[PATCH] briq_panel: read() and write() get __user pointers, damnit
[linux-2.6/verdex.git] / arch / mips / kernel / traps.c
blob954a198494efb4b0569c5636a415ac1c17da8373
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/kallsyms.h>
22 #include <linux/bootmem.h>
24 #include <asm/bootinfo.h>
25 #include <asm/branch.h>
26 #include <asm/break.h>
27 #include <asm/cpu.h>
28 #include <asm/dsp.h>
29 #include <asm/fpu.h>
30 #include <asm/mipsregs.h>
31 #include <asm/mipsmtregs.h>
32 #include <asm/module.h>
33 #include <asm/pgtable.h>
34 #include <asm/ptrace.h>
35 #include <asm/sections.h>
36 #include <asm/system.h>
37 #include <asm/tlbdebug.h>
38 #include <asm/traps.h>
39 #include <asm/uaccess.h>
40 #include <asm/mmu_context.h>
41 #include <asm/watch.h>
42 #include <asm/types.h>
44 extern asmlinkage void handle_int(void);
45 extern asmlinkage void handle_tlbm(void);
46 extern asmlinkage void handle_tlbl(void);
47 extern asmlinkage void handle_tlbs(void);
48 extern asmlinkage void handle_adel(void);
49 extern asmlinkage void handle_ades(void);
50 extern asmlinkage void handle_ibe(void);
51 extern asmlinkage void handle_dbe(void);
52 extern asmlinkage void handle_sys(void);
53 extern asmlinkage void handle_bp(void);
54 extern asmlinkage void handle_ri(void);
55 extern asmlinkage void handle_cpu(void);
56 extern asmlinkage void handle_ov(void);
57 extern asmlinkage void handle_tr(void);
58 extern asmlinkage void handle_fpe(void);
59 extern asmlinkage void handle_mdmx(void);
60 extern asmlinkage void handle_watch(void);
61 extern asmlinkage void handle_mt(void);
62 extern asmlinkage void handle_dsp(void);
63 extern asmlinkage void handle_mcheck(void);
64 extern asmlinkage void handle_reserved(void);
66 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
67 struct mips_fpu_struct *ctx);
69 void (*board_be_init)(void);
70 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
71 void (*board_nmi_handler_setup)(void);
72 void (*board_ejtag_handler_setup)(void);
73 void (*board_bind_eic_interrupt)(int irq, int regset);
76 * These constant is for searching for possible module text segments.
77 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
79 #define MODULE_RANGE (8*1024*1024)
82 * This routine abuses get_user()/put_user() to reference pointers
83 * with at least a bit of error checking ...
85 void show_stack(struct task_struct *task, unsigned long *sp)
87 const int field = 2 * sizeof(unsigned long);
88 long stackdata;
89 int i;
91 if (!sp) {
92 if (task && task != current)
93 sp = (unsigned long *) task->thread.reg29;
94 else
95 sp = (unsigned long *) &sp;
98 printk("Stack :");
99 i = 0;
100 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
101 if (i && ((i % (64 / field)) == 0))
102 printk("\n ");
103 if (i > 39) {
104 printk(" ...");
105 break;
108 if (__get_user(stackdata, sp++)) {
109 printk(" (Bad stack address)");
110 break;
113 printk(" %0*lx", field, stackdata);
114 i++;
116 printk("\n");
119 void show_trace(struct task_struct *task, unsigned long *stack)
121 const int field = 2 * sizeof(unsigned long);
122 unsigned long addr;
124 if (!stack) {
125 if (task && task != current)
126 stack = (unsigned long *) task->thread.reg29;
127 else
128 stack = (unsigned long *) &stack;
131 printk("Call Trace:");
132 #ifdef CONFIG_KALLSYMS
133 printk("\n");
134 #endif
135 while (!kstack_end(stack)) {
136 addr = *stack++;
137 if (__kernel_text_address(addr)) {
138 printk(" [<%0*lx>] ", field, addr);
139 print_symbol("%s\n", addr);
142 printk("\n");
146 * The architecture-independent dump_stack generator
148 void dump_stack(void)
150 unsigned long stack;
152 show_trace(current, &stack);
155 EXPORT_SYMBOL(dump_stack);
157 void show_code(unsigned int *pc)
159 long i;
161 printk("\nCode:");
163 for(i = -3 ; i < 6 ; i++) {
164 unsigned int insn;
165 if (__get_user(insn, pc + i)) {
166 printk(" (Bad address in epc)\n");
167 break;
169 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
173 void show_regs(struct pt_regs *regs)
175 const int field = 2 * sizeof(unsigned long);
176 unsigned int cause = regs->cp0_cause;
177 int i;
179 printk("Cpu %d\n", smp_processor_id());
182 * Saved main processor registers
184 for (i = 0; i < 32; ) {
185 if ((i % 4) == 0)
186 printk("$%2d :", i);
187 if (i == 0)
188 printk(" %0*lx", field, 0UL);
189 else if (i == 26 || i == 27)
190 printk(" %*s", field, "");
191 else
192 printk(" %0*lx", field, regs->regs[i]);
194 i++;
195 if ((i % 4) == 0)
196 printk("\n");
199 printk("Hi : %0*lx\n", field, regs->hi);
200 printk("Lo : %0*lx\n", field, regs->lo);
203 * Saved cp0 registers
205 printk("epc : %0*lx ", field, regs->cp0_epc);
206 print_symbol("%s ", regs->cp0_epc);
207 printk(" %s\n", print_tainted());
208 printk("ra : %0*lx ", field, regs->regs[31]);
209 print_symbol("%s\n", regs->regs[31]);
211 printk("Status: %08x ", (uint32_t) regs->cp0_status);
213 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
214 if (regs->cp0_status & ST0_KUO)
215 printk("KUo ");
216 if (regs->cp0_status & ST0_IEO)
217 printk("IEo ");
218 if (regs->cp0_status & ST0_KUP)
219 printk("KUp ");
220 if (regs->cp0_status & ST0_IEP)
221 printk("IEp ");
222 if (regs->cp0_status & ST0_KUC)
223 printk("KUc ");
224 if (regs->cp0_status & ST0_IEC)
225 printk("IEc ");
226 } else {
227 if (regs->cp0_status & ST0_KX)
228 printk("KX ");
229 if (regs->cp0_status & ST0_SX)
230 printk("SX ");
231 if (regs->cp0_status & ST0_UX)
232 printk("UX ");
233 switch (regs->cp0_status & ST0_KSU) {
234 case KSU_USER:
235 printk("USER ");
236 break;
237 case KSU_SUPERVISOR:
238 printk("SUPERVISOR ");
239 break;
240 case KSU_KERNEL:
241 printk("KERNEL ");
242 break;
243 default:
244 printk("BAD_MODE ");
245 break;
247 if (regs->cp0_status & ST0_ERL)
248 printk("ERL ");
249 if (regs->cp0_status & ST0_EXL)
250 printk("EXL ");
251 if (regs->cp0_status & ST0_IE)
252 printk("IE ");
254 printk("\n");
256 printk("Cause : %08x\n", cause);
258 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
259 if (1 <= cause && cause <= 5)
260 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
262 printk("PrId : %08x\n", read_c0_prid());
265 void show_registers(struct pt_regs *regs)
267 show_regs(regs);
268 print_modules();
269 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
270 current->comm, current->pid, current_thread_info(), current);
271 show_stack(current, (long *) regs->regs[29]);
272 show_trace(current, (long *) regs->regs[29]);
273 show_code((unsigned int *) regs->cp0_epc);
274 printk("\n");
277 static DEFINE_SPINLOCK(die_lock);
279 NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
281 static int die_counter;
282 #ifdef CONFIG_MIPS_MT_SMTC
283 unsigned long dvpret = dvpe();
284 #endif /* CONFIG_MIPS_MT_SMTC */
286 console_verbose();
287 spin_lock_irq(&die_lock);
288 bust_spinlocks(1);
289 #ifdef CONFIG_MIPS_MT_SMTC
290 mips_mt_regdump(dvpret);
291 #endif /* CONFIG_MIPS_MT_SMTC */
292 printk("%s[#%d]:\n", str, ++die_counter);
293 show_registers(regs);
294 spin_unlock_irq(&die_lock);
295 do_exit(SIGSEGV);
298 extern const struct exception_table_entry __start___dbe_table[];
299 extern const struct exception_table_entry __stop___dbe_table[];
301 void __declare_dbe_table(void)
303 __asm__ __volatile__(
304 ".section\t__dbe_table,\"a\"\n\t"
305 ".previous"
309 /* Given an address, look for it in the exception tables. */
310 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
312 const struct exception_table_entry *e;
314 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
315 if (!e)
316 e = search_module_dbetables(addr);
317 return e;
320 asmlinkage void do_be(struct pt_regs *regs)
322 const int field = 2 * sizeof(unsigned long);
323 const struct exception_table_entry *fixup = NULL;
324 int data = regs->cp0_cause & 4;
325 int action = MIPS_BE_FATAL;
327 /* XXX For now. Fixme, this searches the wrong table ... */
328 if (data && !user_mode(regs))
329 fixup = search_dbe_tables(exception_epc(regs));
331 if (fixup)
332 action = MIPS_BE_FIXUP;
334 if (board_be_handler)
335 action = board_be_handler(regs, fixup != 0);
337 switch (action) {
338 case MIPS_BE_DISCARD:
339 return;
340 case MIPS_BE_FIXUP:
341 if (fixup) {
342 regs->cp0_epc = fixup->nextinsn;
343 return;
345 break;
346 default:
347 break;
351 * Assume it would be too dangerous to continue ...
353 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
354 data ? "Data" : "Instruction",
355 field, regs->cp0_epc, field, regs->regs[31]);
356 die_if_kernel("Oops", regs);
357 force_sig(SIGBUS, current);
360 static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
362 unsigned int __user *epc;
364 epc = (unsigned int __user *) regs->cp0_epc +
365 ((regs->cp0_cause & CAUSEF_BD) != 0);
366 if (!get_user(*opcode, epc))
367 return 0;
369 force_sig(SIGSEGV, current);
370 return 1;
374 * ll/sc emulation
377 #define OPCODE 0xfc000000
378 #define BASE 0x03e00000
379 #define RT 0x001f0000
380 #define OFFSET 0x0000ffff
381 #define LL 0xc0000000
382 #define SC 0xe0000000
383 #define SPEC3 0x7c000000
384 #define RD 0x0000f800
385 #define FUNC 0x0000003f
386 #define RDHWR 0x0000003b
389 * The ll_bit is cleared by r*_switch.S
392 unsigned long ll_bit;
394 static struct task_struct *ll_task = NULL;
396 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
398 unsigned long value, __user *vaddr;
399 long offset;
400 int signal = 0;
403 * analyse the ll instruction that just caused a ri exception
404 * and put the referenced address to addr.
407 /* sign extend offset */
408 offset = opcode & OFFSET;
409 offset <<= 16;
410 offset >>= 16;
412 vaddr = (unsigned long __user *)
413 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
415 if ((unsigned long)vaddr & 3) {
416 signal = SIGBUS;
417 goto sig;
419 if (get_user(value, vaddr)) {
420 signal = SIGSEGV;
421 goto sig;
424 preempt_disable();
426 if (ll_task == NULL || ll_task == current) {
427 ll_bit = 1;
428 } else {
429 ll_bit = 0;
431 ll_task = current;
433 preempt_enable();
435 compute_return_epc(regs);
437 regs->regs[(opcode & RT) >> 16] = value;
439 return;
441 sig:
442 force_sig(signal, current);
445 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
447 unsigned long __user *vaddr;
448 unsigned long reg;
449 long offset;
450 int signal = 0;
453 * analyse the sc instruction that just caused a ri exception
454 * and put the referenced address to addr.
457 /* sign extend offset */
458 offset = opcode & OFFSET;
459 offset <<= 16;
460 offset >>= 16;
462 vaddr = (unsigned long __user *)
463 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
464 reg = (opcode & RT) >> 16;
466 if ((unsigned long)vaddr & 3) {
467 signal = SIGBUS;
468 goto sig;
471 preempt_disable();
473 if (ll_bit == 0 || ll_task != current) {
474 compute_return_epc(regs);
475 regs->regs[reg] = 0;
476 preempt_enable();
477 return;
480 preempt_enable();
482 if (put_user(regs->regs[reg], vaddr)) {
483 signal = SIGSEGV;
484 goto sig;
487 compute_return_epc(regs);
488 regs->regs[reg] = 1;
490 return;
492 sig:
493 force_sig(signal, current);
497 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
498 * opcodes are supposed to result in coprocessor unusable exceptions if
499 * executed on ll/sc-less processors. That's the theory. In practice a
500 * few processors such as NEC's VR4100 throw reserved instruction exceptions
501 * instead, so we're doing the emulation thing in both exception handlers.
503 static inline int simulate_llsc(struct pt_regs *regs)
505 unsigned int opcode;
507 if (unlikely(get_insn_opcode(regs, &opcode)))
508 return -EFAULT;
510 if ((opcode & OPCODE) == LL) {
511 simulate_ll(regs, opcode);
512 return 0;
514 if ((opcode & OPCODE) == SC) {
515 simulate_sc(regs, opcode);
516 return 0;
519 return -EFAULT; /* Strange things going on ... */
523 * Simulate trapping 'rdhwr' instructions to provide user accessible
524 * registers not implemented in hardware. The only current use of this
525 * is the thread area pointer.
527 static inline int simulate_rdhwr(struct pt_regs *regs)
529 struct thread_info *ti = task_thread_info(current);
530 unsigned int opcode;
532 if (unlikely(get_insn_opcode(regs, &opcode)))
533 return -EFAULT;
535 if (unlikely(compute_return_epc(regs)))
536 return -EFAULT;
538 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
539 int rd = (opcode & RD) >> 11;
540 int rt = (opcode & RT) >> 16;
541 switch (rd) {
542 case 29:
543 regs->regs[rt] = ti->tp_value;
544 return 0;
545 default:
546 return -EFAULT;
550 /* Not ours. */
551 return -EFAULT;
554 asmlinkage void do_ov(struct pt_regs *regs)
556 siginfo_t info;
558 die_if_kernel("Integer overflow", regs);
560 info.si_code = FPE_INTOVF;
561 info.si_signo = SIGFPE;
562 info.si_errno = 0;
563 info.si_addr = (void __user *) regs->cp0_epc;
564 force_sig_info(SIGFPE, &info, current);
568 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
570 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
572 die_if_kernel("FP exception in kernel code", regs);
574 if (fcr31 & FPU_CSR_UNI_X) {
575 int sig;
577 preempt_disable();
579 #ifdef CONFIG_PREEMPT
580 if (!is_fpu_owner()) {
581 /* We might lose fpu before disabling preempt... */
582 own_fpu();
583 BUG_ON(!used_math());
584 restore_fp(current);
586 #endif
588 * Unimplemented operation exception. If we've got the full
589 * software emulator on-board, let's use it...
591 * Force FPU to dump state into task/thread context. We're
592 * moving a lot of data here for what is probably a single
593 * instruction, but the alternative is to pre-decode the FP
594 * register operands before invoking the emulator, which seems
595 * a bit extreme for what should be an infrequent event.
597 save_fp(current);
598 /* Ensure 'resume' not overwrite saved fp context again. */
599 lose_fpu();
601 preempt_enable();
603 /* Run the emulator */
604 sig = fpu_emulator_cop1Handler (regs, &current->thread.fpu);
606 preempt_disable();
608 own_fpu(); /* Using the FPU again. */
610 * We can't allow the emulated instruction to leave any of
611 * the cause bit set in $fcr31.
613 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
615 /* Restore the hardware register state */
616 restore_fp(current);
618 preempt_enable();
620 /* If something went wrong, signal */
621 if (sig)
622 force_sig(sig, current);
624 return;
627 force_sig(SIGFPE, current);
630 asmlinkage void do_bp(struct pt_regs *regs)
632 unsigned int opcode, bcode;
633 siginfo_t info;
635 die_if_kernel("Break instruction in kernel code", regs);
637 if (get_insn_opcode(regs, &opcode))
638 return;
641 * There is the ancient bug in the MIPS assemblers that the break
642 * code starts left to bit 16 instead to bit 6 in the opcode.
643 * Gas is bug-compatible, but not always, grrr...
644 * We handle both cases with a simple heuristics. --macro
646 bcode = ((opcode >> 6) & ((1 << 20) - 1));
647 if (bcode < (1 << 10))
648 bcode <<= 10;
651 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
652 * insns, even for break codes that indicate arithmetic failures.
653 * Weird ...)
654 * But should we continue the brokenness??? --macro
656 switch (bcode) {
657 case BRK_OVERFLOW << 10:
658 case BRK_DIVZERO << 10:
659 if (bcode == (BRK_DIVZERO << 10))
660 info.si_code = FPE_INTDIV;
661 else
662 info.si_code = FPE_INTOVF;
663 info.si_signo = SIGFPE;
664 info.si_errno = 0;
665 info.si_addr = (void __user *) regs->cp0_epc;
666 force_sig_info(SIGFPE, &info, current);
667 break;
668 default:
669 force_sig(SIGTRAP, current);
673 asmlinkage void do_tr(struct pt_regs *regs)
675 unsigned int opcode, tcode = 0;
676 siginfo_t info;
678 die_if_kernel("Trap instruction in kernel code", regs);
680 if (get_insn_opcode(regs, &opcode))
681 return;
683 /* Immediate versions don't provide a code. */
684 if (!(opcode & OPCODE))
685 tcode = ((opcode >> 6) & ((1 << 10) - 1));
688 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
689 * insns, even for trap codes that indicate arithmetic failures.
690 * Weird ...)
691 * But should we continue the brokenness??? --macro
693 switch (tcode) {
694 case BRK_OVERFLOW:
695 case BRK_DIVZERO:
696 if (tcode == BRK_DIVZERO)
697 info.si_code = FPE_INTDIV;
698 else
699 info.si_code = FPE_INTOVF;
700 info.si_signo = SIGFPE;
701 info.si_errno = 0;
702 info.si_addr = (void __user *) regs->cp0_epc;
703 force_sig_info(SIGFPE, &info, current);
704 break;
705 default:
706 force_sig(SIGTRAP, current);
710 asmlinkage void do_ri(struct pt_regs *regs)
712 die_if_kernel("Reserved instruction in kernel code", regs);
714 if (!cpu_has_llsc)
715 if (!simulate_llsc(regs))
716 return;
718 if (!simulate_rdhwr(regs))
719 return;
721 force_sig(SIGILL, current);
724 asmlinkage void do_cpu(struct pt_regs *regs)
726 unsigned int cpid;
728 die_if_kernel("do_cpu invoked from kernel context!", regs);
730 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
732 switch (cpid) {
733 case 0:
734 if (!cpu_has_llsc)
735 if (!simulate_llsc(regs))
736 return;
738 if (!simulate_rdhwr(regs))
739 return;
741 break;
743 case 1:
744 preempt_disable();
746 own_fpu();
747 if (used_math()) { /* Using the FPU again. */
748 restore_fp(current);
749 } else { /* First time FPU user. */
750 init_fpu();
751 set_used_math();
754 preempt_enable();
756 if (!cpu_has_fpu) {
757 int sig = fpu_emulator_cop1Handler(regs,
758 &current->thread.fpu);
759 if (sig)
760 force_sig(sig, current);
761 #ifdef CONFIG_MIPS_MT_FPAFF
762 else {
764 * MIPS MT processors may have fewer FPU contexts
765 * than CPU threads. If we've emulated more than
766 * some threshold number of instructions, force
767 * migration to a "CPU" that has FP support.
769 if(mt_fpemul_threshold > 0
770 && ((current->thread.emulated_fp++
771 > mt_fpemul_threshold))) {
773 * If there's no FPU present, or if the
774 * application has already restricted
775 * the allowed set to exclude any CPUs
776 * with FPUs, we'll skip the procedure.
778 if (cpus_intersects(current->cpus_allowed,
779 mt_fpu_cpumask)) {
780 cpumask_t tmask;
782 cpus_and(tmask,
783 current->thread.user_cpus_allowed,
784 mt_fpu_cpumask);
785 set_cpus_allowed(current, tmask);
786 current->thread.mflags |= MF_FPUBOUND;
790 #endif /* CONFIG_MIPS_MT_FPAFF */
793 return;
795 case 2:
796 case 3:
797 die_if_kernel("do_cpu invoked from kernel context!", regs);
798 break;
801 force_sig(SIGILL, current);
804 asmlinkage void do_mdmx(struct pt_regs *regs)
806 force_sig(SIGILL, current);
809 asmlinkage void do_watch(struct pt_regs *regs)
812 * We use the watch exception where available to detect stack
813 * overflows.
815 dump_tlb_all();
816 show_regs(regs);
817 panic("Caught WATCH exception - probably caused by stack overflow.");
820 asmlinkage void do_mcheck(struct pt_regs *regs)
822 const int field = 2 * sizeof(unsigned long);
823 int multi_match = regs->cp0_status & ST0_TS;
825 show_regs(regs);
827 if (multi_match) {
828 printk("Index : %0x\n", read_c0_index());
829 printk("Pagemask: %0x\n", read_c0_pagemask());
830 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
831 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
832 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
833 printk("\n");
834 dump_tlb_all();
837 show_code((unsigned int *) regs->cp0_epc);
840 * Some chips may have other causes of machine check (e.g. SB1
841 * graduation timer)
843 panic("Caught Machine Check exception - %scaused by multiple "
844 "matching entries in the TLB.",
845 (multi_match) ? "" : "not ");
848 asmlinkage void do_mt(struct pt_regs *regs)
850 int subcode;
852 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
853 >> VPECONTROL_EXCPT_SHIFT;
854 switch (subcode) {
855 case 0:
856 printk(KERN_DEBUG "Thread Underflow\n");
857 break;
858 case 1:
859 printk(KERN_DEBUG "Thread Overflow\n");
860 break;
861 case 2:
862 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
863 break;
864 case 3:
865 printk(KERN_DEBUG "Gating Storage Exception\n");
866 break;
867 case 4:
868 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
869 break;
870 case 5:
871 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
872 break;
873 default:
874 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
875 subcode);
876 break;
878 die_if_kernel("MIPS MT Thread exception in kernel", regs);
880 force_sig(SIGILL, current);
884 asmlinkage void do_dsp(struct pt_regs *regs)
886 if (cpu_has_dsp)
887 panic("Unexpected DSP exception\n");
889 force_sig(SIGILL, current);
892 asmlinkage void do_reserved(struct pt_regs *regs)
895 * Game over - no way to handle this if it ever occurs. Most probably
896 * caused by a new unknown cpu type or after another deadly
897 * hard/software error.
899 show_regs(regs);
900 panic("Caught reserved exception %ld - should not happen.",
901 (regs->cp0_cause & 0x7f) >> 2);
904 asmlinkage void do_default_vi(struct pt_regs *regs)
906 show_regs(regs);
907 panic("Caught unexpected vectored interrupt.");
911 * Some MIPS CPUs can enable/disable for cache parity detection, but do
912 * it different ways.
914 static inline void parity_protection_init(void)
916 switch (current_cpu_data.cputype) {
917 case CPU_24K:
918 case CPU_34K:
919 case CPU_5KC:
920 write_c0_ecc(0x80000000);
921 back_to_back_c0_hazard();
922 /* Set the PE bit (bit 31) in the c0_errctl register. */
923 printk(KERN_INFO "Cache parity protection %sabled\n",
924 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
925 break;
926 case CPU_20KC:
927 case CPU_25KF:
928 /* Clear the DE bit (bit 16) in the c0_status register. */
929 printk(KERN_INFO "Enable cache parity protection for "
930 "MIPS 20KC/25KF CPUs.\n");
931 clear_c0_status(ST0_DE);
932 break;
933 default:
934 break;
938 asmlinkage void cache_parity_error(void)
940 const int field = 2 * sizeof(unsigned long);
941 unsigned int reg_val;
943 /* For the moment, report the problem and hang. */
944 printk("Cache error exception:\n");
945 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
946 reg_val = read_c0_cacheerr();
947 printk("c0_cacheerr == %08x\n", reg_val);
949 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
950 reg_val & (1<<30) ? "secondary" : "primary",
951 reg_val & (1<<31) ? "data" : "insn");
952 printk("Error bits: %s%s%s%s%s%s%s\n",
953 reg_val & (1<<29) ? "ED " : "",
954 reg_val & (1<<28) ? "ET " : "",
955 reg_val & (1<<26) ? "EE " : "",
956 reg_val & (1<<25) ? "EB " : "",
957 reg_val & (1<<24) ? "EI " : "",
958 reg_val & (1<<23) ? "E1 " : "",
959 reg_val & (1<<22) ? "E0 " : "");
960 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
962 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
963 if (reg_val & (1<<22))
964 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
966 if (reg_val & (1<<23))
967 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
968 #endif
970 panic("Can't handle the cache error!");
974 * SDBBP EJTAG debug exception handler.
975 * We skip the instruction and return to the next instruction.
977 void ejtag_exception_handler(struct pt_regs *regs)
979 const int field = 2 * sizeof(unsigned long);
980 unsigned long depc, old_epc;
981 unsigned int debug;
983 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
984 depc = read_c0_depc();
985 debug = read_c0_debug();
986 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
987 if (debug & 0x80000000) {
989 * In branch delay slot.
990 * We cheat a little bit here and use EPC to calculate the
991 * debug return address (DEPC). EPC is restored after the
992 * calculation.
994 old_epc = regs->cp0_epc;
995 regs->cp0_epc = depc;
996 __compute_return_epc(regs);
997 depc = regs->cp0_epc;
998 regs->cp0_epc = old_epc;
999 } else
1000 depc += 4;
1001 write_c0_depc(depc);
1003 #if 0
1004 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1005 write_c0_debug(debug | 0x100);
1006 #endif
1010 * NMI exception handler.
1012 void nmi_exception_handler(struct pt_regs *regs)
1014 #ifdef CONFIG_MIPS_MT_SMTC
1015 unsigned long dvpret = dvpe();
1016 bust_spinlocks(1);
1017 printk("NMI taken!!!!\n");
1018 mips_mt_regdump(dvpret);
1019 #else
1020 bust_spinlocks(1);
1021 printk("NMI taken!!!!\n");
1022 #endif /* CONFIG_MIPS_MT_SMTC */
1023 die("NMI", regs);
1024 while(1) ;
1027 #define VECTORSPACING 0x100 /* for EI/VI mode */
1029 unsigned long ebase;
1030 unsigned long exception_handlers[32];
1031 unsigned long vi_handlers[64];
1034 * As a side effect of the way this is implemented we're limited
1035 * to interrupt handlers in the address range from
1036 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1038 void *set_except_vector(int n, void *addr)
1040 unsigned long handler = (unsigned long) addr;
1041 unsigned long old_handler = exception_handlers[n];
1043 exception_handlers[n] = handler;
1044 if (n == 0 && cpu_has_divec) {
1045 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1046 (0x03ffffff & (handler >> 2));
1047 flush_icache_range(ebase + 0x200, ebase + 0x204);
1049 return (void *)old_handler;
1052 #ifdef CONFIG_CPU_MIPSR2_SRS
1054 * MIPSR2 shadow register set allocation
1055 * FIXME: SMP...
1058 static struct shadow_registers {
1060 * Number of shadow register sets supported
1062 unsigned long sr_supported;
1064 * Bitmap of allocated shadow registers
1066 unsigned long sr_allocated;
1067 } shadow_registers;
1069 static void mips_srs_init(void)
1071 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1072 printk(KERN_INFO "%d MIPSR2 register sets available\n",
1073 shadow_registers.sr_supported);
1074 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
1077 int mips_srs_max(void)
1079 return shadow_registers.sr_supported;
1082 int mips_srs_alloc(void)
1084 struct shadow_registers *sr = &shadow_registers;
1085 int set;
1087 again:
1088 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1089 if (set >= sr->sr_supported)
1090 return -1;
1092 if (test_and_set_bit(set, &sr->sr_allocated))
1093 goto again;
1095 return set;
1098 void mips_srs_free(int set)
1100 struct shadow_registers *sr = &shadow_registers;
1102 clear_bit(set, &sr->sr_allocated);
1105 static void *set_vi_srs_handler(int n, void *addr, int srs)
1107 unsigned long handler;
1108 unsigned long old_handler = vi_handlers[n];
1109 u32 *w;
1110 unsigned char *b;
1112 if (!cpu_has_veic && !cpu_has_vint)
1113 BUG();
1115 if (addr == NULL) {
1116 handler = (unsigned long) do_default_vi;
1117 srs = 0;
1118 } else
1119 handler = (unsigned long) addr;
1120 vi_handlers[n] = (unsigned long) addr;
1122 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1124 if (srs >= mips_srs_max())
1125 panic("Shadow register set %d not supported", srs);
1127 if (cpu_has_veic) {
1128 if (board_bind_eic_interrupt)
1129 board_bind_eic_interrupt (n, srs);
1130 } else if (cpu_has_vint) {
1131 /* SRSMap is only defined if shadow sets are implemented */
1132 if (mips_srs_max() > 1)
1133 change_c0_srsmap (0xf << n*4, srs << n*4);
1136 if (srs == 0) {
1138 * If no shadow set is selected then use the default handler
1139 * that does normal register saving and a standard interrupt exit
1142 extern char except_vec_vi, except_vec_vi_lui;
1143 extern char except_vec_vi_ori, except_vec_vi_end;
1144 #ifdef CONFIG_MIPS_MT_SMTC
1146 * We need to provide the SMTC vectored interrupt handler
1147 * not only with the address of the handler, but with the
1148 * Status.IM bit to be masked before going there.
1150 extern char except_vec_vi_mori;
1151 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1152 #endif /* CONFIG_MIPS_MT_SMTC */
1153 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1154 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1155 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1157 if (handler_len > VECTORSPACING) {
1159 * Sigh... panicing won't help as the console
1160 * is probably not configured :(
1162 panic ("VECTORSPACING too small");
1165 memcpy (b, &except_vec_vi, handler_len);
1166 #ifdef CONFIG_MIPS_MT_SMTC
1167 if (n > 7)
1168 printk("Vector index %d exceeds SMTC maximum\n", n);
1169 w = (u32 *)(b + mori_offset);
1170 *w = (*w & 0xffff0000) | (0x100 << n);
1171 #endif /* CONFIG_MIPS_MT_SMTC */
1172 w = (u32 *)(b + lui_offset);
1173 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1174 w = (u32 *)(b + ori_offset);
1175 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1176 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1178 else {
1180 * In other cases jump directly to the interrupt handler
1182 * It is the handlers responsibility to save registers if required
1183 * (eg hi/lo) and return from the exception using "eret"
1185 w = (u32 *)b;
1186 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1187 *w = 0;
1188 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1191 return (void *)old_handler;
1194 void *set_vi_handler(int n, void *addr)
1196 return set_vi_srs_handler(n, addr, 0);
1199 #else
1201 static inline void mips_srs_init(void)
1205 #endif /* CONFIG_CPU_MIPSR2_SRS */
1208 * This is used by native signal handling
1210 asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1211 asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1213 extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1214 extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1216 extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1217 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1219 #ifdef CONFIG_SMP
1220 static int smp_save_fp_context(struct sigcontext *sc)
1222 return cpu_has_fpu
1223 ? _save_fp_context(sc)
1224 : fpu_emulator_save_context(sc);
1227 static int smp_restore_fp_context(struct sigcontext *sc)
1229 return cpu_has_fpu
1230 ? _restore_fp_context(sc)
1231 : fpu_emulator_restore_context(sc);
1233 #endif
1235 static inline void signal_init(void)
1237 #ifdef CONFIG_SMP
1238 /* For now just do the cpu_has_fpu check when the functions are invoked */
1239 save_fp_context = smp_save_fp_context;
1240 restore_fp_context = smp_restore_fp_context;
1241 #else
1242 if (cpu_has_fpu) {
1243 save_fp_context = _save_fp_context;
1244 restore_fp_context = _restore_fp_context;
1245 } else {
1246 save_fp_context = fpu_emulator_save_context;
1247 restore_fp_context = fpu_emulator_restore_context;
1249 #endif
1252 #ifdef CONFIG_MIPS32_COMPAT
1255 * This is used by 32-bit signal stuff on the 64-bit kernel
1257 asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1258 asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1260 extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1261 extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1263 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1264 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1266 static inline void signal32_init(void)
1268 if (cpu_has_fpu) {
1269 save_fp_context32 = _save_fp_context32;
1270 restore_fp_context32 = _restore_fp_context32;
1271 } else {
1272 save_fp_context32 = fpu_emulator_save_context32;
1273 restore_fp_context32 = fpu_emulator_restore_context32;
1276 #endif
1278 extern void cpu_cache_init(void);
1279 extern void tlb_init(void);
1280 extern void flush_tlb_handlers(void);
1282 void __init per_cpu_trap_init(void)
1284 unsigned int cpu = smp_processor_id();
1285 unsigned int status_set = ST0_CU0;
1286 #ifdef CONFIG_MIPS_MT_SMTC
1287 int secondaryTC = 0;
1288 int bootTC = (cpu == 0);
1291 * Only do per_cpu_trap_init() for first TC of Each VPE.
1292 * Note that this hack assumes that the SMTC init code
1293 * assigns TCs consecutively and in ascending order.
1296 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1297 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1298 secondaryTC = 1;
1299 #endif /* CONFIG_MIPS_MT_SMTC */
1302 * Disable coprocessors and select 32-bit or 64-bit addressing
1303 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1304 * flag that some firmware may have left set and the TS bit (for
1305 * IP27). Set XX for ISA IV code to work.
1307 #ifdef CONFIG_64BIT
1308 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1309 #endif
1310 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1311 status_set |= ST0_XX;
1312 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1313 status_set);
1315 if (cpu_has_dsp)
1316 set_c0_status(ST0_MX);
1318 #ifdef CONFIG_CPU_MIPSR2
1319 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1320 #endif
1322 #ifdef CONFIG_MIPS_MT_SMTC
1323 if (!secondaryTC) {
1324 #endif /* CONFIG_MIPS_MT_SMTC */
1327 * Interrupt handling.
1329 if (cpu_has_veic || cpu_has_vint) {
1330 write_c0_ebase (ebase);
1331 /* Setting vector spacing enables EI/VI mode */
1332 change_c0_intctl (0x3e0, VECTORSPACING);
1334 if (cpu_has_divec) {
1335 if (cpu_has_mipsmt) {
1336 unsigned int vpflags = dvpe();
1337 set_c0_cause(CAUSEF_IV);
1338 evpe(vpflags);
1339 } else
1340 set_c0_cause(CAUSEF_IV);
1342 #ifdef CONFIG_MIPS_MT_SMTC
1344 #endif /* CONFIG_MIPS_MT_SMTC */
1346 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1347 TLBMISS_HANDLER_SETUP();
1349 atomic_inc(&init_mm.mm_count);
1350 current->active_mm = &init_mm;
1351 BUG_ON(current->mm);
1352 enter_lazy_tlb(&init_mm, current);
1354 #ifdef CONFIG_MIPS_MT_SMTC
1355 if (bootTC) {
1356 #endif /* CONFIG_MIPS_MT_SMTC */
1357 cpu_cache_init();
1358 tlb_init();
1359 #ifdef CONFIG_MIPS_MT_SMTC
1361 #endif /* CONFIG_MIPS_MT_SMTC */
1364 /* Install CPU exception handler */
1365 void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1367 memcpy((void *)(ebase + offset), addr, size);
1368 flush_icache_range(ebase + offset, ebase + offset + size);
1371 /* Install uncached CPU exception handler */
1372 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1374 #ifdef CONFIG_32BIT
1375 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1376 #endif
1377 #ifdef CONFIG_64BIT
1378 unsigned long uncached_ebase = TO_UNCAC(ebase);
1379 #endif
1381 memcpy((void *)(uncached_ebase + offset), addr, size);
1384 void __init trap_init(void)
1386 extern char except_vec3_generic, except_vec3_r4000;
1387 extern char except_vec4;
1388 unsigned long i;
1390 if (cpu_has_veic || cpu_has_vint)
1391 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1392 else
1393 ebase = CAC_BASE;
1395 mips_srs_init();
1397 per_cpu_trap_init();
1400 * Copy the generic exception handlers to their final destination.
1401 * This will be overriden later as suitable for a particular
1402 * configuration.
1404 set_handler(0x180, &except_vec3_generic, 0x80);
1407 * Setup default vectors
1409 for (i = 0; i <= 31; i++)
1410 set_except_vector(i, handle_reserved);
1413 * Copy the EJTAG debug exception vector handler code to it's final
1414 * destination.
1416 if (cpu_has_ejtag && board_ejtag_handler_setup)
1417 board_ejtag_handler_setup ();
1420 * Only some CPUs have the watch exceptions.
1422 if (cpu_has_watch)
1423 set_except_vector(23, handle_watch);
1426 * Initialise interrupt handlers
1428 if (cpu_has_veic || cpu_has_vint) {
1429 int nvec = cpu_has_veic ? 64 : 8;
1430 for (i = 0; i < nvec; i++)
1431 set_vi_handler(i, NULL);
1433 else if (cpu_has_divec)
1434 set_handler(0x200, &except_vec4, 0x8);
1437 * Some CPUs can enable/disable for cache parity detection, but does
1438 * it different ways.
1440 parity_protection_init();
1443 * The Data Bus Errors / Instruction Bus Errors are signaled
1444 * by external hardware. Therefore these two exceptions
1445 * may have board specific handlers.
1447 if (board_be_init)
1448 board_be_init();
1450 set_except_vector(0, handle_int);
1451 set_except_vector(1, handle_tlbm);
1452 set_except_vector(2, handle_tlbl);
1453 set_except_vector(3, handle_tlbs);
1455 set_except_vector(4, handle_adel);
1456 set_except_vector(5, handle_ades);
1458 set_except_vector(6, handle_ibe);
1459 set_except_vector(7, handle_dbe);
1461 set_except_vector(8, handle_sys);
1462 set_except_vector(9, handle_bp);
1463 set_except_vector(10, handle_ri);
1464 set_except_vector(11, handle_cpu);
1465 set_except_vector(12, handle_ov);
1466 set_except_vector(13, handle_tr);
1468 if (current_cpu_data.cputype == CPU_R6000 ||
1469 current_cpu_data.cputype == CPU_R6000A) {
1471 * The R6000 is the only R-series CPU that features a machine
1472 * check exception (similar to the R4000 cache error) and
1473 * unaligned ldc1/sdc1 exception. The handlers have not been
1474 * written yet. Well, anyway there is no R6000 machine on the
1475 * current list of targets for Linux/MIPS.
1476 * (Duh, crap, there is someone with a triple R6k machine)
1478 //set_except_vector(14, handle_mc);
1479 //set_except_vector(15, handle_ndc);
1483 if (board_nmi_handler_setup)
1484 board_nmi_handler_setup();
1486 if (cpu_has_fpu && !cpu_has_nofpuex)
1487 set_except_vector(15, handle_fpe);
1489 set_except_vector(22, handle_mdmx);
1491 if (cpu_has_mcheck)
1492 set_except_vector(24, handle_mcheck);
1494 if (cpu_has_mipsmt)
1495 set_except_vector(25, handle_mt);
1497 if (cpu_has_dsp)
1498 set_except_vector(26, handle_dsp);
1500 if (cpu_has_vce)
1501 /* Special exception: R4[04]00 uses also the divec space. */
1502 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1503 else if (cpu_has_4kex)
1504 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1505 else
1506 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1508 signal_init();
1509 #ifdef CONFIG_MIPS32_COMPAT
1510 signal32_init();
1511 #endif
1513 flush_icache_range(ebase, ebase + 0x400);
1514 flush_tlb_handlers();