqq));
549 cfq_clear_cfqq_on_rr(cfqq);
550 list_del_init(&cfqq->cfq_list);
552 if (!RB_EMPTY_NODE(&cfqq->rb_node))
553 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
555 BUG_ON(!cfqd->busy_queues);
556 cfqd->busy_queues--;
560 * rb tree support functions
562 static inline void cfq_del_rq_rb(struct request *rq)
564 struct cfq_queue *cfqq = RQ_CFQQ(rq);
565 struct cfq_data *cfqd = cfqq->cfqd;
566 const int sync = rq_is_sync(rq);
568 BUG_ON(!cfqq->queued[sync]);
569 cfqq->queued[sync]--;
571 elv_rb_del(&cfqq->sort_list, rq);
573 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
574 cfq_del_cfqq_rr(cfqd, cfqq);
577 static void cfq_add_rq_rb(struct request *rq)
579 struct cfq_queue *cfqq = RQ_CFQQ(rq);
580 struct cfq_data *cfqd = cfqq->cfqd;
581 struct request *__alias;
583 cfqq->queued[rq_is_sync(rq)]++;
586 * looks a little odd, but the first insert might return an alias.
587 * if that happens, put the alias on the dispatch list
589 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
590 cfq_dispatch_insert(cfqd->queue, __alias);
592 if (!cfq_cfqq_on_rr(cfqq))
593 cfq_add_cfqq_rr(cfqd, cfqq);
596 * check if this request is a better next-serve candidate
598 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
599 BUG_ON(!cfqq->next_rq);
602 static inline void
603 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
605 elv_rb_del(&cfqq->sort_list, rq);
606 cfqq->queued[rq_is_sync(rq)]--;
607 cfq_add_rq_rb(rq);
610 static struct request *
611 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
613 struct task_struct *tsk = current;
614 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
615 struct cfq_queue *cfqq;
617 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
618 if (cfqq) {
619 sector_t sector = bio->bi_sector + bio_sectors(bio);
621 return elv_rb_find(&cfqq->sort_list, sector);
624 return NULL;
627 static void cfq_activate_request(request_queue_t *q, struct request *rq)
629 struct cfq_data *cfqd = q->elevator->elevator_data;
631 cfqd->rq_in_driver++;
634 * If the depth is larger 1, it really could be queueing. But lets
635 * make the mark a little higher - idling could still be good for
636 * low queueing, and a low queueing number could also just indicate
637 * a SCSI mid layer like behaviour where limit+1 is often seen.
639 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
640 cfqd->hw_tag = 1;
642 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
645 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
647 struct cfq_data *cfqd = q->elevator->elevator_data;
649 WARN_ON(!cfqd->rq_in_driver);
650 cfqd->rq_in_driver--;
653 static void cfq_remove_request(struct request *rq)
655 struct cfq_queue *cfqq = RQ_CFQQ(rq);
657 if (cfqq->next_rq == rq)
658 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
660 list_del_init(&rq->queuelist);
661 cfq_del_rq_rb(rq);
663 if (rq_is_meta(rq)) {
664 WARN_ON(!cfqq->meta_pending);
665 cfqq->meta_pending--;
669 static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
671 struct cfq_data *cfqd = q->elevator->elevator_data;
672 struct request *__rq;
674 __rq = cfq_find_rq_fmerge(cfqd, bio);
675 if (__rq && elv_rq_merge_ok(__rq, bio)) {
676 *req = __rq;
677 return ELEVATOR_FRONT_MERGE;
680 return ELEVATOR_NO_MERGE;
683 static void cfq_merged_request(request_queue_t *q, struct request *req,
684 int type)
686 if (type == ELEVATOR_FRONT_MERGE) {
687 struct cfq_queue *cfqq = RQ_CFQQ(req);
689 cfq_reposition_rq_rb(cfqq, req);
693 static void
694 cfq_merged_requests(request_queue_t *q, struct request *rq,
695 struct request *next)
698 * reposition in fifo if next is older than rq
700 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
701 time_before(next->start_time, rq->start_time))
702 list_move(&rq->queuelist, &next->queuelist);
704 cfq_remove_request(next);
707 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
708 struct bio *bio)
710 struct cfq_data *cfqd = q->elevator->elevator_data;
711 const int rw = bio_data_dir(bio);
712 struct cfq_queue *cfqq;
713 pid_t key;
716 * Disallow merge of a sync bio into an async request.
718 if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
719 return 0;
722 * Lookup the cfqq that this bio will be queued with. Allow
723 * merge only if rq is queued there.
725 key = cfq_queue_pid(current, rw, bio_sync(bio));
726 cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
728 if (cfqq == RQ_CFQQ(rq))
729 return 1;
731 return 0;
734 static inline void
735 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
737 if (cfqq) {
739 * stop potential idle class queues waiting service
741 del_timer(&cfqd->idle_class_timer);
743 cfqq->slice_end = 0;
744 cfq_clear_cfqq_must_alloc_slice(cfqq);
745 cfq_clear_cfqq_fifo_expire(cfqq);
746 cfq_mark_cfqq_slice_new(cfqq);
747 cfq_clear_cfqq_queue_new(cfqq);
750 cfqd->active_queue = cfqq;
754 * current cfqq expired its slice (or was too idle), select new one
756 static void
757 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
758 int preempted, int timed_out)
760 if (cfq_cfqq_wait_request(cfqq))
761 del_timer(&cfqd->idle_slice_timer);
763 cfq_clear_cfqq_must_dispatch(cfqq);
764 cfq_clear_cfqq_wait_request(cfqq);
767 * store what was left of this slice, if the queue idled out
768 * or was preempted
770 if (timed_out && !cfq_cfqq_slice_new(cfqq))
771 cfqq->slice_resid = cfqq->slice_end - jiffies;
773 cfq_resort_rr_list(cfqq, preempted);
775 if (cfqq == cfqd->active_queue)
776 cfqd->active_queue = NULL;
778 if (cfqd->active_cic) {
779 put_io_context(cfqd->active_cic->ioc);
780 cfqd->active_cic = NULL;
783 cfqd->dispatch_slice = 0;
786 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted,
787 int timed_out)
789 struct cfq_queue *cfqq = cfqd->active_queue;
791 if (cfqq)
792 __cfq_slice_expired(cfqd, cfqq, preempted, timed_out);
796 * Get next queue for service. Unless we have a queue preemption,
797 * we'll simply select the first cfqq in the service tree.
799 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
801 struct cfq_queue *cfqq = NULL;
803 if (!list_empty(&cfqd->cur_rr)) {
805 * if current list is non-empty, grab first entry.
807 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
808 } else if (!RB_EMPTY_ROOT(&cfqd->service_tree.rb)) {
809 struct rb_node *n = cfq_rb_first(&cfqd->service_tree);
811 cfqq = rb_entry(n, struct cfq_queue, rb_node);
812 if (cfq_class_idle(cfqq)) {
813 unsigned long end;
816 * if we have idle queues and no rt or be queues had
817 * pending requests, either allow immediate service if
818 * the grace period has passed or arm the idle grace
819 * timer
821 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
822 if (time_before(jiffies, end)) {
823 mod_timer(&cfqd->idle_class_timer, end);
824 cfqq = NULL;
829 return cfqq;
833 * Get and set a new active queue for service.
835 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
837 struct cfq_queue *cfqq;
839 cfqq = cfq_get_next_queue(cfqd);
840 __cfq_set_active_queue(cfqd, cfqq);
841 return cfqq;
844 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
845 struct request *rq)
847 if (rq->sector >= cfqd->last_position)
848 return rq->sector - cfqd->last_position;
849 else
850 return cfqd->last_position - rq->sector;
853 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
855 struct cfq_io_context *cic = cfqd->active_cic;
857 if (!sample_valid(cic->seek_samples))
858 return 0;
860 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
863 static int cfq_close_cooperator(struct cfq_data *cfq_data,
864 struct cfq_queue *cfqq)
867 * We should notice if some of the queues are cooperating, eg
868 * working closely on the same area of the disk. In that case,
869 * we can group them together and don't waste time idling.
871 return 0;
874 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
876 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
878 struct cfq_queue *cfqq = cfqd->active_queue;
879 struct cfq_io_context *cic;
880 unsigned long sl;
882 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
883 WARN_ON(cfq_cfqq_slice_new(cfqq));
886 * idle is disabled, either manually or by past process history
888 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
889 return;
892 * task has exited, don't wait
894 cic = cfqd->active_cic;
895 if (!cic || !cic->ioc->task)
896 return;
899 * See if this prio level has a good candidate
901 if (cfq_close_cooperator(cfqd, cfqq) &&
902 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
903 return;
905 cfq_mark_cfqq_must_dispatch(cfqq);
906 cfq_mark_cfqq_wait_request(cfqq);
909 * we don't want to idle for seeks, but we do want to allow
910 * fair distribution of slice time for a process doing back-to-back
911 * seeks. so allow a little bit of time for him to submit a new rq
913 sl = cfqd->cfq_slice_idle;
914 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
915 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
917 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
921 * Move request from internal lists to the request queue dispatch list.
923 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
925 struct cfq_queue *cfqq = RQ_CFQQ(rq);
927 cfq_remove_request(rq);
928 cfqq->dispatched++;
929 elv_dispatch_sort(q, rq);
933 * return expired entry, or NULL to just start from scratch in rbtree
935 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
937 struct cfq_data *cfqd = cfqq->cfqd;
938 struct request *rq;
939 int fifo;
941 if (cfq_cfqq_fifo_expire(cfqq))
942 return NULL;
944 cfq_mark_cfqq_fifo_expire(cfqq);
946 if (list_empty(&cfqq->fifo))
947 return NULL;
949 fifo = cfq_cfqq_sync(cfqq);
950 rq = rq_entry_fifo(cfqq->fifo.next);
952 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
953 return NULL;
955 return rq;
958 static inline int
959 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
961 const int base_rq = cfqd->cfq_slice_async_rq;
963 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
965 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
969 * Select a queue for service. If we have a current active queue,
970 * check whether to continue servicing it, or retrieve and set a new one.
972 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
974 struct cfq_queue *cfqq;
976 cfqq = cfqd->active_queue;
977 if (!cfqq)
978 goto new_queue;
981 * The active queue has run out of time, expire it and select new.
983 if (cfq_slice_used(cfqq))
984 goto expire;
987 * The active queue has requests and isn't expired, allow it to
988 * dispatch.
990 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
991 goto keep_queue;
994 * No requests pending. If the active queue still has requests in
995 * flight or is idling for a new request, allow either of these
996 * conditions to happen (or time out) before selecting a new queue.
998 if (cfqq->dispatched || timer_pending(&cfqd->idle_slice_timer)) {
999 cfqq = NULL;
1000 goto keep_queue;
1003 expire:
1004 cfq_slice_expired(cfqd, 0, 0);
1005 new_queue:
1006 cfqq = cfq_set_active_queue(cfqd);
1007 keep_queue:
1008 return cfqq;
1012 * Dispatch some requests from cfqq, moving them to the request queue
1013 * dispatch list.
1015 static int
1016 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1017 int max_dispatch)
1019 int dispatched = 0;
1021 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1023 do {
1024 struct request *rq;
1027 * follow expired path, else get first next available
1029 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1030 rq = cfqq->next_rq;
1033 * finally, insert request into driver dispatch list
1035 cfq_dispatch_insert(cfqd->queue, rq);
1037 cfqd->dispatch_slice++;
1038 dispatched++;
1040 if (!cfqd->active_cic) {
1041 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1042 cfqd->active_cic = RQ_CIC(rq);
1045 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1046 break;
1048 } while (dispatched < max_dispatch);
1051 * expire an async queue immediately if it has used up its slice. idle
1052 * queue always expire after 1 dispatch round.
1054 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1055 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1056 cfq_class_idle(cfqq))) {
1057 cfqq->slice_end = jiffies + 1;
1058 cfq_slice_expired(cfqd, 0, 0);
1061 return dispatched;
1064 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1066 int dispatched = 0;
1068 while (cfqq->next_rq) {
1069 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1070 dispatched++;
1073 BUG_ON(!list_empty(&cfqq->fifo));
1074 return dispatched;
1077 static int cfq_forced_dispatch_cfqqs(struct list_head *list)
1079 struct cfq_queue *cfqq, *next;
1080 int dispatched;
1082 dispatched = 0;
1083 list_for_each_entry_safe(cfqq, next, list, cfq_list)
1084 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1086 return dispatched;
1090 * Drain our current requests. Used for barriers and when switching
1091 * io schedulers on-the-fly.
1093 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1095 int dispatched = 0;
1096 struct rb_node *n;
1098 while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1099 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1101 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1104 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1106 cfq_slice_expired(cfqd, 0, 0);
1108 BUG_ON(cfqd->busy_queues);
1110 return dispatched;
1113 static int cfq_dispatch_requests(request_queue_t *q, int force)
1115 struct cfq_data *cfqd = q->elevator->elevator_data;
1116 struct cfq_queue *cfqq;
1117 int dispatched;
1119 if (!cfqd->busy_queues)
1120 return 0;
1122 if (unlikely(force))
1123 return cfq_forced_dispatch(cfqd);
1125 dispatched = 0;
1126 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1127 int max_dispatch;
1129 if (cfqd->busy_queues > 1) {
1131 * So we have dispatched before in this round, if the
1132 * next queue has idling enabled (must be sync), don't
1133 * allow it service until the previous have completed.
1135 if (cfqd->rq_in_driver && cfq_cfqq_idle_window(cfqq) &&
1136 dispatched)
1137 break;
1138 if (cfqq->dispatched >= cfqd->cfq_quantum)
1139 break;
1142 cfq_clear_cfqq_must_dispatch(cfqq);
1143 cfq_clear_cfqq_wait_request(cfqq);
1144 del_timer(&cfqd->idle_slice_timer);
1146 max_dispatch = cfqd->cfq_quantum;
1147 if (cfq_class_idle(cfqq))
1148 max_dispatch = 1;
1150 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1153 return dispatched;
1157 * task holds one reference to the queue, dropped when task exits. each rq
1158 * in-flight on this queue also holds a reference, dropped when rq is freed.
1160 * queue lock must be held here.
1162 static void cfq_put_queue(struct cfq_queue *cfqq)
1164 struct cfq_data *cfqd = cfqq->cfqd;
1166 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1168 if (!atomic_dec_and_test(&cfqq->ref))
1169 return;
1171 BUG_ON(rb_first(&cfqq->sort_list));
1172 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1173 BUG_ON(cfq_cfqq_on_rr(cfqq));
1175 if (unlikely(cfqd->active_queue == cfqq)) {
1176 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1177 cfq_schedule_dispatch(cfqd);
1181 * it's on the empty list and still hashed
1183 hlist_del(&cfqq->cfq_hash);
1184 kmem_cache_free(cfq_pool, cfqq);
1187 static struct cfq_queue *
1188 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1189 const int hashval)
1191 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1192 struct hlist_node *entry;
1193 struct cfq_queue *__cfqq;
1195 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1196 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1198 if (__cfqq->key == key && (__p == prio || !prio))
1199 return __cfqq;
1202 return NULL;
1205 static struct cfq_queue *
1206 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1208 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1211 static void cfq_free_io_context(struct io_context *ioc)
1213 struct cfq_io_context *__cic;
1214 struct rb_node *n;
1215 int freed = 0;
1217 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1218 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1219 rb_erase(&__cic->rb_node, &ioc->cic_root);
1220 kmem_cache_free(cfq_ioc_pool, __cic);
1221 freed++;
1224 elv_ioc_count_mod(ioc_count, -freed);
1226 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1227 complete(ioc_gone);
1230 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1232 if (unlikely(cfqq == cfqd->active_queue)) {
1233 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1234 cfq_schedule_dispatch(cfqd);
1237 cfq_put_queue(cfqq);
1240 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1241 struct cfq_io_context *cic)
1243 list_del_init(&cic->queue_list);
1244 smp_wmb();
1245 cic->key = NULL;
1247 if (cic->cfqq[ASYNC]) {
1248 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1249 cic->cfqq[ASYNC] = NULL;
1252 if (cic->cfqq[SYNC]) {
1253 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1254 cic->cfqq[SYNC] = NULL;
1258 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1260 struct cfq_data *cfqd = cic->key;
1262 if (cfqd) {
1263 request_queue_t *q = cfqd->queue;
1265 spin_lock_irq(q->queue_lock);
1266 __cfq_exit_single_io_context(cfqd, cic);
1267 spin_unlock_irq(q->queue_lock);
1272 * The process that ioc belongs to has exited, we need to clean up
1273 * and put the internal structures we have that belongs to that process.
1275 static void cfq_exit_io_context(struct io_context *ioc)
1277 struct cfq_io_context *__cic;
1278 struct rb_node *n;
1281 * put the reference this task is holding to the various queues
1284 n = rb_first(&ioc->cic_root);
1285 while (n != NULL) {
1286 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1288 cfq_exit_single_io_context(__cic);
1289 n = rb_next(n);
1293 static struct cfq_io_context *
1294 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1296 struct cfq_io_context *cic;
1298 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1299 if (cic) {
1300 memset(cic, 0, sizeof(*cic));
1301 cic->last_end_request = jiffies;
1302 INIT_LIST_HEAD(&cic->queue_list);
1303 cic->dtor = cfq_free_io_context;
1304 cic->exit = cfq_exit_io_context;
1305 elv_ioc_count_inc(ioc_count);
1308 return cic;
1311 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1313 struct task_struct *tsk = current;
1314 int ioprio_class;
1316 if (!cfq_cfqq_prio_changed(cfqq))
1317 return;
1319 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1320 switch (ioprio_class) {
1321 default:
1322 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1323 case IOPRIO_CLASS_NONE:
1325 * no prio set, place us in the middle of the BE classes
1327 cfqq->ioprio = task_nice_ioprio(tsk);
1328 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1329 break;
1330 case IOPRIO_CLASS_RT:
1331 cfqq->ioprio = task_ioprio(tsk);
1332 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1333 break;
1334 case IOPRIO_CLASS_BE:
1335 cfqq->ioprio = task_ioprio(tsk);
1336 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1337 break;
1338 case IOPRIO_CLASS_IDLE:
1339 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1340 cfqq->ioprio = 7;
1341 cfq_clear_cfqq_idle_window(cfqq);
1342 break;
1346 * keep track of original prio settings in case we have to temporarily
1347 * elevate the priority of this queue
1349 cfqq->org_ioprio = cfqq->ioprio;
1350 cfqq->org_ioprio_class = cfqq->ioprio_class;
1351 cfq_clear_cfqq_prio_changed(cfqq);
1354 static inline void changed_ioprio(struct cfq_io_context *cic)
1356 struct cfq_data *cfqd = cic->key;
1357 struct cfq_queue *cfqq;
1358 unsigned long flags;
1360 if (unlikely(!cfqd))
1361 return;
1363 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1365 cfqq = cic->cfqq[ASYNC];
1366 if (cfqq) {
1367 struct cfq_queue *new_cfqq;
1368 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1369 GFP_ATOMIC);
1370 if (new_cfqq) {
1371 cic->cfqq[ASYNC] = new_cfqq;
1372 cfq_put_queue(cfqq);
1376 cfqq = cic->cfqq[SYNC];
1377 if (cfqq)
1378 cfq_mark_cfqq_prio_changed(cfqq);
1380 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1383 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1385 struct cfq_io_context *cic;
1386 struct rb_node *n;
1388 ioc->ioprio_changed = 0;
1390 n = rb_first(&ioc->cic_root);
1391 while (n != NULL) {
1392 cic = rb_entry(n, struct cfq_io_context, rb_node);
1394 changed_ioprio(cic);
1395 n = rb_next(n);
1399 static struct cfq_queue *
1400 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1401 gfp_t gfp_mask)
1403 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1404 struct cfq_queue *cfqq, *new_cfqq = NULL;
1405 unsigned short ioprio;
1407 retry:
1408 ioprio = tsk->ioprio;
1409 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1411 if (!cfqq) {
1412 if (new_cfqq) {
1413 cfqq = new_cfqq;
1414 new_cfqq = NULL;
1415 } else if (gfp_mask & __GFP_WAIT) {
1417 * Inform the allocator of the fact that we will
1418 * just repeat this allocation if it fails, to allow
1419 * the allocator to do whatever it needs to attempt to
1420 * free memory.
1422 spin_unlock_irq(cfqd->queue->queue_lock);
1423 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1424 spin_lock_irq(cfqd->queue->queue_lock);
1425 goto retry;
1426 } else {
1427 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1428 if (!cfqq)
1429 goto out;
1432 memset(cfqq, 0, sizeof(*cfqq));
1434 INIT_HLIST_NODE(&cfqq->cfq_hash);
1435 INIT_LIST_HEAD(&cfqq->cfq_list);
1436 RB_CLEAR_NODE(&cfqq->rb_node);
1437 INIT_LIST_HEAD(&cfqq->fifo);
1439 cfqq->key = key;
1440 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1441 atomic_set(&cfqq->ref, 0);
1442 cfqq->cfqd = cfqd;
1444 if (key != CFQ_KEY_ASYNC)
1445 cfq_mark_cfqq_idle_window(cfqq);
1447 cfq_mark_cfqq_prio_changed(cfqq);
1448 cfq_mark_cfqq_queue_new(cfqq);
1449 cfq_init_prio_data(cfqq);
1452 if (new_cfqq)
1453 kmem_cache_free(cfq_pool, new_cfqq);
1455 atomic_inc(&cfqq->ref);
1456 out:
1457 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1458 return cfqq;
1462 * We drop cfq io contexts lazily, so we may find a dead one.
1464 static void
1465 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1467 WARN_ON(!list_empty(&cic->queue_list));
1468 rb_erase(&cic->rb_node, &ioc->cic_root);
1469 kmem_cache_free(cfq_ioc_pool, cic);
1470 elv_ioc_count_dec(ioc_count);
1473 static struct cfq_io_context *
1474 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1476 struct rb_node *n;
1477 struct cfq_io_context *cic;
1478 void *k, *key = cfqd;
1480 restart:
1481 n = ioc->cic_root.rb_node;
1482 while (n) {
1483 cic = rb_entry(n, struct cfq_io_context, rb_node);
1484 /* ->key must be copied to avoid race with cfq_exit_queue() */
1485 k = cic->key;
1486 if (unlikely(!k)) {
1487 cfq_drop_dead_cic(ioc, cic);
1488 goto restart;
1491 if (key < k)
1492 n = n->rb_left;
1493 else if (key > k)
1494 n = n->rb_right;
1495 else
1496 return cic;
1499 return NULL;
1502 static inline void
1503 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1504 struct cfq_io_context *cic)
1506 struct rb_node **p;
1507 struct rb_node *parent;
1508 struct cfq_io_context *__cic;
1509 unsigned long flags;
1510 void *k;
1512 cic->ioc = ioc;
1513 cic->key = cfqd;
1515 restart:
1516 parent = NULL;
1517 p = &ioc->cic_root.rb_node;
1518 while (*p) {
1519 parent = *p;
1520 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1521 /* ->key must be copied to avoid race with cfq_exit_queue() */
1522 k = __cic->key;
1523 if (unlikely(!k)) {
1524 cfq_drop_dead_cic(ioc, __cic);
1525 goto restart;
1528 if (cic->key < k)
1529 p = &(*p)->rb_left;
1530 else if (cic->key > k)
1531 p = &(*p)->rb_right;
1532 else
1533 BUG();
1536 rb_link_node(&cic->rb_node, parent, p);
1537 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1539 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1540 list_add(&cic->queue_list, &cfqd->cic_list);
1541 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1545 * Setup general io context and cfq io context. There can be several cfq
1546 * io contexts per general io context, if this process is doing io to more
1547 * than one device managed by cfq.
1549 static struct cfq_io_context *
1550 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1552 struct io_context *ioc = NULL;
1553 struct cfq_io_context *cic;
1555 might_sleep_if(gfp_mask & __GFP_WAIT);
1557 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1558 if (!ioc)
1559 return NULL;
1561 cic = cfq_cic_rb_lookup(cfqd, ioc);
1562 if (cic)
1563 goto out;
1565 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1566 if (cic == NULL)
1567 goto err;
1569 cfq_cic_link(cfqd, ioc, cic);
1570 out:
1571 smp_read_barrier_depends();
1572 if (unlikely(ioc->ioprio_changed))
1573 cfq_ioc_set_ioprio(ioc);
1575 return cic;
1576 err:
1577 put_io_context(ioc);
1578 return NULL;
1581 static void
1582 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1584 unsigned long elapsed = jiffies - cic->last_end_request;
1585 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1587 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1588 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1589 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1592 static void
1593 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1594 struct request *rq)
1596 sector_t sdist;
1597 u64 total;
1599 if (cic->last_request_pos < rq->sector)
1600 sdist = rq->sector - cic->last_request_pos;
1601 else
1602 sdist = cic->last_request_pos - rq->sector;
1604 if (!cic->seek_samples) {
1605 cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1606 cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1610 * Don't allow the seek distance to get too large from the
1611 * odd fragment, pagein, etc
1613 if (cic->seek_samples <= 60) /* second&third seek */
1614 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1615 else
1616 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1618 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1619 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1620 total = cic->seek_total + (cic->seek_samples/2);
1621 do_div(total, cic->seek_samples);
1622 cic->seek_mean = (sector_t)total;
1626 * Disable idle window if the process thinks too long or seeks so much that
1627 * it doesn't matter
1629 static void
1630 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1631 struct cfq_io_context *cic)
1633 int enable_idle = cfq_cfqq_idle_window(cfqq);
1635 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1636 (cfqd->hw_tag && CIC_SEEKY(cic)))
1637 enable_idle = 0;
1638 else if (sample_valid(cic->ttime_samples)) {
1639 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1640 enable_idle = 0;
1641 else
1642 enable_idle = 1;
1645 if (enable_idle)
1646 cfq_mark_cfqq_idle_window(cfqq);
1647 else
1648 cfq_clear_cfqq_idle_window(cfqq);
1652 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1653 * no or if we aren't sure, a 1 will cause a preempt.
1655 static int
1656 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1657 struct request *rq)
1659 struct cfq_queue *cfqq;
1661 cfqq = cfqd->active_queue;
1662 if (!cfqq)
1663 return 0;
1665 if (cfq_slice_used(cfqq))
1666 return 1;
1668 if (cfq_class_idle(new_cfqq))
1669 return 0;
1671 if (cfq_class_idle(cfqq))
1672 return 1;
1675 * if the new request is sync, but the currently running queue is
1676 * not, let the sync request have priority.
1678 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1679 return 1;
1682 * So both queues are sync. Let the new request get disk time if
1683 * it's a metadata request and the current queue is doing regular IO.
1685 if (rq_is_meta(rq) && !cfqq->meta_pending)
1686 return 1;
1688 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1689 return 0;
1692 * if this request is as-good as one we would expect from the
1693 * current cfqq, let it preempt
1695 if (cfq_rq_close(cfqd, rq))
1696 return 1;
1698 return 0;
1702 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1703 * let it have half of its nominal slice.
1705 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1707 cfq_slice_expired(cfqd, 1, 1);
1710 * Put the new queue at the front of the of the current list,
1711 * so we know that it will be selected next.
1713 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1714 list_del_init(&cfqq->cfq_list);
1715 list_add(&cfqq->cfq_list, &cfqd->cur_rr);
1717 cfqq->slice_end = 0;
1718 cfq_mark_cfqq_slice_new(cfqq);
1722 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1723 * something we should do about it
1725 static void
1726 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1727 struct request *rq)
1729 struct cfq_io_context *cic = RQ_CIC(rq);
1731 if (rq_is_meta(rq))
1732 cfqq->meta_pending++;
1734 cfq_update_io_thinktime(cfqd, cic);
1735 cfq_update_io_seektime(cfqd, cic, rq);
1736 cfq_update_idle_window(cfqd, cfqq, cic);
1738 cic->last_request_pos = rq->sector + rq->nr_sectors;
1739 cfqq->last_request_pos = cic->last_request_pos;
1741 if (cfqq == cfqd->active_queue) {
1743 * if we are waiting for a request for this queue, let it rip
1744 * immediately and flag that we must not expire this queue
1745 * just now
1747 if (cfq_cfqq_wait_request(cfqq)) {
1748 cfq_mark_cfqq_must_dispatch(cfqq);
1749 del_timer(&cfqd->idle_slice_timer);
1750 blk_start_queueing(cfqd->queue);
1752 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1754 * not the active queue - expire current slice if it is
1755 * idle and has expired it's mean thinktime or this new queue
1756 * has some old slice time left and is of higher priority
1758 cfq_preempt_queue(cfqd, cfqq);
1759 cfq_mark_cfqq_must_dispatch(cfqq);
1760 blk_start_queueing(cfqd->queue);
1764 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1766 struct cfq_data *cfqd = q->elevator->elevator_data;
1767 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1769 cfq_init_prio_data(cfqq);
1771 cfq_add_rq_rb(rq);
1773 list_add_tail(&rq->queuelist, &cfqq->fifo);
1775 cfq_rq_enqueued(cfqd, cfqq, rq);
1778 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1780 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1781 struct cfq_data *cfqd = cfqq->cfqd;
1782 const int sync = rq_is_sync(rq);
1783 unsigned long now;
1785 now = jiffies;
1787 WARN_ON(!cfqd->rq_in_driver);
1788 WARN_ON(!cfqq->dispatched);
1789 cfqd->rq_in_driver--;
1790 cfqq->dispatched--;
1792 if (!cfq_class_idle(cfqq))
1793 cfqd->last_end_request = now;
1795 if (sync)
1796 RQ_CIC(rq)->last_end_request = now;
1799 * If this is the active queue, check if it needs to be expired,
1800 * or if we want to idle in case it has no pending requests.
1802 if (cfqd->active_queue == cfqq) {
1803 if (cfq_cfqq_slice_new(cfqq)) {
1804 cfq_set_prio_slice(cfqd, cfqq);
1805 cfq_clear_cfqq_slice_new(cfqq);
1807 if (cfq_slice_used(cfqq))
1808 cfq_slice_expired(cfqd, 0, 1);
1809 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1810 cfq_arm_slice_timer(cfqd);
1813 if (!cfqd->rq_in_driver)
1814 cfq_schedule_dispatch(cfqd);
1818 * we temporarily boost lower priority queues if they are holding fs exclusive
1819 * resources. they are boosted to normal prio (CLASS_BE/4)
1821 static void cfq_prio_boost(struct cfq_queue *cfqq)
1823 if (has_fs_excl()) {
1825 * boost idle prio on transactions that would lock out other
1826 * users of the filesystem
1828 if (cfq_class_idle(cfqq))
1829 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1830 if (cfqq->ioprio > IOPRIO_NORM)
1831 cfqq->ioprio = IOPRIO_NORM;
1832 } else {
1834 * check if we need to unboost the queue
1836 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1837 cfqq->ioprio_class = cfqq->org_ioprio_class;
1838 if (cfqq->ioprio != cfqq->org_ioprio)
1839 cfqq->ioprio = cfqq->org_ioprio;
1843 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1845 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1846 !cfq_cfqq_must_alloc_slice(cfqq)) {
1847 cfq_mark_cfqq_must_alloc_slice(cfqq);
1848 return ELV_MQUEUE_MUST;
1851 return ELV_MQUEUE_MAY;
1854 static int cfq_may_queue(request_queue_t *q, int rw)
1856 struct cfq_data *cfqd = q->elevator->elevator_data;
1857 struct task_struct *tsk = current;
1858 struct cfq_queue *cfqq;
1859 unsigned int key;
1861 key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1864 * don't force setup of a queue from here, as a call to may_queue
1865 * does not necessarily imply that a request actually will be queued.
1866 * so just lookup a possibly existing queue, or return 'may queue'
1867 * if that fails
1869 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1870 if (cfqq) {
1871 cfq_init_prio_data(cfqq);
1872 cfq_prio_boost(cfqq);
1874 return __cfq_may_queue(cfqq);
1877 return ELV_MQUEUE_MAY;
1881 * queue lock held here
1883 static void cfq_put_request(struct request *rq)
1885 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1887 if (cfqq) {
1888 const int rw = rq_data_dir(rq);
1890 BUG_ON(!cfqq->allocated[rw]);
1891 cfqq->allocated[rw]--;
1893 put_io_context(RQ_CIC(rq)->ioc);
1895 rq->elevator_private = NULL;
1896 rq->elevator_private2 = NULL;
1898 cfq_put_queue(cfqq);
1903 * Allocate cfq data structures associated with this request.
1905 static int
1906 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1908 struct cfq_data *cfqd = q->elevator->elevator_data;
1909 struct task_struct *tsk = current;
1910 struct cfq_io_context *cic;
1911 const int rw = rq_data_dir(rq);
1912 const int is_sync = rq_is_sync(rq);
1913 pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1914 struct cfq_queue *cfqq;
1915 unsigned long flags;
1917 might_sleep_if(gfp_mask & __GFP_WAIT);
1919 cic = cfq_get_io_context(cfqd, gfp_mask);
1921 spin_lock_irqsave(q->queue_lock, flags);
1923 if (!cic)
1924 goto queue_fail;
1926 if (!cic->cfqq[is_sync]) {
1927 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1928 if (!cfqq)
1929 goto queue_fail;
1931 cic->cfqq[is_sync] = cfqq;
1932 } else
1933 cfqq = cic->cfqq[is_sync];
1935 cfqq->allocated[rw]++;
1936 cfq_clear_cfqq_must_alloc(cfqq);
1937 atomic_inc(&cfqq->ref);
1939 spin_unlock_irqrestore(q->queue_lock, flags);
1941 rq->elevator_private = cic;
1942 rq->elevator_private2 = cfqq;
1943 return 0;
1945 queue_fail:
1946 if (cic)
1947 put_io_context(cic->ioc);
1949 cfq_schedule_dispatch(cfqd);
1950 spin_unlock_irqrestore(q->queue_lock, flags);
1951 return 1;
1954 static void cfq_kick_queue(struct work_struct *work)
1956 struct cfq_data *cfqd =
1957 container_of(work, struct cfq_data, unplug_work);
1958 request_queue_t *q = cfqd->queue;
1959 unsigned long flags;
1961 spin_lock_irqsave(q->queue_lock, flags);
1962 blk_start_queueing(q);
1963 spin_unlock_irqrestore(q->queue_lock, flags);
1967 * Timer running if the active_queue is currently idling inside its time slice
1969 static void cfq_idle_slice_timer(unsigned long data)
1971 struct cfq_data *cfqd = (struct cfq_data *) data;
1972 struct cfq_queue *cfqq;
1973 unsigned long flags;
1974 int timed_out = 1;
1976 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1978 if ((cfqq = cfqd->active_queue) != NULL) {
1979 timed_out = 0;
1982 * expired
1984 if (cfq_slice_used(cfqq))
1985 goto expire;
1988 * only expire and reinvoke request handler, if there are
1989 * other queues with pending requests
1991 if (!cfqd->busy_queues)
1992 goto out_cont;
1995 * not expired and it has a request pending, let it dispatch
1997 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1998 cfq_mark_cfqq_must_dispatch(cfqq);
1999 goto out_kick;
2002 expire:
2003 cfq_slice_expired(cfqd, 0, timed_out);
2004 out_kick:
2005 cfq_schedule_dispatch(cfqd);
2006 out_cont:
2007 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2011 * Timer running if an idle class queue is waiting for service
2013 static void cfq_idle_class_timer(unsigned long data)
2015 struct cfq_data *cfqd = (struct cfq_data *) data;
2016 unsigned long flags, end;
2018 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2021 * race with a non-idle queue, reset timer
2023 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2024 if (!time_after_eq(jiffies, end))
2025 mod_timer(&cfqd->idle_class_timer, end);
2026 else
2027 cfq_schedule_dispatch(cfqd);
2029 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2032 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2034 del_timer_sync(&cfqd->idle_slice_timer);
2035 del_timer_sync(&cfqd->idle_class_timer);
2036 blk_sync_queue(cfqd->queue);
2039 static void cfq_exit_queue(elevator_t *e)
2041 struct cfq_data *cfqd = e->elevator_data;
2042 request_queue_t *q = cfqd->queue;
2044 cfq_shutdown_timer_wq(cfqd);
2046 spin_lock_irq(q->queue_lock);
2048 if (cfqd->active_queue)
2049 __cfq_slice_expired(cfqd, cfqd->active_queue, 0, 0);
2051 while (!list_empty(&cfqd->cic_list)) {
2052 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2053 struct cfq_io_context,
2054 queue_list);
2056 __cfq_exit_single_io_context(cfqd, cic);
2059 spin_unlock_irq(q->queue_lock);
2061 cfq_shutdown_timer_wq(cfqd);
2063 kfree(cfqd->cfq_hash);
2064 kfree(cfqd);
2067 static void *cfq_init_queue(request_queue_t *q)
2069 struct cfq_data *cfqd;
2070 int i;
2072 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2073 if (!cfqd)
2074 return NULL;
2076 memset(cfqd, 0, sizeof(*cfqd));
2078 cfqd->service_tree = CFQ_RB_ROOT;
2079 INIT_LIST_HEAD(&cfqd->cur_rr);
2080 INIT_LIST_HEAD(&cfqd->cic_list);
2082 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2083 if (!cfqd->cfq_hash)
2084 goto out_free;
2086 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2087 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2089 cfqd->queue = q;
2091 init_timer(&cfqd->idle_slice_timer);
2092 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2093 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2095 init_timer(&cfqd->idle_class_timer);
2096 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2097 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2099 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2101 cfqd->cfq_quantum = cfq_quantum;
2102 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2103 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2104 cfqd->cfq_back_max = cfq_back_max;
2105 cfqd->cfq_back_penalty = cfq_back_penalty;
2106 cfqd->cfq_slice[0] = cfq_slice_async;
2107 cfqd->cfq_slice[1] = cfq_slice_sync;
2108 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2109 cfqd->cfq_slice_idle = cfq_slice_idle;
2111 return cfqd;
2112 out_free:
2113 kfree(cfqd);
2114 return NULL;
2117 static void cfq_slab_kill(void)
2119 if (cfq_pool)
2120 kmem_cache_destroy(cfq_pool);
2121 if (cfq_ioc_pool)
2122 kmem_cache_destroy(cfq_ioc_pool);
2125 static int __init cfq_slab_setup(void)
2127 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2128 NULL, NULL);
2129 if (!cfq_pool)
2130 goto fail;
2132 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2133 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2134 if (!cfq_ioc_pool)
2135 goto fail;
2137 return 0;
2138 fail:
2139 cfq_slab_kill();
2140 return -ENOMEM;
2144 * sysfs parts below -->
2146 static ssize_t
2147 cfq_var_show(unsigned int var, char *page)
2149 return sprintf(page, "%d\n", var);
2152 static ssize_t
2153 cfq_var_store(unsigned int *var, const char *page, size_t count)
2155 char *p = (char *) page;
2157 *var = simple_strtoul(p, &p, 10);
2158 return count;
2161 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2162 static ssize_t __FUNC(elevator_t *e, char *page) \
2164 struct cfq_data *cfqd = e->elevator_data; \
2165 unsigned int __data = __VAR; \
2166 if (__CONV) \
2167 __data = jiffies_to_msecs(__data); \
2168 return cfq_var_show(__data, (page)); \
2170 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2171 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2172 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2173 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2174 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2175 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2176 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2177 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2178 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2179 #undef SHOW_FUNCTION
2181 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2182 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2184 struct cfq_data *cfqd = e->elevator_data; \
2185 unsigned int __data; \
2186 int ret = cfq_var_store(&__data, (page), count); \
2187 if (__data < (MIN)) \
2188 __data = (MIN); \
2189 else if (__data > (MAX)) \
2190 __data = (MAX); \
2191 if (__CONV) \
2192 *(__PTR) = msecs_to_jiffies(__data); \
2193 else \
2194 *(__PTR) = __data; \
2195 return ret; \
2197 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2198 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2199 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2200 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2201 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2202 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2203 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2204 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2205 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2206 #undef STORE_FUNCTION
2208 #define CFQ_ATTR(name) \
2209 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2211 static struct elv_fs_entry cfq_attrs[] = {
2212 CFQ_ATTR(quantum),
2213 CFQ_ATTR(fifo_expire_sync),
2214 CFQ_ATTR(fifo_expire_async),
2215 CFQ_ATTR(back_seek_max),
2216 CFQ_ATTR(back_seek_penalty),
2217 CFQ_ATTR(slice_sync),
2218 CFQ_ATTR(slice_async),
2219 CFQ_ATTR(slice_async_rq),
2220 CFQ_ATTR(slice_idle),
2221 __ATTR_NULL
2224 static struct elevator_type iosched_cfq = {
2225 .ops = {
2226 .elevator_merge_fn = cfq_merge,
2227 .elevator_merged_fn = cfq_merged_request,
2228 .elevator_merge_req_fn = cfq_merged_requests,
2229 .elevator_allow_merge_fn = cfq_allow_merge,
2230 .elevator_dispatch_fn = cfq_dispatch_requests,
2231 .elevator_add_req_fn = cfq_insert_request,
2232 .elevator_activate_req_fn = cfq_activate_request,
2233 .elevator_deactivate_req_fn = cfq_deactivate_request,
2234 .elevator_queue_empty_fn = cfq_queue_empty,
2235 .elevator_completed_req_fn = cfq_completed_request,
2236 .elevator_former_req_fn = elv_rb_former_request,
2237 .elevator_latter_req_fn = elv_rb_latter_request,
2238 .elevator_set_req_fn = cfq_set_request,
2239 .elevator_put_req_fn = cfq_put_request,
2240 .elevator_may_queue_fn = cfq_may_queue,
2241 .elevator_init_fn = cfq_init_queue,
2242 .elevator_exit_fn = cfq_exit_queue,
2243 .trim = cfq_free_io_context,
2245 .elevator_attrs = cfq_attrs,
2246 .elevator_name = "cfq",
2247 .elevator_owner = THIS_MODULE,
2250 static int __init cfq_init(void)
2252 int ret;
2255 * could be 0 on HZ < 1000 setups
2257 if (!cfq_slice_async)
2258 cfq_slice_async = 1;
2259 if (!cfq_slice_idle)
2260 cfq_slice_idle = 1;
2262 if (cfq_slab_setup())
2263 return -ENOMEM;
2265 ret = elv_register(&iosched_cfq);
2266 if (ret)
2267 cfq_slab_kill();
2269 return ret;
2272 static void __exit cfq_exit(void)
2274 DECLARE_COMPLETION_ONSTACK(all_gone);
2275 elv_unregister(&iosched_cfq);
2276 ioc_gone = &all_gone;
2277 /* ioc_gone's update must be visible before reading ioc_count */
2278 smp_wmb();
2279 if (elv_ioc_count_read(ioc_count))
2280 wait_for_completion(ioc_gone);
2281 synchronize_rcu();
2282 cfq_slab_kill();
2285 module_init(cfq_init);
2286 module_exit(cfq_exit);
2288 MODULE_AUTHOR("Jens Axboe");
2289 MODULE_LICENSE("GPL");
2290 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");