[PATCH] briq_panel: read() and write() get __user pointers, damnit
[linux-2.6/verdex.git] / arch / mips / kernel / vpe.c
blob9ee0ec2cd067ccb31e787b9ba2fbe30b6b0df52b
1 /*
2 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
4 * This program is free software; you can distribute it and/or modify it
5 * under the terms of the GNU General Public License (Version 2) as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
11 * for more details.
13 * You should have received a copy of the GNU General Public License along
14 * with this program; if not, write to the Free Software Foundation, Inc.,
15 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
19 * VPE support module
21 * Provides support for loading a MIPS SP program on VPE1.
22 * The SP enviroment is rather simple, no tlb's. It needs to be relocatable
23 * (or partially linked). You should initialise your stack in the startup
24 * code. This loader looks for the symbol __start and sets up
25 * execution to resume from there. The MIPS SDE kit contains suitable examples.
27 * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28 * i.e cat spapp >/dev/vpe1.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/init.h>
35 #include <asm/uaccess.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/vmalloc.h>
39 #include <linux/elf.h>
40 #include <linux/seq_file.h>
41 #include <linux/syscalls.h>
42 #include <linux/moduleloader.h>
43 #include <linux/interrupt.h>
44 #include <linux/poll.h>
45 #include <linux/bootmem.h>
46 #include <asm/mipsregs.h>
47 #include <asm/mipsmtregs.h>
48 #include <asm/cacheflush.h>
49 #include <asm/atomic.h>
50 #include <asm/cpu.h>
51 #include <asm/processor.h>
52 #include <asm/system.h>
53 #include <asm/vpe.h>
54 #include <asm/kspd.h>
56 typedef void *vpe_handle;
58 #ifndef ARCH_SHF_SMALL
59 #define ARCH_SHF_SMALL 0
60 #endif
62 /* If this is set, the section belongs in the init part of the module */
63 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
65 static char module_name[] = "vpe";
66 static int major;
68 #ifdef CONFIG_MIPS_APSP_KSPD
69 static struct kspd_notifications kspd_events;
70 static int kspd_events_reqd = 0;
71 #endif
73 /* grab the likely amount of memory we will need. */
74 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
75 #define P_SIZE (2 * 1024 * 1024)
76 #else
77 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
78 #define P_SIZE (256 * 1024)
79 #endif
81 extern unsigned long physical_memsize;
83 #define MAX_VPES 16
84 #define VPE_PATH_MAX 256
86 enum vpe_state {
87 VPE_STATE_UNUSED = 0,
88 VPE_STATE_INUSE,
89 VPE_STATE_RUNNING
92 enum tc_state {
93 TC_STATE_UNUSED = 0,
94 TC_STATE_INUSE,
95 TC_STATE_RUNNING,
96 TC_STATE_DYNAMIC
99 struct vpe {
100 enum vpe_state state;
102 /* (device) minor associated with this vpe */
103 int minor;
105 /* elfloader stuff */
106 void *load_addr;
107 unsigned long len;
108 char *pbuffer;
109 unsigned long plen;
110 unsigned int uid, gid;
111 char cwd[VPE_PATH_MAX];
113 unsigned long __start;
115 /* tc's associated with this vpe */
116 struct list_head tc;
118 /* The list of vpe's */
119 struct list_head list;
121 /* shared symbol address */
122 void *shared_ptr;
124 /* the list of who wants to know when something major happens */
125 struct list_head notify;
128 struct tc {
129 enum tc_state state;
130 int index;
132 /* parent VPE */
133 struct vpe *pvpe;
135 /* The list of TC's with this VPE */
136 struct list_head tc;
138 /* The global list of tc's */
139 struct list_head list;
142 struct vpecontrol_ {
143 /* Virtual processing elements */
144 struct list_head vpe_list;
146 /* Thread contexts */
147 struct list_head tc_list;
148 } vpecontrol;
150 static void release_progmem(void *ptr);
151 /* static __attribute_used__ void dump_vpe(struct vpe * v); */
152 extern void save_gp_address(unsigned int secbase, unsigned int rel);
154 /* get the vpe associated with this minor */
155 struct vpe *get_vpe(int minor)
157 struct vpe *v;
159 if (!cpu_has_mipsmt)
160 return NULL;
162 list_for_each_entry(v, &vpecontrol.vpe_list, list) {
163 if (v->minor == minor)
164 return v;
167 return NULL;
170 /* get the vpe associated with this minor */
171 struct tc *get_tc(int index)
173 struct tc *t;
175 list_for_each_entry(t, &vpecontrol.tc_list, list) {
176 if (t->index == index)
177 return t;
180 return NULL;
183 struct tc *get_tc_unused(void)
185 struct tc *t;
187 list_for_each_entry(t, &vpecontrol.tc_list, list) {
188 if (t->state == TC_STATE_UNUSED)
189 return t;
192 return NULL;
195 /* allocate a vpe and associate it with this minor (or index) */
196 struct vpe *alloc_vpe(int minor)
198 struct vpe *v;
200 if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) {
201 return NULL;
204 INIT_LIST_HEAD(&v->tc);
205 list_add_tail(&v->list, &vpecontrol.vpe_list);
207 INIT_LIST_HEAD(&v->notify);
208 v->minor = minor;
209 return v;
212 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
213 struct tc *alloc_tc(int index)
215 struct tc *t;
217 if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) {
218 return NULL;
221 INIT_LIST_HEAD(&t->tc);
222 list_add_tail(&t->list, &vpecontrol.tc_list);
224 t->index = index;
226 return t;
229 /* clean up and free everything */
230 void release_vpe(struct vpe *v)
232 list_del(&v->list);
233 if (v->load_addr)
234 release_progmem(v);
235 kfree(v);
238 void dump_mtregs(void)
240 unsigned long val;
242 val = read_c0_config3();
243 printk("config3 0x%lx MT %ld\n", val,
244 (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
246 val = read_c0_mvpcontrol();
247 printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
248 (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
249 (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
250 (val & MVPCONTROL_EVP));
252 val = read_c0_mvpconf0();
253 printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
254 (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
255 val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
258 /* Find some VPE program space */
259 static void *alloc_progmem(unsigned long len)
261 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
262 /* this means you must tell linux to use less memory than you physically have */
263 return pfn_to_kaddr(max_pfn);
264 #else
265 // simple grab some mem for now
266 return kmalloc(len, GFP_KERNEL);
267 #endif
270 static void release_progmem(void *ptr)
272 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
273 kfree(ptr);
274 #endif
277 /* Update size with this section: return offset. */
278 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
280 long ret;
282 ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
283 *size = ret + sechdr->sh_size;
284 return ret;
287 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
288 might -- code, read-only data, read-write data, small data. Tally
289 sizes, and place the offsets into sh_entsize fields: high bit means it
290 belongs in init. */
291 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
292 Elf_Shdr * sechdrs, const char *secstrings)
294 static unsigned long const masks[][2] = {
295 /* NOTE: all executable code must be the first section
296 * in this array; otherwise modify the text_size
297 * finder in the two loops below */
298 {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
299 {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
300 {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
301 {ARCH_SHF_SMALL | SHF_ALLOC, 0}
303 unsigned int m, i;
305 for (i = 0; i < hdr->e_shnum; i++)
306 sechdrs[i].sh_entsize = ~0UL;
308 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
309 for (i = 0; i < hdr->e_shnum; ++i) {
310 Elf_Shdr *s = &sechdrs[i];
312 // || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
313 if ((s->sh_flags & masks[m][0]) != masks[m][0]
314 || (s->sh_flags & masks[m][1])
315 || s->sh_entsize != ~0UL)
316 continue;
317 s->sh_entsize = get_offset(&mod->core_size, s);
320 if (m == 0)
321 mod->core_text_size = mod->core_size;
327 /* from module-elf32.c, but subverted a little */
329 struct mips_hi16 {
330 struct mips_hi16 *next;
331 Elf32_Addr *addr;
332 Elf32_Addr value;
335 static struct mips_hi16 *mips_hi16_list;
336 static unsigned int gp_offs, gp_addr;
338 static int apply_r_mips_none(struct module *me, uint32_t *location,
339 Elf32_Addr v)
341 return 0;
344 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
345 Elf32_Addr v)
347 int rel;
349 if( !(*location & 0xffff) ) {
350 rel = (int)v - gp_addr;
352 else {
353 /* .sbss + gp(relative) + offset */
354 /* kludge! */
355 rel = (int)(short)((int)v + gp_offs +
356 (int)(short)(*location & 0xffff) - gp_addr);
359 if( (rel > 32768) || (rel < -32768) ) {
360 printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
361 "relative address 0x%x out of range of gp register\n",
362 rel);
363 return -ENOEXEC;
366 *location = (*location & 0xffff0000) | (rel & 0xffff);
368 return 0;
371 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
372 Elf32_Addr v)
374 int rel;
375 rel = (((unsigned int)v - (unsigned int)location));
376 rel >>= 2; // because the offset is in _instructions_ not bytes.
377 rel -= 1; // and one instruction less due to the branch delay slot.
379 if( (rel > 32768) || (rel < -32768) ) {
380 printk(KERN_DEBUG "VPE loader: "
381 "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
382 return -ENOEXEC;
385 *location = (*location & 0xffff0000) | (rel & 0xffff);
387 return 0;
390 static int apply_r_mips_32(struct module *me, uint32_t *location,
391 Elf32_Addr v)
393 *location += v;
395 return 0;
398 static int apply_r_mips_26(struct module *me, uint32_t *location,
399 Elf32_Addr v)
401 if (v % 4) {
402 printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
403 " unaligned relocation\n");
404 return -ENOEXEC;
408 * Not desperately convinced this is a good check of an overflow condition
409 * anyway. But it gets in the way of handling undefined weak symbols which
410 * we want to set to zero.
411 * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
412 * printk(KERN_ERR
413 * "module %s: relocation overflow\n",
414 * me->name);
415 * return -ENOEXEC;
419 *location = (*location & ~0x03ffffff) |
420 ((*location + (v >> 2)) & 0x03ffffff);
421 return 0;
424 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
425 Elf32_Addr v)
427 struct mips_hi16 *n;
430 * We cannot relocate this one now because we don't know the value of
431 * the carry we need to add. Save the information, and let LO16 do the
432 * actual relocation.
434 n = kmalloc(sizeof *n, GFP_KERNEL);
435 if (!n)
436 return -ENOMEM;
438 n->addr = location;
439 n->value = v;
440 n->next = mips_hi16_list;
441 mips_hi16_list = n;
443 return 0;
446 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
447 Elf32_Addr v)
449 unsigned long insnlo = *location;
450 Elf32_Addr val, vallo;
452 /* Sign extend the addend we extract from the lo insn. */
453 vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
455 if (mips_hi16_list != NULL) {
456 struct mips_hi16 *l;
458 l = mips_hi16_list;
459 while (l != NULL) {
460 struct mips_hi16 *next;
461 unsigned long insn;
464 * The value for the HI16 had best be the same.
466 if (v != l->value) {
467 printk(KERN_DEBUG "VPE loader: "
468 "apply_r_mips_lo16/hi16: "
469 "inconsistent value information\n");
470 return -ENOEXEC;
474 * Do the HI16 relocation. Note that we actually don't
475 * need to know anything about the LO16 itself, except
476 * where to find the low 16 bits of the addend needed
477 * by the LO16.
479 insn = *l->addr;
480 val = ((insn & 0xffff) << 16) + vallo;
481 val += v;
484 * Account for the sign extension that will happen in
485 * the low bits.
487 val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
489 insn = (insn & ~0xffff) | val;
490 *l->addr = insn;
492 next = l->next;
493 kfree(l);
494 l = next;
497 mips_hi16_list = NULL;
501 * Ok, we're done with the HI16 relocs. Now deal with the LO16.
503 val = v + vallo;
504 insnlo = (insnlo & ~0xffff) | (val & 0xffff);
505 *location = insnlo;
507 return 0;
510 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
511 Elf32_Addr v) = {
512 [R_MIPS_NONE] = apply_r_mips_none,
513 [R_MIPS_32] = apply_r_mips_32,
514 [R_MIPS_26] = apply_r_mips_26,
515 [R_MIPS_HI16] = apply_r_mips_hi16,
516 [R_MIPS_LO16] = apply_r_mips_lo16,
517 [R_MIPS_GPREL16] = apply_r_mips_gprel16,
518 [R_MIPS_PC16] = apply_r_mips_pc16
521 static char *rstrs[] = {
522 [R_MIPS_NONE] = "MIPS_NONE",
523 [R_MIPS_32] = "MIPS_32",
524 [R_MIPS_26] = "MIPS_26",
525 [R_MIPS_HI16] = "MIPS_HI16",
526 [R_MIPS_LO16] = "MIPS_LO16",
527 [R_MIPS_GPREL16] = "MIPS_GPREL16",
528 [R_MIPS_PC16] = "MIPS_PC16"
531 int apply_relocations(Elf32_Shdr *sechdrs,
532 const char *strtab,
533 unsigned int symindex,
534 unsigned int relsec,
535 struct module *me)
537 Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
538 Elf32_Sym *sym;
539 uint32_t *location;
540 unsigned int i;
541 Elf32_Addr v;
542 int res;
544 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
545 Elf32_Word r_info = rel[i].r_info;
547 /* This is where to make the change */
548 location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
549 + rel[i].r_offset;
550 /* This is the symbol it is referring to */
551 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
552 + ELF32_R_SYM(r_info);
554 if (!sym->st_value) {
555 printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
556 me->name, strtab + sym->st_name);
557 /* just print the warning, dont barf */
560 v = sym->st_value;
562 res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
563 if( res ) {
564 char *r = rstrs[ELF32_R_TYPE(r_info)];
565 printk(KERN_WARNING "VPE loader: .text+0x%x "
566 "relocation type %s for symbol \"%s\" failed\n",
567 rel[i].r_offset, r ? r : "UNKNOWN",
568 strtab + sym->st_name);
569 return res;
573 return 0;
576 void save_gp_address(unsigned int secbase, unsigned int rel)
578 gp_addr = secbase + rel;
579 gp_offs = gp_addr - (secbase & 0xffff0000);
581 /* end module-elf32.c */
585 /* Change all symbols so that sh_value encodes the pointer directly. */
586 static void simplify_symbols(Elf_Shdr * sechdrs,
587 unsigned int symindex,
588 const char *strtab,
589 const char *secstrings,
590 unsigned int nsecs, struct module *mod)
592 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
593 unsigned long secbase, bssbase = 0;
594 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
595 int size;
597 /* find the .bss section for COMMON symbols */
598 for (i = 0; i < nsecs; i++) {
599 if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
600 bssbase = sechdrs[i].sh_addr;
601 break;
605 for (i = 1; i < n; i++) {
606 switch (sym[i].st_shndx) {
607 case SHN_COMMON:
608 /* Allocate space for the symbol in the .bss section.
609 st_value is currently size.
610 We want it to have the address of the symbol. */
612 size = sym[i].st_value;
613 sym[i].st_value = bssbase;
615 bssbase += size;
616 break;
618 case SHN_ABS:
619 /* Don't need to do anything */
620 break;
622 case SHN_UNDEF:
623 /* ret = -ENOENT; */
624 break;
626 case SHN_MIPS_SCOMMON:
627 printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON"
628 "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
629 sym[i].st_shndx);
630 // .sbss section
631 break;
633 default:
634 secbase = sechdrs[sym[i].st_shndx].sh_addr;
636 if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
637 save_gp_address(secbase, sym[i].st_value);
640 sym[i].st_value += secbase;
641 break;
646 #ifdef DEBUG_ELFLOADER
647 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
648 const char *strtab, struct module *mod)
650 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
651 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
653 printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
654 for (i = 1; i < n; i++) {
655 printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
656 strtab + sym[i].st_name, sym[i].st_value);
659 #endif
661 static void dump_tc(struct tc *t)
663 unsigned long val;
665 settc(t->index);
666 printk(KERN_DEBUG "VPE loader: TC index %d targtc %ld "
667 "TCStatus 0x%lx halt 0x%lx\n",
668 t->index, read_c0_vpecontrol() & VPECONTROL_TARGTC,
669 read_tc_c0_tcstatus(), read_tc_c0_tchalt());
671 printk(KERN_DEBUG " tcrestart 0x%lx\n", read_tc_c0_tcrestart());
672 printk(KERN_DEBUG " tcbind 0x%lx\n", read_tc_c0_tcbind());
674 val = read_c0_vpeconf0();
675 printk(KERN_DEBUG " VPEConf0 0x%lx MVP %ld\n", val,
676 (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT);
678 printk(KERN_DEBUG " c0 status 0x%lx\n", read_vpe_c0_status());
679 printk(KERN_DEBUG " c0 cause 0x%lx\n", read_vpe_c0_cause());
681 printk(KERN_DEBUG " c0 badvaddr 0x%lx\n", read_vpe_c0_badvaddr());
682 printk(KERN_DEBUG " c0 epc 0x%lx\n", read_vpe_c0_epc());
685 static void dump_tclist(void)
687 struct tc *t;
689 list_for_each_entry(t, &vpecontrol.tc_list, list) {
690 dump_tc(t);
694 /* We are prepared so configure and start the VPE... */
695 int vpe_run(struct vpe * v)
697 struct vpe_notifications *n;
698 unsigned long val, dmt_flag;
699 struct tc *t;
701 /* check we are the Master VPE */
702 val = read_c0_vpeconf0();
703 if (!(val & VPECONF0_MVP)) {
704 printk(KERN_WARNING
705 "VPE loader: only Master VPE's are allowed to configure MT\n");
706 return -1;
709 /* disable MT (using dvpe) */
710 dvpe();
712 if (!list_empty(&v->tc)) {
713 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
714 printk(KERN_WARNING "VPE loader: TC %d is already in use.\n",
715 t->index);
716 return -ENOEXEC;
718 } else {
719 printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n",
720 v->minor);
721 return -ENOEXEC;
724 /* Put MVPE's into 'configuration state' */
725 set_c0_mvpcontrol(MVPCONTROL_VPC);
727 settc(t->index);
729 /* should check it is halted, and not activated */
730 if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
731 printk(KERN_WARNING "VPE loader: TC %d is already doing something!\n",
732 t->index);
733 dump_tclist();
734 return -ENOEXEC;
738 * Disable multi-threaded execution whilst we activate, clear the
739 * halt bit and bound the tc to the other VPE...
741 dmt_flag = dmt();
743 /* Write the address we want it to start running from in the TCPC register. */
744 write_tc_c0_tcrestart((unsigned long)v->__start);
745 write_tc_c0_tccontext((unsigned long)0);
747 * Mark the TC as activated, not interrupt exempt and not dynamically
748 * allocatable
750 val = read_tc_c0_tcstatus();
751 val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
752 write_tc_c0_tcstatus(val);
754 write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
757 * The sde-kit passes 'memsize' to __start in $a3, so set something
758 * here... Or set $a3 to zero and define DFLT_STACK_SIZE and
759 * DFLT_HEAP_SIZE when you compile your program
761 mttgpr(7, physical_memsize);
764 /* set up VPE1 */
766 * bind the TC to VPE 1 as late as possible so we only have the final
767 * VPE registers to set up, and so an EJTAG probe can trigger on it
769 write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | v->minor);
771 /* Set up the XTC bit in vpeconf0 to point at our tc */
772 write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
773 | (t->index << VPECONF0_XTC_SHIFT));
775 /* enable this VPE */
776 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
778 /* clear out any left overs from a previous program */
779 write_vpe_c0_status(0);
780 write_vpe_c0_cause(0);
782 /* take system out of configuration state */
783 clear_c0_mvpcontrol(MVPCONTROL_VPC);
785 /* now safe to re-enable multi-threading */
786 emt(dmt_flag);
788 /* set it running */
789 evpe(EVPE_ENABLE);
791 list_for_each_entry(n, &v->notify, list) {
792 n->start(v->minor);
795 return 0;
798 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
799 unsigned int symindex, const char *strtab,
800 struct module *mod)
802 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
803 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
805 for (i = 1; i < n; i++) {
806 if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
807 v->__start = sym[i].st_value;
810 if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
811 v->shared_ptr = (void *)sym[i].st_value;
815 if ( (v->__start == 0) || (v->shared_ptr == NULL))
816 return -1;
818 return 0;
822 * Allocates a VPE with some program code space(the load address), copies the
823 * contents of the program (p)buffer performing relocatations/etc, free's it
824 * when finished.
826 int vpe_elfload(struct vpe * v)
828 Elf_Ehdr *hdr;
829 Elf_Shdr *sechdrs;
830 long err = 0;
831 char *secstrings, *strtab = NULL;
832 unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
833 struct module mod; // so we can re-use the relocations code
835 memset(&mod, 0, sizeof(struct module));
836 strcpy(mod.name, "VPE loader");
838 hdr = (Elf_Ehdr *) v->pbuffer;
839 len = v->plen;
841 /* Sanity checks against insmoding binaries or wrong arch,
842 weird elf version */
843 if (memcmp(hdr->e_ident, ELFMAG, 4) != 0
844 || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
845 || !elf_check_arch(hdr)
846 || hdr->e_shentsize != sizeof(*sechdrs)) {
847 printk(KERN_WARNING
848 "VPE loader: program wrong arch or weird elf version\n");
850 return -ENOEXEC;
853 if (hdr->e_type == ET_REL)
854 relocate = 1;
856 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
857 printk(KERN_ERR "VPE loader: program length %u truncated\n",
858 len);
860 return -ENOEXEC;
863 /* Convenience variables */
864 sechdrs = (void *)hdr + hdr->e_shoff;
865 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
866 sechdrs[0].sh_addr = 0;
868 /* And these should exist, but gcc whinges if we don't init them */
869 symindex = strindex = 0;
871 if (relocate) {
872 for (i = 1; i < hdr->e_shnum; i++) {
873 if (sechdrs[i].sh_type != SHT_NOBITS
874 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
875 printk(KERN_ERR "VPE program length %u truncated\n",
876 len);
877 return -ENOEXEC;
880 /* Mark all sections sh_addr with their address in the
881 temporary image. */
882 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
884 /* Internal symbols and strings. */
885 if (sechdrs[i].sh_type == SHT_SYMTAB) {
886 symindex = i;
887 strindex = sechdrs[i].sh_link;
888 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
891 layout_sections(&mod, hdr, sechdrs, secstrings);
894 v->load_addr = alloc_progmem(mod.core_size);
895 memset(v->load_addr, 0, mod.core_size);
897 printk("VPE loader: loading to %p\n", v->load_addr);
899 if (relocate) {
900 for (i = 0; i < hdr->e_shnum; i++) {
901 void *dest;
903 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
904 continue;
906 dest = v->load_addr + sechdrs[i].sh_entsize;
908 if (sechdrs[i].sh_type != SHT_NOBITS)
909 memcpy(dest, (void *)sechdrs[i].sh_addr,
910 sechdrs[i].sh_size);
911 /* Update sh_addr to point to copy in image. */
912 sechdrs[i].sh_addr = (unsigned long)dest;
914 printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
915 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
918 /* Fix up syms, so that st_value is a pointer to location. */
919 simplify_symbols(sechdrs, symindex, strtab, secstrings,
920 hdr->e_shnum, &mod);
922 /* Now do relocations. */
923 for (i = 1; i < hdr->e_shnum; i++) {
924 const char *strtab = (char *)sechdrs[strindex].sh_addr;
925 unsigned int info = sechdrs[i].sh_info;
927 /* Not a valid relocation section? */
928 if (info >= hdr->e_shnum)
929 continue;
931 /* Don't bother with non-allocated sections */
932 if (!(sechdrs[info].sh_flags & SHF_ALLOC))
933 continue;
935 if (sechdrs[i].sh_type == SHT_REL)
936 err = apply_relocations(sechdrs, strtab, symindex, i,
937 &mod);
938 else if (sechdrs[i].sh_type == SHT_RELA)
939 err = apply_relocate_add(sechdrs, strtab, symindex, i,
940 &mod);
941 if (err < 0)
942 return err;
945 } else {
946 for (i = 0; i < hdr->e_shnum; i++) {
948 /* Internal symbols and strings. */
949 if (sechdrs[i].sh_type == SHT_SYMTAB) {
950 symindex = i;
951 strindex = sechdrs[i].sh_link;
952 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
954 /* mark the symtab's address for when we try to find the
955 magic symbols */
956 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
959 /* filter sections we dont want in the final image */
960 if (!(sechdrs[i].sh_flags & SHF_ALLOC) ||
961 (sechdrs[i].sh_type == SHT_MIPS_REGINFO)) {
962 printk( KERN_DEBUG " ignoring section, "
963 "name %s type %x address 0x%x \n",
964 secstrings + sechdrs[i].sh_name,
965 sechdrs[i].sh_type, sechdrs[i].sh_addr);
966 continue;
969 if (sechdrs[i].sh_addr < (unsigned int)v->load_addr) {
970 printk( KERN_WARNING "VPE loader: "
971 "fully linked image has invalid section, "
972 "name %s type %x address 0x%x, before load "
973 "address of 0x%x\n",
974 secstrings + sechdrs[i].sh_name,
975 sechdrs[i].sh_type, sechdrs[i].sh_addr,
976 (unsigned int)v->load_addr);
977 return -ENOEXEC;
980 printk(KERN_DEBUG " copying section sh_name %s, sh_addr 0x%x "
981 "size 0x%x0 from x%p\n",
982 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr,
983 sechdrs[i].sh_size, hdr + sechdrs[i].sh_offset);
985 if (sechdrs[i].sh_type != SHT_NOBITS)
986 memcpy((void *)sechdrs[i].sh_addr,
987 (char *)hdr + sechdrs[i].sh_offset,
988 sechdrs[i].sh_size);
989 else
990 memset((void *)sechdrs[i].sh_addr, 0, sechdrs[i].sh_size);
994 /* make sure it's physically written out */
995 flush_icache_range((unsigned long)v->load_addr,
996 (unsigned long)v->load_addr + v->len);
998 if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
999 if (v->__start == 0) {
1000 printk(KERN_WARNING "VPE loader: program does not contain "
1001 "a __start symbol\n");
1002 return -ENOEXEC;
1005 if (v->shared_ptr == NULL)
1006 printk(KERN_WARNING "VPE loader: "
1007 "program does not contain vpe_shared symbol.\n"
1008 " Unable to use AMVP (AP/SP) facilities.\n");
1011 printk(" elf loaded\n");
1012 return 0;
1015 __attribute_used__ void dump_vpe(struct vpe * v)
1017 struct tc *t;
1019 settc(v->minor);
1021 printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol());
1022 printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0());
1024 list_for_each_entry(t, &vpecontrol.tc_list, list)
1025 dump_tc(t);
1028 static void cleanup_tc(struct tc *tc)
1030 int tmp;
1032 /* Put MVPE's into 'configuration state' */
1033 set_c0_mvpcontrol(MVPCONTROL_VPC);
1035 settc(tc->index);
1036 tmp = read_tc_c0_tcstatus();
1038 /* mark not allocated and not dynamically allocatable */
1039 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1040 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1041 write_tc_c0_tcstatus(tmp);
1043 write_tc_c0_tchalt(TCHALT_H);
1045 /* bind it to anything other than VPE1 */
1046 write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1048 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1051 static int getcwd(char *buff, int size)
1053 mm_segment_t old_fs;
1054 int ret;
1056 old_fs = get_fs();
1057 set_fs(KERNEL_DS);
1059 ret = sys_getcwd(buff,size);
1061 set_fs(old_fs);
1063 return ret;
1066 /* checks VPE is unused and gets ready to load program */
1067 static int vpe_open(struct inode *inode, struct file *filp)
1069 int minor, ret;
1070 struct vpe *v;
1071 struct vpe_notifications *not;
1073 /* assume only 1 device at the mo. */
1074 if ((minor = iminor(inode)) != 1) {
1075 printk(KERN_WARNING "VPE loader: only vpe1 is supported\n");
1076 return -ENODEV;
1079 if ((v = get_vpe(minor)) == NULL) {
1080 printk(KERN_WARNING "VPE loader: unable to get vpe\n");
1081 return -ENODEV;
1084 if (v->state != VPE_STATE_UNUSED) {
1085 dvpe();
1087 printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1089 dump_tc(get_tc(minor));
1091 list_for_each_entry(not, &v->notify, list) {
1092 not->stop(minor);
1095 release_progmem(v->load_addr);
1096 cleanup_tc(get_tc(minor));
1099 // allocate it so when we get write ops we know it's expected.
1100 v->state = VPE_STATE_INUSE;
1102 /* this of-course trashes what was there before... */
1103 v->pbuffer = vmalloc(P_SIZE);
1104 v->plen = P_SIZE;
1105 v->load_addr = NULL;
1106 v->len = 0;
1108 v->uid = filp->f_uid;
1109 v->gid = filp->f_gid;
1111 #ifdef CONFIG_MIPS_APSP_KSPD
1112 /* get kspd to tell us when a syscall_exit happens */
1113 if (!kspd_events_reqd) {
1114 kspd_notify(&kspd_events);
1115 kspd_events_reqd++;
1117 #endif
1119 v->cwd[0] = 0;
1120 ret = getcwd(v->cwd, VPE_PATH_MAX);
1121 if (ret < 0)
1122 printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1124 v->shared_ptr = NULL;
1125 v->__start = 0;
1126 return 0;
1129 static int vpe_release(struct inode *inode, struct file *filp)
1131 int minor, ret = 0;
1132 struct vpe *v;
1133 Elf_Ehdr *hdr;
1135 minor = iminor(inode);
1136 if ((v = get_vpe(minor)) == NULL)
1137 return -ENODEV;
1139 // simple case of fire and forget, so tell the VPE to run...
1141 hdr = (Elf_Ehdr *) v->pbuffer;
1142 if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) {
1143 if (vpe_elfload(v) >= 0)
1144 vpe_run(v);
1145 else {
1146 printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1147 ret = -ENOEXEC;
1149 } else {
1150 printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1151 ret = -ENOEXEC;
1154 /* It's good to be able to run the SP and if it chokes have a look at
1155 the /dev/rt?. But if we reset the pointer to the shared struct we
1156 loose what has happened. So perhaps if garbage is sent to the vpe
1157 device, use it as a trigger for the reset. Hopefully a nice
1158 executable will be along shortly. */
1159 if (ret < 0)
1160 v->shared_ptr = NULL;
1162 // cleanup any temp buffers
1163 if (v->pbuffer)
1164 vfree(v->pbuffer);
1165 v->plen = 0;
1166 return ret;
1169 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1170 size_t count, loff_t * ppos)
1172 int minor;
1173 size_t ret = count;
1174 struct vpe *v;
1176 minor = iminor(file->f_dentry->d_inode);
1177 if ((v = get_vpe(minor)) == NULL)
1178 return -ENODEV;
1180 if (v->pbuffer == NULL) {
1181 printk(KERN_ERR "VPE loader: no buffer for program\n");
1182 return -ENOMEM;
1185 if ((count + v->len) > v->plen) {
1186 printk(KERN_WARNING
1187 "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1188 return -ENOMEM;
1191 count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1192 if (!count)
1193 return -EFAULT;
1195 v->len += count;
1196 return ret;
1199 static struct file_operations vpe_fops = {
1200 .owner = THIS_MODULE,
1201 .open = vpe_open,
1202 .release = vpe_release,
1203 .write = vpe_write
1206 /* module wrapper entry points */
1207 /* give me a vpe */
1208 vpe_handle vpe_alloc(void)
1210 int i;
1211 struct vpe *v;
1213 /* find a vpe */
1214 for (i = 1; i < MAX_VPES; i++) {
1215 if ((v = get_vpe(i)) != NULL) {
1216 v->state = VPE_STATE_INUSE;
1217 return v;
1220 return NULL;
1223 EXPORT_SYMBOL(vpe_alloc);
1225 /* start running from here */
1226 int vpe_start(vpe_handle vpe, unsigned long start)
1228 struct vpe *v = vpe;
1230 v->__start = start;
1231 return vpe_run(v);
1234 EXPORT_SYMBOL(vpe_start);
1236 /* halt it for now */
1237 int vpe_stop(vpe_handle vpe)
1239 struct vpe *v = vpe;
1240 struct tc *t;
1241 unsigned int evpe_flags;
1243 evpe_flags = dvpe();
1245 if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1247 settc(t->index);
1248 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1251 evpe(evpe_flags);
1253 return 0;
1256 EXPORT_SYMBOL(vpe_stop);
1258 /* I've done with it thank you */
1259 int vpe_free(vpe_handle vpe)
1261 struct vpe *v = vpe;
1262 struct tc *t;
1263 unsigned int evpe_flags;
1265 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1266 return -ENOEXEC;
1269 evpe_flags = dvpe();
1271 /* Put MVPE's into 'configuration state' */
1272 set_c0_mvpcontrol(MVPCONTROL_VPC);
1274 settc(t->index);
1275 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1277 /* mark the TC unallocated and halt'ed */
1278 write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1279 write_tc_c0_tchalt(TCHALT_H);
1281 v->state = VPE_STATE_UNUSED;
1283 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1284 evpe(evpe_flags);
1286 return 0;
1289 EXPORT_SYMBOL(vpe_free);
1291 void *vpe_get_shared(int index)
1293 struct vpe *v;
1295 if ((v = get_vpe(index)) == NULL)
1296 return NULL;
1298 return v->shared_ptr;
1301 EXPORT_SYMBOL(vpe_get_shared);
1303 int vpe_getuid(int index)
1305 struct vpe *v;
1307 if ((v = get_vpe(index)) == NULL)
1308 return -1;
1310 return v->uid;
1313 EXPORT_SYMBOL(vpe_getuid);
1315 int vpe_getgid(int index)
1317 struct vpe *v;
1319 if ((v = get_vpe(index)) == NULL)
1320 return -1;
1322 return v->gid;
1325 EXPORT_SYMBOL(vpe_getgid);
1327 int vpe_notify(int index, struct vpe_notifications *notify)
1329 struct vpe *v;
1331 if ((v = get_vpe(index)) == NULL)
1332 return -1;
1334 list_add(&notify->list, &v->notify);
1335 return 0;
1338 EXPORT_SYMBOL(vpe_notify);
1340 char *vpe_getcwd(int index)
1342 struct vpe *v;
1344 if ((v = get_vpe(index)) == NULL)
1345 return NULL;
1347 return v->cwd;
1350 EXPORT_SYMBOL(vpe_getcwd);
1352 #ifdef CONFIG_MIPS_APSP_KSPD
1353 static void kspd_sp_exit( int sp_id)
1355 cleanup_tc(get_tc(sp_id));
1357 #endif
1359 static int __init vpe_module_init(void)
1361 struct vpe *v = NULL;
1362 struct tc *t;
1363 unsigned long val;
1364 int i;
1366 if (!cpu_has_mipsmt) {
1367 printk("VPE loader: not a MIPS MT capable processor\n");
1368 return -ENODEV;
1371 major = register_chrdev(0, module_name, &vpe_fops);
1372 if (major < 0) {
1373 printk("VPE loader: unable to register character device\n");
1374 return major;
1377 dmt();
1378 dvpe();
1380 /* Put MVPE's into 'configuration state' */
1381 set_c0_mvpcontrol(MVPCONTROL_VPC);
1383 /* dump_mtregs(); */
1385 INIT_LIST_HEAD(&vpecontrol.vpe_list);
1386 INIT_LIST_HEAD(&vpecontrol.tc_list);
1388 val = read_c0_mvpconf0();
1389 for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) {
1390 t = alloc_tc(i);
1392 /* VPE's */
1393 if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) {
1394 settc(i);
1396 if ((v = alloc_vpe(i)) == NULL) {
1397 printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1398 return -ENODEV;
1401 /* add the tc to the list of this vpe's tc's. */
1402 list_add(&t->tc, &v->tc);
1404 /* deactivate all but vpe0 */
1405 if (i != 0) {
1406 unsigned long tmp = read_vpe_c0_vpeconf0();
1408 tmp &= ~VPECONF0_VPA;
1410 /* master VPE */
1411 tmp |= VPECONF0_MVP;
1412 write_vpe_c0_vpeconf0(tmp);
1415 /* disable multi-threading with TC's */
1416 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1418 if (i != 0) {
1419 write_vpe_c0_status((read_c0_status() &
1420 ~(ST0_IM | ST0_IE | ST0_KSU))
1421 | ST0_CU0);
1424 * Set config to be the same as vpe0,
1425 * particularly kseg0 coherency alg
1427 write_vpe_c0_config(read_c0_config());
1431 /* TC's */
1432 t->pvpe = v; /* set the parent vpe */
1434 if (i != 0) {
1435 unsigned long tmp;
1437 settc(i);
1439 /* Any TC that is bound to VPE0 gets left as is - in case
1440 we are running SMTC on VPE0. A TC that is bound to any
1441 other VPE gets bound to VPE0, ideally I'd like to make
1442 it homeless but it doesn't appear to let me bind a TC
1443 to a non-existent VPE. Which is perfectly reasonable.
1445 The (un)bound state is visible to an EJTAG probe so may
1446 notify GDB...
1449 if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1450 /* tc is bound >vpe0 */
1451 write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1453 t->pvpe = get_vpe(0); /* set the parent vpe */
1456 tmp = read_tc_c0_tcstatus();
1458 /* mark not activated and not dynamically allocatable */
1459 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1460 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1461 write_tc_c0_tcstatus(tmp);
1463 write_tc_c0_tchalt(TCHALT_H);
1467 /* release config state */
1468 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1470 #ifdef CONFIG_MIPS_APSP_KSPD
1471 kspd_events.kspd_sp_exit = kspd_sp_exit;
1472 #endif
1473 return 0;
1476 static void __exit vpe_module_exit(void)
1478 struct vpe *v, *n;
1480 list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1481 if (v->state != VPE_STATE_UNUSED) {
1482 release_vpe(v);
1486 unregister_chrdev(major, module_name);
1489 module_init(vpe_module_init);
1490 module_exit(vpe_module_exit);
1491 MODULE_DESCRIPTION("MIPS VPE Loader");
1492 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1493 MODULE_LICENSE("GPL");