2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
27 #include <asm/bootinfo.h>
28 #include <asm/cache.h>
29 #include <asm/compiler.h>
31 #include <asm/cpu-features.h>
32 #include <asm/div64.h>
33 #include <asm/sections.h>
37 * The integer part of the number of usecs per jiffy is taken from tick,
38 * but the fractional part is not recorded, so we calculate it using the
39 * initial value of HZ. This aids systems where tick isn't really an
40 * integer (e.g. for HZ = 128).
42 #define USECS_PER_JIFFY TICK_SIZE
43 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
45 #define TICK_SIZE (tick_nsec / 1000)
50 extern volatile unsigned long wall_jiffies
;
52 DEFINE_SPINLOCK(rtc_lock
);
55 * By default we provide the null RTC ops
57 static unsigned long null_rtc_get_time(void)
59 return mktime(2000, 1, 1, 0, 0, 0);
62 static int null_rtc_set_time(unsigned long sec
)
67 unsigned long (*rtc_mips_get_time
)(void) = null_rtc_get_time
;
68 int (*rtc_mips_set_time
)(unsigned long) = null_rtc_set_time
;
69 int (*rtc_mips_set_mmss
)(unsigned long);
72 /* usecs per counter cycle, shifted to left by 32 bits */
73 static unsigned int sll32_usecs_per_cycle
;
75 /* how many counter cycles in a jiffy */
76 static unsigned long cycles_per_jiffy __read_mostly
;
78 /* Cycle counter value at the previous timer interrupt.. */
79 static unsigned int timerhi
, timerlo
;
81 /* expirelo is the count value for next CPU timer interrupt */
82 static unsigned int expirelo
;
86 * Null timer ack for systems not needing one (e.g. i8254).
88 static void null_timer_ack(void) { /* nothing */ }
91 * Null high precision timer functions for systems lacking one.
93 static unsigned int null_hpt_read(void)
98 static void null_hpt_init(unsigned int count
)
105 * Timer ack for an R4k-compatible timer of a known frequency.
107 static void c0_timer_ack(void)
111 #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */
112 /* Ack this timer interrupt and set the next one. */
113 expirelo
+= cycles_per_jiffy
;
115 write_c0_compare(expirelo
);
117 /* Check to see if we have missed any timer interrupts. */
118 while (((count
= read_c0_count()) - expirelo
) < 0x7fffffff) {
119 /* missed_timer_count++; */
120 expirelo
= count
+ cycles_per_jiffy
;
121 write_c0_compare(expirelo
);
126 * High precision timer functions for a R4k-compatible timer.
128 static unsigned int c0_hpt_read(void)
130 return read_c0_count();
133 /* For use solely as a high precision timer. */
134 static void c0_hpt_init(unsigned int count
)
136 write_c0_count(read_c0_count() - count
);
139 /* For use both as a high precision timer and an interrupt source. */
140 static void c0_hpt_timer_init(unsigned int count
)
142 count
= read_c0_count() - count
;
143 expirelo
= (count
/ cycles_per_jiffy
+ 1) * cycles_per_jiffy
;
144 write_c0_count(expirelo
- cycles_per_jiffy
);
145 write_c0_compare(expirelo
);
146 write_c0_count(count
);
149 int (*mips_timer_state
)(void);
150 void (*mips_timer_ack
)(void);
151 unsigned int (*mips_hpt_read
)(void);
152 void (*mips_hpt_init
)(unsigned int);
156 * This version of gettimeofday has microsecond resolution and better than
157 * microsecond precision on fast machines with cycle counter.
159 void do_gettimeofday(struct timeval
*tv
)
163 unsigned long usec
, sec
;
164 unsigned long max_ntp_tick
;
167 seq
= read_seqbegin(&xtime_lock
);
169 usec
= do_gettimeoffset();
171 lost
= jiffies
- wall_jiffies
;
174 * If time_adjust is negative then NTP is slowing the clock
175 * so make sure not to go into next possible interval.
176 * Better to lose some accuracy than have time go backwards..
178 if (unlikely(time_adjust
< 0)) {
179 max_ntp_tick
= (USEC_PER_SEC
/ HZ
) - tickadj
;
180 usec
= min(usec
, max_ntp_tick
);
183 usec
+= lost
* max_ntp_tick
;
184 } else if (unlikely(lost
))
185 usec
+= lost
* (USEC_PER_SEC
/ HZ
);
188 usec
+= (xtime
.tv_nsec
/ 1000);
190 } while (read_seqretry(&xtime_lock
, seq
));
192 while (usec
>= 1000000) {
201 EXPORT_SYMBOL(do_gettimeofday
);
203 int do_settimeofday(struct timespec
*tv
)
205 time_t wtm_sec
, sec
= tv
->tv_sec
;
206 long wtm_nsec
, nsec
= tv
->tv_nsec
;
208 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
211 write_seqlock_irq(&xtime_lock
);
214 * This is revolting. We need to set "xtime" correctly. However,
215 * the value in this location is the value at the most recent update
216 * of wall time. Discover what correction gettimeofday() would have
217 * made, and then undo it!
219 nsec
-= do_gettimeoffset() * NSEC_PER_USEC
;
220 nsec
-= (jiffies
- wall_jiffies
) * tick_nsec
;
222 wtm_sec
= wall_to_monotonic
.tv_sec
+ (xtime
.tv_sec
- sec
);
223 wtm_nsec
= wall_to_monotonic
.tv_nsec
+ (xtime
.tv_nsec
- nsec
);
225 set_normalized_timespec(&xtime
, sec
, nsec
);
226 set_normalized_timespec(&wall_to_monotonic
, wtm_sec
, wtm_nsec
);
229 write_sequnlock_irq(&xtime_lock
);
234 EXPORT_SYMBOL(do_settimeofday
);
237 * Gettimeoffset routines. These routines returns the time duration
238 * since last timer interrupt in usecs.
240 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
241 * Otherwise use calibrate_gettimeoffset()
243 * If the CPU does not have the counter register, you can either supply
244 * your own gettimeoffset() routine, or use null_gettimeoffset(), which
245 * gives the same resolution as HZ.
248 static unsigned long null_gettimeoffset(void)
254 /* The function pointer to one of the gettimeoffset funcs. */
255 unsigned long (*do_gettimeoffset
)(void) = null_gettimeoffset
;
258 static unsigned long fixed_rate_gettimeoffset(void)
263 /* Get last timer tick in absolute kernel time */
264 count
= mips_hpt_read();
266 /* .. relative to previous jiffy (32 bits is enough) */
269 __asm__("multu %1,%2"
271 : "r" (count
), "r" (sll32_usecs_per_cycle
)
272 : "lo", GCC_REG_ACCUM
);
275 * Due to possible jiffies inconsistencies, we need to check
276 * the result so that we'll get a timer that is monotonic.
278 if (res
>= USECS_PER_JIFFY
)
279 res
= USECS_PER_JIFFY
- 1;
286 * Cached "1/(clocks per usec) * 2^32" value.
287 * It has to be recalculated once each jiffy.
289 static unsigned long cached_quotient
;
291 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
292 static unsigned long last_jiffies
;
295 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
297 static unsigned long calibrate_div32_gettimeoffset(void)
300 unsigned long res
, tmp
;
301 unsigned long quotient
;
305 quotient
= cached_quotient
;
307 if (last_jiffies
!= tmp
) {
309 if (last_jiffies
!= 0) {
311 do_div64_32(r0
, timerhi
, timerlo
, tmp
);
312 do_div64_32(quotient
, USECS_PER_JIFFY
,
313 USECS_PER_JIFFY_FRAC
, r0
);
314 cached_quotient
= quotient
;
318 /* Get last timer tick in absolute kernel time */
319 count
= mips_hpt_read();
321 /* .. relative to previous jiffy (32 bits is enough) */
324 __asm__("multu %1,%2"
326 : "r" (count
), "r" (quotient
)
327 : "lo", GCC_REG_ACCUM
);
330 * Due to possible jiffies inconsistencies, we need to check
331 * the result so that we'll get a timer that is monotonic.
333 if (res
>= USECS_PER_JIFFY
)
334 res
= USECS_PER_JIFFY
- 1;
339 static unsigned long calibrate_div64_gettimeoffset(void)
342 unsigned long res
, tmp
;
343 unsigned long quotient
;
347 quotient
= cached_quotient
;
349 if (last_jiffies
!= tmp
) {
353 __asm__(".set push\n\t"
365 : "=&r" (quotient
), "=&r" (r0
)
366 : "r" (timerhi
), "m" (timerlo
),
367 "r" (tmp
), "r" (USECS_PER_JIFFY
),
368 "r" (USECS_PER_JIFFY_FRAC
)
369 : "hi", "lo", GCC_REG_ACCUM
);
370 cached_quotient
= quotient
;
374 /* Get last timer tick in absolute kernel time */
375 count
= mips_hpt_read();
377 /* .. relative to previous jiffy (32 bits is enough) */
380 __asm__("multu %1,%2"
382 : "r" (count
), "r" (quotient
)
383 : "lo", GCC_REG_ACCUM
);
386 * Due to possible jiffies inconsistencies, we need to check
387 * the result so that we'll get a timer that is monotonic.
389 if (res
>= USECS_PER_JIFFY
)
390 res
= USECS_PER_JIFFY
- 1;
396 /* last time when xtime and rtc are sync'ed up */
397 static long last_rtc_update
;
400 * local_timer_interrupt() does profiling and process accounting
401 * on a per-CPU basis.
403 * In UP mode, it is invoked from the (global) timer_interrupt.
405 * In SMP mode, it might invoked by per-CPU timer interrupt, or
406 * a broadcasted inter-processor interrupt which itself is triggered
407 * by the global timer interrupt.
409 void local_timer_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
412 profile_tick(CPU_PROFILING
, regs
);
413 update_process_times(user_mode(regs
));
417 * High-level timer interrupt service routines. This function
418 * is set as irqaction->handler and is invoked through do_IRQ.
420 irqreturn_t
timer_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
425 write_seqlock(&xtime_lock
);
427 count
= mips_hpt_read();
430 /* Update timerhi/timerlo for intra-jiffy calibration. */
431 timerhi
+= count
< timerlo
; /* Wrap around */
435 * call the generic timer interrupt handling
440 * If we have an externally synchronized Linux clock, then update
441 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
442 * called as close as possible to 500 ms before the new second starts.
445 xtime
.tv_sec
> last_rtc_update
+ 660 &&
446 (xtime
.tv_nsec
/ 1000) >= 500000 - ((unsigned) TICK_SIZE
) / 2 &&
447 (xtime
.tv_nsec
/ 1000) <= 500000 + ((unsigned) TICK_SIZE
) / 2) {
448 if (rtc_mips_set_mmss(xtime
.tv_sec
) == 0) {
449 last_rtc_update
= xtime
.tv_sec
;
451 /* do it again in 60 s */
452 last_rtc_update
= xtime
.tv_sec
- 600;
457 * If jiffies has overflown in this timer_interrupt, we must
458 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
459 * quotient calc still valid. -arca
461 * The first timer interrupt comes late as interrupts are
462 * enabled long after timers are initialized. Therefore the
463 * high precision timer is fast, leading to wrong gettimeoffset()
464 * calculations. We deal with it by setting it based on the
465 * number of its ticks between the second and the third interrupt.
466 * That is still somewhat imprecise, but it's a good estimate.
471 static unsigned int prev_count
;
472 static int hpt_initialized
;
476 timerhi
= timerlo
= 0;
477 mips_hpt_init(count
);
483 if (!hpt_initialized
) {
484 unsigned int c3
= 3 * (count
- prev_count
);
488 mips_hpt_init(count
- c3
);
497 write_sequnlock(&xtime_lock
);
500 * In UP mode, we call local_timer_interrupt() to do profiling
501 * and process accouting.
503 * In SMP mode, local_timer_interrupt() is invoked by appropriate
504 * low-level local timer interrupt handler.
506 local_timer_interrupt(irq
, dev_id
, regs
);
511 int null_perf_irq(struct pt_regs
*regs
)
516 int (*perf_irq
)(struct pt_regs
*regs
) = null_perf_irq
;
518 EXPORT_SYMBOL(null_perf_irq
);
519 EXPORT_SYMBOL(perf_irq
);
521 asmlinkage
void ll_timer_interrupt(int irq
, struct pt_regs
*regs
)
523 int r2
= cpu_has_mips_r2
;
526 kstat_this_cpu
.irqs
[irq
]++;
530 * Before R2 of the architecture there was no way to see if a
531 * performance counter interrupt was pending, so we have to run the
532 * performance counter interrupt handler anyway.
534 if (!r2
|| (read_c0_cause() & (1 << 26)))
538 /* we keep interrupt disabled all the time */
539 if (!r2
|| (read_c0_cause() & (1 << 30)))
540 timer_interrupt(irq
, NULL
, regs
);
546 asmlinkage
void ll_local_timer_interrupt(int irq
, struct pt_regs
*regs
)
549 if (smp_processor_id() != 0)
550 kstat_this_cpu
.irqs
[irq
]++;
552 /* we keep interrupt disabled all the time */
553 local_timer_interrupt(irq
, NULL
, regs
);
559 * time_init() - it does the following things.
561 * 1) board_time_init() -
562 * a) (optional) set up RTC routines,
563 * b) (optional) calibrate and set the mips_hpt_frequency
564 * (only needed if you intended to use fixed_rate_gettimeoffset
565 * or use cpu counter as timer interrupt source)
566 * 2) setup xtime based on rtc_mips_get_time().
567 * 3) choose a appropriate gettimeoffset routine.
568 * 4) calculate a couple of cached variables for later usage
569 * 5) plat_timer_setup() -
570 * a) (optional) over-write any choices made above by time_init().
571 * b) machine specific code should setup the timer irqaction.
572 * c) enable the timer interrupt
575 void (*board_time_init
)(void);
577 unsigned int mips_hpt_frequency
;
579 static struct irqaction timer_irqaction
= {
580 .handler
= timer_interrupt
,
581 .flags
= IRQF_DISABLED
,
585 static unsigned int __init
calibrate_hpt(void)
588 u32 hpt_start
, hpt_end
, hpt_count
, hz
;
590 const int loops
= HZ
/ 10;
595 * We want to calibrate for 0.1s, but to avoid a 64-bit
596 * division we round the number of loops up to the nearest
599 while (loops
> 1 << log_2_loops
)
601 i
= 1 << log_2_loops
;
604 * Wait for a rising edge of the timer interrupt.
606 while (mips_timer_state());
607 while (!mips_timer_state());
610 * Now see how many high precision timer ticks happen
611 * during the calculated number of periods between timer
614 hpt_start
= mips_hpt_read();
616 while (mips_timer_state());
617 while (!mips_timer_state());
619 hpt_end
= mips_hpt_read();
621 hpt_count
= hpt_end
- hpt_start
;
623 frequency
= (u64
)hpt_count
* (u64
)hz
;
625 return frequency
>> log_2_loops
;
628 void __init
time_init(void)
633 if (!rtc_mips_set_mmss
)
634 rtc_mips_set_mmss
= rtc_mips_set_time
;
636 xtime
.tv_sec
= rtc_mips_get_time();
639 set_normalized_timespec(&wall_to_monotonic
,
640 -xtime
.tv_sec
, -xtime
.tv_nsec
);
642 /* Choose appropriate high precision timer routines. */
643 if (!cpu_has_counter
&& !mips_hpt_read
) {
644 /* No high precision timer -- sorry. */
645 mips_hpt_read
= null_hpt_read
;
646 mips_hpt_init
= null_hpt_init
;
647 } else if (!mips_hpt_frequency
&& !mips_timer_state
) {
648 /* A high precision timer of unknown frequency. */
649 if (!mips_hpt_read
) {
650 /* No external high precision timer -- use R4k. */
651 mips_hpt_read
= c0_hpt_read
;
652 mips_hpt_init
= c0_hpt_init
;
655 if (cpu_has_mips32r1
|| cpu_has_mips32r2
||
656 (current_cpu_data
.isa_level
== MIPS_CPU_ISA_I
) ||
657 (current_cpu_data
.isa_level
== MIPS_CPU_ISA_II
))
659 * We need to calibrate the counter but we don't have
662 do_gettimeoffset
= calibrate_div32_gettimeoffset
;
665 * We need to calibrate the counter but we *do* have
668 do_gettimeoffset
= calibrate_div64_gettimeoffset
;
670 /* We know counter frequency. Or we can get it. */
671 if (!mips_hpt_read
) {
672 /* No external high precision timer -- use R4k. */
673 mips_hpt_read
= c0_hpt_read
;
675 if (mips_timer_state
)
676 mips_hpt_init
= c0_hpt_init
;
678 /* No external timer interrupt -- use R4k. */
679 mips_hpt_init
= c0_hpt_timer_init
;
680 mips_timer_ack
= c0_timer_ack
;
683 if (!mips_hpt_frequency
)
684 mips_hpt_frequency
= calibrate_hpt();
686 do_gettimeoffset
= fixed_rate_gettimeoffset
;
688 /* Calculate cache parameters. */
689 cycles_per_jiffy
= (mips_hpt_frequency
+ HZ
/ 2) / HZ
;
691 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
692 do_div64_32(sll32_usecs_per_cycle
,
693 1000000, mips_hpt_frequency
/ 2,
696 /* Report the high precision timer rate for a reference. */
697 printk("Using %u.%03u MHz high precision timer.\n",
698 ((mips_hpt_frequency
+ 500) / 1000) / 1000,
699 ((mips_hpt_frequency
+ 500) / 1000) % 1000);
703 /* No timer interrupt ack (e.g. i8254). */
704 mips_timer_ack
= null_timer_ack
;
706 /* This sets up the high precision timer for the first interrupt. */
707 mips_hpt_init(mips_hpt_read());
710 * Call board specific timer interrupt setup.
712 * this pointer must be setup in machine setup routine.
714 * Even if a machine chooses to use a low-level timer interrupt,
715 * it still needs to setup the timer_irqaction.
716 * In that case, it might be better to set timer_irqaction.handler
717 * to be NULL function so that we are sure the high-level code
718 * is not invoked accidentally.
720 plat_timer_setup(&timer_irqaction
);
724 #define STARTOFTIME 1970
725 #define SECDAY 86400L
726 #define SECYR (SECDAY * 365)
727 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
728 #define days_in_year(y) (leapyear(y) ? 366 : 365)
729 #define days_in_month(m) (month_days[(m) - 1])
731 static int month_days
[12] = {
732 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
735 void to_tm(unsigned long tim
, struct rtc_time
*tm
)
740 gday
= day
= tim
/ SECDAY
;
743 /* Hours, minutes, seconds are easy */
744 tm
->tm_hour
= hms
/ 3600;
745 tm
->tm_min
= (hms
% 3600) / 60;
746 tm
->tm_sec
= (hms
% 3600) % 60;
748 /* Number of years in days */
749 for (i
= STARTOFTIME
; day
>= days_in_year(i
); i
++)
750 day
-= days_in_year(i
);
753 /* Number of months in days left */
754 if (leapyear(tm
->tm_year
))
755 days_in_month(FEBRUARY
) = 29;
756 for (i
= 1; day
>= days_in_month(i
); i
++)
757 day
-= days_in_month(i
);
758 days_in_month(FEBRUARY
) = 28;
759 tm
->tm_mon
= i
- 1; /* tm_mon starts from 0 to 11 */
761 /* Days are what is left over (+1) from all that. */
762 tm
->tm_mday
= day
+ 1;
765 * Determine the day of week
767 tm
->tm_wday
= (gday
+ 4) % 7; /* 1970/1/1 was Thursday */
770 EXPORT_SYMBOL(rtc_lock
);
771 EXPORT_SYMBOL(to_tm
);
772 EXPORT_SYMBOL(rtc_mips_set_time
);
773 EXPORT_SYMBOL(rtc_mips_get_time
);
775 unsigned long long sched_clock(void)
777 return (unsigned long long)jiffies
*(1000000000/HZ
);