[PATCH] briq_panel: read() and write() get __user pointers, damnit
[linux-2.6/verdex.git] / arch / mips / math-emu / cp1emu.c
blob3f0d5d26d506d27abc452b394268a57532df00b4
1 /*
2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
6 * http://www.algor.co.uk
8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9 * Copyright (C) 2000 MIPS Technologies, Inc.
11 * This program is free software; you can distribute it and/or modify it
12 * under the terms of the GNU General Public License (Version 2) as
13 * published by the Free Software Foundation.
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
24 * A complete emulator for MIPS coprocessor 1 instructions. This is
25 * required for #float(switch) or #float(trap), where it catches all
26 * COP1 instructions via the "CoProcessor Unusable" exception.
28 * More surprisingly it is also required for #float(ieee), to help out
29 * the hardware fpu at the boundaries of the IEEE-754 representation
30 * (denormalised values, infinities, underflow, etc). It is made
31 * quite nasty because emulation of some non-COP1 instructions is
32 * required, e.g. in branch delay slots.
34 * Note if you know that you won't have an fpu, then you'll get much
35 * better performance by compiling with -msoft-float!
37 #include <linux/sched.h>
39 #include <asm/inst.h>
40 #include <asm/bootinfo.h>
41 #include <asm/cpu.h>
42 #include <asm/cpu-features.h>
43 #include <asm/processor.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/mipsregs.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/uaccess.h>
49 #include <asm/branch.h>
51 #include "ieee754.h"
52 #include "dsemul.h"
54 /* Strap kernel emulator for full MIPS IV emulation */
56 #ifdef __mips
57 #undef __mips
58 #endif
59 #define __mips 4
61 /* Function which emulates a floating point instruction. */
63 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
64 mips_instruction);
66 #if __mips >= 4 && __mips != 32
67 static int fpux_emu(struct pt_regs *,
68 struct mips_fpu_struct *, mips_instruction);
69 #endif
71 /* Further private data for which no space exists in mips_fpu_struct */
73 struct mips_fpu_emulator_stats fpuemustats;
75 /* Control registers */
77 #define FPCREG_RID 0 /* $0 = revision id */
78 #define FPCREG_CSR 31 /* $31 = csr */
80 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
81 static const unsigned char ieee_rm[4] = {
82 [FPU_CSR_RN] = IEEE754_RN,
83 [FPU_CSR_RZ] = IEEE754_RZ,
84 [FPU_CSR_RU] = IEEE754_RU,
85 [FPU_CSR_RD] = IEEE754_RD,
87 /* Convert IEEE library modes to Mips rounding mode (0..3). */
88 static const unsigned char mips_rm[4] = {
89 [IEEE754_RN] = FPU_CSR_RN,
90 [IEEE754_RZ] = FPU_CSR_RZ,
91 [IEEE754_RD] = FPU_CSR_RD,
92 [IEEE754_RU] = FPU_CSR_RU,
95 #if __mips >= 4
96 /* convert condition code register number to csr bit */
97 static const unsigned int fpucondbit[8] = {
98 FPU_CSR_COND0,
99 FPU_CSR_COND1,
100 FPU_CSR_COND2,
101 FPU_CSR_COND3,
102 FPU_CSR_COND4,
103 FPU_CSR_COND5,
104 FPU_CSR_COND6,
105 FPU_CSR_COND7
107 #endif
111 * Redundant with logic already in kernel/branch.c,
112 * embedded in compute_return_epc. At some point,
113 * a single subroutine should be used across both
114 * modules.
116 static int isBranchInstr(mips_instruction * i)
118 switch (MIPSInst_OPCODE(*i)) {
119 case spec_op:
120 switch (MIPSInst_FUNC(*i)) {
121 case jalr_op:
122 case jr_op:
123 return 1;
125 break;
127 case bcond_op:
128 switch (MIPSInst_RT(*i)) {
129 case bltz_op:
130 case bgez_op:
131 case bltzl_op:
132 case bgezl_op:
133 case bltzal_op:
134 case bgezal_op:
135 case bltzall_op:
136 case bgezall_op:
137 return 1;
139 break;
141 case j_op:
142 case jal_op:
143 case jalx_op:
144 case beq_op:
145 case bne_op:
146 case blez_op:
147 case bgtz_op:
148 case beql_op:
149 case bnel_op:
150 case blezl_op:
151 case bgtzl_op:
152 return 1;
154 case cop0_op:
155 case cop1_op:
156 case cop2_op:
157 case cop1x_op:
158 if (MIPSInst_RS(*i) == bc_op)
159 return 1;
160 break;
163 return 0;
167 * In the Linux kernel, we support selection of FPR format on the
168 * basis of the Status.FR bit. This does imply that, if a full 32
169 * FPRs are desired, there needs to be a flip-flop that can be written
170 * to one at that bit position. In any case, O32 MIPS ABI uses
171 * only the even FPRs (Status.FR = 0).
174 #define CP0_STATUS_FR_SUPPORT
176 #ifdef CP0_STATUS_FR_SUPPORT
177 #define FR_BIT ST0_FR
178 #else
179 #define FR_BIT 0
180 #endif
182 #define SIFROMREG(si,x) ((si) = \
183 (xcp->cp0_status & FR_BIT) || !(x & 1) ? \
184 (int)ctx->fpr[x] : \
185 (int)(ctx->fpr[x & ~1] >> 32 ))
186 #define SITOREG(si,x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
187 (xcp->cp0_status & FR_BIT) || !(x & 1) ? \
188 ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
189 ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
191 #define DIFROMREG(di,x) ((di) = \
192 ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])
193 #define DITOREG(di,x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
194 = (di))
196 #define SPFROMREG(sp,x) SIFROMREG((sp).bits,x)
197 #define SPTOREG(sp,x) SITOREG((sp).bits,x)
198 #define DPFROMREG(dp,x) DIFROMREG((dp).bits,x)
199 #define DPTOREG(dp,x) DITOREG((dp).bits,x)
202 * Emulate the single floating point instruction pointed at by EPC.
203 * Two instructions if the instruction is in a branch delay slot.
206 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
208 mips_instruction ir;
209 void * emulpc, *contpc;
210 unsigned int cond;
212 if (get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
213 fpuemustats.errors++;
214 return SIGBUS;
217 /* XXX NEC Vr54xx bug workaround */
218 if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
219 xcp->cp0_cause &= ~CAUSEF_BD;
221 if (xcp->cp0_cause & CAUSEF_BD) {
223 * The instruction to be emulated is in a branch delay slot
224 * which means that we have to emulate the branch instruction
225 * BEFORE we do the cop1 instruction.
227 * This branch could be a COP1 branch, but in that case we
228 * would have had a trap for that instruction, and would not
229 * come through this route.
231 * Linux MIPS branch emulator operates on context, updating the
232 * cp0_epc.
234 emulpc = (void *) (xcp->cp0_epc + 4); /* Snapshot emulation target */
236 if (__compute_return_epc(xcp)) {
237 #ifdef CP1DBG
238 printk("failed to emulate branch at %p\n",
239 (void *) (xcp->cp0_epc));
240 #endif
241 return SIGILL;
243 if (get_user(ir, (mips_instruction __user *) emulpc)) {
244 fpuemustats.errors++;
245 return SIGBUS;
247 /* __compute_return_epc() will have updated cp0_epc */
248 contpc = (void *) xcp->cp0_epc;
249 /* In order not to confuse ptrace() et al, tweak context */
250 xcp->cp0_epc = (unsigned long) emulpc - 4;
251 } else {
252 emulpc = (void *) xcp->cp0_epc;
253 contpc = (void *) (xcp->cp0_epc + 4);
256 emul:
257 fpuemustats.emulated++;
258 switch (MIPSInst_OPCODE(ir)) {
259 case ldc1_op:{
260 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
261 MIPSInst_SIMM(ir));
262 u64 val;
264 fpuemustats.loads++;
265 if (get_user(val, va)) {
266 fpuemustats.errors++;
267 return SIGBUS;
269 DITOREG(val, MIPSInst_RT(ir));
270 break;
273 case sdc1_op:{
274 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
275 MIPSInst_SIMM(ir));
276 u64 val;
278 fpuemustats.stores++;
279 DIFROMREG(val, MIPSInst_RT(ir));
280 if (put_user(val, va)) {
281 fpuemustats.errors++;
282 return SIGBUS;
284 break;
287 case lwc1_op:{
288 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
289 MIPSInst_SIMM(ir));
290 u32 val;
292 fpuemustats.loads++;
293 if (get_user(val, va)) {
294 fpuemustats.errors++;
295 return SIGBUS;
297 SITOREG(val, MIPSInst_RT(ir));
298 break;
301 case swc1_op:{
302 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
303 MIPSInst_SIMM(ir));
304 u32 val;
306 fpuemustats.stores++;
307 SIFROMREG(val, MIPSInst_RT(ir));
308 if (put_user(val, va)) {
309 fpuemustats.errors++;
310 return SIGBUS;
312 break;
315 case cop1_op:
316 switch (MIPSInst_RS(ir)) {
318 #if defined(__mips64)
319 case dmfc_op:
320 /* copregister fs -> gpr[rt] */
321 if (MIPSInst_RT(ir) != 0) {
322 DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
323 MIPSInst_RD(ir));
325 break;
327 case dmtc_op:
328 /* copregister fs <- rt */
329 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
330 break;
331 #endif
333 case mfc_op:
334 /* copregister rd -> gpr[rt] */
335 if (MIPSInst_RT(ir) != 0) {
336 SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
337 MIPSInst_RD(ir));
339 break;
341 case mtc_op:
342 /* copregister rd <- rt */
343 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
344 break;
346 case cfc_op:{
347 /* cop control register rd -> gpr[rt] */
348 u32 value;
350 if (ir == CP1UNDEF) {
351 return do_dsemulret(xcp);
353 if (MIPSInst_RD(ir) == FPCREG_CSR) {
354 value = ctx->fcr31;
355 value = (value & ~0x3) | mips_rm[value & 0x3];
356 #ifdef CSRTRACE
357 printk("%p gpr[%d]<-csr=%08x\n",
358 (void *) (xcp->cp0_epc),
359 MIPSInst_RT(ir), value);
360 #endif
362 else if (MIPSInst_RD(ir) == FPCREG_RID)
363 value = 0;
364 else
365 value = 0;
366 if (MIPSInst_RT(ir))
367 xcp->regs[MIPSInst_RT(ir)] = value;
368 break;
371 case ctc_op:{
372 /* copregister rd <- rt */
373 u32 value;
375 if (MIPSInst_RT(ir) == 0)
376 value = 0;
377 else
378 value = xcp->regs[MIPSInst_RT(ir)];
380 /* we only have one writable control reg
382 if (MIPSInst_RD(ir) == FPCREG_CSR) {
383 #ifdef CSRTRACE
384 printk("%p gpr[%d]->csr=%08x\n",
385 (void *) (xcp->cp0_epc),
386 MIPSInst_RT(ir), value);
387 #endif
388 value &= (FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
389 ctx->fcr31 &= ~(FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
390 /* convert to ieee library modes */
391 ctx->fcr31 |= (value & ~0x3) | ieee_rm[value & 0x3];
393 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
394 return SIGFPE;
396 break;
399 case bc_op:{
400 int likely = 0;
402 if (xcp->cp0_cause & CAUSEF_BD)
403 return SIGILL;
405 #if __mips >= 4
406 cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
407 #else
408 cond = ctx->fcr31 & FPU_CSR_COND;
409 #endif
410 switch (MIPSInst_RT(ir) & 3) {
411 case bcfl_op:
412 likely = 1;
413 case bcf_op:
414 cond = !cond;
415 break;
416 case bctl_op:
417 likely = 1;
418 case bct_op:
419 break;
420 default:
421 /* thats an illegal instruction */
422 return SIGILL;
425 xcp->cp0_cause |= CAUSEF_BD;
426 if (cond) {
427 /* branch taken: emulate dslot
428 * instruction
430 xcp->cp0_epc += 4;
431 contpc = (void *)
432 (xcp->cp0_epc +
433 (MIPSInst_SIMM(ir) << 2));
435 if (get_user(ir,
436 (mips_instruction __user *) xcp->cp0_epc)) {
437 fpuemustats.errors++;
438 return SIGBUS;
441 switch (MIPSInst_OPCODE(ir)) {
442 case lwc1_op:
443 case swc1_op:
444 #if (__mips >= 2 || defined(__mips64))
445 case ldc1_op:
446 case sdc1_op:
447 #endif
448 case cop1_op:
449 #if __mips >= 4 && __mips != 32
450 case cop1x_op:
451 #endif
452 /* its one of ours */
453 goto emul;
454 #if __mips >= 4
455 case spec_op:
456 if (MIPSInst_FUNC(ir) == movc_op)
457 goto emul;
458 break;
459 #endif
463 * Single step the non-cp1
464 * instruction in the dslot
466 return mips_dsemul(xcp, ir, (unsigned long) contpc);
468 else {
469 /* branch not taken */
470 if (likely) {
472 * branch likely nullifies
473 * dslot if not taken
475 xcp->cp0_epc += 4;
476 contpc += 4;
478 * else continue & execute
479 * dslot as normal insn
483 break;
486 default:
487 if (!(MIPSInst_RS(ir) & 0x10))
488 return SIGILL;
490 int sig;
492 /* a real fpu computation instruction */
493 if ((sig = fpu_emu(xcp, ctx, ir)))
494 return sig;
497 break;
499 #if __mips >= 4 && __mips != 32
500 case cop1x_op:{
501 int sig;
503 if ((sig = fpux_emu(xcp, ctx, ir)))
504 return sig;
505 break;
507 #endif
509 #if __mips >= 4
510 case spec_op:
511 if (MIPSInst_FUNC(ir) != movc_op)
512 return SIGILL;
513 cond = fpucondbit[MIPSInst_RT(ir) >> 2];
514 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
515 xcp->regs[MIPSInst_RD(ir)] =
516 xcp->regs[MIPSInst_RS(ir)];
517 break;
518 #endif
520 default:
521 return SIGILL;
524 /* we did it !! */
525 xcp->cp0_epc = (unsigned long) contpc;
526 xcp->cp0_cause &= ~CAUSEF_BD;
528 return 0;
532 * Conversion table from MIPS compare ops 48-63
533 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
535 static const unsigned char cmptab[8] = {
536 0, /* cmp_0 (sig) cmp_sf */
537 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
538 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
539 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
540 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
541 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
542 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
543 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
547 #if __mips >= 4 && __mips != 32
550 * Additional MIPS4 instructions
553 #define DEF3OP(name, p, f1, f2, f3) \
554 static ieee754##p fpemu_##p##_##name (ieee754##p r, ieee754##p s, \
555 ieee754##p t) \
557 struct _ieee754_csr ieee754_csr_save; \
558 s = f1 (s, t); \
559 ieee754_csr_save = ieee754_csr; \
560 s = f2 (s, r); \
561 ieee754_csr_save.cx |= ieee754_csr.cx; \
562 ieee754_csr_save.sx |= ieee754_csr.sx; \
563 s = f3 (s); \
564 ieee754_csr.cx |= ieee754_csr_save.cx; \
565 ieee754_csr.sx |= ieee754_csr_save.sx; \
566 return s; \
569 static ieee754dp fpemu_dp_recip(ieee754dp d)
571 return ieee754dp_div(ieee754dp_one(0), d);
574 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
576 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
579 static ieee754sp fpemu_sp_recip(ieee754sp s)
581 return ieee754sp_div(ieee754sp_one(0), s);
584 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
586 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
589 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add,);
590 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub,);
591 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
592 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
593 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add,);
594 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub,);
595 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
596 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
598 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
599 mips_instruction ir)
601 unsigned rcsr = 0; /* resulting csr */
603 fpuemustats.cp1xops++;
605 switch (MIPSInst_FMA_FFMT(ir)) {
606 case s_fmt:{ /* 0 */
608 ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
609 ieee754sp fd, fr, fs, ft;
610 u32 __user *va;
611 u32 val;
613 switch (MIPSInst_FUNC(ir)) {
614 case lwxc1_op:
615 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
616 xcp->regs[MIPSInst_FT(ir)]);
618 fpuemustats.loads++;
619 if (get_user(val, va)) {
620 fpuemustats.errors++;
621 return SIGBUS;
623 SITOREG(val, MIPSInst_FD(ir));
624 break;
626 case swxc1_op:
627 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
628 xcp->regs[MIPSInst_FT(ir)]);
630 fpuemustats.stores++;
632 SIFROMREG(val, MIPSInst_FS(ir));
633 if (put_user(val, va)) {
634 fpuemustats.errors++;
635 return SIGBUS;
637 break;
639 case madd_s_op:
640 handler = fpemu_sp_madd;
641 goto scoptop;
642 case msub_s_op:
643 handler = fpemu_sp_msub;
644 goto scoptop;
645 case nmadd_s_op:
646 handler = fpemu_sp_nmadd;
647 goto scoptop;
648 case nmsub_s_op:
649 handler = fpemu_sp_nmsub;
650 goto scoptop;
652 scoptop:
653 SPFROMREG(fr, MIPSInst_FR(ir));
654 SPFROMREG(fs, MIPSInst_FS(ir));
655 SPFROMREG(ft, MIPSInst_FT(ir));
656 fd = (*handler) (fr, fs, ft);
657 SPTOREG(fd, MIPSInst_FD(ir));
659 copcsr:
660 if (ieee754_cxtest(IEEE754_INEXACT))
661 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
662 if (ieee754_cxtest(IEEE754_UNDERFLOW))
663 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
664 if (ieee754_cxtest(IEEE754_OVERFLOW))
665 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
666 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
667 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
669 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
670 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
671 /*printk ("SIGFPE: fpu csr = %08x\n",
672 ctx->fcr31); */
673 return SIGFPE;
676 break;
678 default:
679 return SIGILL;
681 break;
684 case d_fmt:{ /* 1 */
685 ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
686 ieee754dp fd, fr, fs, ft;
687 u64 __user *va;
688 u64 val;
690 switch (MIPSInst_FUNC(ir)) {
691 case ldxc1_op:
692 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
693 xcp->regs[MIPSInst_FT(ir)]);
695 fpuemustats.loads++;
696 if (get_user(val, va)) {
697 fpuemustats.errors++;
698 return SIGBUS;
700 DITOREG(val, MIPSInst_FD(ir));
701 break;
703 case sdxc1_op:
704 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
705 xcp->regs[MIPSInst_FT(ir)]);
707 fpuemustats.stores++;
708 DIFROMREG(val, MIPSInst_FS(ir));
709 if (put_user(val, va)) {
710 fpuemustats.errors++;
711 return SIGBUS;
713 break;
715 case madd_d_op:
716 handler = fpemu_dp_madd;
717 goto dcoptop;
718 case msub_d_op:
719 handler = fpemu_dp_msub;
720 goto dcoptop;
721 case nmadd_d_op:
722 handler = fpemu_dp_nmadd;
723 goto dcoptop;
724 case nmsub_d_op:
725 handler = fpemu_dp_nmsub;
726 goto dcoptop;
728 dcoptop:
729 DPFROMREG(fr, MIPSInst_FR(ir));
730 DPFROMREG(fs, MIPSInst_FS(ir));
731 DPFROMREG(ft, MIPSInst_FT(ir));
732 fd = (*handler) (fr, fs, ft);
733 DPTOREG(fd, MIPSInst_FD(ir));
734 goto copcsr;
736 default:
737 return SIGILL;
739 break;
742 case 0x7: /* 7 */
743 if (MIPSInst_FUNC(ir) != pfetch_op) {
744 return SIGILL;
746 /* ignore prefx operation */
747 break;
749 default:
750 return SIGILL;
753 return 0;
755 #endif
760 * Emulate a single COP1 arithmetic instruction.
762 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
763 mips_instruction ir)
765 int rfmt; /* resulting format */
766 unsigned rcsr = 0; /* resulting csr */
767 unsigned cond;
768 union {
769 ieee754dp d;
770 ieee754sp s;
771 int w;
772 #ifdef __mips64
773 s64 l;
774 #endif
775 } rv; /* resulting value */
777 fpuemustats.cp1ops++;
778 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
779 case s_fmt:{ /* 0 */
780 union {
781 ieee754sp(*b) (ieee754sp, ieee754sp);
782 ieee754sp(*u) (ieee754sp);
783 } handler;
785 switch (MIPSInst_FUNC(ir)) {
786 /* binary ops */
787 case fadd_op:
788 handler.b = ieee754sp_add;
789 goto scopbop;
790 case fsub_op:
791 handler.b = ieee754sp_sub;
792 goto scopbop;
793 case fmul_op:
794 handler.b = ieee754sp_mul;
795 goto scopbop;
796 case fdiv_op:
797 handler.b = ieee754sp_div;
798 goto scopbop;
800 /* unary ops */
801 #if __mips >= 2 || defined(__mips64)
802 case fsqrt_op:
803 handler.u = ieee754sp_sqrt;
804 goto scopuop;
805 #endif
806 #if __mips >= 4 && __mips != 32
807 case frsqrt_op:
808 handler.u = fpemu_sp_rsqrt;
809 goto scopuop;
810 case frecip_op:
811 handler.u = fpemu_sp_recip;
812 goto scopuop;
813 #endif
814 #if __mips >= 4
815 case fmovc_op:
816 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
817 if (((ctx->fcr31 & cond) != 0) !=
818 ((MIPSInst_FT(ir) & 1) != 0))
819 return 0;
820 SPFROMREG(rv.s, MIPSInst_FS(ir));
821 break;
822 case fmovz_op:
823 if (xcp->regs[MIPSInst_FT(ir)] != 0)
824 return 0;
825 SPFROMREG(rv.s, MIPSInst_FS(ir));
826 break;
827 case fmovn_op:
828 if (xcp->regs[MIPSInst_FT(ir)] == 0)
829 return 0;
830 SPFROMREG(rv.s, MIPSInst_FS(ir));
831 break;
832 #endif
833 case fabs_op:
834 handler.u = ieee754sp_abs;
835 goto scopuop;
836 case fneg_op:
837 handler.u = ieee754sp_neg;
838 goto scopuop;
839 case fmov_op:
840 /* an easy one */
841 SPFROMREG(rv.s, MIPSInst_FS(ir));
842 goto copcsr;
844 /* binary op on handler */
845 scopbop:
847 ieee754sp fs, ft;
849 SPFROMREG(fs, MIPSInst_FS(ir));
850 SPFROMREG(ft, MIPSInst_FT(ir));
852 rv.s = (*handler.b) (fs, ft);
853 goto copcsr;
855 scopuop:
857 ieee754sp fs;
859 SPFROMREG(fs, MIPSInst_FS(ir));
860 rv.s = (*handler.u) (fs);
861 goto copcsr;
863 copcsr:
864 if (ieee754_cxtest(IEEE754_INEXACT))
865 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
866 if (ieee754_cxtest(IEEE754_UNDERFLOW))
867 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
868 if (ieee754_cxtest(IEEE754_OVERFLOW))
869 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
870 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
871 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
872 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
873 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
874 break;
876 /* unary conv ops */
877 case fcvts_op:
878 return SIGILL; /* not defined */
879 case fcvtd_op:{
880 ieee754sp fs;
882 SPFROMREG(fs, MIPSInst_FS(ir));
883 rv.d = ieee754dp_fsp(fs);
884 rfmt = d_fmt;
885 goto copcsr;
887 case fcvtw_op:{
888 ieee754sp fs;
890 SPFROMREG(fs, MIPSInst_FS(ir));
891 rv.w = ieee754sp_tint(fs);
892 rfmt = w_fmt;
893 goto copcsr;
896 #if __mips >= 2 || defined(__mips64)
897 case fround_op:
898 case ftrunc_op:
899 case fceil_op:
900 case ffloor_op:{
901 unsigned int oldrm = ieee754_csr.rm;
902 ieee754sp fs;
904 SPFROMREG(fs, MIPSInst_FS(ir));
905 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
906 rv.w = ieee754sp_tint(fs);
907 ieee754_csr.rm = oldrm;
908 rfmt = w_fmt;
909 goto copcsr;
911 #endif /* __mips >= 2 */
913 #if defined(__mips64)
914 case fcvtl_op:{
915 ieee754sp fs;
917 SPFROMREG(fs, MIPSInst_FS(ir));
918 rv.l = ieee754sp_tlong(fs);
919 rfmt = l_fmt;
920 goto copcsr;
923 case froundl_op:
924 case ftruncl_op:
925 case fceill_op:
926 case ffloorl_op:{
927 unsigned int oldrm = ieee754_csr.rm;
928 ieee754sp fs;
930 SPFROMREG(fs, MIPSInst_FS(ir));
931 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
932 rv.l = ieee754sp_tlong(fs);
933 ieee754_csr.rm = oldrm;
934 rfmt = l_fmt;
935 goto copcsr;
937 #endif /* defined(__mips64) */
939 default:
940 if (MIPSInst_FUNC(ir) >= fcmp_op) {
941 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
942 ieee754sp fs, ft;
944 SPFROMREG(fs, MIPSInst_FS(ir));
945 SPFROMREG(ft, MIPSInst_FT(ir));
946 rv.w = ieee754sp_cmp(fs, ft,
947 cmptab[cmpop & 0x7], cmpop & 0x8);
948 rfmt = -1;
949 if ((cmpop & 0x8) && ieee754_cxtest
950 (IEEE754_INVALID_OPERATION))
951 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
952 else
953 goto copcsr;
956 else {
957 return SIGILL;
959 break;
961 break;
964 case d_fmt:{
965 union {
966 ieee754dp(*b) (ieee754dp, ieee754dp);
967 ieee754dp(*u) (ieee754dp);
968 } handler;
970 switch (MIPSInst_FUNC(ir)) {
971 /* binary ops */
972 case fadd_op:
973 handler.b = ieee754dp_add;
974 goto dcopbop;
975 case fsub_op:
976 handler.b = ieee754dp_sub;
977 goto dcopbop;
978 case fmul_op:
979 handler.b = ieee754dp_mul;
980 goto dcopbop;
981 case fdiv_op:
982 handler.b = ieee754dp_div;
983 goto dcopbop;
985 /* unary ops */
986 #if __mips >= 2 || defined(__mips64)
987 case fsqrt_op:
988 handler.u = ieee754dp_sqrt;
989 goto dcopuop;
990 #endif
991 #if __mips >= 4 && __mips != 32
992 case frsqrt_op:
993 handler.u = fpemu_dp_rsqrt;
994 goto dcopuop;
995 case frecip_op:
996 handler.u = fpemu_dp_recip;
997 goto dcopuop;
998 #endif
999 #if __mips >= 4
1000 case fmovc_op:
1001 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1002 if (((ctx->fcr31 & cond) != 0) !=
1003 ((MIPSInst_FT(ir) & 1) != 0))
1004 return 0;
1005 DPFROMREG(rv.d, MIPSInst_FS(ir));
1006 break;
1007 case fmovz_op:
1008 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1009 return 0;
1010 DPFROMREG(rv.d, MIPSInst_FS(ir));
1011 break;
1012 case fmovn_op:
1013 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1014 return 0;
1015 DPFROMREG(rv.d, MIPSInst_FS(ir));
1016 break;
1017 #endif
1018 case fabs_op:
1019 handler.u = ieee754dp_abs;
1020 goto dcopuop;
1022 case fneg_op:
1023 handler.u = ieee754dp_neg;
1024 goto dcopuop;
1026 case fmov_op:
1027 /* an easy one */
1028 DPFROMREG(rv.d, MIPSInst_FS(ir));
1029 goto copcsr;
1031 /* binary op on handler */
1032 dcopbop:{
1033 ieee754dp fs, ft;
1035 DPFROMREG(fs, MIPSInst_FS(ir));
1036 DPFROMREG(ft, MIPSInst_FT(ir));
1038 rv.d = (*handler.b) (fs, ft);
1039 goto copcsr;
1041 dcopuop:{
1042 ieee754dp fs;
1044 DPFROMREG(fs, MIPSInst_FS(ir));
1045 rv.d = (*handler.u) (fs);
1046 goto copcsr;
1049 /* unary conv ops */
1050 case fcvts_op:{
1051 ieee754dp fs;
1053 DPFROMREG(fs, MIPSInst_FS(ir));
1054 rv.s = ieee754sp_fdp(fs);
1055 rfmt = s_fmt;
1056 goto copcsr;
1058 case fcvtd_op:
1059 return SIGILL; /* not defined */
1061 case fcvtw_op:{
1062 ieee754dp fs;
1064 DPFROMREG(fs, MIPSInst_FS(ir));
1065 rv.w = ieee754dp_tint(fs); /* wrong */
1066 rfmt = w_fmt;
1067 goto copcsr;
1070 #if __mips >= 2 || defined(__mips64)
1071 case fround_op:
1072 case ftrunc_op:
1073 case fceil_op:
1074 case ffloor_op:{
1075 unsigned int oldrm = ieee754_csr.rm;
1076 ieee754dp fs;
1078 DPFROMREG(fs, MIPSInst_FS(ir));
1079 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1080 rv.w = ieee754dp_tint(fs);
1081 ieee754_csr.rm = oldrm;
1082 rfmt = w_fmt;
1083 goto copcsr;
1085 #endif
1087 #if defined(__mips64)
1088 case fcvtl_op:{
1089 ieee754dp fs;
1091 DPFROMREG(fs, MIPSInst_FS(ir));
1092 rv.l = ieee754dp_tlong(fs);
1093 rfmt = l_fmt;
1094 goto copcsr;
1097 case froundl_op:
1098 case ftruncl_op:
1099 case fceill_op:
1100 case ffloorl_op:{
1101 unsigned int oldrm = ieee754_csr.rm;
1102 ieee754dp fs;
1104 DPFROMREG(fs, MIPSInst_FS(ir));
1105 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1106 rv.l = ieee754dp_tlong(fs);
1107 ieee754_csr.rm = oldrm;
1108 rfmt = l_fmt;
1109 goto copcsr;
1111 #endif /* __mips >= 3 */
1113 default:
1114 if (MIPSInst_FUNC(ir) >= fcmp_op) {
1115 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1116 ieee754dp fs, ft;
1118 DPFROMREG(fs, MIPSInst_FS(ir));
1119 DPFROMREG(ft, MIPSInst_FT(ir));
1120 rv.w = ieee754dp_cmp(fs, ft,
1121 cmptab[cmpop & 0x7], cmpop & 0x8);
1122 rfmt = -1;
1123 if ((cmpop & 0x8)
1125 ieee754_cxtest
1126 (IEEE754_INVALID_OPERATION))
1127 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1128 else
1129 goto copcsr;
1132 else {
1133 return SIGILL;
1135 break;
1137 break;
1140 case w_fmt:{
1141 ieee754sp fs;
1143 switch (MIPSInst_FUNC(ir)) {
1144 case fcvts_op:
1145 /* convert word to single precision real */
1146 SPFROMREG(fs, MIPSInst_FS(ir));
1147 rv.s = ieee754sp_fint(fs.bits);
1148 rfmt = s_fmt;
1149 goto copcsr;
1150 case fcvtd_op:
1151 /* convert word to double precision real */
1152 SPFROMREG(fs, MIPSInst_FS(ir));
1153 rv.d = ieee754dp_fint(fs.bits);
1154 rfmt = d_fmt;
1155 goto copcsr;
1156 default:
1157 return SIGILL;
1159 break;
1162 #if defined(__mips64)
1163 case l_fmt:{
1164 switch (MIPSInst_FUNC(ir)) {
1165 case fcvts_op:
1166 /* convert long to single precision real */
1167 rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1168 rfmt = s_fmt;
1169 goto copcsr;
1170 case fcvtd_op:
1171 /* convert long to double precision real */
1172 rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1173 rfmt = d_fmt;
1174 goto copcsr;
1175 default:
1176 return SIGILL;
1178 break;
1180 #endif
1182 default:
1183 return SIGILL;
1187 * Update the fpu CSR register for this operation.
1188 * If an exception is required, generate a tidy SIGFPE exception,
1189 * without updating the result register.
1190 * Note: cause exception bits do not accumulate, they are rewritten
1191 * for each op; only the flag/sticky bits accumulate.
1193 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1194 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1195 /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1196 return SIGFPE;
1200 * Now we can safely write the result back to the register file.
1202 switch (rfmt) {
1203 case -1:{
1204 #if __mips >= 4
1205 cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1206 #else
1207 cond = FPU_CSR_COND;
1208 #endif
1209 if (rv.w)
1210 ctx->fcr31 |= cond;
1211 else
1212 ctx->fcr31 &= ~cond;
1213 break;
1215 case d_fmt:
1216 DPTOREG(rv.d, MIPSInst_FD(ir));
1217 break;
1218 case s_fmt:
1219 SPTOREG(rv.s, MIPSInst_FD(ir));
1220 break;
1221 case w_fmt:
1222 SITOREG(rv.w, MIPSInst_FD(ir));
1223 break;
1224 #if defined(__mips64)
1225 case l_fmt:
1226 DITOREG(rv.l, MIPSInst_FD(ir));
1227 break;
1228 #endif
1229 default:
1230 return SIGILL;
1233 return 0;
1236 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
1238 unsigned long oldepc, prevepc;
1239 mips_instruction insn;
1240 int sig = 0;
1242 oldepc = xcp->cp0_epc;
1243 do {
1244 prevepc = xcp->cp0_epc;
1246 if (get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1247 fpuemustats.errors++;
1248 return SIGBUS;
1250 if (insn == 0)
1251 xcp->cp0_epc += 4; /* skip nops */
1252 else {
1254 * The 'ieee754_csr' is an alias of
1255 * ctx->fcr31. No need to copy ctx->fcr31 to
1256 * ieee754_csr. But ieee754_csr.rm is ieee
1257 * library modes. (not mips rounding mode)
1259 /* convert to ieee library modes */
1260 ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1261 sig = cop1Emulate(xcp, ctx);
1262 /* revert to mips rounding mode */
1263 ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1266 if (cpu_has_fpu)
1267 break;
1268 if (sig)
1269 break;
1271 cond_resched();
1272 } while (xcp->cp0_epc > prevepc);
1274 /* SIGILL indicates a non-fpu instruction */
1275 if (sig == SIGILL && xcp->cp0_epc != oldepc)
1276 /* but if epc has advanced, then ignore it */
1277 sig = 0;
1279 return sig;