4 * Creates entries in /proc/sal for various system features.
6 * Copyright (c) 2003, 2006 Silicon Graphics, Inc. All rights reserved.
7 * Copyright (c) 2003 Hewlett-Packard Co
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
10 * 10/30/2001 jbarnes@sgi.com copied much of Stephane's palinfo
11 * code to create this file
12 * Oct 23 2003 kaos@sgi.com
13 * Replace IPI with set_cpus_allowed() to read a record from the required cpu.
14 * Redesign salinfo log processing to separate interrupt and user space
16 * Cache the record across multi-block reads from user space.
18 * Delete module_exit and MOD_INC/DEC_COUNT, salinfo cannot be a module.
20 * Jan 28 2004 kaos@sgi.com
21 * Periodically check for outstanding MCA or INIT records.
23 * Dec 5 2004 kaos@sgi.com
24 * Standardize which records are cleared automatically.
26 * Aug 18 2005 kaos@sgi.com
27 * mca.c may not pass a buffer, a NULL buffer just indicates that a new
28 * record is available in SAL.
29 * Replace some NR_CPUS by cpus_online, for hotplug cpu.
31 * Jan 5 2006 kaos@sgi.com
32 * Handle hotplug cpus coming online.
33 * Handle hotplug cpus going offline while they still have outstanding records.
34 * Use the cpu_* macros consistently.
35 * Replace the counting semaphore with a mutex and a test if the cpumask is non-empty.
36 * Modify the locking to make the test for "work to do" an atomic operation.
39 #include <linux/capability.h>
40 #include <linux/cpu.h>
41 #include <linux/types.h>
42 #include <linux/proc_fs.h>
43 #include <linux/module.h>
44 #include <linux/smp.h>
45 #include <linux/smp_lock.h>
46 #include <linux/timer.h>
47 #include <linux/vmalloc.h>
49 #include <asm/semaphore.h>
51 #include <asm/uaccess.h>
53 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
54 MODULE_DESCRIPTION("/proc interface to IA-64 SAL features");
55 MODULE_LICENSE("GPL");
57 static int salinfo_read(char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
);
60 const char *name
; /* name of the proc entry */
61 unsigned long feature
; /* feature bit */
62 struct proc_dir_entry
*entry
; /* registered entry (removal) */
66 * List {name,feature} pairs for every entry in /proc/sal/<feature>
67 * that this module exports
69 static salinfo_entry_t salinfo_entries
[]={
70 { "bus_lock", IA64_SAL_PLATFORM_FEATURE_BUS_LOCK
, },
71 { "irq_redirection", IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT
, },
72 { "ipi_redirection", IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT
, },
73 { "itc_drift", IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT
, },
76 #define NR_SALINFO_ENTRIES ARRAY_SIZE(salinfo_entries)
78 static char *salinfo_log_name
[] = {
85 static struct proc_dir_entry
*salinfo_proc_entries
[
86 ARRAY_SIZE(salinfo_entries
) + /* /proc/sal/bus_lock */
87 ARRAY_SIZE(salinfo_log_name
) + /* /proc/sal/{mca,...} */
88 (2 * ARRAY_SIZE(salinfo_log_name
)) + /* /proc/sal/mca/{event,data} */
91 /* Some records we get ourselves, some are accessed as saved data in buffers
92 * that are owned by mca.c.
94 struct salinfo_data_saved
{
101 /* State transitions. Actions are :-
102 * Write "read <cpunum>" to the data file.
103 * Write "clear <cpunum>" to the data file.
104 * Write "oemdata <cpunum> <offset> to the data file.
105 * Read from the data file.
106 * Close the data file.
108 * Start state is NO_DATA.
111 * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
112 * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
113 * write "oemdata <cpunum> <offset> -> return -EINVAL.
114 * read data -> return EOF.
115 * close -> unchanged. Free record areas.
118 * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
119 * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
120 * write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
121 * read data -> return the INIT/MCA/CMC/CPE record.
122 * close -> unchanged. Keep record areas.
125 * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
126 * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
127 * write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
128 * read data -> return the formatted oemdata.
129 * close -> unchanged. Keep record areas.
131 * Closing the data file does not change the state. This allows shell scripts
132 * to manipulate salinfo data, each shell redirection opens the file, does one
133 * action then closes it again. The record areas are only freed at close when
134 * the state is NO_DATA.
142 struct salinfo_data
{
143 cpumask_t cpu_event
; /* which cpus have outstanding events */
144 struct semaphore mutex
;
147 u8
*oemdata
; /* decoded oem data */
149 int open
; /* single-open to prevent races */
151 u8 saved_num
; /* using a saved record? */
152 enum salinfo_state state
:8; /* processing state */
154 int cpu_check
; /* next CPU to check */
155 struct salinfo_data_saved data_saved
[5];/* save last 5 records from mca.c, must be < 255 */
158 static struct salinfo_data salinfo_data
[ARRAY_SIZE(salinfo_log_name
)];
160 static DEFINE_SPINLOCK(data_lock
);
161 static DEFINE_SPINLOCK(data_saved_lock
);
163 /** salinfo_platform_oemdata - optional callback to decode oemdata from an error
165 * @sect_header: pointer to the start of the section to decode.
166 * @oemdata: returns vmalloc area containing the decded output.
167 * @oemdata_size: returns length of decoded output (strlen).
169 * Description: If user space asks for oem data to be decoded by the kernel
170 * and/or prom and the platform has set salinfo_platform_oemdata to the address
171 * of a platform specific routine then call that routine. salinfo_platform_oemdata
172 * vmalloc's and formats its output area, returning the address of the text
173 * and its strlen. Returns 0 for success, -ve for error. The callback is
174 * invoked on the cpu that generated the error record.
176 int (*salinfo_platform_oemdata
)(const u8
*sect_header
, u8
**oemdata
, u64
*oemdata_size
);
178 struct salinfo_platform_oemdata_parms
{
185 /* Kick the mutex that tells user space that there is work to do. Instead of
186 * trying to track the state of the mutex across multiple cpus, in user
187 * context, interrupt context, non-maskable interrupt context and hotplug cpu,
188 * it is far easier just to grab the mutex if it is free then release it.
190 * This routine must be called with data_saved_lock held, to make the down/up
194 salinfo_work_to_do(struct salinfo_data
*data
)
196 down_trylock(&data
->mutex
);
201 salinfo_platform_oemdata_cpu(void *context
)
203 struct salinfo_platform_oemdata_parms
*parms
= context
;
204 parms
->ret
= salinfo_platform_oemdata(parms
->efi_guid
, parms
->oemdata
, parms
->oemdata_size
);
208 shift1_data_saved (struct salinfo_data
*data
, int shift
)
210 memcpy(data
->data_saved
+shift
, data
->data_saved
+shift
+1,
211 (ARRAY_SIZE(data
->data_saved
) - (shift
+1)) * sizeof(data
->data_saved
[0]));
212 memset(data
->data_saved
+ ARRAY_SIZE(data
->data_saved
) - 1, 0,
213 sizeof(data
->data_saved
[0]));
216 /* This routine is invoked in interrupt context. Note: mca.c enables
217 * interrupts before calling this code for CMC/CPE. MCA and INIT events are
218 * not irq safe, do not call any routines that use spinlocks, they may deadlock.
219 * MCA and INIT records are recorded, a timer event will look for any
220 * outstanding events and wake up the user space code.
222 * The buffer passed from mca.c points to the output from ia64_log_get. This is
223 * a persistent buffer but its contents can change between the interrupt and
224 * when user space processes the record. Save the record id to identify
225 * changes. If the buffer is NULL then just update the bitmap.
228 salinfo_log_wakeup(int type
, u8
*buffer
, u64 size
, int irqsafe
)
230 struct salinfo_data
*data
= salinfo_data
+ type
;
231 struct salinfo_data_saved
*data_saved
;
232 unsigned long flags
= 0;
234 int saved_size
= ARRAY_SIZE(data
->data_saved
);
236 BUG_ON(type
>= ARRAY_SIZE(salinfo_log_name
));
239 spin_lock_irqsave(&data_saved_lock
, flags
);
241 for (i
= 0, data_saved
= data
->data_saved
; i
< saved_size
; ++i
, ++data_saved
) {
242 if (!data_saved
->buffer
)
245 if (i
== saved_size
) {
246 if (!data
->saved_num
) {
247 shift1_data_saved(data
, 0);
248 data_saved
= data
->data_saved
+ saved_size
- 1;
253 data_saved
->cpu
= smp_processor_id();
254 data_saved
->id
= ((sal_log_record_header_t
*)buffer
)->id
;
255 data_saved
->size
= size
;
256 data_saved
->buffer
= buffer
;
259 cpu_set(smp_processor_id(), data
->cpu_event
);
261 salinfo_work_to_do(data
);
262 spin_unlock_irqrestore(&data_saved_lock
, flags
);
266 /* Check for outstanding MCA/INIT records every minute (arbitrary) */
267 #define SALINFO_TIMER_DELAY (60*HZ)
268 static struct timer_list salinfo_timer
;
271 salinfo_timeout_check(struct salinfo_data
*data
)
276 if (!cpus_empty(data
->cpu_event
)) {
277 spin_lock_irqsave(&data_saved_lock
, flags
);
278 salinfo_work_to_do(data
);
279 spin_unlock_irqrestore(&data_saved_lock
, flags
);
284 salinfo_timeout (unsigned long arg
)
286 salinfo_timeout_check(salinfo_data
+ SAL_INFO_TYPE_MCA
);
287 salinfo_timeout_check(salinfo_data
+ SAL_INFO_TYPE_INIT
);
288 salinfo_timer
.expires
= jiffies
+ SALINFO_TIMER_DELAY
;
289 add_timer(&salinfo_timer
);
293 salinfo_event_open(struct inode
*inode
, struct file
*file
)
295 if (!capable(CAP_SYS_ADMIN
))
301 salinfo_event_read(struct file
*file
, char __user
*buffer
, size_t count
, loff_t
*ppos
)
303 struct inode
*inode
= file
->f_dentry
->d_inode
;
304 struct proc_dir_entry
*entry
= PDE(inode
);
305 struct salinfo_data
*data
= entry
->data
;
311 if (cpus_empty(data
->cpu_event
) && down_trylock(&data
->mutex
)) {
312 if (file
->f_flags
& O_NONBLOCK
)
314 if (down_interruptible(&data
->mutex
))
319 for (i
= 0; i
< NR_CPUS
; i
++) {
320 if (cpu_isset(n
, data
->cpu_event
)) {
321 if (!cpu_online(n
)) {
322 cpu_clear(n
, data
->cpu_event
);
335 /* for next read, start checking at next CPU */
336 data
->cpu_check
= cpu
;
337 if (++data
->cpu_check
== NR_CPUS
)
340 snprintf(cmd
, sizeof(cmd
), "read %d\n", cpu
);
345 if (copy_to_user(buffer
, cmd
, size
))
351 static struct file_operations salinfo_event_fops
= {
352 .open
= salinfo_event_open
,
353 .read
= salinfo_event_read
,
357 salinfo_log_open(struct inode
*inode
, struct file
*file
)
359 struct proc_dir_entry
*entry
= PDE(inode
);
360 struct salinfo_data
*data
= entry
->data
;
362 if (!capable(CAP_SYS_ADMIN
))
365 spin_lock(&data_lock
);
367 spin_unlock(&data_lock
);
371 spin_unlock(&data_lock
);
373 if (data
->state
== STATE_NO_DATA
&&
374 !(data
->log_buffer
= vmalloc(ia64_sal_get_state_info_size(data
->type
)))) {
383 salinfo_log_release(struct inode
*inode
, struct file
*file
)
385 struct proc_dir_entry
*entry
= PDE(inode
);
386 struct salinfo_data
*data
= entry
->data
;
388 if (data
->state
== STATE_NO_DATA
) {
389 vfree(data
->log_buffer
);
390 vfree(data
->oemdata
);
391 data
->log_buffer
= NULL
;
392 data
->oemdata
= NULL
;
394 spin_lock(&data_lock
);
396 spin_unlock(&data_lock
);
401 call_on_cpu(int cpu
, void (*fn
)(void *), void *arg
)
403 cpumask_t save_cpus_allowed
= current
->cpus_allowed
;
404 cpumask_t new_cpus_allowed
= cpumask_of_cpu(cpu
);
405 set_cpus_allowed(current
, new_cpus_allowed
);
407 set_cpus_allowed(current
, save_cpus_allowed
);
411 salinfo_log_read_cpu(void *context
)
413 struct salinfo_data
*data
= context
;
414 sal_log_record_header_t
*rh
;
415 data
->log_size
= ia64_sal_get_state_info(data
->type
, (u64
*) data
->log_buffer
);
416 rh
= (sal_log_record_header_t
*)(data
->log_buffer
);
417 /* Clear corrected errors as they are read from SAL */
418 if (rh
->severity
== sal_log_severity_corrected
)
419 ia64_sal_clear_state_info(data
->type
);
423 salinfo_log_new_read(int cpu
, struct salinfo_data
*data
)
425 struct salinfo_data_saved
*data_saved
;
428 int saved_size
= ARRAY_SIZE(data
->data_saved
);
431 spin_lock_irqsave(&data_saved_lock
, flags
);
433 for (i
= 0, data_saved
= data
->data_saved
; i
< saved_size
; ++i
, ++data_saved
) {
434 if (data_saved
->buffer
&& data_saved
->cpu
== cpu
) {
435 sal_log_record_header_t
*rh
= (sal_log_record_header_t
*)(data_saved
->buffer
);
436 data
->log_size
= data_saved
->size
;
437 memcpy(data
->log_buffer
, rh
, data
->log_size
);
438 barrier(); /* id check must not be moved */
439 if (rh
->id
== data_saved
->id
) {
440 data
->saved_num
= i
+1;
443 /* saved record changed by mca.c since interrupt, discard it */
444 shift1_data_saved(data
, i
);
448 spin_unlock_irqrestore(&data_saved_lock
, flags
);
450 if (!data
->saved_num
)
451 call_on_cpu(cpu
, salinfo_log_read_cpu
, data
);
452 if (!data
->log_size
) {
453 data
->state
= STATE_NO_DATA
;
454 cpu_clear(cpu
, data
->cpu_event
);
456 data
->state
= STATE_LOG_RECORD
;
461 salinfo_log_read(struct file
*file
, char __user
*buffer
, size_t count
, loff_t
*ppos
)
463 struct inode
*inode
= file
->f_dentry
->d_inode
;
464 struct proc_dir_entry
*entry
= PDE(inode
);
465 struct salinfo_data
*data
= entry
->data
;
469 if (data
->state
== STATE_LOG_RECORD
) {
470 buf
= data
->log_buffer
;
471 bufsize
= data
->log_size
;
472 } else if (data
->state
== STATE_OEMDATA
) {
474 bufsize
= data
->oemdata_size
;
479 return simple_read_from_buffer(buffer
, count
, ppos
, buf
, bufsize
);
483 salinfo_log_clear_cpu(void *context
)
485 struct salinfo_data
*data
= context
;
486 ia64_sal_clear_state_info(data
->type
);
490 salinfo_log_clear(struct salinfo_data
*data
, int cpu
)
492 sal_log_record_header_t
*rh
;
494 spin_lock_irqsave(&data_saved_lock
, flags
);
495 data
->state
= STATE_NO_DATA
;
496 if (!cpu_isset(cpu
, data
->cpu_event
)) {
497 spin_unlock_irqrestore(&data_saved_lock
, flags
);
500 cpu_clear(cpu
, data
->cpu_event
);
501 if (data
->saved_num
) {
502 shift1_data_saved(data
, data
->saved_num
- 1);
505 spin_unlock_irqrestore(&data_saved_lock
, flags
);
506 rh
= (sal_log_record_header_t
*)(data
->log_buffer
);
507 /* Corrected errors have already been cleared from SAL */
508 if (rh
->severity
!= sal_log_severity_corrected
)
509 call_on_cpu(cpu
, salinfo_log_clear_cpu
, data
);
510 /* clearing a record may make a new record visible */
511 salinfo_log_new_read(cpu
, data
);
512 if (data
->state
== STATE_LOG_RECORD
) {
513 spin_lock_irqsave(&data_saved_lock
, flags
);
514 cpu_set(cpu
, data
->cpu_event
);
515 salinfo_work_to_do(data
);
516 spin_unlock_irqrestore(&data_saved_lock
, flags
);
522 salinfo_log_write(struct file
*file
, const char __user
*buffer
, size_t count
, loff_t
*ppos
)
524 struct inode
*inode
= file
->f_dentry
->d_inode
;
525 struct proc_dir_entry
*entry
= PDE(inode
);
526 struct salinfo_data
*data
= entry
->data
;
535 if (copy_from_user(cmd
, buffer
, size
))
538 if (sscanf(cmd
, "read %d", &cpu
) == 1) {
539 salinfo_log_new_read(cpu
, data
);
540 } else if (sscanf(cmd
, "clear %d", &cpu
) == 1) {
542 if ((ret
= salinfo_log_clear(data
, cpu
)))
544 } else if (sscanf(cmd
, "oemdata %d %d", &cpu
, &offset
) == 2) {
545 if (data
->state
!= STATE_LOG_RECORD
&& data
->state
!= STATE_OEMDATA
)
547 if (offset
> data
->log_size
- sizeof(efi_guid_t
))
549 data
->state
= STATE_OEMDATA
;
550 if (salinfo_platform_oemdata
) {
551 struct salinfo_platform_oemdata_parms parms
= {
552 .efi_guid
= data
->log_buffer
+ offset
,
553 .oemdata
= &data
->oemdata
,
554 .oemdata_size
= &data
->oemdata_size
556 call_on_cpu(cpu
, salinfo_platform_oemdata_cpu
, &parms
);
560 data
->oemdata_size
= 0;
567 static struct file_operations salinfo_data_fops
= {
568 .open
= salinfo_log_open
,
569 .release
= salinfo_log_release
,
570 .read
= salinfo_log_read
,
571 .write
= salinfo_log_write
,
574 #ifdef CONFIG_HOTPLUG_CPU
576 salinfo_cpu_callback(struct notifier_block
*nb
, unsigned long action
, void *hcpu
)
578 unsigned int i
, cpu
= (unsigned long)hcpu
;
580 struct salinfo_data
*data
;
583 spin_lock_irqsave(&data_saved_lock
, flags
);
584 for (i
= 0, data
= salinfo_data
;
585 i
< ARRAY_SIZE(salinfo_data
);
587 cpu_set(cpu
, data
->cpu_event
);
588 salinfo_work_to_do(data
);
590 spin_unlock_irqrestore(&data_saved_lock
, flags
);
593 spin_lock_irqsave(&data_saved_lock
, flags
);
594 for (i
= 0, data
= salinfo_data
;
595 i
< ARRAY_SIZE(salinfo_data
);
597 struct salinfo_data_saved
*data_saved
;
599 for (j
= ARRAY_SIZE(data
->data_saved
) - 1, data_saved
= data
->data_saved
+ j
;
602 if (data_saved
->buffer
&& data_saved
->cpu
== cpu
) {
603 shift1_data_saved(data
, j
);
606 cpu_clear(cpu
, data
->cpu_event
);
608 spin_unlock_irqrestore(&data_saved_lock
, flags
);
614 static struct notifier_block salinfo_cpu_notifier
=
616 .notifier_call
= salinfo_cpu_callback
,
619 #endif /* CONFIG_HOTPLUG_CPU */
624 struct proc_dir_entry
*salinfo_dir
; /* /proc/sal dir entry */
625 struct proc_dir_entry
**sdir
= salinfo_proc_entries
; /* keeps track of every entry */
626 struct proc_dir_entry
*dir
, *entry
;
627 struct salinfo_data
*data
;
630 salinfo_dir
= proc_mkdir("sal", NULL
);
634 for (i
=0; i
< NR_SALINFO_ENTRIES
; i
++) {
635 /* pass the feature bit in question as misc data */
636 *sdir
++ = create_proc_read_entry (salinfo_entries
[i
].name
, 0, salinfo_dir
,
637 salinfo_read
, (void *)salinfo_entries
[i
].feature
);
640 for (i
= 0; i
< ARRAY_SIZE(salinfo_log_name
); i
++) {
641 data
= salinfo_data
+ i
;
643 init_MUTEX(&data
->mutex
);
644 dir
= proc_mkdir(salinfo_log_name
[i
], salinfo_dir
);
648 entry
= create_proc_entry("event", S_IRUSR
, dir
);
652 entry
->proc_fops
= &salinfo_event_fops
;
655 entry
= create_proc_entry("data", S_IRUSR
| S_IWUSR
, dir
);
659 entry
->proc_fops
= &salinfo_data_fops
;
662 /* we missed any events before now */
663 for_each_online_cpu(j
)
664 cpu_set(j
, data
->cpu_event
);
669 *sdir
++ = salinfo_dir
;
671 init_timer(&salinfo_timer
);
672 salinfo_timer
.expires
= jiffies
+ SALINFO_TIMER_DELAY
;
673 salinfo_timer
.function
= &salinfo_timeout
;
674 add_timer(&salinfo_timer
);
676 register_hotcpu_notifier(&salinfo_cpu_notifier
);
682 * 'data' contains an integer that corresponds to the feature we're
686 salinfo_read(char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
)
690 len
= sprintf(page
, (sal_platform_features
& (unsigned long)data
) ? "1\n" : "0\n");
692 if (len
<= off
+count
) *eof
= 1;
697 if (len
>count
) len
= count
;
703 module_init(salinfo_init
);