[PATCH] briq_panel: read() and write() get __user pointers, damnit
[linux-2.6/verdex.git] / arch / ia64 / kernel / time.c
blob6928ef0d64d852abc4a41b7ff5cfc2e1f14d5249
1 /*
2 * linux/arch/ia64/kernel/time.c
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/profile.h>
22 #include <linux/timex.h>
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/ptrace.h>
28 #include <asm/sal.h>
29 #include <asm/sections.h>
30 #include <asm/system.h>
32 extern unsigned long wall_jiffies;
34 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
36 #ifdef CONFIG_IA64_DEBUG_IRQ
38 unsigned long last_cli_ip;
39 EXPORT_SYMBOL(last_cli_ip);
41 #endif
43 static struct time_interpolator itc_interpolator = {
44 .shift = 16,
45 .mask = 0xffffffffffffffffLL,
46 .source = TIME_SOURCE_CPU
49 static irqreturn_t
50 timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
52 unsigned long new_itm;
54 if (unlikely(cpu_is_offline(smp_processor_id()))) {
55 return IRQ_HANDLED;
58 platform_timer_interrupt(irq, dev_id, regs);
60 new_itm = local_cpu_data->itm_next;
62 if (!time_after(ia64_get_itc(), new_itm))
63 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
64 ia64_get_itc(), new_itm);
66 profile_tick(CPU_PROFILING, regs);
68 while (1) {
69 update_process_times(user_mode(regs));
71 new_itm += local_cpu_data->itm_delta;
73 if (smp_processor_id() == time_keeper_id) {
75 * Here we are in the timer irq handler. We have irqs locally
76 * disabled, but we don't know if the timer_bh is running on
77 * another CPU. We need to avoid to SMP race by acquiring the
78 * xtime_lock.
80 write_seqlock(&xtime_lock);
81 do_timer(regs);
82 local_cpu_data->itm_next = new_itm;
83 write_sequnlock(&xtime_lock);
84 } else
85 local_cpu_data->itm_next = new_itm;
87 if (time_after(new_itm, ia64_get_itc()))
88 break;
91 do {
93 * If we're too close to the next clock tick for
94 * comfort, we increase the safety margin by
95 * intentionally dropping the next tick(s). We do NOT
96 * update itm.next because that would force us to call
97 * do_timer() which in turn would let our clock run
98 * too fast (with the potentially devastating effect
99 * of losing monotony of time).
101 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
102 new_itm += local_cpu_data->itm_delta;
103 ia64_set_itm(new_itm);
104 /* double check, in case we got hit by a (slow) PMI: */
105 } while (time_after_eq(ia64_get_itc(), new_itm));
106 return IRQ_HANDLED;
110 * Encapsulate access to the itm structure for SMP.
112 void
113 ia64_cpu_local_tick (void)
115 int cpu = smp_processor_id();
116 unsigned long shift = 0, delta;
118 /* arrange for the cycle counter to generate a timer interrupt: */
119 ia64_set_itv(IA64_TIMER_VECTOR);
121 delta = local_cpu_data->itm_delta;
123 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
124 * same time:
126 if (cpu) {
127 unsigned long hi = 1UL << ia64_fls(cpu);
128 shift = (2*(cpu - hi) + 1) * delta/hi/2;
130 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
131 ia64_set_itm(local_cpu_data->itm_next);
134 static int nojitter;
136 static int __init nojitter_setup(char *str)
138 nojitter = 1;
139 printk("Jitter checking for ITC timers disabled\n");
140 return 1;
143 __setup("nojitter", nojitter_setup);
146 void __devinit
147 ia64_init_itm (void)
149 unsigned long platform_base_freq, itc_freq;
150 struct pal_freq_ratio itc_ratio, proc_ratio;
151 long status, platform_base_drift, itc_drift;
154 * According to SAL v2.6, we need to use a SAL call to determine the platform base
155 * frequency and then a PAL call to determine the frequency ratio between the ITC
156 * and the base frequency.
158 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
159 &platform_base_freq, &platform_base_drift);
160 if (status != 0) {
161 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
162 } else {
163 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
164 if (status != 0)
165 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
167 if (status != 0) {
168 /* invent "random" values */
169 printk(KERN_ERR
170 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
171 platform_base_freq = 100000000;
172 platform_base_drift = -1; /* no drift info */
173 itc_ratio.num = 3;
174 itc_ratio.den = 1;
176 if (platform_base_freq < 40000000) {
177 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
178 platform_base_freq);
179 platform_base_freq = 75000000;
180 platform_base_drift = -1;
182 if (!proc_ratio.den)
183 proc_ratio.den = 1; /* avoid division by zero */
184 if (!itc_ratio.den)
185 itc_ratio.den = 1; /* avoid division by zero */
187 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
189 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
190 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
191 "ITC freq=%lu.%03luMHz", smp_processor_id(),
192 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
193 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
195 if (platform_base_drift != -1) {
196 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
197 printk("+/-%ldppm\n", itc_drift);
198 } else {
199 itc_drift = -1;
200 printk("\n");
203 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
204 local_cpu_data->itc_freq = itc_freq;
205 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
206 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
207 + itc_freq/2)/itc_freq;
209 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
210 itc_interpolator.frequency = local_cpu_data->itc_freq;
211 itc_interpolator.drift = itc_drift;
212 #ifdef CONFIG_SMP
213 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
214 * Jitter compensation requires a cmpxchg which may limit
215 * the scalability of the syscalls for retrieving time.
216 * The ITC synchronization is usually successful to within a few
217 * ITC ticks but this is not a sure thing. If you need to improve
218 * timer performance in SMP situations then boot the kernel with the
219 * "nojitter" option. However, doing so may result in time fluctuating (maybe
220 * even going backward) if the ITC offsets between the individual CPUs
221 * are too large.
223 if (!nojitter) itc_interpolator.jitter = 1;
224 #endif
225 register_time_interpolator(&itc_interpolator);
228 /* Setup the CPU local timer tick */
229 ia64_cpu_local_tick();
232 static struct irqaction timer_irqaction = {
233 .handler = timer_interrupt,
234 .flags = IRQF_DISABLED,
235 .name = "timer"
238 void __devinit ia64_disable_timer(void)
240 ia64_set_itv(1 << 16);
243 void __init
244 time_init (void)
246 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
247 efi_gettimeofday(&xtime);
248 ia64_init_itm();
251 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
252 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
254 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
258 * Generic udelay assumes that if preemption is allowed and the thread
259 * migrates to another CPU, that the ITC values are synchronized across
260 * all CPUs.
262 static void
263 ia64_itc_udelay (unsigned long usecs)
265 unsigned long start = ia64_get_itc();
266 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
268 while (time_before(ia64_get_itc(), end))
269 cpu_relax();
272 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
274 void
275 udelay (unsigned long usecs)
277 (*ia64_udelay)(usecs);
279 EXPORT_SYMBOL(udelay);
281 static unsigned long long ia64_itc_printk_clock(void)
283 if (ia64_get_kr(IA64_KR_PER_CPU_DATA))
284 return sched_clock();
285 return 0;
288 static unsigned long long ia64_default_printk_clock(void)
290 return (unsigned long long)(jiffies_64 - INITIAL_JIFFIES) *
291 (1000000000/HZ);
294 unsigned long long (*ia64_printk_clock)(void) = &ia64_default_printk_clock;
296 unsigned long long printk_clock(void)
298 return ia64_printk_clock();
301 void __init
302 ia64_setup_printk_clock(void)
304 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT))
305 ia64_printk_clock = ia64_itc_printk_clock;