2 * Architecture-specific setup.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
11 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
13 #include <linux/cpu.h>
15 #include <linux/elf.h>
16 #include <linux/errno.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/notifier.h>
22 #include <linux/personality.h>
23 #include <linux/sched.h>
24 #include <linux/slab.h>
25 #include <linux/smp_lock.h>
26 #include <linux/stddef.h>
27 #include <linux/thread_info.h>
28 #include <linux/unistd.h>
29 #include <linux/efi.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
34 #include <asm/delay.h>
38 #include <asm/kdebug.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
42 #include <asm/tlbflush.h>
43 #include <asm/uaccess.h>
44 #include <asm/unwind.h>
50 # include <asm/perfmon.h>
55 void (*ia64_mark_idle
)(int);
56 static DEFINE_PER_CPU(unsigned int, cpu_idle_state
);
58 unsigned long boot_option_idle_override
= 0;
59 EXPORT_SYMBOL(boot_option_idle_override
);
62 ia64_do_show_stack (struct unw_frame_info
*info
, void *arg
)
64 unsigned long ip
, sp
, bsp
;
65 char buf
[128]; /* don't make it so big that it overflows the stack! */
67 printk("\nCall Trace:\n");
69 unw_get_ip(info
, &ip
);
73 unw_get_sp(info
, &sp
);
74 unw_get_bsp(info
, &bsp
);
75 snprintf(buf
, sizeof(buf
),
77 " sp=%016lx bsp=%016lx\n",
79 print_symbol(buf
, ip
);
80 } while (unw_unwind(info
) >= 0);
84 show_stack (struct task_struct
*task
, unsigned long *sp
)
87 unw_init_running(ia64_do_show_stack
, NULL
);
89 struct unw_frame_info info
;
91 unw_init_from_blocked_task(&info
, task
);
92 ia64_do_show_stack(&info
, NULL
);
99 show_stack(NULL
, NULL
);
102 EXPORT_SYMBOL(dump_stack
);
105 show_regs (struct pt_regs
*regs
)
107 unsigned long ip
= regs
->cr_iip
+ ia64_psr(regs
)->ri
;
110 printk("\nPid: %d, CPU %d, comm: %20s\n", current
->pid
, smp_processor_id(), current
->comm
);
111 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
112 regs
->cr_ipsr
, regs
->cr_ifs
, ip
, print_tainted());
113 print_symbol("ip is at %s\n", ip
);
114 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
115 regs
->ar_unat
, regs
->ar_pfs
, regs
->ar_rsc
);
116 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
117 regs
->ar_rnat
, regs
->ar_bspstore
, regs
->pr
);
118 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
119 regs
->loadrs
, regs
->ar_ccv
, regs
->ar_fpsr
);
120 printk("csd : %016lx ssd : %016lx\n", regs
->ar_csd
, regs
->ar_ssd
);
121 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs
->b0
, regs
->b6
, regs
->b7
);
122 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
123 regs
->f6
.u
.bits
[1], regs
->f6
.u
.bits
[0],
124 regs
->f7
.u
.bits
[1], regs
->f7
.u
.bits
[0]);
125 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
126 regs
->f8
.u
.bits
[1], regs
->f8
.u
.bits
[0],
127 regs
->f9
.u
.bits
[1], regs
->f9
.u
.bits
[0]);
128 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
129 regs
->f10
.u
.bits
[1], regs
->f10
.u
.bits
[0],
130 regs
->f11
.u
.bits
[1], regs
->f11
.u
.bits
[0]);
132 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs
->r1
, regs
->r2
, regs
->r3
);
133 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs
->r8
, regs
->r9
, regs
->r10
);
134 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs
->r11
, regs
->r12
, regs
->r13
);
135 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs
->r14
, regs
->r15
, regs
->r16
);
136 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs
->r17
, regs
->r18
, regs
->r19
);
137 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs
->r20
, regs
->r21
, regs
->r22
);
138 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs
->r23
, regs
->r24
, regs
->r25
);
139 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs
->r26
, regs
->r27
, regs
->r28
);
140 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs
->r29
, regs
->r30
, regs
->r31
);
142 if (user_mode(regs
)) {
143 /* print the stacked registers */
144 unsigned long val
, *bsp
, ndirty
;
145 int i
, sof
, is_nat
= 0;
147 sof
= regs
->cr_ifs
& 0x7f; /* size of frame */
148 ndirty
= (regs
->loadrs
>> 19);
149 bsp
= ia64_rse_skip_regs((unsigned long *) regs
->ar_bspstore
, ndirty
);
150 for (i
= 0; i
< sof
; ++i
) {
151 get_user(val
, (unsigned long __user
*) ia64_rse_skip_regs(bsp
, i
));
152 printk("r%-3u:%c%016lx%s", 32 + i
, is_nat
? '*' : ' ', val
,
153 ((i
== sof
- 1) || (i
% 3) == 2) ? "\n" : " ");
156 show_stack(NULL
, NULL
);
160 do_notify_resume_user (sigset_t
*oldset
, struct sigscratch
*scr
, long in_syscall
)
162 if (fsys_mode(current
, &scr
->pt
)) {
163 /* defer signal-handling etc. until we return to privilege-level 0. */
164 if (!ia64_psr(&scr
->pt
)->lp
)
165 ia64_psr(&scr
->pt
)->lp
= 1;
169 #ifdef CONFIG_PERFMON
170 if (current
->thread
.pfm_needs_checking
)
174 /* deal with pending signal delivery */
175 if (test_thread_flag(TIF_SIGPENDING
))
176 ia64_do_signal(oldset
, scr
, in_syscall
);
179 static int pal_halt
= 1;
180 static int can_do_pal_halt
= 1;
182 static int __init
nohalt_setup(char * str
)
184 pal_halt
= can_do_pal_halt
= 0;
187 __setup("nohalt", nohalt_setup
);
190 update_pal_halt_status(int status
)
192 can_do_pal_halt
= pal_halt
&& status
;
196 * We use this if we don't have any better idle routine..
202 while (!need_resched()) {
210 #ifdef CONFIG_HOTPLUG_CPU
211 /* We don't actually take CPU down, just spin without interrupts. */
212 static inline void play_dead(void)
214 extern void ia64_cpu_local_tick (void);
215 unsigned int this_cpu
= smp_processor_id();
218 __get_cpu_var(cpu_state
) = CPU_DEAD
;
223 ia64_jump_to_sal(&sal_boot_rendez_state
[this_cpu
]);
225 * The above is a point of no-return, the processor is
226 * expected to be in SAL loop now.
231 static inline void play_dead(void)
235 #endif /* CONFIG_HOTPLUG_CPU */
237 void cpu_idle_wait(void)
239 unsigned int cpu
, this_cpu
= get_cpu();
242 set_cpus_allowed(current
, cpumask_of_cpu(this_cpu
));
246 for_each_online_cpu(cpu
) {
247 per_cpu(cpu_idle_state
, cpu
) = 1;
251 __get_cpu_var(cpu_idle_state
) = 0;
256 for_each_online_cpu(cpu
) {
257 if (cpu_isset(cpu
, map
) && !per_cpu(cpu_idle_state
, cpu
))
260 cpus_and(map
, map
, cpu_online_map
);
261 } while (!cpus_empty(map
));
263 EXPORT_SYMBOL_GPL(cpu_idle_wait
);
265 void __attribute__((noreturn
))
268 void (*mark_idle
)(int) = ia64_mark_idle
;
269 int cpu
= smp_processor_id();
271 /* endless idle loop with no priority at all */
274 current_thread_info()->status
&= ~TS_POLLING
;
276 current_thread_info()->status
|= TS_POLLING
;
278 if (!need_resched()) {
283 if (__get_cpu_var(cpu_idle_state
))
284 __get_cpu_var(cpu_idle_state
) = 0;
300 preempt_enable_no_resched();
304 if (cpu_is_offline(cpu
))
310 ia64_save_extra (struct task_struct
*task
)
312 #ifdef CONFIG_PERFMON
316 if ((task
->thread
.flags
& IA64_THREAD_DBG_VALID
) != 0)
317 ia64_save_debug_regs(&task
->thread
.dbr
[0]);
319 #ifdef CONFIG_PERFMON
320 if ((task
->thread
.flags
& IA64_THREAD_PM_VALID
) != 0)
323 info
= __get_cpu_var(pfm_syst_info
);
324 if (info
& PFM_CPUINFO_SYST_WIDE
)
325 pfm_syst_wide_update_task(task
, info
, 0);
328 #ifdef CONFIG_IA32_SUPPORT
329 if (IS_IA32_PROCESS(task_pt_regs(task
)))
330 ia32_save_state(task
);
335 ia64_load_extra (struct task_struct
*task
)
337 #ifdef CONFIG_PERFMON
341 if ((task
->thread
.flags
& IA64_THREAD_DBG_VALID
) != 0)
342 ia64_load_debug_regs(&task
->thread
.dbr
[0]);
344 #ifdef CONFIG_PERFMON
345 if ((task
->thread
.flags
& IA64_THREAD_PM_VALID
) != 0)
348 info
= __get_cpu_var(pfm_syst_info
);
349 if (info
& PFM_CPUINFO_SYST_WIDE
)
350 pfm_syst_wide_update_task(task
, info
, 1);
353 #ifdef CONFIG_IA32_SUPPORT
354 if (IS_IA32_PROCESS(task_pt_regs(task
)))
355 ia32_load_state(task
);
360 * Copy the state of an ia-64 thread.
362 * We get here through the following call chain:
364 * from user-level: from kernel:
366 * <clone syscall> <some kernel call frames>
369 * copy_thread copy_thread
371 * This means that the stack layout is as follows:
373 * +---------------------+ (highest addr)
375 * +---------------------+
376 * | struct switch_stack |
377 * +---------------------+
380 * | | <-- sp (lowest addr)
381 * +---------------------+
383 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
384 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
385 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
386 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
387 * the stack is page aligned and the page size is at least 4KB, this is always the case,
388 * so there is nothing to worry about.
391 copy_thread (int nr
, unsigned long clone_flags
,
392 unsigned long user_stack_base
, unsigned long user_stack_size
,
393 struct task_struct
*p
, struct pt_regs
*regs
)
395 extern char ia64_ret_from_clone
, ia32_ret_from_clone
;
396 struct switch_stack
*child_stack
, *stack
;
397 unsigned long rbs
, child_rbs
, rbs_size
;
398 struct pt_regs
*child_ptregs
;
403 * For SMP idle threads, fork_by_hand() calls do_fork with
410 stack
= ((struct switch_stack
*) regs
) - 1;
412 child_ptregs
= (struct pt_regs
*) ((unsigned long) p
+ IA64_STK_OFFSET
) - 1;
413 child_stack
= (struct switch_stack
*) child_ptregs
- 1;
415 /* copy parent's switch_stack & pt_regs to child: */
416 memcpy(child_stack
, stack
, sizeof(*child_ptregs
) + sizeof(*child_stack
));
418 rbs
= (unsigned long) current
+ IA64_RBS_OFFSET
;
419 child_rbs
= (unsigned long) p
+ IA64_RBS_OFFSET
;
420 rbs_size
= stack
->ar_bspstore
- rbs
;
422 /* copy the parent's register backing store to the child: */
423 memcpy((void *) child_rbs
, (void *) rbs
, rbs_size
);
425 if (likely(user_mode(child_ptregs
))) {
426 if ((clone_flags
& CLONE_SETTLS
) && !IS_IA32_PROCESS(regs
))
427 child_ptregs
->r13
= regs
->r16
; /* see sys_clone2() in entry.S */
428 if (user_stack_base
) {
429 child_ptregs
->r12
= user_stack_base
+ user_stack_size
- 16;
430 child_ptregs
->ar_bspstore
= user_stack_base
;
431 child_ptregs
->ar_rnat
= 0;
432 child_ptregs
->loadrs
= 0;
436 * Note: we simply preserve the relative position of
437 * the stack pointer here. There is no need to
438 * allocate a scratch area here, since that will have
439 * been taken care of by the caller of sys_clone()
442 child_ptregs
->r12
= (unsigned long) child_ptregs
- 16; /* kernel sp */
443 child_ptregs
->r13
= (unsigned long) p
; /* set `current' pointer */
445 child_stack
->ar_bspstore
= child_rbs
+ rbs_size
;
446 if (IS_IA32_PROCESS(regs
))
447 child_stack
->b0
= (unsigned long) &ia32_ret_from_clone
;
449 child_stack
->b0
= (unsigned long) &ia64_ret_from_clone
;
451 /* copy parts of thread_struct: */
452 p
->thread
.ksp
= (unsigned long) child_stack
- 16;
454 /* stop some PSR bits from being inherited.
455 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
456 * therefore we must specify them explicitly here and not include them in
457 * IA64_PSR_BITS_TO_CLEAR.
459 child_ptregs
->cr_ipsr
= ((child_ptregs
->cr_ipsr
| IA64_PSR_BITS_TO_SET
)
460 & ~(IA64_PSR_BITS_TO_CLEAR
| IA64_PSR_PP
| IA64_PSR_UP
));
463 * NOTE: The calling convention considers all floating point
464 * registers in the high partition (fph) to be scratch. Since
465 * the only way to get to this point is through a system call,
466 * we know that the values in fph are all dead. Hence, there
467 * is no need to inherit the fph state from the parent to the
468 * child and all we have to do is to make sure that
469 * IA64_THREAD_FPH_VALID is cleared in the child.
471 * XXX We could push this optimization a bit further by
472 * clearing IA64_THREAD_FPH_VALID on ANY system call.
473 * However, it's not clear this is worth doing. Also, it
474 * would be a slight deviation from the normal Linux system
475 * call behavior where scratch registers are preserved across
476 * system calls (unless used by the system call itself).
478 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
479 | IA64_THREAD_PM_VALID)
480 # define THREAD_FLAGS_TO_SET 0
481 p
->thread
.flags
= ((current
->thread
.flags
& ~THREAD_FLAGS_TO_CLEAR
)
482 | THREAD_FLAGS_TO_SET
);
483 ia64_drop_fpu(p
); /* don't pick up stale state from a CPU's fph */
484 #ifdef CONFIG_IA32_SUPPORT
486 * If we're cloning an IA32 task then save the IA32 extra
487 * state from the current task to the new task
489 if (IS_IA32_PROCESS(task_pt_regs(current
))) {
491 if (clone_flags
& CLONE_SETTLS
)
492 retval
= ia32_clone_tls(p
, child_ptregs
);
494 /* Copy partially mapped page list */
496 retval
= ia32_copy_partial_page_list(p
, clone_flags
);
500 #ifdef CONFIG_PERFMON
501 if (current
->thread
.pfm_context
)
502 pfm_inherit(p
, child_ptregs
);
508 do_copy_task_regs (struct task_struct
*task
, struct unw_frame_info
*info
, void *arg
)
510 unsigned long mask
, sp
, nat_bits
= 0, ip
, ar_rnat
, urbs_end
, cfm
;
511 elf_greg_t
*dst
= arg
;
516 memset(dst
, 0, sizeof(elf_gregset_t
)); /* don't leak any kernel bits to user-level */
518 if (unw_unwind_to_user(info
) < 0)
521 unw_get_sp(info
, &sp
);
522 pt
= (struct pt_regs
*) (sp
+ 16);
524 urbs_end
= ia64_get_user_rbs_end(task
, pt
, &cfm
);
526 if (ia64_sync_user_rbs(task
, info
->sw
, pt
->ar_bspstore
, urbs_end
) < 0)
529 ia64_peek(task
, info
->sw
, urbs_end
, (long) ia64_rse_rnat_addr((long *) urbs_end
),
535 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
536 * predicate registers (p0-p63)
539 * ar.rsc ar.bsp ar.bspstore ar.rnat
540 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
544 for (i
= 1, mask
= (1UL << i
); i
< 32; ++i
) {
545 unw_get_gr(info
, i
, &dst
[i
], &nat
);
551 unw_get_pr(info
, &dst
[33]);
553 for (i
= 0; i
< 8; ++i
)
554 unw_get_br(info
, i
, &dst
[34 + i
]);
556 unw_get_rp(info
, &ip
);
557 dst
[42] = ip
+ ia64_psr(pt
)->ri
;
559 dst
[44] = pt
->cr_ipsr
& IA64_PSR_UM
;
561 unw_get_ar(info
, UNW_AR_RSC
, &dst
[45]);
563 * For bsp and bspstore, unw_get_ar() would return the kernel
564 * addresses, but we need the user-level addresses instead:
566 dst
[46] = urbs_end
; /* note: by convention PT_AR_BSP points to the end of the urbs! */
567 dst
[47] = pt
->ar_bspstore
;
569 unw_get_ar(info
, UNW_AR_CCV
, &dst
[49]);
570 unw_get_ar(info
, UNW_AR_UNAT
, &dst
[50]);
571 unw_get_ar(info
, UNW_AR_FPSR
, &dst
[51]);
572 dst
[52] = pt
->ar_pfs
; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
573 unw_get_ar(info
, UNW_AR_LC
, &dst
[53]);
574 unw_get_ar(info
, UNW_AR_EC
, &dst
[54]);
575 unw_get_ar(info
, UNW_AR_CSD
, &dst
[55]);
576 unw_get_ar(info
, UNW_AR_SSD
, &dst
[56]);
580 do_dump_task_fpu (struct task_struct
*task
, struct unw_frame_info
*info
, void *arg
)
582 elf_fpreg_t
*dst
= arg
;
585 memset(dst
, 0, sizeof(elf_fpregset_t
)); /* don't leak any "random" bits */
587 if (unw_unwind_to_user(info
) < 0)
590 /* f0 is 0.0, f1 is 1.0 */
592 for (i
= 2; i
< 32; ++i
)
593 unw_get_fr(info
, i
, dst
+ i
);
595 ia64_flush_fph(task
);
596 if ((task
->thread
.flags
& IA64_THREAD_FPH_VALID
) != 0)
597 memcpy(dst
+ 32, task
->thread
.fph
, 96*16);
601 do_copy_regs (struct unw_frame_info
*info
, void *arg
)
603 do_copy_task_regs(current
, info
, arg
);
607 do_dump_fpu (struct unw_frame_info
*info
, void *arg
)
609 do_dump_task_fpu(current
, info
, arg
);
613 dump_task_regs(struct task_struct
*task
, elf_gregset_t
*regs
)
615 struct unw_frame_info tcore_info
;
617 if (current
== task
) {
618 unw_init_running(do_copy_regs
, regs
);
620 memset(&tcore_info
, 0, sizeof(tcore_info
));
621 unw_init_from_blocked_task(&tcore_info
, task
);
622 do_copy_task_regs(task
, &tcore_info
, regs
);
628 ia64_elf_core_copy_regs (struct pt_regs
*pt
, elf_gregset_t dst
)
630 unw_init_running(do_copy_regs
, dst
);
634 dump_task_fpu (struct task_struct
*task
, elf_fpregset_t
*dst
)
636 struct unw_frame_info tcore_info
;
638 if (current
== task
) {
639 unw_init_running(do_dump_fpu
, dst
);
641 memset(&tcore_info
, 0, sizeof(tcore_info
));
642 unw_init_from_blocked_task(&tcore_info
, task
);
643 do_dump_task_fpu(task
, &tcore_info
, dst
);
649 dump_fpu (struct pt_regs
*pt
, elf_fpregset_t dst
)
651 unw_init_running(do_dump_fpu
, dst
);
652 return 1; /* f0-f31 are always valid so we always return 1 */
656 sys_execve (char __user
*filename
, char __user
* __user
*argv
, char __user
* __user
*envp
,
657 struct pt_regs
*regs
)
662 fname
= getname(filename
);
663 error
= PTR_ERR(fname
);
666 error
= do_execve(fname
, argv
, envp
, regs
);
673 kernel_thread (int (*fn
)(void *), void *arg
, unsigned long flags
)
675 extern void start_kernel_thread (void);
676 unsigned long *helper_fptr
= (unsigned long *) &start_kernel_thread
;
678 struct switch_stack sw
;
682 memset(®s
, 0, sizeof(regs
));
683 regs
.pt
.cr_iip
= helper_fptr
[0]; /* set entry point (IP) */
684 regs
.pt
.r1
= helper_fptr
[1]; /* set GP */
685 regs
.pt
.r9
= (unsigned long) fn
; /* 1st argument */
686 regs
.pt
.r11
= (unsigned long) arg
; /* 2nd argument */
687 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
688 regs
.pt
.cr_ipsr
= ia64_getreg(_IA64_REG_PSR
) | IA64_PSR_BN
;
689 regs
.pt
.cr_ifs
= 1UL << 63; /* mark as valid, empty frame */
690 regs
.sw
.ar_fpsr
= regs
.pt
.ar_fpsr
= ia64_getreg(_IA64_REG_AR_FPSR
);
691 regs
.sw
.ar_bspstore
= (unsigned long) current
+ IA64_RBS_OFFSET
;
692 regs
.sw
.pr
= (1 << PRED_KERNEL_STACK
);
693 return do_fork(flags
| CLONE_VM
| CLONE_UNTRACED
, 0, ®s
.pt
, 0, NULL
, NULL
);
695 EXPORT_SYMBOL(kernel_thread
);
697 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
699 kernel_thread_helper (int (*fn
)(void *), void *arg
)
701 #ifdef CONFIG_IA32_SUPPORT
702 if (IS_IA32_PROCESS(task_pt_regs(current
))) {
703 /* A kernel thread is always a 64-bit process. */
704 current
->thread
.map_base
= DEFAULT_MAP_BASE
;
705 current
->thread
.task_size
= DEFAULT_TASK_SIZE
;
706 ia64_set_kr(IA64_KR_IO_BASE
, current
->thread
.old_iob
);
707 ia64_set_kr(IA64_KR_TSSD
, current
->thread
.old_k1
);
714 * Flush thread state. This is called when a thread does an execve().
719 /* drop floating-point and debug-register state if it exists: */
720 current
->thread
.flags
&= ~(IA64_THREAD_FPH_VALID
| IA64_THREAD_DBG_VALID
);
721 ia64_drop_fpu(current
);
722 #ifdef CONFIG_IA32_SUPPORT
723 if (IS_IA32_PROCESS(task_pt_regs(current
))) {
724 ia32_drop_partial_page_list(current
);
725 current
->thread
.task_size
= IA32_PAGE_OFFSET
;
732 * Clean up state associated with current thread. This is called when
733 * the thread calls exit().
739 ia64_drop_fpu(current
);
740 #ifdef CONFIG_PERFMON
741 /* if needed, stop monitoring and flush state to perfmon context */
742 if (current
->thread
.pfm_context
)
743 pfm_exit_thread(current
);
745 /* free debug register resources */
746 if (current
->thread
.flags
& IA64_THREAD_DBG_VALID
)
747 pfm_release_debug_registers(current
);
749 if (IS_IA32_PROCESS(task_pt_regs(current
)))
750 ia32_drop_partial_page_list(current
);
754 get_wchan (struct task_struct
*p
)
756 struct unw_frame_info info
;
761 * Note: p may not be a blocked task (it could be current or
762 * another process running on some other CPU. Rather than
763 * trying to determine if p is really blocked, we just assume
764 * it's blocked and rely on the unwind routines to fail
765 * gracefully if the process wasn't really blocked after all.
768 unw_init_from_blocked_task(&info
, p
);
770 if (unw_unwind(&info
) < 0)
772 unw_get_ip(&info
, &ip
);
773 if (!in_sched_functions(ip
))
775 } while (count
++ < 16);
782 pal_power_mgmt_info_u_t power_info
[8];
783 unsigned long min_power
;
784 int i
, min_power_state
;
786 if (ia64_pal_halt_info(power_info
) != 0)
790 min_power
= power_info
[0].pal_power_mgmt_info_s
.power_consumption
;
791 for (i
= 1; i
< 8; ++i
)
792 if (power_info
[i
].pal_power_mgmt_info_s
.im
793 && power_info
[i
].pal_power_mgmt_info_s
.power_consumption
< min_power
) {
794 min_power
= power_info
[i
].pal_power_mgmt_info_s
.power_consumption
;
799 ia64_pal_halt(min_power_state
);
803 machine_restart (char *restart_cmd
)
805 (void) notify_die(DIE_MACHINE_RESTART
, restart_cmd
, NULL
, 0, 0, 0);
806 (*efi
.reset_system
)(EFI_RESET_WARM
, 0, 0, NULL
);
812 (void) notify_die(DIE_MACHINE_HALT
, "", NULL
, 0, 0, 0);
817 machine_power_off (void)